APELLIDO Y NOMBRE:	NOTA:
E-MAIL:	REG. N°:

- 1. (a) Dado el conjunto $A = \{p, q, \{t, v\}, \{t\}\}$ decidir si las siguientes proposiciones son verdaderas o falsas
 - i. $t \in A$

- iii. $\{t, v\} \in A$
- v. $\{q, t\} \subseteq A$

ii. $\{p\} \subseteq A$

- iv. $\{\{t\}\}\subseteq A$
- vi. $\{p\} \in A$
- (b) Demostrar por cálculo directo, justificando alguno de los pasos por doble inclusión, que $M\setminus (N\cup P)=(M'\cup N)'\setminus P.$

Inferir que si $N \cap P = P$, entonces $M \setminus (N \cup P) = (M' \cup N)'$

- 2. (a) Sea la relación $\mathcal{R}_V = \{(a, a), (e, e), (o, o), (i, i), (a, e), (e, a), (i, u), (e, o)\}$ definida sobre el conjunto $V = \{a, e, i, o, u\}$. Determinar, justificando cada respuesta, qué propiedades satisface.
 - (b) Sea $B = \{n \in \mathbb{N} : 4 \le n < 10\}$ y consideremos la partición $\{\{4\}, \{5, 6\}, \{7, 8\}, \{9\}\}\}$. Describir la relación de equivalencia \mathcal{R}_B asociada a la partición, y hallar el conjunto cociente.
- 3. (a) Sean $X = \{a, b, c, d, e\}$, $Y = \{1, 2, 3, 4\}$ dos conjuntos, cuando sea posible, definir por medio de gráficos con diagramas de Venn-Euler:
 - i. Una función inyectiva y no epiyectiva,
 - ii. una función epiyectiva y no biyectiva,
 - iii. una función biyectiva,
 - iv. una relación que no sea función, justificando por qué no es función.
 - (b) Sea $f: A \to B$ una función, $X_1, X_2 \subseteq A$, $Y_1, Y_2 \subseteq B$, probar $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$. Ayudita: $f(X) = \{f(a) : a \in X\} \subseteq B$, y $f^{-1}(Y) = \{a \in A : f(a) \in Y\} \subseteq A$.
- 4. (a) Verificar, usando el principio de inducción, que para todo $n \in \mathbb{N}$:

$$2+6+10+\cdots+(4n-2)=2n^2$$

- (b) Definir recursivamente n!.
- \mathbb{R} En las condiciones del ejercicio 3b, determinar si $f \circ f^{-1}(Y_1) = Y_1$ y $f^{-1} \circ f(X_1) = X_1$.

Nro. de hojas entregadas (sin enunciado):

Firmar la última hoja.

APELLIDO Y NOMBRE:	NOTA:
E-MAIL:	REG. N°:

- 1. (a) Dado el conjunto $A = \{t, v, \{p, q\}, \{p\}\}\$ decidir si las siguientes proposiciones son verdaderas o falsas
 - i. $p \in A$

- iii. $\{p,q\} \in A$
- v. $\{v, p\} \subseteq A$

ii. $\{t\} \subseteq A$

- iv. $\{\{p\}\}\subset A$
- vi. $\{t\} \in A$
- (b) Demostrar por cálculo directo, justificando alguno de los pasos por doble inclusión, que $(X' \cup Y)' \setminus Z = X \setminus (Y \cup Z)$.

Inferir que si $Y \cap Z = Z$, entonces $X \setminus (Y \cup Z) = (X' \cup Y)'$

- 2. (a) Sea la relación $\mathcal{R}_V = \{(a, a), (u, u), (o, o), (i, i), (u, i), (a, i), (i, u), (o, a)\}$ definida sobre el conjunto $V = \{a, e, i, o, u\}$. Determinar, justificando cada respuesta, qué propiedades satisface.
 - (b) Sea $B = \{n \in \mathbb{N} : 4 \le n < 10\}$ y consideremos la partición $\{\{4\}, \{5, 6\}, \{7\}, \{8, 9\}\}\}$. Describir la relación de equivalencia \mathcal{R}_B asociada a la partición, y hallar el conjunto cociente.
- 3. (a) Sean $M = \{1, 2, 3, 4\}$, $N = \{a, e, i, o, u\}$ dos conjuntos, cuando sea posible, definir por medio de gráficos con diagramas de Venn-Euler:
 - i. Una función inyectiva y no epiyectiva,
 - ii. una función epiyectiva y no biyectiva,
 - iii. una función biyectiva,
 - iv. una relación que no sea función, justificando por qué no es función.
 - (b) Sea $f: A \to B$ una función, $X_1, X_2 \subseteq A$, $Y_1, Y_2 \subseteq B$, probar $f(X_1 \cup X_2) = f(X_1) \cup f(X_2)$. Ayudita: $f(X) = \{f(a) : a \in X\} \subseteq B$, y $f^{-1}(Y) = \{a \in A : f(a) \in Y\} \subseteq A$.
- 4. (a) Verificar, usando el principio de inducción, que para todo $n \in \mathbb{N}$:

$$3 + 9 + 15 + \dots + (6n - 3) = 3n^2$$

- (b) Definir recursivamente 5^n .
- \mathbb{R} En las condiciones del ejercicio 3b, determinar si $f \circ f^{-1}(Y_1) = Y_1$ y $f^{-1} \circ f(X_1) = X_1$.

Nro. de hojas entregadas (sin enunciado):

Firmar la última hoja.