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Preface

In 1974 the book by Dahlquist and Björck,“Numerical Methods” was published
in the Prentice-Hall Series in Automatic Computation, edited by George Forsythe.
It was an extended and updated English translation of a Swedish undergraduate
textbook used at the Royal Institute of Technology (KTH) in Stockholm. This
book became one of the most successful titles at Prentice-Hall. It was translated
into several other languages and as late as 1990 a Chinese edition appeared. It was
reprinted in 2003 by Dover Publications.

In 1984 the authors were invited by Prentice-Hall to prepare a new edition
of the book. After some attempts it soon became apparent that, because of the
rapid development of the field, one volume would no longer suffice to cover the
topics treated in the 1974 book. Thus a large part of the new book would have
to be written more or less from scratch. This meant more work than we initially
envisaged. Other commitments inevitably interfered, sometimes for years, and the
project was delayed. The present volume is the result of several revisions worked
out during the last ten years.

Tragically my mentor, friend and coauthor Germund Dahlquist died on Febru-
ary 8, 2005, before even the first volume was finished. Fortunately the gaps left in
Germund’s part of the manuscript were relatively few. Encouraged by his family I
decided to carry on and I have tried to my best ability to fill in the missing parts.
It is sad that he could never enjoy the fruits of his toil.

Today mathematics is used in one form or another within most of the areas of
science and industry. Although there has always been a close interaction between
mathematics on the one hand and science and technology on the other this has
increased tremendously during the last decades. Advanced mathematical models
and methods are now used more and more also within areas such as medicine,
economics and social sciences.

The increased use of numerical methods has been caused not only by the
continuing advent of faster and larger computers. Gain in problem solving capa-
bilities through better mathematical algorithms have played an important role. In
modern scientific computing one can today treat more complex and less simplified
problems through massive amounts of numerical calculations. It is fair to say that
today experiment and theory, the two classical elements of scientific method, are
supplemented in many areas by computations as an equally important component.

This volume is suitable for use in a basic introductory course in a graduate
program in Numerical Analysis. Numerical Linear Algebra as well as Differential

xv
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Equations will be treated in later volumes. Much of the material in the book
is derived from graduate courses given by the first author at KTH and Stanford
University and by the second author at Linköping University, mainly during the
1980s and 90s. The book will also be of interest to researchers in applied sciences
working in scientific computing. We also expect the book to be used as a reference.

We have aimed to make the book as self contained as possible. The level of
presentation ranges from elementary in the first chapter to fairly sophisticated in
some later parts. For most parts the necessary prerequisites are Calculus and Linear
Algebra. For some of the more advanced sections some knowledge of Complex Anal-
ysis and Functional Analysis is helpful, although all concepts used are explained.
The choice of topics inevitably reflects our own interests. We have included many
methods that are important in large-scale computing and the design of algorithms.
But the emphasis is on traditional and well-developed topics in numerical analysis.
Our experience from the 1974 book is that the most up-to-date topics in that book
became out of date first.

Chapter 1 is on a more elementary level than the rest of the book. It is used to
introduce a few general and powerful concepts and ideas, that will be used repeat-
edly. An introduction is given to some basic methods in the numerical solution of
linear equations and least squares problems, including the important singular value
decomposition. Basic techniques for the numerical solution of initial value problems
for ordinary differential equations is illustrated. An introduction to Monte-Carlo
methods, including a survey of pseudo-random number generators and variance
reduction techniques ends this chapter.

Chapter 2 treats floating point number systems and estimation and control
of errors. It is modelled after the same chapter in the 1974 book, but the IEEE
floating point standard has made possible a much more satisfactory treatment. We
are aware of the fact that this aspect of computing is considered by many to be
boring. But when things go wrong (and they do!), then some understanding of
floating point arithmetic and condition numbers may be essential. A new feature
is a section on interval arithmetic, a topic which recently has seen a revival, partly
because the directed rounding incorporated in the IEEE standard simplifies the
efficient implementation.

More than any other chapter, Chapter 3 reflects Dahlquist’s interest in an-
alytic function theory. In this chapter different uses of infinite power series for
numerical computations are studied, including ill-conditioned and semi-convergent
series. Various algorithms for computing the coefficients of power series are given.
The concept of formal power series and their manipulation using triangular Toeplitz
matrices are described.

Difference operators are handy tools for the derivation, analysis, and practical
application of numerical methods for many tasks such as interpolation, differentia-
tion, and quadrature. A more rigorous treatment of operator series expansions and
the use of the Cauchy formula and the Fast Fourier Transform (FFT) to derive the
expansions, are original features of this part of the chapter.

Several methods for convergence acceleration of series (sequences) are de-
scribed. For oscillating sequences (alternating series or series in a complex variable).
Aitken, repeated averages, and Euler’s transformation, are the most important.
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Variants of Aitken acceleration, Euler–Maclaurin and Richardson, work primarily
on monotonic sequences. A new and more rigorous theoretical analysis is given for
completely monotonic sequences. Although not intended for the novice, it has been
included partly because it illustrates some more advanced techniques from analysis
that are of more general interest.

An exposition of continued fractions, Padé approximation, that transform a
power series into a sequence of rational functions ends this chapter. This leads to
the ǫ-algorithm, the most important nonlinear convergence acceleration method.

Chapter 4 treats several topics related to interpolation and approximation.
Polynomial interpolation is used as a basic means of approximation in nearly all
areas of numerical analysis. Different bases for interpolation and related interpo-
lation formulas are discussed. The advantages of the barycentric form of Lagrange
interpolation formula is stressed. Multivariate interpolation formulas are briefly
surveyed.

Piecewise polynomials have become ubiquitous in computer aided design and
computer aided manufacturing. We describe how parametric Bézier curves are
constructed from piecewise Bernstein polynomials. A comprehensive treatment of
splines is given. The famous recurrence relation for B-splines is derived. The use of
B-splines for representing curves and surfaces with given differentiability conditions
is illustrated. A new analysis of the effect of boundary conditions is featured.

Function space concepts are introduced in this chapter. The concepts of linear
operator and operator norm are extended to general infinite dimensional vector
spaces. The norm and distance formula, which gives a convenient error bound for
general approximation problems is presented. Inner product spaces, orthogonal
systems and the least squares approximation problem are treated next. We stress
the importance of the three-term recurrence formula satisfied by orthogonal systems
of polynomials and its use for numerical calculations.

Basic Formulas and Theorems for Fourier series and Fourier Transforms are
discussed. Periodic continuation, sampled data and aliasing are treated. In appli-
cations such as digital signal and image processing, time-series analysis, the FFT
algorithm (already used in Chapter 3) has caused a complete change of attitude to-
ward what can be done. A separate section is therefore devoted to a matrix oriented
treatment of the FFT, including Fast Trigonometric Transforms.

The last section treats interpolation of an analytic function from the point
of view of Complex Analysis, including an analysis of the Runge phenomenon.
Interpolation at an infinite equidistant point set and its relation to the Shannon
sampling theorem. This section is more advanced than the rest of the chapter and
can be skipped in a first reading.

In Chapter 5 the classical Newton–Cotes’ and Clenshaw–Curtis’ interpolatory
rules for numerical integration are treated first. Next Romberg’s method and the
use of the ǫ-algorithm for acceleration in more difficult cases are described. The
superconvergence of the trapezoidal rule in special cases and special techniques for
oscillating integrands are discussed. A short section on adaptive quadrature comes
next.
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Quadrature rules with both free and prescribed nodes are important in many
contexts. A general technique of deriving formulas using the method of undeter-
mined coefficients is given first. Next Gauss–Christoffel quadrature rules and their
properties are treated. A more advanced exposition of relations between moments,
tridiagonal matrices and Gauss quadrature is included, but this can be skipped at
first reading.

Multivariate integration formulas using product rules are simple generaliza-
tions of univariate rules. For more general domains integration using irregular
triangular grids are suitable. The basic linear and quadratic interpolation formulas
on such grids are derived. Together with a simple correction for curved boundaries
these are formulas are suitable for use in the Finite Element Method. Finally we
discuss the advantages of Monte Carlo and Quasi-Monte Carlo methods for high
dimensional integration.

Chapter 6 starts with a description of bisection and fixed point iteration.
Next the contraction mapping theorem is proved and a discussion of convergence
order given. Newton’s method also for complex valued equations are treated and
an interval Newton method given. A discussion of higher order methods, including
the Schröder family of methods, are other features of this chapter.

Because of their importance for the matrix eigenproblem, algebraic equations
are treated at length. The frequent ill-conditioning of roots is illustrated. Several
classical methods are described, as well as an efficient and robust modified Newton
method. We describe the progressive qd-algorithm, from which the QR algorithm
for the eigenvalue problem was developed. Sturm sequence methods, which also are
of interest for the tridiagonal eigenproblem, are also treated.

Appendix A is a compact survey of notations and some frequently used con-
cepts in numerical linear algebra. This is included here because the full treatment of
this topic comes in Volume II. Two more Appendices are available from the home-
page of the book. Appendix B describes Mulprec, a collection of Matlab m-files
for (almost) unlimited high precision calculation. This package, can also be down-
loaded from the homepage of the book. Appendix C is a guide to literature, where
advice is given on general textbooks in Numerical Analysis as well as to handbooks,
encyclopedia, tables, software, and journals.

An important feature of the book is the large collection of problems and com-
puter exercises included. This draws from the authors 40+ year of experience in
teaching courses in numerical analysis. It is highly recommended that a modern
interactive system such as Matlab is available to the reader for working out these
assignments. The 1974 book also contained answers and solutions to most prob-
lems. It has not been possible to retain this feature because of the much greater
number and complexity of the problems in the present book.

We have aimed to make the book and the bibliography as comprehensive
and up-to-date as possible. A section Notes and References containing histori-
cal comments and additional references concludes each chapter. To remind the
readers of the fact that much of the theory and many methods date one or sev-
eral hundred years back in time, we have included more than 60 short biograph-
ical notes on mathematicians, who have made significant contributions. These
notes have been compiled with the invaluable help of the biographies compiled
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at the School of Mathematics and Statistics, University of St Andrews, Scotland
(www-history.mcs.st.andrews.ac.uk). Many of these full biographies are fasci-
nating to read.

Åke Björck
Linköping, November 2006
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Conventions

Besides the generally accepted mathematical abbreviations and notations (see
e.g., James and James, Mathematics Dictionary [1985, pp. 467–471]), the following
notations are used in the book:

Matlab has been used for this book in testing algorithms. We also will use
its notations for array operations and the convenient colon notation.

.∗ A . ∗B element-by-element product A(i, j)B(i, j)

./ element-by-element division A(i, j)/B(i, j)

i : k same as i, i+ 1, . . . , k and empty if i > k;

i : j : k same as i, i+ j, i+ 2j, . . . , k;

A(:, k) is the kth column of A;

A(i, :) is the ith row of A;

A(i : k) same as A(i), A(i+ 1), . . . , A(k)

⌊x⌋ floor, i.e. the largest integer ≤ x.

⌈x⌉ roof, i.e. the smallest integer ≥ x.

ex and exp(x) both denote the exponential function

fl (x+ y) floating-point operations, see 2.2.3

{xi}ni=0 denotes the set {x0, x1, . . . , xn}
[a, b] closed interval (a ≤ x ≤ b)

(a, b) open interval (a < x < b), or

sign (x) +1, if x ≥ 0, else −1.

int (a, b, c, . . . , w) the least interval which contains a, b, c, . . . , w

f(x) = O(g(x)), x→ a |f(x)/g(x)| is bounded as x→ a

(a can be finite, +∞, or −∞).

f(x) = o(g(x)), x→ a limx→a f(x)/g(x) = 0.

f(x) ∼ g(x), x→ a limx→a f(x)/g(x) = 1.

k ≤ i, j ≤ n means k ≤ i ≤ n and k ≤ j ≤ n

Pk the set of polynomials of degree less than k.

(f, g) scalar product of functions f and g

‖ · ‖p p-norm in a linear vector or function space;
see Sec. 4.5.1–4.5.3 and Appendix A.3.3

En(f) dist(f,Pn)∞,[a,b]; see Corollary 3.2.10.

The notations ≈,≪, <,O, o are defined in Sec. 2.1.1. Vectors and matrices are
in general denoted by Roman letters A and b. AT and bT denote the transpose
of the matrix A and the vector b respectively. (A, B) means a partitioned matrix,
see Appendix A.2. Notation for Matrix computation can be found in Appendix A.
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Notations for differences and difference operators, e.g. ∆2yn, [x0, x1, x2]f , δ2y are
defined in Chapter 3 and 4.
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Chapter 1

Principles of Numerical

Calculations

Commit your blunders on a small scale and make your
profits on a large scale.
—Leo Hendrik Baekeland

1.1 Common Ideas and Concepts

1.1.1 Introduction

Although numerical mathematics has been used for centuries in one form or another
within many areas of science and industry,1 modern scientific computing using elec-
tronic computers has its origin in research and developments during the second
world war. In the late 1940s and early 1950s the foundation of numerical analysis
was laid as a separate discipline of mathematics. The new capabilities of perform-
ing millions of operations led to new classes of algorithms, which needed a careful
analysis to ensure their accuracy and stability.

As a rule, applications lead to mathematical problems which in their complete
form cannot be conveniently solved with exact formulas, unless one restricts one-
self to special cases or simplified models. In many cases, one thereby reduces the
problem to a linear problem—for example, a linear system of differential equations.
Such an approach can quite often lead to concepts and points of view which, at
least qualitatively, can be used even in the unreduced problems.

Recent hardware development has increased enormously the scope for using
numerical methods. Not only has this been caused by the continuing advent of faster
computers with larger memories. Gains in problem solving capabilities through
better mathematical algorithms have in many cases played an equally important
role! Today one can treat much more complex and less simplified problems through

1The Greek mathematician Archimedes (287–212 B.C.), Isaac Newton (1642–1727), English
mathematician, astronomer and physicist, and Carl Friedrich Gauss (1777–1883) gave pioneering
contributions to numerical mathematics.

1
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massive amounts of numerical calculations. Through this development the always
close interaction, between mathematics on the one hand and science and technol-
ogy on the other, has increased tremendously during the last decades. Advanced
mathematical models and methods are now used more and more also in areas like
medicine, economics and social sciences. It is fair to say that today experiment and
theory, the two classical elements of scientific method, in many fields of science and
engineering are supplemented by computations as an equally important component.

In most numerical methods one applies a small number of general and rela-
tively simple ideas. These are then combined in an inventive way with one another
and with such knowledge of the given problem as one can obtain in other ways—
for example, with the methods of mathematical analysis. Some knowledge of the
background of the problem is also of value; among other things, one should take
into account the orders of magnitude of certain numerical data of the problem.

In this chapter we shall illustrate the use of some general ideas behind nu-
merical methods on some simple problems. These may occur as subproblems or
computational details of larger problems, though as a rule they occur in a less pure
form and on a larger scale than they do here. When we present and analyze numer-
ical methods, we use to some degree the same approach which was mentioned first
above: we study in detail special cases and simplified situations, with the aim of
uncovering more generally applicable concepts and points of view which can guide
in more difficult problems.

It is important to have in mind that the success of the methods presented
depends on the smoothness properties of the functions involved. In this first survey
we shall tacitly assume that the functions have as many well-behaved derivatives as
is needed.

1.1.2 Fixed Point Iteration

One of the most frequently occurring ideas in numerical calculations is iteration
(from the Latin iterare, “to plow once again) or successive approximation. Taken
generally, iteration means the repetition of a pattern of action or process. Itera-
tion in this sense occurs, for example, in the repeated application of a numerical
process—perhaps very complicated and itself containing many instances of the use
of iteration in the somewhat narrower sense to be described below—in order to
improve previous results. To illustrate a more specific use of the idea of iteration,
we consider the problem of solving a (usually) nonlinear equation of the form

x = F (x), (1.1.1)

where F is assumed to be a differentiable function whose value can be computed for
any given value of a real variable x, within a certain interval. Using the method of
iteration, one starts with an initial approximation x0, and computes the sequence

x1 = F (x0), x2 = F (x1), x3 = F (x2), . . . (1.1.2)

Each computation of the type xn+1 = F (xn). n = 0, 1, 2, . . . , is called a fixed
point iteration. As n grows, we would like the numbers xn to be better and
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better estimates of the desired root. If the sequence {xn} converges to a limiting
value α then we have

α = lim
n→∞

xn+1 = lim
n→∞

F (xn) = F (α),

so x = α satisfies the equation x = F (x). One can then stop the iterations when
the desired accuracy has been attained.
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Figure 1.1.1. (a)–(d) Geometric interpretation of iteration xn+1 = F (xn).

A geometric interpretation of fixed point iteration is shown in Figure 1.1.1.
A root of Equation (1.1.1) is given by the abscissa (and ordinate) of an intersect-
ing point of the curve y = F (x) and the line y = x. Starting from x0 the point
x1 = F (x0) on the x-axis is obtained by first drawing a horizontal line from the
point (x0, F (x0)) = (x0, x1) until it intersects the line y = x in the point (x1, x1);
from there we draw a vertical line to (x1, F (x1)) = (x1, x2) and so on in a “staircase”
pattern. In Figure 1.1.1a it is obvious that the sequence {xn} converges monoton-
ically to the root α. Figure 1.1.1b shows a case where F is a decreasing function.
There we also have convergence but not monotone convergence; the successive it-
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erates xn lie alternately to the right and to the left of the root α. In this case the
root is bracketed by any two successive iterates.

There are also two divergent cases, exemplified by Figs. 1.1.1c and 1.1.1d. One
can see geometrically that the quantity, which determines the rate of convergence
(or divergence), is the slope of the curve y = F (x) in the neighborhood of the root.
Indeed, from the mean value theorem of Calculus we have

xn+1 − α

xn − α
=
F (xn) − F (α)

xn − α
= F ′(ξn),

where ξn lies between xn and α. We see that, if x0 is chosen sufficiently close to
the root (yet x0 6= α), the iteration will converge if |F ′(α)| < 1. In this case α is
called a point of attraction. The convergence is faster the smaller |F ′(α)| is.

If |F ′(α)| > 1 then α is a point of repulsion and the iteration diverges.

0.5 1 1.5 2 2.5
0.5

1

1.5

2

2.5

x
0

x
1

x
2

Figure 1.1.2. The fixed point iteration xn = (xn + c/xn)/2, c = 2, x0 = 0.75.

Example 1.1.1.
The square root of c > 0 satisfies the equation x2 = c, which also can be

written x = c/x or x = 1
2 (x+ c/x). This suggests the fixed point iteration

xn+1 =
1

2
(xn + c/xn) , n = 1, 2, . . . , (1.1.3)

which is the widely used Heron’s rule2. The curve y = F (x) is in this case a
hyperbola (see Figure 1.1.2).

From (1.1.3) follows

xn+1 ±
√
c =

1

2

(
xn ± 2

√
c+ c/xn

)
=

(xn ±√
c)2

2xn
,

2Heron made important contributions to geometry and mechanics. He is believed to have lived
in Alexandria, Egypt during the 1st century AD.
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that is
xn+1 −

√
c

xn+1 +
√
c

=

(
xn −√

c

xn +
√
c

)2

. (1.1.4)

We can take en = xn−√
c

xn+
√
c

to be a measure of the error in xn. Then (1.1.4) reads

en+1 = e2n and it follows that en = e2
n

0 . If |x0 −
√
c| 6= |x0 +

√
c|, then e0 < 1 and

xn converges to a square root of c when n→ ∞. Note that the iteration (1.1.3) can
also be used for complex values of c.

For c = 2, and x0 = 1.5, we get x1 = 1
2 (1.5 + 2/1.5) = 1 5

12 = 1.4166666 . . .,
and

x2 = 1.414215 686274, x3 = 1.414213562375,

(correct digits shown in boldface). This can be compared with the exact value√
2 = 1.414213 562373 . . .. As can be seen from Figure 1.1.2 a rough value for x0

suffices. The rapid convergence is due to the fact that for α =
√
c we have

F ′(α) = (1 − c/α2)/2 = 0.

One can in fact show that

lim
n→∞

|xn+1 −
√
c|

|xn −√
c|2 = C.

for some constant 0 < C <∞, which is an example of what is known as quadratic
convergence. Roughly, if xn has t correct digits, then xn+1 will have at least 2t−1
correct digits.

The above iteration method is used quite generally on both pocket calculators
and computers for calculating square roots.

Iteration is one of the most important aids for the practical as well as theoreti-
cal treatment of both linear and nonlinear problems. One very common application
of iteration is to the solution of systems of equations. In this case {xn} is a sequence
of vectors, and F is a vector-valued function. When iteration is applied to differen-
tial equations {xn} means a sequence of functions, and F (x) means an expression in
which integration or other operations on functions may be involved. A number of
other variations on the very general idea of iteration will be given in later chapters.

The form of equation (1.1.1) is frequently called the fixed point form, since
the root α is a fixed point of the mapping F . An equation may not be given
originally in this form. One has a certain amount of choice in the rewriting of an
equation f(x) = 0 in fixed point form, and the rate of convergence depends very
much on this choice. The equation x2 = c can also be written, for example, as
x = c/x. The iteration formula xn+1 = c/xn gives a sequence which alternates
between x0 (for even n) and c/x0 (for odd n)—the sequence does not converge for
any x0 6= √

c!

1.1.3 Newton’s Method

Let an equation be given in the form f(x) = 0, and for any k 6= 0, set

F (x) = x+ kf(x).
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Then the equation x = F (x) is equivalent to the equation f(x) = 0. Since F ′(α) =
1 + kf ′(α), we obtain the fastest convergence for k = −1/f ′(α). Because α is not
known, this cannot be applied literally. But if we use xn as an approximation this
leads to the choice F (x) = x− f(x)/f ′(x), or the iteration

xn+1 = xn − f(xn)

f ′(xn)
. (1.1.5)

This is the celebrated Newton’s method.3 We shall derive it in another way
below.

The equation x2 = c can be written in the form f(x) = x2 − c = 0. Newton’s
method for this equation becomes

xn+1 = xn − x2
n − c

2xn
=

1

2

(

xn +
c

xn

)

, n = 0, 1, 2, . . . . (1.1.6)

which is the fast method in Example 1.1.1. More generally Newton’s method applied
to the equation f(x) = xp − c = 0 can be used to compute c1/p, p = ±1,±2, . . .,
from the iteration

xn+1 = xn − xpn − c

pxp−1
n

.

This can be written as

xn+1 =
1

p

(

(p− 1)xn +
c

xp−1
n

)

=
xn

(−p) [(1 − p) − cx−pn ]. (1.1.7)

It is convenient to use the first expression in (1.1.7) when p > 0 and the second
when p < 0. With p = 2, 3, and −2 respectively this iteration formula is used for
calculating

√
c, 3
√
c, and 1/

√
c. Also 1/c, (p = −1) can be computed by the iteration

xn+1 = xn + xn(1 − cxn) = xn(2 − cxn),

using only multiplications and addition. In some early computers, which lacked
division in hardware, this iteration was used to implement division, i.e. b/c was
computed as b(1/c).

Example 1.1.2.
We want to construct an algorithm based on Newton’s method for the efficient

calculation of the square root of any given floating point number a. If we first shift
the mantissa so that the exponent becomes even, a = c · 22e, and 1/2 ≤ c < 2, then

√
a =

√
c· 2e.

We need only consider the reduced range 1/2 ≤ c ≤ 1 since for 1 < c ≤ 2 we can
compute

√

1/c and invert.4

3Isaac Newton (1642–1727), English mathematician, astronomer and physicist, invented, inde-
pendently of the German mathematician and philosopher Gottfried W. von Leibniz (1646–1716),
the infinitesimal calculus.

4Since division usually is much slower than addition and multiplication, this may not be optimal!
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To find an initial approximation x0 to start the Newton iterations when 1/2 ≤
c < 1, we can use linear interpolation of x =

√
c between the endpoints 1/2, 1, giving

x0(c) =
√

2(1 − c) + 2(c− 1/2)

(
√

2 is precomputed). The iteration then proceeds using (1.1.6).
For c = 3/4 (

√
c = 0.86602540378444) the result is x0 = (

√
2 + 2)/4 and

(correct digits in boldface)

x0 = 0.85355339059327, x1 = 0.86611652351682,

x2 = 0.86602540857756, x3 = 0.86602540378444,

The quadratic rate of convergence is apparent. Three iterations suffice to give about
16 digits accuracy for all x ∈ [1/2, 1].

1.1.4 Linearization and Extrapolation

Another often recurring idea is that of linearization. This means that one locally,
i.e. in a small neighborhood of a point, approximates a more complicated function
with a linear function. We shall first illustrate the use of this idea in the solution of
the equation f(x) = 0. Geometrically, this means that we are seeking the intersec-
tion point between the x-axis and the curve y = f(x); see Figure 1.1.3. Assume that

x
0

x
1

x
2

Figure 1.1.3. Geometric interpretation of Newton’s method.

we have an approximating value x0 to the root. We then approximate the curve
with its tangent at the point (x0, f(x0)). Let x1 be the abscissa of the point of
intersection between the x-axis and the tangent. Since the equation for the tangent
reads

y − f(x0) = f ′(x0)(x− x0),

we obtain by setting y = 0, the approximation

x1 = x0 − f(x0)/f
′(x0).

In many cases x1 will have about twice as many correct digits as x0. But if x0 is
a poor approximation and f(x) far from linear, then it is possible that x1 will be a
worse approximation than x0.
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If we combine the ideas of iteration and linearization, that is, we substitute
xn for x0 and xn+1 for x1, we rediscover Newton’s method mentioned earlier. If x0

is close enough to α the iterations will converge rapidly; see Figure 1.1.3, but there
are also cases of divergence.

x
1

x
0

x
2

x
3

Figure 1.1.4. Geometric interpretation of the secant method.

Another way, instead of drawing the tangent, to approximate a curve locally
with a linear function, is to choose two neighboring points on the curve and to
approximate the curve with the secant which joins the two points; see Figure 1.1.4.
The secant method for the solution of nonlinear equations is based on this ap-
proximation. This method, which preceded Newton’s method, is discussed more
closely in Sec. 6.3.1.

Newton’s method can be generalized to yield a method for solving a system
of nonlinear equations

fi(x1, x2, . . . , xn) = 0, i = 1 : n.

We can write this as f(x) = 0, where f and x are vectors in Rn. Given an approxi-
mate solution xn the next iterate xn+1 is determined as the solution to the system
of linear equations

f ′(xn)(xn+1 − xn) = −f(xn), (1.1.8)

where

f ′(x) =






∂f1
∂x1

. . . ∂f1
∂xn

...
...

∂fn

∂x1
. . . ∂fn

∂xn




 ∈ Rn×n, (1.1.9)

is the matrix of partial derivatives of f with respect to x. This matrix is called
the Jacobian of f and often denoted by J(x). Systems of nonlinear equations
arise in many different contexts in scientific computing. Important examples are
the solution of differential equations and optimization problems. We shall several
times, in later chapters, return to this fundamental concept.

The secant approximation is useful in many other contexts, for instance, it
is generally used when one “reads between the lines” or interpolates in a table of
numerical values. In this case the secant approximation is called linear interpo-
lation. When the secant approximation is used in numerical integration, i.e. in
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Figure 1.1.5. Numerical integration by the trapezoidal rule (n = 4).

the approximate calculation of a definite integral,

I =

∫ b

a

y(x) dx, (1.1.10)

(see Figure 1.1.5) it is called the trapezoidal rule. With this method, the area
between the curve y = y(x) and the x-axis is approximated with the sum T (h) of
the areas of a series of parallel trapezoids. Using the notation of Figure 1.1.5, we
have

T (h) = h
1

2

n−1∑

i=0

(yi + yi+1), h =
b− a

n
. (1.1.11)

(In the figure, n = 4.) We shall show in a later chapter that the error is very nearly
proportional to h2 when h is small. One can then, in principle, attain arbitrary high
accuracy by choosing h sufficiently small. But the computational work involved is
roughly proportional to the number of points where y(x) must be computed, and
thus inversely proportional to h. Hence the computational work grows rapidly as
one demands higher accuracy (smaller h).

Numerical integration is a fairly common problem because quite seldom can
the “primitive” function be analytically calculated in a finite expression containing
only elementary functions. It is not possible, for such simple functions as ex

2

or
(sinx)/x. In order to obtain higher accuracy with significant less work than the
trapezoidal rule requires, one can use one of the following two important ideas:

(a) Local approximation of the integrand with a polynomial of higher degree,
or with a function of some other class, for which one knows the primitive
function.

(b) Computation with the trapezoidal rule for several values of h and then ex-
trapolation to h = 0, so-called Richardson extrapolation5or the deferred

5Lewis Fry Richardson (1881–1953) studied mathematics, physics, chemistry, botany and zo-
ology. He graduated from King’s College, Cambridge 1903. He was the first (1922) to attempt to
apply the method of finite differences to weather prediction, long before the computer age!
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approach to the limit, with the use of general results concerning the de-
pendence of the error on h.

The technical details for the various ways of approximating a function with
a polynomial, among others Taylor expansions, interpolation, and the method of
least squares, are treated in later chapters.

The extrapolation to the limit can easily be applied to numerical integration
with the trapezoidal rule. As was mentioned previously, the trapezoidal approxima-
tion (1.1.11) to the integral has an error approximately proportional to the square
of the step size. Thus, using two step sizes, h and 2h, one has:

T (h) − I ≈ kh2, T (2h)− I ≈ k(2h)2,

and hence 4(T (h)− I) ≈ T (2h) − I, from which it follows that

I ≈ 1
3 (4T (h) − T (2h)) = T (h) + 1

3 (T (h) − T (2h)).

Thus, by adding the corrective term 1
3 (T (h)−T (2h)) to T (h), one should get an es-

timate of I which typically is far more accurate than T (h). In Sec. 3.4.6 we shall see
that the improvement is in most cases quite striking. The result of the Richardson
extrapolation is in this case equivalent to the classical Simpson’s rule for numer-
ical integration, which we shall encounter many times in this volume. It can be
derived in several different ways. Sec. 3.6 also contains application of extrapolation
to other problems than numerical integration, as well as a further development of the
extrapolation idea, namely repeated Richardson extrapolation. In numerical
integration this is also known as Romberg’s method; see Sec. 5.2.2.

Knowledge of the behavior of the error can, together with the idea of extrap-
olation, lead to a powerful method for improving results. Such a line of reasoning is
useful not only for the common problem of numerical integration, but also in many
other types of problems.

Example 1.1.3.
The integral

∫ 12

10

f(x) dx

is computed for f(x) = x3 by the trapezoidal method. With h = 1 we obtain
T (h) = 2 695, T (2h) = 2 728, and extrapolation gives T = 2 684, equal to the exact
result.

Similarly, for f(x) = x4 we obtain T (h) = 30 009, T (2h) = 30 736, and with
extrapolation T ≈ 29 766.7 (exact 29 766.4).

1.1.5 Finite Difference Approximations

The local approximation of a complicated function by a linear function leads to an-
other frequently encountered idea in the construction of numerical methods, namely
the approximation of a derivative by a difference quotient. Figure 1.1.6 shows the
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graph of a function y(x) in the interval [xn−1, xn+1] where xn+1−xn = xn−xn−1 =
h; h is called the step size. If we set yi = y(xi), i = n−1, n, n+1, then the derivative
at xn can be approximated by a forward difference quotient,

y′(xn) ≈ yn+1 − yn
h

, (1.1.12)

or a similar backward difference quotient involving yn and yn−1. The error in the
approximation is called a discretization error.

(n − 1)h nh (n + 1)h

y
n−1

y
n

y
n+1

Figure 1.1.6. Centered finite difference quotient.

But it is conceivable that the centered difference approximation

y′(xn) ≈ yn+1 − yn−1

2h
(1.1.13)

will usually be more accurate. It is in fact easy to motivate this. By Taylor’s
formula,

y(x+ h) − y(x) = y′(x)h+ y′′(x)h2/2 + y′′′(x)h3/6 + . . . (1.1.14)

−y(x− h) + y(x) = y′(x)h− y′′(x)h2/2 + y′′′(x)h3/6 − . . . (1.1.15)

Set x = xn. Then, by the first of these equations,

y′(xn) =
yn+1 − yn

h
− h

2
y′′(xn) − . . .

Next, add the two Taylor expansions and divide by 2h. Then the first error term
cancels and we have

y′(xn) =
yn+1 − yn−1

2h
− h2

6
y′′′(xn) − . . . . (1.1.16)

We shall in the sequel call a formula (or a method), where a step size parameter h
is involved, accurate of order p, if its error is approximately proportional to hp.
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Since y′′(x) vanishes for all x if and only if y is a linear function of x, and similarly,
y′′′(x) vanishes for all x if and only if y is a quadratic function, we have established
the following important result:

Lemma 1.1.1.
The forward difference approximation (1.1.12) is exact only for a linear func-

tion, and it is only first order accurate in the general case. The centered difference
approximation (1.1.13) is exact also for a quadratic function, and is second order
accurate in the general case.

For the above reason the approximation (1.1.13) is, in most situations, prefer-
able to (1.1.12). But there are situations when these formulas are applied to the
approximate solution of differential equations where the forward difference approx-
imation suffices, but where the centered difference quotient is entirely unusable, for
reasons which have to do with how errors are propagated to later stages in the
calculation. We shall not discuss this phenomenon more closely here, but mention
it only to intimate some of the surprising and fascinating mathematical questions
which can arise in the study of numerical methods.

Higher derivatives can be approximated with higher differences, that is,
differences of differences, another central concept in numerical calculations. We
define

(∆y)n = yn+1 − yn;

(∆2y)n = (∆(∆y))n = (yn+2 − yn+1) − (yn+1 − yn)

= yn+2 − 2yn+1 + yn;

(∆3y)n = (∆(∆2y))n = yn+3 − 3yn+2 + 3yn+1 − yn,

etc. For simplicity one often omits the parentheses and writes, for example, ∆2y5
instead of (∆2y)5. The coefficients that appear here in the expressions for the higher
differences are, by the way, the binomial coefficients. In addition, if we denote the
step length by ∆x instead of by h, we get the following formulas, which are easily
remembered:

dy

dx
≈ ∆y

∆x
,

d2y

dx2
≈ ∆2y

(∆x)2
, (1.1.17)

etc. Each of these approximations is second order accurate for the value of the
derivative at an x which equals the mean value of the largest and smallest x for
which the corresponding value of y is used in the computation of the difference. (The
formulas are only first order accurate when regarded as approximations to deriva-
tives at other points between these bounds.) These statements can be established
by arguments similar to the motivation for the formulas (1.1.12) and (1.1.13).

Taking the difference of the Taylor expansions (1.1.14)–(1.1.15) with one more
term in each, and dividing by h2 we obtain the following important formula

y′′(xn) =
yn+1 − 2yn + yn−1

h2
− h2

12
yiv(xn) − · · · .



“dqbjV
2007/5/28
page 13

1.1. Common Ideas and Concepts 13

Introducing the central difference operator

δyn = y
(
xn + 1

2h
)
− y

(
xn − 1

2h
)
, (1.1.18)

and neglecting higher order terms we get

y′′(xn) ≈ 1

h2
δ2yn − h2

12
yiv(xn). (1.1.19)

The approximation of equation (1.1.13) can be interpreted as an application
of (1.1.17) with ∆x = 2h, or else as the mean of the estimates which one gets
according to equation (1.1.17) for y′((n+ 1

2 )h) and y′((n− 1
2 )h).

When the values of the function have errors (for example, when they are
rounded numbers) the difference quotients become more and more uncertain the
smaller h is. Thus if one wishes to compute the derivatives of a function one should
be careful not use a too small step length; see Sec. 3.3.4.

Example 1.1.4.
Assume that for y = cosx, function values correct to six decimal digits are

known at equidistant points:

x y ∆y ∆2y
0.59 0.830941

−5605
0.60 0.825336 −83

−5688
0.61 0.819648

where the differences are expressed in units of 10−6. This arrangement of the
numbers is called a difference scheme. Using (1.1.13) and (1.1.17) one gets

y′(0.60) ≈ (0.819648− 0.830941)/0.02 = −0.56465,

y′′(0.60) ≈ −83 · 10−6/(0.01)2 = −0.83.

The correct results are, with six decimals,

y′(0.60) = −0.564642, y′′(0.60) = −0.825336.

In y′′ we only got two correct decimal digits. This is due to cancellation, which is
an important cause of loss of accuracy; see further Sec. 2.3.4. Better accuracy can
be achieved by increasing the step h; see Problem 1.1.5 at the end of this section.

A very important equation of Mathematical Physics is the Poisson equa-
tion:6

∂2u

∂x2
+
∂2u

∂y2
= f(x, y), (x, y) ∈ Ω. (1.1.20)

6Siméon Denis Poisson (1781–1840), professor of École Polytechnique. He has also given his
name to the Poisson distribution in probability theory.
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Here the function f(x, y) is given together with some boundary condition on u(x, y).
Under certain conditions, gravitational, electric, magnetic, and velocity potentials
satisfy the Laplace equation7 which is (1.1.20) with f(x, y) = 0.

Finite difference approximations are useful for partial derivatives. Suppose
that Ω is a rectangular region and introduce a rectangular grid that covers the
rectangle. With grid spacing h and k, respectively, in the x and y directions,
respectively, this consists of the points

xi = x0 + ih, i = 0 : M, yj = y0 + jk, j = 0 : N.

By (1.1.19), a second order accurate approximation of Poisson’s equation is given
by the five-point operator

∇2
5 =

ui+1,j − 2ui,j + ui−1,j

h2
+
ui,j+1 − 2ui,j + ui,j−1

k2

For k = h

∇2
5 =

1

h2

(
ui,j+1 + ui−1,j − 4ui,j + ui+1,j + ui,j−1

)
,

which corresponds to the “computational molecule”

1

h2





1
1 −4 1

1





If this is superposed on each grid point we get one equation for the unknown values
u(xi, yj), i = 1 : M − 1, j = 1 : N − 1, at each interior point of the grid.

To get a solution we also need prescribed boundary conditions on u or ∂u/∂n
on the boundary. The solution can then be obtained in the interior by solving a
system of linear equations.

Review Questions

1.1. Make lists of the concepts and ideas which have been introduced. Review their
use in the various types of problems mentioned.

1.2. Discuss the convergence condition and the rate of convergence of the fixed
point iteration method for solving a nonlinear equation x = F (x).

1.3. What is meant by quadratic convergence of an iterative method for solving a
nonlinear equation.

1.4. What is the trapezoidal rule? What is said about the dependence of its error
on the step length?

7Pierre-Simon, Marquis de Laplace (1749–1827), professor at École Militaire. Laplace was
one of the most influential scientists of his times and did major work in probability and celestial
mechanics.
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1.5. How can Richardson extrapolation be used to improve the accuracy of the
trapezoidal rule?

Problems and Computer Exercises

1.1. Calculate
√

10 to seven decimal places using the method in Example 1.1.1.
Begin with x0 = 2.

1.2. Consider f(x) = x3−2x−5. The cubic equation f(x) = 0 has been a standard
test problem, since Newton used it in 1669 to demonstrate his method. By
computing (say) f(x) for x = 1, 2, 3, we see that x = 2 probably is a rather
good initial guess. Iterate then by Newton’s method until you trust that the
result is correct to six decimal places.

1.3. The equation x3−x = 0 has three roots, −1, 0, 1. We shall study the behaviour
of Newton’s method on this equation, with the notations used in Sec. 1.1.2
and Figure 1.1.3.

(a) What happens if x0 = 1/
√

3? Show that xn converges to 1 for any x0 >
1/

√
3. What is the analogous result for convergence to −1?

(b) What happens if x0 = 1/
√

5? Show that xn converges to 0 for any x0 ∈
(−1/

√
5, 1/

√
5).

Hint: Show first that if x0 ∈ (0, 1/
√

5) then x1 ∈ (−x0, 0). What can then
be said about x2?

(c) Find, by a drawing (with paper and pencil), limxn if x0 is a little less than
1/

√
3. Find by computation limxn if x0 = 0.46.

(d) A complete discussion of the question in (c) is rather complicated, but
there is an implicit recurrence relation that produces a decreasing sequence
{a1 = 1/

√
3, a2, a3, . . .}, by means of which you can easily find limn→∞ xn

for any x0 ∈ (1/
√

5, 1/
√

3). Try to find this recurrence.

Answer: ai − f(ai)/f
′(ai) = −ai−1; limn→∞ xn = (−1)i if x0 ∈ (ai, ai+1);

a1 = 0.577, a2 = 0.462, a3 = 0.450, a4 ≈ limi→∞ ai = 1/
√

5 = 0.447.

1.4. Calculate
∫ 1/2

0 ex dx

(a) to six decimals using the primitive function.

(b) with the trapezoidal rule, using step length h = 1/4.

(c) using Richardson extrapolation to h = 0 on the results using step length
h = 1/2, and h = 1/4.

(d) Compute the ratio between the error in the result in (c) to that of (b).

1.5. In Example 1.1.4 we computed y′′(0.6) for y = cosx, with step length h = 0.01.
Make similar calculations using h = 0.1, h = 0.05 and h = 0.001. Which value
of h gives the best result, using values of y to six decimal places? Discuss
qualitatively the influences of both the rounding errors in the function values
and the error in the approximation of a derivative with a difference quotient
on the result for various values of h.
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1.6. Give an approximate expression of the form ahbf (c)(0) for the error of the

estimate of the integral
∫ h

−h f(x)dx obtained by Richardson extrapolation (ac-
cording to Sec. 1.1.4) from the trapezoidal values T (h) and T (2h).

1.2 Some Numerical Algorithms

For a given numerical problem one can consider many different algorithms. Even
if they just differ in small details they can differ in efficiency and reliability and
give approximate answers with widely varying accuracy. In the following we give a
few examples of how algorithms can be developed to solve some typical numerical
problems.

1.2.1 Solving a Quadratic Equation

An early example on pitfalls in computation studied by G. E. Forsythe [111] is the
following: For computing the roots of the quadratic equation ax2 + bx + c = 0,
a 6= 0, elementary “text-books” usually give the well-known formula

r1,2 =
(
− b±

√

b2 − 4ac
)/

(2a).

Using this for the quadratic equation x2 − 56x+ 1 = 0 we get the two approximate
real roots

r1 = 28 +
√

783 ≈ 28 + 27.982 = 55.982 ± 1
210−3.

r2 = 28 −
√

783 ≈ 28 − 27.982 = 0.018 ± 1
210−3.

In spite of the fact that the square root used is given to five digits accuracy, we
get only two significant digits in r2, while the relative error in r1 is less than 10−5.
This shows that there can be very poor relative accuracy in the difference between
two nearly equal numbers. This phenomenon is called cancellation of terms. It
is a very common reason for poor accuracy in numerical calculations.

Notice that the subtraction in the calculation of r2 was carried out exactly.
The cancellation in the subtraction only gives an indication of the unhappy conse-
quence of a loss of information in previous steps, due to the rounding of one of the
operands, and is not the cause of the inaccuracy.

In numerical calculations one should if possible try to avoid formulas that give
rise to cancellation, as in the above example. For the quadratic equation this can
be done by rewriting of the formulas. Comparing coefficients on both sides of

x2 + (b/a)x+ c/a = (x− r1)(x− r2) = x2 − (r1 + r2)x + r1r2,

we get the relation between coefficients and roots

r1 + r2 = −b/a, r1r2 = c/a. (1.2.1)

A more accurate value of the root of smaller magnitude is obtained by computing
this root from the latter of these relations, We then get

r2 = 1/55.982 = 0.0178629± 0.0000002.

Five significant digits are now obtained also for this root.
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1.2.2 Recurrence Relations

A common computational task is the evaluation of a polynomial

p(x) = a0x
n + a1x

2 + · · · + an−1x+ an

at a given point. This can be reformulated as

p(x) = (· · · ((a0x+ a1)x+ a2)x+ · · · + an−1)x+ an,

and written as a recurrence relation:

bi(x) = bi−1(x)x + ai, i = 1 : n. (1.2.2)

We note that this recurrence relation can be used in two different ways:

• it can be used algebraically to generate a sequence of Horner polynomials bi(x)
such that bn(x) = p(x);

• it can be used arithmetically with a specific value x = x1, which is Horner’s
rule for evaluating p(x1) = bn(x1).

Horner’s rule requires n additions and multiplications for evaluating p(x) for x = x1.
Note that if the powers are calculated recursively by xi1 = x1 ·xi−1

1 and subsequently
multiplied by an−i this requires twice as many multiplications.

When a polynomial p(x) is divided by x− x1 the remainder equals p(x1), i.e.
p(x) = (x− x1)q(x) + p(x1). The quantities bi(x1) from the Horner scheme (1.2.2)
are of intrinsic interest because they are the coefficients of the quotient polynomial
q(x). This algorithm therefore performs the synthetic division

p(x) − p(x1)

x− x1
=

n−1∑

i=0

bi(x1)x
n−1−i. (1.2.3)

The proof of this result is left as an exercise.
Synthetic division is used, for instance, in the solution of algebraic equations,

when already computed roots are successively eliminated. After each elimination,
one can deal with an equation of lower degree. This process is called deflation; see
Sec. 6.5.4. As emphasized there, some care is necessary in the numerical application
of this idea to prevent the propagation of roundoff errors.

The proof of the following useful relation is left as an exercise to the reader:

Lemma 1.2.1.
Let the bi be defined by (1.2.2) and

c0 = b0, ci = bi + xci−1, i = 1 : n− 1. (1.2.4)

Then p′(x) = cn−1.

Due to their intrinsic constructive quality, recurrence relation are one of the
basic mathematical tools of computation. There is hardly a computational task
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which does not use recursive techniques. One of the most important and interesting
parts of the preparation of a problem for a computer is therefore to find a recursive
description of the task. Often an enormous amount of computation can be described
by a small set of recurrence relations.

Although recurrence relations are a powerful tool they are also susceptible
to error growth. Each cycle of a recurrence relation not only generates its own
errors but also inherits errors committed in all previous cycles. If conditions are
unfavorable the result may be disastrous. This aspect of recurrence relations and its
prevention is therefore of great importance in computations and has been studied
extensively; see [128].

Example 1.2.1.
Unless used in the right way, errors committed in a recurrence relation can

grow exponentially and completely ruin the results. To compute the integrals

In =

∫ 1

0

xn

x+ 5
dx, i = 1 : N,

one can use the recurrence relation

In + 5In−1 = 1/n, (1.2.5)

which follows from

In + 5In−1 =

∫ 1

0

xn + 5xn−1

x+ 5
dx =

∫ 1

0

xn−1 dx =
1

n
.

Below we use this formula to compute I8, using six decimals throughout. For n = 0
we have

I0 = [ln(x+ 5)]10 ≈ ln 6 − ln 5 = 0.182322.

Using the recurrence relation we get

I1 = 1 − 5I0 = 1 − 0.911610 = 0.088390,

I2 = 1/2 − 5I1 = 0.500000− 0.441950 = 0.058050,

I3 = 1/3 − 5I2 = 0.333333− 0.290250 = 0.043083,

I4 = 1/4 − 5I3 = 0.250000− 0.215415 = 0.034585,

I5 = 1/5 − 5I4 = 0.200000− 0.172925 = 0.027075,

I6 = 1/6 − 5I5 = 0.166667− 0.135375 = 0.031292,

I7 = 1/7 − 5I6 = 0.142857− 0.156460 = −0.013603.

It is strange that I6 > I5, and obviously absurd that I7 < 0! The reason for the
absurd result is that the round-off error ǫ in I0 = 0.18232156 . . ., whose magnitude
is about 0.44 · 10−6 is multiplied by (−5) in the calculation of I1, which then has
an error of −5ǫ. That error produces an error in I2 of 52ǫ, and so forth. Thus the
magnitude of the error in I7 is 57ǫ = 0.0391, which is larger than the true value of



“dqbjV
2007/5/28
page 19

1.2. Some Numerical Algorithms 19

I7. On top of this comes the round-off errors committed in the various steps of the
calculation. These can be shown in this case to be relatively unimportant.

If one uses higher precision, the absurd result will show up at a later stage.
For example, a computer that works with a precision corresponding to about 16
decimal places gave a negative value to I22 although I0 had full accuracy. The
above algorithm is an example of an unpleasant phenomenon, called numerical
instability. In this simple case, one can avoid the numerical instability by reversing
the direction of the recursion.

Example 1.2.2.
If we use the recurrence relation in the other direction,

In−1 = (1/n− In)/5. (1.2.6)

the errors will be divided by −5 in each step. But we need a starting value. We
can directly see from the definition that In decreases as n increases. One can
also surmise that In decreases slowly when n is large (the reader is encouraged to
motivate this). Thus we try setting I12 = I11. It then follows that

I11 + 5I11 ≈ 1/12, I11 ≈ 1/72 ≈ 0.013889.

(show that 0 < I12 < 1/72 < I11). Using the recurrence relation we get

I10 = (1/11 − 0.013889)/5 = 0.015404, I9 = (1/10 − 0.015404)/5 = 0.016919,

and further

I8 = 0.018838, I7 = 0.021232, I6 = 0.024325, I5 = 0.028468,

I4 = 0.034306, I3 = 0.043139, I2 = 0.058039, I1 = 0.088392,

and finally I0 = 0.182322. Correct!
If we instead simply take as starting value I12 = 0, one gets I11 = 0.016667,

I10 = 0.018889, I9 = 0, 016222, I8 = 0.018978, I7 = 0.021204, I6 = 0.024331, and
I5, . . . , I0 have the same values as above. The difference in the values for I11 is
0.002778. The subsequent values of I10, I9, . . . , I0 are quite close because the error
is divided by -5 in each step. The results for In obtained above have errors which
are less than 10−3 for n ≤ 8.

One should not to draw erroneous conclusions from the above example. The
use of a recurrence relation “backwards” is not a universal recipe as will be seen
later on! Compare also Problems 1.2.7 and 1.2.8.

In Sec. 3.3.5 we will study the general linear homogeneous difference equation
of kth order

yn+k + a1yn+k−1 + . . .+ akyn = 0, (1.2.7)

with real or complex constant coefficients a1, . . . , ak. The stability properties of
this type of equations are fundamental, since they arise in the numerical solution
of ordinary and partial differential equations.
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1.2.3 Divide-and-Conquer Strategy

A powerful strategy for solving large scale problems is the divide-and-conquer
strategy (one of the oldest military strategies!). This is one of the most powerful
algorithmic paradigms for designing efficient algorithms. The idea is to split a
high dimensional problem into problems (typically two for sequential algorithms)
of lower dimension. Each of these is then again split into smaller subproblems, and
so forth, until a number of sufficiently small problems are obtained. The solution of
the initial problem is then obtained by combining the solution of the subproblems
working backwards in the hierarchy.

We illustrate the idea on the computation of the sum s =
∑n

i=1 ai. The usual
way to proceed is to use the recursion

s0 = 0, si = si−1 + ai, i = 1 : n.

Another order of summation is as illustrated below for n = 23 = 8:

a1

ց
a2

ւ
a3

ց
a4

ւ
a5

ց
a6

ւ
a7

ց
a8

ւ
s1:2
ց

s3:4
ւ

s5:6
ց

s7:8
ւ

s1:4
ց

s5:8
ւ

s1:8

where si,j = ai + · · · + aj . In this table each new entry is obtained by adding its
two neighbors in the row above. Clearly this can be generalized to compute an
arbitrary sum of n = 2k terms in k steps. In the first step we perform n/2 sums of
two terms, then n/4 partial sums each of four terms, etc., until in the kth step we
compute the final sum.

This summation algorithm uses the same number of additions as the first
one. But it has the advantage that it splits the task in several subtasks that can be
performed in parallel. For large values of n this summation order can also be much
more accurate than the conventional order (see Problem 2.3.5).

The algorithm can also be described in another way. Consider the following
summation algorithm

sum = s(i, j);

if j = i+ 1 then sum = ai + aj;

else k = ⌊(i+ j)/2⌋; sum = s(i, k) + s(k + 1, j);

end

for computing the sum s(i, j) = ai + · · · + aj, j > i. (Here and in the following
⌊x⌋ denotes the floor of x, i.e. the largest integer ≤ x. Similarly, ⌈x⌉ denotes the
ceiling of x, i.e. the smallest integer ≥ x.) This function defines s(i, j) in a
recursive way; if the sum consists of only two terms then we add them and return
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with the answer. Otherwise we split the sum in two and use the function again
to evaluate the corresponding two partial sums. Espelid [103] gives an interesting
discussion of such summation algorithms.

The function above is an example of a recursive algorithm—it calls it-
self. Many computer languages (for example, Matlab) allow the definition of such
recursive algorithms. The divide-and-conquer is a top down description of the
algorithm in contrast to the bottom up description we gave first.

Example 1.2.3.
Sorting the items of an one-dimensional array in ascending or descending order

is one of the most important problem in computer science. In numerical work,
sorting is frequently needed when data needs to be rearranged. One of the best
known and most efficient sorting algorithm, quicksort by Hoare [183], is based
on the divide-and-conquer paradigm. To sort an array of n items, a[0 : n − 1], it
proceeds as follows:

1. Select an element a(k) to be the pivot. Commonly used methods is to select
the pivot randomly or to be the median of the first, the middle, and the last
element in the array.

2. Rearrange the elements of the array a into a left and right subarray, such that
no element in the left subarray is larger than the pivot and no element in the
right subarray is smaller than the pivot.

3. Recursively sort the left and right subarray.

The partitioning of a subarray a[l : r], l < r, in step 2 can proceed as follows.
Place the pivot in a[l] and initialize two pointers i = l, j = r + 1. The pointer i
is incremented until an element a(i) is encountered which is larger than the pivot.
Similarly the pointer j is decremented until an element a(j) is encountered which
is smaller than the pivot. At this point the elements a(i) and a(j) are exchanged.
The process continues until the pointers cross each other. Finally the pivot element
is placed in its correct position.

It is intuitively clear that this algorithm sorts the entire array and that no
merging phase is needed.

There are many other examples of the power of the divide-and-conquer ap-
proach. It underlies the Fast Fourier Transform (Sec. 4.6.3) and is used in efficient
automatic parallelization of many tasks such as matrix multiplication; see [100].

1.2.4 Power Series Expansions

In many problems of Applied Mathematics, the solution of a given problem can be
obtained as a power series expansion. Often the convergence of these series are quite
fast. As an example we consider the task of computing, to five decimals, y(0.5),
where y(x) is the solution to the differential equation

y′′ = −xy,
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with initial conditions y(0) = 1, y′(0) = 0. The solution cannot be simply expressed
in terms of elementary functions. We shall use the method of undetermined
coefficients. Thus we try substituting a series of the form:

y(x) =

∞∑

n=0

cnx
n = c0 + c1x+ c2x

2 + · · · .

Differentiating twice we get

y′′(x) =

∞∑

n=0

n(n− 1)cnx
n−2

= 2c2 + 6c3x+ 12c4x
2 + · · · + (m+ 2)(m+ 1)cm+2x

m + · · · ,
−xy(x) = −c0x− c1x

2 − c2x
3 − · · · − cm−1x

m − · · · .

Equating coefficients of xm in these series gives

c2 = 0, (m+ 2)(m+ 1)cm+2 = −cm−1, m ≥ 1.

It follows from the initial conditions that c0 = 1, c1 = 0. Thus cn = 0, if n is not a
multiple of 3, and using the recursion we obtain

y(x) = 1 − x3

6
+

x6

180
− x9

12 960
+ · · · . (1.2.8)

This gives y(0.5) ≈ 0.97925. The x9 term is ignored, since it is less than 2 · 10−7.
In this example also the first neglected term gives a rigorous bound for the error
(i.e. for the remaining terms), since the absolute value of the term decreases, and
the terms alternate in sign.

Since the calculation was based on a trial substitution, one should, strictly
speaking, prove that the series obtained defines a function which satisfies the given
problem. Clearly, the series converges at least for |x| < 1, since the coefficients
are bounded. (In fact the series converges for all x.) Since a power series can be
differentiated term by term in the interior of its interval of convergence, the proof
presents no difficulty. Note, in addition, that the finite series obtained for y(x)
by breaking off after the x9-term is the exact solution to the following modified
differential equation:

y′′ = −xy − x10

12 960
, y(0) = 1, y′(0) = 0,

where the “perturbation term” −x10/12 960 has magnitude less than 10−7 for |x| ≤
0.5. It is possible to find rigorous bounds for the difference between the solutions
of a differential system and a modified differential system.

The use of power series and rational approximations will be studied in depth
in Chapter 3, where also other more efficient methods than the Maclaurin series for
approximation by polynomials will be treated.

A different approximation problem, which occurs in many variants, is to ap-
proximate a function f specified at a one or two-dimensional grid by a member f∗
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of a class of functions which is easy to work with mathematically. Examples are
(piecewise) polynomials, rational functions, or trigonometric polynomials, where
each particular function in the class is specified by the numerical values of a num-
ber of parameters.

In computer aided design (CAD) curves and surfaces have to be represented
mathematically, so that they can be manipulated and visualized easily. For this
purpose spline functions are now used extensively with important applications
in aircraft and automotive industries; see Sec. 4.4. The name spline comes from
a very old technique in drawing smooth curves, in which a thin strip of wood or
rubber, called a draftsman’s spline, is bent so that it passes trough a given set of
points. The points of interpolation are called knots and the spline is secured at
the knots by means of lead weights called ducks. Before the computer age splines
were used in ship building and other engineering designs.

Review Questions

2.1. What is a common cause of loss of accuracy in numerical calculations?

2.2. Describe Horner’s rule and synthetic division.

2.3. Give a concise explanation why the algorithm in Example 1.2.1 did not work
and why that in Example 1.2.2 did work.

2.4. Describe the basic idea behind the divide-and-conquer strategy. What is a
main advantage of this strategy? How do you apply it to the task of summing
n numbers?

Problems and Computer Exercises

2.1. (a) Use Horner’s scheme to compute for x = 2

p(x) = x4 + 2x3 − 3x2 + 2.

(b) Count the number of multiplications and additions required for the eval-
uation of a polynomial p(z) of degree n by Horner’s rule. Compare with the
work needed when the powers are calculated recursively by xj = x · xj−1 and
subsequently multiplied by an−j .

2.2. P (x) = 1− 1
2x

2 + 1
24x

4 is a polynomial approximation to cosx for small values
of |x|. Estimate the errors of

P (x), P ′(x),
1

x

∫ x

0

P (t) dt,

and compare them for x = 0.1.
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2.3. Show how repeated synthetic division can be used to move the origin of a
polynomial, i.e. given a1, a2, . . . , an, and z, find c1, c2, . . . , cn so that

pn(x) =
∑n

j=1 ajx
j−1 ≡∑n

j=1 cj(x− z)j−1.

Write a program for synthetic division (with this ordering of the coefficients)
and apply it to this algorithm.

Hint: Apply synthetic division to pn(x), pn−1(x) = (pn(x) − pn(z))/(x − z),
and so forth.

2.4. (a) Show that the transformation made in Problem 1.2.3 can also be expressed
by means of the matrix-vector equation,

c = diag (1, z−1, . . . , z1−n)P diag (1, z, . . . , zn−1) a,

where a = [a1, a2, . . . an]
T , c = [c1, c2, . . . cn]

T , and diag (1, z, . . . , zn−1) is a
diagonal matrix with elements zj−1, j = 1 : n. The matrix P ∈ Rn×n has
elements

pi,j =







(
j − 1

i− 1

)

, if j ≥ i,

0, otherwise.

By convention,

(
0

0

)

= 1 here.

(b) Note the relation of P to the Pascal triangle, and show how P can be
generated by a simple recursion formula. Also show how each element of P−1

can be expressed in terms of the corresponding element of P . How is the origin
of the polynomial pn(x) moved, if you replace P by P−1 in the matrix-vector
equation that defines c?

(c) If you reverse the order of the elements of the vectors a, c—this may
sometimes be a more convenient ordering—how is the matrix P changed?

Comment: With a terminology to be used much in this book (see Sec. 4.1.2),
we can look upon a and c as different coordinate vectors for the same element
in the n-dimensional linear space Pn of polynomials of degree less than n. The
matrix P gives the coordinate transformation.

2.5. Derive recurrence relations and write a program for computing the coefficients
of the product r of two polynomials p and q,

r(x) = p(x)q(x) =
( m∑

i=1

aix
i−1
)( n∑

j=1

bjx
j−1
)

=

m+n−1∑

k=1

ckx
k−1.

2.6. Let a, b be nonnegative integers, with b 6= 0. The division a/b yields the
quotient q and the remainder r. Show that if a and b have a common factor,
then that number is a divisor of r as well. Use this remark to derive the
Euclidean algorithm for the determination of the greatest common divisor
of a and b.
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2.7. Derive a forward and a backward recurrence relation for calculating the inte-
grals

In =

∫ 1

0

xn

4x+ 1
dx.

Why is in this case the forward recurrence stable and the backward recurrence
unstable?

2.8. (a) Solve Example 1.2.1 on a computer, with the following changes: Start the
recursion (1.2.5) with I0 = ln 1.2, and compute and print the sequence {In}
until In for the first time becomes negative.

(b) Start the recursion (1.2.6) first with the condition I19 = I20, then with
I29 = I30. Compare the results you obtain and assess their approximate
accuracy. Compare also with the results of 2.8 (a).

*2.9. (a) Write a program (or study some library program) for finding the quotient
Q(x) and the remainder R(x) of two polynomials A(x), B(x), i.e.

A(x) = Q(x)B(x) +R(x), degR(x) < degB(x).

(b) Write a program (or study some library program) for finding the coeffi-
cients of a polynomial with given roots.

*2.10. (a) Write a program (or study some library program) for finding the greatest
common divisor of two polynomials. Test it on a number of polynomials of
your own choice. Choose also some polynomials of a rather high degree, and
do not only choose polynomials with small integer coefficients. Even if you
have constructed the polynomials so that they should have a common divisor,
rounding errors may disturb this, and some tolerance is needed in the decision
whether a remainder is zero or not. One way of finding a suitable size of
the tolerance is to make one or several runs where the coefficients are subject
to some small random perturbations, and find out how much the results are
changed.

(b) Apply the programs mentioned in the last two problems for finding and
eliminating multiple zeros of a polynomial.

Hint: A multiple zero of a polynomial is a common zero of the polynomial
and its derivative.

1.3 Matrix Computations

Matrix computations are ubiquitous in Scientific Computing. A survey of basic
notations and concepts in matrix computations and linear vector spaces is given in
Appendix A. This is needed for several topics treated in later chapters of this first
volume. A fuller treatment of this topic will be given in Vol. II.

In this section we focus on some important developments since the 1950s in
the solution of linear systems. One is the systematic use of matrix notations and
the interpretation of Gaussian elimination as matrix factorization. This decom-
positional approach has several advantages, e.g., a computed factorization can
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often be used with great saving to solve new problems involving the original ma-
trix. Another is the rapid developments of sophisticated iterative methods, which
are becoming increasingly important as the size of systems increase.

1.3.1 Matrix Multiplication

A matrix8 A is a collection of m× n numbers ordered in m rows and n columns

A = (aij) =







a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn






.

We write A ∈ Rm×n, where Rm×n denotes the set of all real m × n matrices. If
m = n, then the matrix A is said to be square and of order n. If m 6= n, then A is
said to be rectangular.

The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A ∈ Rm×p and B ∈ Rp×n then

C = AB ∈ Rm×n, cij =

p
∑

k=1

aikbkj , 1 ≤ i ≤ m, 1 ≤ i, j ≤ n. (1.3.1)

The product BA is only defined if m = n and then BA ∈ Rp×p. Clearly matrix
multiplication is in general not commutative. In the exceptional case that AB = BA
holds, the matrices A and B are said to commute.

Matrix multiplication satisfies the associative and distributive rules

A(BC) = (AB)C, A(B + C) = AB + AC.

However, the number of arithmetic operations required to compute, the left- and
right-hand sides of these equations can be very different!

Example 1.3.1.
Let the three matrices A ∈ Rm×p, B ∈ Rp×n, and C ∈ Rn×q be given. Then

computing the product ABC as (AB)C requires mn(p+ q) multiplications whereas
A(BC) requires pq(m+ n) multiplications.

If A and B are square n× n matrices and C = x ∈ Rn×1, a column vector of
length n, then computing (AB)x requires n2(n+ 1) multiplications whereas A(Bx)
only requires 2n2 multiplications. When n≫ 1 this makes a great difference!

It is often useful to think of a matrix as being built up of blocks of lower
dimensions. The great convenience of this lies in the fact that the operations of ad-
dition and multiplication can be performed by treating the blocks as non-commuting
scalars and applying the definition (1.3.1). Of course the dimensions of the blocks
must correspond in such a way that the operations can be performed.

8The first to use the term “matrix” was the English mathematician James Sylvester in 1850.
Arthur Cayley then published Memoir on the Theory of Matrices in 1858, which spread the
concept.
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Example 1.3.2.
Assume that the two n× n matrices are partitioned into 2 × 2 block form

A =

(
A11 A12

A21 A22

)

, B =

(
B11 B12

B21 B22

)

,

where A11 and B11 are square matrices of the same dimension. Then the product
C = AB equals

C =

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)

. (1.3.2)

Be careful to note that since matrix multiplication is not commutative the order of
the factors in the products cannot be changed ! In the special case of block upper
triangular matrices this reduces to

(
R11 R12

0 R22

)(
S11 S12

0 S22

)

=

(
R11S11 R11S12 +R12S22

0 R22S22

)

. (1.3.3)

Note that the product is again block upper triangular and its block diagonal simply
equals the products of the diagonal blocks of the factors.

It is important to know roughly how much work is required by different matrix
algorithms. By inspection of (1.3.1) it is seen that computing the mp elements cij
in the product C = AB requires mnp additions and multiplications.

In matrix computations the number of multiplicative operations (×, /) is usu-
ally about the same as the number of additive operations (+,−). Therefore, in
older literature, a flop was defined to mean roughly the amount of work associated
with the computation

s := s+ aikbkj ,

i.e. one addition and one multiplication (or division). In more recent textbooks (e.g.,
Golub and Van Loan [155, ]) a flop is defined as one floating point operation
doubling the older flop counts.9 Hence, multiplication C = AB of two square
matrices of order n requires 2n3 flops. The matrix-vector multiplication y = Ax,
where A ∈ Rn×n and x ∈ Rn, requires 2mn flops.10

Operation counts are meant only as a rough appraisal of the work and one
should not assign too much meaning to their precise value. On modern computer
architectures the rate of transfer of data between different levels of memory of-
ten limits the actual performance. Also usually ignored is the fact that on many
computers a division is 5–10 times slower than a multiplication.

An operation count still provides useful information, and can serve as an
initial basis of comparison of different algorithms. It implies that the running time
for multiplying two square matrices on a computer roughly will increase cubically

9Stewart [300, p. 96] uses flam (floating point addition and multiplication) to denote an “old”
flop.

10To add to the confusion, in computer literature flops means floating point operations per
second.
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with the dimension n. Thus, doubling n will approximately increase the work by a
factor of eight; this is also apparent from (1.3.2).

An intriguing question is whether it is possible to multiply two matrices
A,B ∈ Rn×n (or solve a linear system of order n) in less than n3 (scalar) multi-
plications. The answer is yes! Strassen [305] developed a fast algorithm for matrix
multiplication, which, if used recursively to multiply two square matrices of dimen-
sion n = 2k, reduces the number of multiplications from n3 to nlog2 7 = n2.807....
The key observation behind the algorithm is that the block matrix multiplication
(1.3.2) can be performed with only seven block matrix multiplications and eighteen
block matrix additions. Since for large dimensions matrix multiplication is much
more expensive (2n3 flops) than addition (2n2 flops) this will lead to a saving in
operations.

It is still an open (difficult!) question what the minimum exponent ω is, such
that matrix multiplication can be done in O(nω) operations. The best upper bound
known in 2002 is ω ≤ 2.376; see Higham [180, Ch. 23]. (Note that for many of the
theoretically “fast” methods large constants are hidden in the O notation.)

1.3.2 Solving Linear Systems by LU Factorization

The solution of linear systems of equations is the most frequently encountered
task in scientific computing. One important source of linear systems is discrete
approximations of continuous differential and integral equations.

A linear system can be written in matrix-vector form as







a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
. . .

...
am1 am2 · · · amn













x1

x2
...
xn







=







b1
b2
...
bm






, (1.3.4)

where aij and bi, 1 ≤ i ≤ m, 1 ≤ j ≤ n are known input data and the task is to
compute the unknowns xj , 1 ≤ j ≤ n. More compactly we write Ax = b, where
A ∈ Rm×n is a matrix and x ∈ Rn and b ∈ Rm are column vectors.

Solving linear systems by Gaussian elimination11 is taught in elementary
courses in linear algebra. Although this algorithm in theory seems deceptively sim-
ple the practical solution of large linear systems is far from trivial. In the 1940s at
the beginning of the computer age there was a mood of pessimism among mathe-
maticians about the possibility of accurately solving systems even of modest order,
say n = 100. Today there is a deeper understanding of how Gaussian elimination
performs in finite precision arithmetic. Linear systems with hundred of thousands
unknowns are now routinely solved in scientific computing!

11Named after the German mathematician Carl Friedrich Gauss (1777–1855), but known already
in China as early as in the first century BC. Gauss was one of the greatest mathematician of the
19th century. He spent most of his life in Göttingen, where in his dissertation gave the first proof of
the Fundamental Theorem of Algebra. He has made fundamental contributions to number theory,
differential geometry, celestial mechanics and geodesy. He introduced the method of least squares
and put it on a solid foundation.
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Linear systems which (possibly after a permutation of rows and columns)
are of triangular form are particularly simple to solve. Consider a square upper
triangular linear system (m = n)







u11 . . . u1,n−1 u1n

. . .
...

...
un−1,n−1 un−1,n

unn













x1
...

xn−1

xn







=







b1
...

bn−1

bn






.

The matrix U is nonsingular if and only if

det(U) = u11 · · ·un−1,n−1unn 6= 0.

If this is the case the unknowns can be computed by the following recursion

xn = bn/unn, xi =
(

bi −
n∑

k=i+1

uikxk

)

/uii, i = n− 1 : −1 : 1. (1.3.5)

Since the unknowns are solved in backward order this is called back-substitution.
Thus the solution of a triangular system of order n can be computed in only about
n2 flops; this is the same amount of work as required for multiplying a vector by a
triangular matrix.

Similarly, a square linear system of lower triangular form Lx = b,







l11
l21 l22
...

...
. . .

ln1 ln2 . . . lnn













x1

x2
...
xn







=







b1
b2
...
bn






,

where L is nonsingular, can be solved by forward-substitution

x1 = b1/l11, xi =
(

bi −
i−1∑

k=1

likxk

)

/lii, i = 2 : n. (1.3.6)

(Note that by reversing the order of the rows and columns an upper triangular
system is transformed into a lower triangular and vice versa.)

When implementing a matrix algorithm on a computer, the order of operations
in matrix algorithms may be important. One reason for this is the economizing of
storage, since even matrices of moderate dimensions have a large number of ele-
ments. When the initial data is not needed for future use, computed quantities may
overwrite data. To resolve such ambiguities in the description of matrix algorithms
it is important to be able to describe computations like those in equations (1.3.5)
in a more precise form. For this purpose we will use an informal programming
language, which is sufficiently precise for our purpose but allows the suppression
of cumbersome details. We illustrate these concepts on the back-substitution al-
gorithm given above. In the following back-substitution algorithm the solution x
overwrites the data b.
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Algorithm 1.1. Back-Substitution.

Given a nonsingular upper triangular matrix U ∈ Rn×n and a vector b ∈ Rn, the
following algorithm computes x ∈ Rn such that Ux = b:

for i = n : (−1) : 1

s :=

n∑

k=i+1

uikbk;

bi := (bi − s)/uii;

end

Here x := y means that the value of y is evaluated and assigned to x. We use the
convention that when the upper limit in a sum is smaller than the lower limit the
sum is set to zero.

In the above algorithm the elements in U are accessed in a row-wise manner.
In another possible sequencing of the operations the elements in U are accessed
column-wise. This gives the following algorithm:

for k = n : (−1) : 1

bk := bk/ukk;

for i = k − 1 : (−1) : 1

bi := bi − uikbk;

end

end

Such differences sequencing of the operations can influence the efficiency of the
implementation depending on how the elements in the matrix U are stored.

Gaussian elimination uses the following elementary operation, which can be
performed without changing the set of solutions:

• Interchanging two equations.

• Multiplying an equation by a nonzero scalar α.

• Adding a multiple α of the ith equation to the jth equation.

These operations correspond in an obvious way to row operations carried out on the
augmented matrix (A, b). By performing a sequence of such elementary operations
the system Ax = b can be transformed into an upper triangular system which, as
shown above, can be solved by recursive substitution.

In Gaussian elimination the unknowns are eliminated in a systematic way, so
that at the end an equivalent triangular system is produced, which can be solved
by substitution. Consider the system (1.3.4) with m = n and assume that a11 6= 0.
Then we can eliminate x1 from the last (n−1) equations by subtracting from the ith
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equation the multiple li1 = ai1/a11, of the first equation. The last (n−1) equations
then become 




a
(2)
22 · · · a

(2)
2n

...
. . .

...
a
(2)
n2 · · · a

(2)
nn










x2
...
xn



 =






b
(2)
2
...
b
(2)
n




 ,

where the new elements are given by

a
(2)
ij = aij −

ai1a1j

a11
= aij − li1a1j ,

b
(2)
i = bi − li1b1, i, j = 2 : n.

This is a system of (n − 1) equations in the (n − 1) unknowns x2, . . . , xn. All

following steps are similar. In step k, k = 1 : n − 1, if a
(k)
kk 6= 0, we eliminate xk

from the last (n − k) equations giving a system containing only xk+1, . . . , xn. We

take lik = a
(k)
ik /a

(k)
kk , and the elements of the new system are given by

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

= a
(k)
ij − lika

(k)
kj ,

b
(k+1)
i = b

(k)
i − likb

(k)
k , i, j = k + 1 : n.

The diagonal elements a11, a
(2)
22 , . . . , a

(n)
n,n, which appear during the elimination

are called pivotal elements. As long as these are nonzero, the elimination can be
continued. After (n− 1) steps we get the single equation

a(n)
nn xn = b(n)

n .

Collecting the first equation from each step we get








a
(1)
11 a

(1)
12 · · · a

(1)
1n

a
(2)
22 · · · a

(2)
2n

. . .
...

a
(n)
nn














x1

x2
...
xn







=








b
(1)
1

b
(2)
2
...

b
(n)
n







, (1.3.7)

where we have introduced the notations a
(1)
ij = aij , b

(1)
i = bi for the coefficients in

the original system. Thus (1.3.4) has been reduced to an equivalent nonsingular,
upper triangular system (1.3.7), which can be solved by back-substitution.

We remark that no extra memory space is needed to store the multipliers.

When lik = a
(k)
ik /a

(k)
kk is computed the element a

(k+1)
ik becomes equal to zero, so the

multipliers can be stored in the lower triangular part of the matrix. Note also that if
the multipliers lik are saved, then the operations on the vector b can be carried out
at a later stage. This observation is important in that it shows that when solving a
sequence of linear systems

Axi = bi, i = 1 : p, x ∈ Rn, bi ∈ Rn,
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with the same matrix A but different right-hand sides the operations on A only have
to be carried out once.

We now show another interpretation of Gaussian elimination. For notational
convenience we assume that m = n and that Gaussian elimination can be carried
out without pivoting. Then Gaussian elimination can be interpreted as computing
the factorization A = LU of the matrix A into the product of a unit lower triangular
matrix L and an upper triangular matrix U .

Depending on whether the element aij lies on or above or below the principal
diagonal we have

a
(n)
ij =

{

. . . = a
(i+1)
ij = a

(i)
ij , i ≤ j;

. . . = a
(j+1)
ij = 0, i > j.

Thus the elements aij , 1 ≤ i, j ≤ n, are transformed according to

a
(k+1)
ij = a

(k)
ij − lika

(k)
kj , k = 1 : p, p = min(i− 1, j). (1.3.8)

If these equations are summed for k = 1 : p, we obtain

p
∑

k=1

(a
(k+1)
ij − a

(k)
ij ) = a

(p+1)
ij − aij = −

p
∑

k=1

lika
(k)
kj .

This can also be written

aij =







a
(i)
ij +

i−1∑

k=1

lika
(k)
kj , i ≤ j;

0 +

j
∑

k=1

lika
(k)
kj , i > j,

or, if we define lii = 1, i = 1 : n,

aij =

r∑

k=1

likukj , ukj = a
(k)
kj , r = min(i, j). (1.3.9)

However, these equations are equivalent to the matrix equation

A = LU, L = (lik), U = (ukj),

Here L and U are lower and upper triangular matrices, respectively. Hence GE
computes a factorization of A into a product of a lower and an upper triangular
matrix, the LU factorization of A. Note that since the unit diagonal elements in
L need not be stored it is possible to store the L and U factors in an array of the
same dimensions as A.
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Algorithm 1.2. LU Factorization.

Given a matrix A = A(1) ∈ Rn×n and a vector b = b(1) ∈ Rn, the following
algorithm computes the elements of the reduced system of upper triangular form

(1.3.7). It is assumed that a
(k)
kk 6= 0, k = 1 : n:

for k = 1 : n− 1

for i = k + 1 : n

lik := a
(k)
ik /a

(k)
kk ; a

(k+1)
ik := 0;

for j = k + 1 : n

a
(k+1)
ij := a

(k)
ij − lika

(k)
kj ;

end

end

end

Although the LU factorization is just a different interpretation of Gaussian
elimination it turns out to have important conceptual advantages. It divides the
solution of a linear system into two independent steps:

1. The factorization A = LU .

2. Solution of the systems Ly = b and Ux = y.

The LU factorization is a prime example of the decompositional approach to
matrix computation. This approach came into favor in the 1950s and early 1960s
and has been named as one of the ten algorithms with most influence on science
and engineering in the 20th century. This interpretation of Gaussian elimination
has turned out to be very fruitful. For example, it immediately follows that the
inverse of A (if it exists) has the factorization

A−1 = (LU)−1 = U−1L−1.

This shows that the solution of linear system Ax = b,

x = A−1b = U−1(L−1b),

can be computed by solving the two triangular systems Ly = b, Ux = y. Indeed it
has been said (Forsythe and Moler [114]) that

“Almost anything you can do with A−1 can be done without it.”

Another example is the problem of solving the transposed system ATx = b.
Since

AT = (LU)T = UTLT ,

we have that ATx = UT (LTx) = b. It follows that x can be computed by solving
the two triangular systems

UT c = b, LTx = c. (1.3.10)



“dqbjV
2007/5/28
page 34

34 Chapter 1. Principles of Numerical Calculations

In passing we remark that Gaussian elimination is an efficient algorithm also
for computing the determinant of a matrix A. It can be shown that the value
of the determinant is unchanged if a row (column) multiplied by a scalar is added
to another row (column) (see Appendix (A.2.4)). Further. if two rows (columns)
are interchanged the value of the determinant is multiplied by (−1). Since the
determinant of a triangular matrix equals the product of the diagonal elements it
follows that

det(A) = (−1)qa
(1)
11 a

(2)
22 · · · a(n)

nn . (1.3.11)

where q is the number of row interchanges performed.
From Algorithm 1.2 it follows that (n−k) divisions and (n−k)2 multiplications

and additions are used in step k to transform the elements of A. A further (n− k)
multiplications and additions are used to transform the elements of b. Summing
over k and neglecting low order terms we find that the number of flops required for
the reduction of Ax = b to a triangular system by Gaussian elimination is

n−1∑

k=1

2(n− k)2 ≈ 2n3/3,

n−1∑

k=1

2(n− k) ≈ n2,

for the transformation of A and the right-hand side b, respectively. Comparing this
with the n2 flops needed to solve a triangular system we conclude that, except for
very small values of n, the LU factorization of A dominates the work in solving a
linear system. If several linear systems with the same matrix A but different right-
hand sides are to be solved, then the factorization needs to be performed only once!

Pivoting and Stability

If A is nonsingular, then Gaussian elimination can always be carried through pro-
vided row interchanges are allowed. In this more general case, Gaussian elimination
computes an LU factorization of the matrix Ã obtained by carrying out all row
interchanges on A. In practice row interchanges are needed to ensure the numerical
stability of Gaussian elimination. We now consider how the LU factorization has
to be modified when such interchanges are incorporated.

Consider the case when in step k of Gaussian elimination a zero pivotal element

is encountered, i.e. a
(k)
kk = 0. (The equations may have been reordered in previous

steps, but we assume that the notations have been changed accordingly.) If A is
nonsingular, then in particular its first k columns are linearly independent. This
must also be true for the first k columns of the reduced matrix and hence some
element a

(k)
ik , i = k : n must be nonzero, say a

(k)
rk 6= 0. By interchanging rows k and r

this element can be taken as pivot and it is possible to proceed with the elimination.
The important conclusion is that any nonsingular system of equations can be reduced
to triangular form by Gaussian elimination, if appropriate row interchanges are
used.

Note that when rows are interchanged in A the same interchanges must be
made in the elements of the right-hand side b. Also the computed factors L and
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U will be the same as had the row interchanges first been performed on A and the
Gaussian elimination been performed without interchanges.

To ensure the numerical stability in Gaussian elimination it will, except for
special classes of linear systems, be necessary to perform row interchanges not only
when a pivotal element is exactly zero. Usually it suffices to use partial pivoting,
i.e. to choose the pivotal element in step k as the element of largest magnitude in
the unreduced part of the kth column.

Example 1.3.3.
The linear system

(
ǫ 1
1 1

)(
x1

x2

)

=

(
1
0

)

.

is nonsingular for any ǫ 6= 1 and has the unique solution x1 = −x2 = −1/(1 − ǫ).
But when ǫ = 0 the first step in Gaussian elimination cannot be carried out. The
remedy here is obviously to interchange the two equations, which directly gives an
upper triangular system.

Suppose that in the system above ǫ = 10−4. Then the exact solution, rounded
to four decimals equals x = (−1.0001, 1.0001)T . But if Gaussian elimination is
carried through without interchanges, we obtain l21 = 104 and the triangular system

0.0001x1 + x2 = 1

(1 − 104)x2 = −104.

Suppose that the computation is performed using arithmetic with three decimal

digits. Then in the last equation the coefficient a
(2)
22 will be rounded to −104 and

the solution computed by back-substitution is x̄2 = 1.000, x̄1 = 0, which is a
catastrophic result!

If before performing Gaussian elimination we interchange the two equations
then we get l21 = 10−4 and the reduced system becomes

x1 + x2 = 0

(1 − 10−4)x2 = 1.

The coefficient a
(2)
22 is now rounded to 1, and the computed solution becomes x̄2 =

1.000, x̄1 = −1.000, which is correct to the precision carried.

In this simple example it is easy to see what went wrong in the elimination
without interchanges. The problem is that the choice of a small pivotal element
gives rise to large elements in the reduced matrix and the coefficient a22 in the
original system is lost through rounding. Rounding errors which are small when
compared to the large elements in the reduced matrix are unacceptable in terms of
the original elements! When the equations are interchanged the multiplier is small
and the elements of the reduced matrix of the same size as in the original matrix.

In general an algorithm is said to be backward stable (see Definition 2.4.19)
if the computed solution w equals the exact solution of a problem with “slightly
perturbed data”. It can be shown that backward stability can almost always be
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ensured for Gaussian elimination with partial pivoting. The essential condition
for stability is that no substantial growth occurs in the elements in L and U ; see
Theorem 2.4.12.

It is important to note that the fact that a problem has been solved by a
backward stable algorithm does not mean that the error in the computed solution
is small. If the matrix A is close to a singular matrix then the solution is very
sensitive to perturbations in the data. This is the case when the rows (columns) of
A are almost linearly dependent. But this inaccuracy is intrinsic to the problem and
cannot be avoided except by using higher precision in the calculations. Condition
numbers for linear systems are discussed in Sec. 2.4.3.

An important special case, that arises in many applications, is when the matrix
A is symmetric, AT = A, and positive definite i.e.

xTAx > 0, ∀x ∈ Rn, x 6= 0. (1.3.12)

An important fact is that for linear systems Ax = b where A is symmetric, positive
definite no pivoting is needed for stability in Gaussian elimination. Indeed, unless
the pivots are chosen from the diagonal, pivoting is harmful since it will destroy
symmetry.

For symmetric positive definite matrices there always exists a unique factor-
ization

A = RTR, (1.3.13)

whereR is an upper triangular matrix with positive diagonal elements. This is called
the Cholesky factorization12. The elements in the Cholesky factor R = (rij)
can be determined directly. The matrix equation A = RTR with R upper triangular
can be written elementwise as

aij =

i∑

k=1

rkirkj =

i−1∑

k=1

rkirkj + riirij , 1 ≤ i ≤ j ≤ n. (1.3.14)

These are n(n+1)/2 equations for the unknown elements in R. Solving for rij from
the corresponding equation in (1.3.14), we obtain

rij =
(

aij −
i−1∑

k=1

rkirkj

)

/rii, i < j, rjj =
(

ajj −
j−1
∑

k=1

r2kj

)1/2

.

If properly sequenced, these equations can be used in a recursive fashion to compute
the elements in R, for example, one row at a time. The resulting algorithm requires
n square roots and approximately n3/3 flops, which is about half the work of an
LU factorization.

We remark that for a symmetric indefinite matrix, for example, the matrix in
Example 1.3.3 with ǫ < 1, no Cholesky factorization exists.

12André-Louis Cholesky (1875–1918) was a French military officer involved in geodesy and sur-
veying in Crete and North Africa just before World War I.
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1.3.3 The Linear Least Squares Problem

A basic problem in science is to fit a mathematical model to given observations
subject to errors. As an example, consider observations (ti, yi), i = 1 : m, to be
fitted to a model described by a scalar function y(t) = f(c, t), where c ∈ Rn is a
parameter vector to be determined. There are two types of shortcomings to take
into account: errors in the input data, and approximations made in the particular
model (class of functions, form). We shall call these measurement errors and
errors in the model, respectively.

Clearly the more observations that are available the more accurately will it be
possible to determine the parameters in the model. One can also see this problems
as analogous to the task of a communication engineer, to filter away noise from the
signal. These questions are connected with both Mathematical Statistics and the
mathematical discipline Approximation Theory.

A simple example is when the model is linear in c and of the form

y(t) =

n∑

j=1

cjφj(t),

where φj(t) are given (possibly nonlinear) functions. One would like to use a greater
numberm of measurements than the number n of unknown parameters in the model.
The resulting equations

yi =
n∑

j=1

cjφj(ti), i = 1 : m,

form a linear system Ac = y, where

A ∈ Rm×n, aij = φj(ti).

The linear system is said to be overdetermined when m > n. In general such a
system is inconsistent and has no solution. But we can try to find a vector c ∈ Rn

such that Ac is the “best” approximation to y. This is equivalent to minimizing the
size of the residual vector r = y −Ac.

Consider now an inconsistent linear system Ax = b. There are many possible
ways of defining the “best solution”. A choice which can often be motivated for
statistical reasons, and which also leads to a simple computational problem, is to
take as solution a vector x, which minimizes the sum of the squared residuals, that
is

min
x

m∑

i=1

r2i = min
x

‖b−Ax‖2, (1.3.15)

where we have used the notation

‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 = (xTx)1/2.

for the Euclidean length of a vector x (see Appendix A). We call (1.3.15) a linear
least squares problem and any minimizer x a least squares solution of the



“dqbjV
2007/5/28
page 38

38 Chapter 1. Principles of Numerical Calculations

system Ax = b. The principle of least squares for solving an overdetermined linear
system was first used by Gauss 1801 to successively predict the orbit of the asteroid
Ceres.13

The set of all solutions to problem (1.3.15) is characterized in the following
theorem.

Theorem 1.3.1.
The vector x minimizes ‖b−Ax‖2 if and only if the residual vector r = b−Ax

is orthogonal to R(A), or equivalently

AT (b−Ax) = 0. (1.3.16)

Proof. Let x be a vector for which AT (b−Ax) = 0. Then for any y ∈ Rn, it holds
that b −Ay = (b −Ax) +A(x − y). Squaring this and using (1.3.16) we obtain

‖b−Ay‖2
2 = ‖b−Ax‖2

2 + ‖A(x− y)‖2
2 ≥ ‖b−Ax‖2

2,

where equality holds only if A(x − y) = 0.
Now assume that AT (b − Ax) = z 6= 0. Then if x − y = −ǫz we have for

sufficiently small ǫ 6= 0,

‖b−Ay‖2
2 = ‖b−Ax‖2

2 + ǫ2‖Az‖2
2 − 2ǫ(Az)T (b−Ax)

= ‖b−Ax‖2
2 + ǫ2‖Az‖2

2 − 2ǫ‖z‖2
2 < ‖b−Ax‖2

2,

so x does not minimize ‖b−Ax‖2.

It follows from (1.3.16) that any least squares solution must satisfy the normal
equations

ATAx = AT b. (1.3.17)

These are always consistent, since

AT b ∈ R(AT ) = R(ATA).

Therefore a least squares solution always exists, although it may not be unique.
The range of A and the null space of AT are two subspaces of Rm that are

fundamental to the least squares problem. They are defined by

R(A) = {z ∈ Rm| z = Ax, x ∈ Rn}, (1.3.18)

N (AT ) = {y ∈ Rm| AT y = 0}. (1.3.19)

If z ∈ R(A) and y ∈ N (AT ) then zTy = xTAT y = 0, which shows that N (AT )
is the orthogonal complement of R(A). From Theorem 1.3.1 it follows that a least
squares solution x decomposes the right-hand side b into two orthogonal components

b = Ax+ r, r ⊥ Ax. (1.3.20)

13Gauss claims to have discovered the method of least squares in 1795 when he was 18 years
old.
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1

�6

Ax

b r = b − Ax

R(A)

Figure 1.3.1. Geometric characterization of the least squares solution.

Here Ax is the orthogonal projection onto R(A) and r = b − Ax ∈ N (AT ). This
geometric interpretation is illustrated in Figure 1.3.1. Note that although the solu-
tion x to the least squares problem may not be unique the decomposition (1.3.20)
always is unique.

We now give a necessary and sufficient condition for the least squares solution
to be unique.

Theorem 1.3.2.
The matrix ATA is positive definite and hence nonsingular if and only if the

columns of A are linearly independent, that is, when rank (A) = n. In this case the
least squares solution x is unique and given by

x = (ATA)−1AT b. (1.3.21)

Proof. If the columns of A are linearly independent, then x 6= 0 ⇒ Ax 6= 0.
Therefore x 6= 0 ⇒ xTATAx = ‖Ax‖2

2 > 0, and hence ATA is positive definite.
On the other hand, if the columns are linearly dependent, then for some x0 6= 0

we have Ax0 = 0. Then xT0 A
TAx0 = 0, and therefore ATA is not positive definite.

When ATA is positive definite it is also nonsingular and (1.3.21) follows.

Example 1.3.4.
The comet Tentax discovered in 1968 is supposed to move within the solar

system. The following observations of its position in a certain polar coordinate
system have been made

r 2.70 2.00 1.61 1.20 1.02
φ 48◦ 67◦ 83◦ 108◦ 126◦

By Kepler’s first law the comet should move in a plane orbit of elliptic or hyperbolic
form, if the perturbations from planets are neglected. Then the coordinates satisfy

r = p/(1 − e cosφ),
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where p is a parameter and e the eccentricity. We want to estimate p and e by the
method of least squares from the given observations.

We first note that if the relationship is rewritten as

1/p− (e/p) cosφ = 1/r,

it becomes linear in the parameters x1 = 1/p and x2 = e/p. We then get the linear
system Ax = b, where

A =









1.0000 −0.6691
1.0000 −0.3907
1.0000 −0.1219
1.0000 0.3090
1.0000 0.5878









, b =








0.3704
0.5000
0.6211
0.8333
0.9804







.

The least squares solution is x = ( 0.6886 0.4839 )T giving p = 1/x1 = 1.4522 and
finally e = px2 = 0.7027.

We have seen that orthogonal projections play a central role in the least
squares problems. In general, a matrix P1 ∈ Rm×m is called a projector onto
a subspace S ⊂ Rm if and only if it holds that

P1v = v, ∀v ∈ S, P 2
1 = P1. (1.3.22)

An arbitrary vector v ∈ Rm can then be decomposed as v = P1v + P2v ≡ v1 + v2,
where P2 = I − P1.

In particular, if P1 is symmetric, P1 = PT1 , then we have

PT1 P2v = PT1 (I − P1)v = (P1 − P 2
1 )v = 0, ∀v ∈ Rm,

and it follows that PT1 P2 = 0. Hence vT1 v2 = vTPT1 P2v = 0, for all v ∈ Rm, i.e.
v2 ⊥ v1. In this case P1 is the orthogonal projector onto S and P2 = I − P1 the
orthogonal projector onto S⊥.

In the full column rank case, rank (A) = n, of the least squares problem, the
residual r = b−Ax can be written r = b− PR(A)b, where

PR(A) = A(ATA)−1AT (1.3.23)

is the orthogonal projector onto R(A). If rank (A) < n, then A has a nontrivial
null space. In this case if x̂ is any vector that minimizes ‖Ax− b‖2, then the set of
all least squares solutions is

S = {x = x̂+ y | y ∈ N (A)}. (1.3.24)

In this set there is a unique solution of minimum norm characterized by x ⊥ N (A),
which is called the pseudoinverse solution.
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1.3.4 The Singular Value Decomposition

In the past the conventional way to determine the rank of a matrixA was to compute
the row echelon form by Gaussian elimination. This would also show whether a
given linear system is consistent or not. However, in floating point calculations it is
difficult to decide if a pivot element, or an element in the transformed right-hand
side, should be considered as zero or nonzero. Such questions can be answered in a
more satisfactory way by using the singular value decomposition (SVD), which
is of great theoretical and computational importance.14

The geometrical significance of the SVD is as follows: the rectangular matrix
A ∈ Rm×n, m ≥ n, represents a mapping y = Ax from Rn to Rm. The image of the
unit sphere ‖x‖2 = 1 is a hyperellipse in Rm with axes equal to σ1 ≥ σ2 . . . ≥ σn ≥ 0.
In other words, the SVD gives orthogonal bases in these two spaces, such that the
mapping is represented by the generalized diagonal matrix Σ ∈ Rm×n. This is
made more precise in the following theorem, a constructive proof of which will be
given in Volume II.

Theorem 1.3.3 (Singular Value Decomposition).

Any matrix A ∈ Rm×n of rank r can be decomposed as

A = UΣV T , Σ =

(
Σr 0
0 0

)

∈ Rm×n, (1.3.25)

where Σr = diag (σ1, σ2, . . . , σr) is diagonal and

U = (u1, . . . , um) ∈ Rm×m, V = (v1, . . . , vn) ∈ Rn×n, (1.3.26)

are square orthogonal matrices, UTU = Im, V TV = In. Here

σ1 ≥ σ2 ≥ · · · ≥ σr > 0

are the r ≤ min(m,n) nonzero singular values of A. The vectors ui, i = 1 : m,
and vj, j = 1 : nare left and right singular vectors. (Note that if r = n and/or
r = m, some of the zero submatrices in Σ disappear.)

The singular values of A are uniquely determined. For any distinct singular
value σj 6= σi, i 6= j, the corresponding singular vector vj is unique (up to a factor
±1). For a singular value of multiplicity p the corresponding singular vectors can
be chosen as any orthonormal basis for the unique subspace of dimension p that
they span. Once the singular vectors vj , 1 ≤ j ≤ r, have been chosen, the vectors
uj , 1 ≤ j ≤ r, are uniquely determined, and vice versa, by

uj =
1

σj
Avj , vj =

1

σj
ATuj, j = 1 : r. (1.3.27)

14The SVD was published more than a century ago by Eugenio Beltrami in 1873 and indepen-
dently by Camille Jordan in 1874. Its use in numerical computations is much more recent since a
stable algorithm for computing the SVD, did not become available until the publication of Golub
and Reinsch [154] in the early 1970’s.
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By transposing (1.3.25) we obtain AT = V ΣTUT , which is the SVD of AT .
Expanding (1.3.25), the SVD of the matrix A can be written as a sum of r matrices
of rank one,

A =

r∑

i=1

σiuiv
T
i .

The SVD gives orthogonal bases for the range and null space of A and AT . Suppose
that the matrix A has rank r < min(m,n). It is easy to verify that

R(A) = span (u1, . . . , ur), N (AT ) = span (ur+1, . . . , um), (1.3.28)

R(AT ) = span (v1, . . . , vr), N (A) = span (vr+1, . . . , vn). (1.3.29)

We remark that the SVD generalizes readily to complex matrices. The SVD
of a matrix A ∈ Cm×n is

A = UΣV H , Σ =

(
Σr 0
0 0

)

∈ Rm×n, (1.3.30)

where the singular values σ1, σ2, . . . , σr are real and non-negative and U and V are
square unitary matrices, UHU = Im, V HV = In. (Here AH denotes the conjugate
transpose of A.)

Let A be a matrix of rank r < min(m,n), and E a matrix of small random
elements. Then it is most likely that the perturbed matrix A+E has maximal rank
min(m,n). However, since A + E is close to a rank deficient matrix, it should be
considered as having numerical rank equal to r. In general, the numerical rank
assigned to a matrix should depend on some tolerance δ, which reflects the error
level in the data and/or the precision of the arithmetic used.

It can be shown that perturbations of an element of a matrix A result in per-
turbations of the same, or smaller, magnitude in its singular values. This motivates
the following definition of numerical rank:

Definition 1.3.4.
A matrix A ∈ Rm×n is said to have numerical δ-rank equal to k if

σ1 ≥ . . . ≥ σk > δ ≥ σk+1 ≥ . . . ≥ σp, p = min(m,n),

where σi are the singular values of A. Then the right singular vectors (vk+1, . . . , vn)
form an orthogonal basis for the numerical null space of A.

Definition 1.3.4 assumes that there is a well defined gap between σk+1 and σk.
When this is not the case the numerical rank of A is not well defined!

Example 1.3.5.
Consider an integral equation of the first kind

∫ 1

0

k(s, t)f(s)ds = g(t), k(s, t) = e−(s−t)2 ,
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on −1 ≤ t ≤ 1. If this equation is discretized using a uniform mesh on [−1, 1] and
the trapezoidal rule, a finite-dimensional linear system Kf = g is obtained, where
K ∈ Rn×n, and f, g ∈ Rn.
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Figure 1.3.2. Singular values of a numerically singular matrix.

For n = 100 the singular values σk of the matrix K were computed in IEEE
double precision with a unit roundoff level of 1.11 · 10−16 (see Sec. 2.2.3). They are
displayed in logarithmic scale in Figure 1.3.2. Note that for k > 30 all σk are close
to roundoff level, so the numerical rank of K certainly is smaller than 30. This
means that the linear system Kf = g is numerically under-determined and has a
meaningful solution only for special right-hand sides g.

If there is a vector c 6= 0 such that Ac = 0 and the least squares solution is not
unique. Then there exists a unique least squares solution of minimum Euclidean
length, which solves the least squares problem

min
x∈S

‖x‖2, S = {x ∈ Rn| ‖b−Ax‖2 = min}. (1.3.31)

In terms of the SVD (1.3.25) of A the solution to (1.3.31) can be written x = A†b,
where the matrix A† is

A† = V Σ†UT , Σ† =

(
Σ−1
r 0
0 0

)

∈ Rn×m, (1.3.32)

The matrix A† is unique and called the pseudoinverse of A and x = A†b is the
pseudoinverse solution. Note that problem (1.3.31) includes as special cases the
solution of both overdetermined and underdetermined linear systems.

The pseudoinverse A† is often called the Moore–Penrose inverse. Moore
developed the concept of the general reciprocal in 1920. In 1955 Roger Penrose [258]
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gave an elegant algebraic characterization and showed that X = A† is uniquely
determined by the four Penrose conditions:

(1) AXA = A, (2) XAX = X, (1.3.33)

(3) (AX)T = AX, (4) (XA)T = XA. (1.3.34)

It can be directly verified that X = A† given by (1.3.32) satisfies these four condi-
tions. In particular this shows that A† does not depend on the particular choices
of U and V in the SVD.

1.3.5 Sparse Matrices and Iterative Methods

Following Jim Wilkinson [337], a matrix A will be called sparse if the percentage
of zero elements is large and its distribution is such that it is economical to take
advantage of their presence. The non-zero elements of a sparse matrix may be
concentrated on a narrow band centered on the diagonal. Alternatively they may
be distributed in a less systematic manner.

Example 1.3.6.
A simple example of sparse matrices occurs when the matrix A only has a

few nonzero elements close to the main diagonal. Such matrices are called band
matrices. Band matrices of the form

A =









b1 c1
a1 b2 c2

. . .
. . .

. . .

an−2 bn−1 cn−1

an−1 bn









, (1.3.35)

are called tridiagonal. Tridiagonal systems of linear equations can be solved by
Gaussian elimination with much less work than the general case. The following
algorithm solves the tridiagonal system Ax = g by Gaussian elimination without
pivoting.

First compute the LU factorization A = LU , where

L =









1
γ1 1

γ2 1
. . .

. . .

γn−1 1









, U =









β1 c1
β2 c2

. . .
. . .

βn−1 cn−1

βn









.

The new elements in L and U are obtained from the recursion: Set β1 = b1, and

γk = ak/βk, βk+1 = bk+1 − γkck, k = 1 : n− 1. (1.3.36)

(Check this by computing the product LU !) The solution to Ax = L(Ux) = g is
then obtained in two steps. First a forward substitution to get y = Ux

y1 = g1, yk+1 = gk+1 − γkyk, k = 1 : n− 1, (1.3.37)
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followed by a backward recursion for x

xn = yn/βn, xk = (yk − ckxk+1)/βk, k = n− 1 : −1 : 1. (1.3.38)

In this algorithm the LU factorization requires only about n divisions and n mul-
tiplications and additions. The solution of the lower and upper bidiagonal systems
require about twice as much work.

Sparse matrices typically arise in many different applications. In Figure 1.3.3
we show a sparse matrix and its LU factors. In this case the original matrix is of
order n = 479 and contains 1887 nonzero elements, that is less than 0.9% of the
elements are nonzero. The LU factors are also sparse and contain together 5904
nonzero elements or about 2.6%.
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Figure 1.3.3. Nonzero pattern of a sparse matrix and its LU factors.

For many classes of sparse linear systems iterative methods are more effi-
cient to use than direct methods such as Gaussian elimination. Typical examples
are those arising when a differential equation in 2D or 3D is discretized. In itera-
tive methods a sequence of approximate solutions is computed, which in the limit
converges to the exact solution x. Basic iterative methods work directly with the
original matrix A and therefore have the added advantage of requiring only extra
storage for a few vectors.

In a classical iterative method due to Richardson [268], starting from x(0) = 0,
a sequence x(k) is defined by

x(k+1) = x(k) + ω(b−Ax(k)), k = 0, 1, 2, . . . , (1.3.39)

where ω > 0 is a parameter to be chosen. It follows easily from (1.3.39) that the
error in x(k) satisfies x(k+1) − x = (I − ωA)(x(k) − x), and hence

x(k) − x = (I − ωA)k(x(0) − x).
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It can be shown that, if all the eigenvalues λi of A are real and satisfy

0 < a ≤ λi ≤ b,

then x(k) will converge to the solution, when k → ∞, for 0 < ω < 2/b.
Iterative methods are used most often for the solution of very large linear

systems, which typically arise in the solution of boundary value problems of partial
differential equations by finite difference or finite element methods. The matrices
involved can be huge, sometimes involving several million unknowns. The LU fac-
tors of matrices arising in such applications typically contain order of magnitudes
more nonzero elements than A itself. Hence, because of the storage and number of
arithmetic operations required, Gaussian elimination may be far too costly to use.

In a typical problem for the Poisson equation (1.1.20) the function is to be
determined in a plane domain D, when the values of u are given on the boundary
∂D. Such boundary value problems occur in the study of steady states in most
branches of Physics, such as electricity, elasticity, heat flow and fluid mechanics
(including meteorology). Let D be a square grid with grid size h, i.e. xi = x0 + ih,
yj = y0 + jh, 0 ≤ i ≤ N + 1, 0 ≤ j ≤ N + 1. Then the difference approximation
yields

ui,j+1 + ui−1,j + ui+1,j + ui,j−1 − 4ui,j = h2f(xi, yj),

(1 ≤ i, j ≤ N). This is a huge system of linear algebraic equations; one equation
for each interior gridpoint, altogether N2 unknowns and equations. (Note that
ui,0, ui,N+1, u0,j , uN+1,j are known boundary values.) To write the equations in
matrix-vector form we order the unknowns in a vector

u = (u1,1, . . . , u1,N , u2,1, . . . , u2,N , uN,1, . . . , uN,N).

the so-called natural ordering. If the equations are ordered in the same order we
get a system Au = b where A is symmetric with all nonzero elements located in five
diagonals; see Figure 1.3.4 (left).

In principle Gaussian elimination can be used to solve such systems. But even
taking symmetry and the banded structure into account this would require 1

2 ·N4

multiplications, since in the LU factors the zero elements inside the outer diagonals
will fill-in during the elimination as shown in Figure 1.3.4 (right).

The linear system arising from the Poisson equation has several features com-
mon to boundary value problems for all linear partial differential equations. One of
these is that there are at most five nonzero elements in each row of A, i.e. only a
tiny fraction of the elements are nonzero. Therefore one iteration in Richardson’s
method requires only about 5·N2 multiplications or equivalently five multiplications
per unknown. Using iterative methods which take advantage of the sparsity and
other features does allow the efficient solution of such systems. This becomes even
more essential for three-dimensional problems!

As early as in 1954, a simple atmospheric model was used for weather forecast-
ing on an electronic computer. The net covered most of North America and Europe.
During a 48 hour forecast, the computer solved (among other things) 48 Poisson
equations (with different right-hand sides). This would have been impossible at
that time, if the special features of the system had not been used.
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Figure 1.3.4. Structure of the matrix A (left) and L + U (right) for the
Poisson problem, N = 20. (Row-wise ordering of the unknowns.)

1.3.6 Software for Matrix Computations

In most computers in use today the key to high efficiency is to avoid as much
as possible data transfers between memory, registers and functional units, since
these can be more costly than arithmetic operations on the data. This means that
the operations have to be carefully structured. One observation is that Gaussian
elimination consists of three nested loops, which can be ordered in 3 ·2 ·1 = 6 ways.
Disregarding the right-hand side vector b, each version does the operations

a
(k+1)
ij := a

(k)
ij − a

(k)
kj a

(k)
ik /a

(k)
kk ,

and only the ordering in which they are done differs. The version given above uses
row operations and may be called the “kij” variant, where k refers to step number,
i to row index, and j to column index. This version is not suitable for program-
ming languages like Fortran 77, in which matrix elements are stored sequentially
by columns. In such a language the form “kji” should be preferred, as well as a
column oriented back-substitution rather than that in Algorithm 1.1.

The first collection of high quality linear algebra software was a series of
algorithms written in Algol 60 that appeared in the handbook [337]. This contains
11 subroutines for linear systems, least squares, and linear programming and 18
routines for the algebraic eigenvalue problem.

The Basic Linear Algebra Subprograms (BLAS) have become an important
tool for structuring linear algebra computations. These are now commonly used
to formulate matrix algorithms and have become an aid to clarity, portability and
modularity in modern software. The original set of BLAS ([213]), introduced in
1979, identified frequently occurring vector operations in matrix computation such
as scalar product, adding of a multiple of one vector to another, etc. For example,
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the operation

y := αx + y

in single precision is named SAXPY. By carefully optimizing them for each specific
computer, performance was enhanced without sacrificing portability. These BLAS
were adopted in the collections of Fortran subroutines LINPACK (see [91]) for linear
systems and EISPACK (see [123]) for eigenvalue problems.

For modern computers it is important to avoid excessive data movements
between different parts of memory hierarchy. To achieve this so called level 3 BLAS
have been introduced in the 1990s. These work on blocks of the full matrix and
perform, for example, the operations

C := αAB + βC, C := αATB + βC, C := αABT + βC.

Level 3 BLAS use O(n2) data but perform O(n3) arithmetic operations. This gives
a surface-to-volume effect for the ratio of data movement to operations.

LAPACK (see [6]) is a linear algebra package initially released in 1992. LA-
PACK was designed to supersede and integrate the algorithms in both LINPACK
and EISPACK. It achieves close to optimal performance on a large variety of com-
puter architectures by expressing as much as possible of the algorithm as calls to
level 3 BLAS. This is also an aid to clarity, portability and modularity. LAPACK
today is the backbone of the interactive matrix computing system Matlab.

Example 1.3.7.
In 1974 the authors wrote in [80, Sec. 8.5.3] that “a full 1 000× 1 000 system

of equations is near the limit at what can be solved at a reasonable cost”. Today
systems of this size can easily be handled on a personal computer. The benchmark
problem for the Japanese Earth Simulator, one of the worlds fastest computers in
2004, was the solution of a system of size 1 041 216 on which a speed of 35.6× 1012

operations per second was measured. This is a striking illustration of the progress
in high speed matrix computing that has occurred in these 30 years!

Review Questions

3.1. How many operations are needed (approximately) for

(a) The multiplication of two square matrices A,B ∈ Rn×n?

(b) The LU factorization of a matrix A ∈ Rn×n?

(b) The solution of Ax = b, when the triangular factorization of A is known?

3.2. Show that if the kth diagonal entry of an upper triangular matrix is zero, then
its first k columns are linearly dependent.

3.3. What is the LU factorization of an n by n matrix A, and how is it related to
Gaussian elimination? Does it always exist? If not, give sufficient conditions
for its existence.
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3.4. (a) For what type of linear systems are iterative methods to be preferred to
Gaussian elimination?

(b) Describe Richardson’s method for solving Ax = b. What can you say
about the error in successive iterations?

3.5. Describe the least squares principle for solving an overdetermined linear sys-
tem.

3.6. (a) Show that A† = A−1 when A is a nonsingular matrix.

(b) Construct an example where G 6= A† despite the fact that GA = I.

3.7. Show that the matrix ATA ∈ Rn×n of the normal equations is a symmetric,
positive semidefinite, i.e., xT (ATA)x ≥ 0, for all x 6= 0.

3.8. Show, using the SVD, that PR(A) = AA† and PR(AT ) = A†A.

3.9. (a) Construct an example where (AB)† 6= B†A†.

(b) Show that if A is an m× r matrix, B is an r × n matrix, and rank (A) =
rank (B) = r, then (AB)† = B†A†.

3.10. What does the acronym BLAS stand for? What is meant by level 3 BLAS
and why are they used in current linear algebra software?

Problems and Computer Exercises

3.1. Let A be a square matrix of order n and k a positive integer such that 2p ≤
k < 2p+1. Show how Ak can be computed in at most 2pn3 multiplications.

Hint: Write k in the binary number system and compute A2, A4, A8, . . . , by
successive squaring; e.g., 13 = (1101)2 and A13 = A8A4A.

3.2. (a) Let A and B be square upper triangular matrices of order n. Show that
the product matrix C = AB is also upper triangular. Determine how many
multiplications are needed to compute C.

(b) Show that if R is an upper triangular matrix with zero diagonal elements,
then Rn = 0.

3.3. Show that there cannot exist an LU factorization

A =

(
0 1
1 1

)

=

(
l11 0
l21 l22

)(
u11 u12

0 u22

)

.

Hint: Equate the (1, 1)-elements and deduce that either the first row or the
first column in LU must be zero.

3.4. (a) Consider the special upper triangular matrix of order n,

Un(a) =









1 a a · · · a
1 a · · · a

1 · · · a
. . .

...
1









.
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Determine the solution x to the triangular system Un(a)x = en, where en =
(0, 0, . . . , 0, 1)T is the nth unit vector.

(b) Show that the inverse of an upper triangular matrix is also upper triangu-
lar. Determine for n = 3 the inverse of Un(a). Try also to determine Un(a)

−1

for an arbitrary n.

Hint: Note that UU−1 = U−1U = I, the identity matrix.

3.5. A matrix Hn of order n such that hij = 0 whenever i > j + 1 is called an
upper Hessenberg matrix. For n = 5 it has the structure

H5 =








h11 h12 h13 h14 h15

h21 h22 h23 h24 h25

0 h32 h33 h34 h35

0 0 h43 h44 h45

0 0 0 h54 h55







.

(a) Determine the approximate number of operations needed to compute the
LU factorization of Hn without pivoting.

(b) Determine the approximate number of operations needed to solve the linear
system Hnx = b, when the factorization in (a) is given.

3.6. Compute the product |L| |U | for the LU factors with and without pivoting
of the matrix in Example 1.3.3. (Here |A| denotes the matrix with elements
|aij |.)

3.7. Let A ∈ Rn×n be a given matrix. Show that if Ax = y has at least one solution
for any y ∈ Rn, then it has exactly one solution for any y ∈ Rn. (This is a
useful formulation for showing uniqueness of approximation formulas.)

3.8. Show that the SVD can be written in the form

A =

r∑

i=1

σiuiv
T
i , (1.3.40)

which expresses A as a sum of r matrices of rank one.

1.4 Numerical Solution of Differential Equations

1.4.1 Euler’s Method

Approximate solution of differential equations is a very important task in scientific
computing. Nearly all the areas of science and technology contain mathematical
models which lead to systems of ordinary (or partial) differential equations. For the
step by step simulation of such a system a mathematical model is first set up,
i.e. state variables are set up which describe the essential features of the state of
the system. Then the laws are formulated, which govern the rate of change of the
state variables, and other mathematical relations between these variables. Finally,
these equations are programmed for a computer to calculate approximately, step by
step, the development in time of the system.
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The reliability of the results depends primarily on the quality of the mathe-
matical model and on the size of the time step. The choice of the time step is partly
a question of economics. Small time steps may give you good accuracy, but also long
computing time. More accurate numerical methods are often a good alternative to
the use of small time steps.

The construction of a mathematical model is not trivial. Knowledge of nu-
merical methods and programming helps also in that phase of the job, but more
important is a good understanding of the fundamental processes in the system, and
that is beyond the scope of this text. It is, however, important to realize that if
the mathematical model is bad, no sophisticated numerical techniques or powerful
computers can stop the results from being unreliable, or even harmful.

A mathematical model can be studied by analytic or computational tech-
niques. Analytic methods do not belong to this text. We want, though, to empha-
size that the comparison with results obtained by applying analytic methods, in the
special cases when they can be applied, can be very useful when numerical methods
and computer programs are tested. We shall now illustrate these general comments
on a particular example.

0 0.5 1 1.5 2 2.5
0
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Figure 1.4.1. Approximate solution of the differential equation dy/dt = y,
y0 = 0.25, by Euler’s method with h = 0.5.

An initial value problem for an ordinary differential equation is to find y(t)
such that

dy

dt
= f(t, y), y(0) = c.

The differential equation gives, at each point (t, y), the direction of the tangent to
the solution curve which passes through the point in question. The direction of the
tangent changes continuously from point to point, but the simplest approximation
(which was proposed as early as the 18th century by Euler15) is that one studies the
solution for only certain values of t = tn = nh, n = 0, 1, 2, . . . (h is called the “time

15Leonhard Euler (1707–1783), incredibly prolific Swiss mathematician. He gave fundamental
contributions to many branches of mathematics and to the mechanics of rigid and deformable
bodies as well as to fluid mechanics.
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step” or “step length”) and assumes that dy/dt is constant between the points. In
this way the solution is approximated by a polygon (Figure 1.4.1) which joins the
points (tn, yn), n = 0, 1, 2, . . ., where

y0 = c,
yn+1 − yn

h
= f(tn, yn). (1.4.1)

Thus we have the simple difference equation known as Euler’s method:

y0 = c, yn+1 = yn + hf(tn, yn), n = 0, 1, 2, . . . (1.4.2)

During the computation, each yn occurs first on the left-hand side, then recurs
later on the right-hand side of an equation. (One could also call equation (1.4.2) an
iteration formula, but one usually reserves the word “iteration” for the special case
where a recursion formula is used solely as a means of calculating a limiting value.)

1.4.2 An Introductory Example

Consider the motion of a ball (or a shot) under the influence of gravity and air
resistance. It is well known that the trajectory is a parabola, when the air resistance
is neglected and the force of gravity is assumed to be constant. We shall still neglect
the variation of the force of gravity as well as the curvature and the rotation of the
earth. This means that we forsake serious applications, for example, to satellites.
We shall, however, take the air resistance into account. We neglect the rotation of
the shot around its own axis. Therefore we can treat the problem as a motion in a
plane, but we have to forsake the application to, for example, table tennis, baseball
or a rotating projectile. Now we have introduced a number of assumptions, which
define our model of reality.

The state of the ball is described by its position (x, y) and velocity (u, v),
each of which has two Cartesian coordinates in the plane of motion. The x-axis is
horizontal, and the y-axis is directed upwards. Assume that the air resistance is a
force P , such that the direction is opposite to the velocity, and the strength z is
proportional to the square of the speed and to the square of the radius R of the
shot. If we denote by Px and Py the components of P along the x and y directions,
respectively, we can then write

Px = −mzu, Py = −mzv, z =
cR2

m

√

u2 + v2, (1.4.3)

where m is the mass of the ball.
For the sake of simplicity we assume that c is a constant. It actually depends on

the density and the viscosity of the air. Therefore, we have to forsake the application
to cannon shots, where the variation of the density with height is important. If one
has access to a good model of the atmosphere, the variation of c would not make
the numerical simulation much more difficult. This contrasts to analytic methods,
where such a modification is likely to mean a considerable complication. In fact,
even with a constant c, a purely analytic treatment offers great difficulties.
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Newton’s law of motion tells us that

mdu/dt = Px, mdv/dt = −mg + Py, (1.4.4)

where the term −mg is the force of gravity. Inserting (1.4.3) into (1.4.4) and dividing
by m we get

du/dt = −zu, dv/dt = −g − zv, (1.4.5)

and by the definition of velocity,

dx/dt = u, dy/dt = v. (1.4.6)

Equations (1.4.5) and (1.4.6) constitute a system of four differential equations for
the four variables x, y, u, v. The initial state x0, y0, and u0, v0 at time t0 = 0
is assumed to be given. A fundamental proposition in the theory of differential
equations tells us that, if initial values of the state variables u, v, x, y are given at
some initial time t = t0, then they will be uniquely determined for all t > t0.

The simulation of the motion of the ball means that, at a sequence of time
instances, tn, n = 0, 1, 2, . . ., we determine the approximate values, un, vn, xn, yn.
We first look at the simplest technique, using Euler’s method with a constant time
step h. Set therefore tn = nh. We replace the derivative du/dt by the forward
difference quotient (un+1−un)/h, and similarly for the other variables. Hence after
multiplication by h, the differential equations are replaced by the following system
of difference equations:

xn+1 = xn + hun, yn+1 = yn + hvn,

un+1 = un − hznun, (1.4.7)

vn+1 = vn − h(g + znvn),

where

zn =
cR2

m

√

u2
n + v2

n.

From this xn+1, yn+1, un+1, vn+1, etc. are solved, step by step, for n = 0, 1, 2, . . .,
using the provided initial values x0, y0, u0 and v0.

We performed these computations until yn+1 became negative for the first
time, with g = 9.81, φ = 60o, and the initial values

x0 = 0, y0 = 0, u0 = 100 cosφ, v0 = 100 sinφ.

Curves obtained for h = 0.01 and cR2/m = 0.25i · 10−3, i = 0 : 4, are shown in
Figure 1.4.2. There is, in this graphical

representation, also an error due to the limited resolution of the plotting de-
vice.

In Euler’s method the state variables are locally approximated by linear func-
tions of time, one of the often recurrent ideas in numerical computation. We can
use the same idea for computing the coordinate x∗ of the point where the shot hits
the ground. Suppose that yn+1 becomes negative for the first time when n = N .
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Figure 1.4.2. Approximate trajectories computed with Euler’s method with
h = 0.01.

For xN ≤ x ≤ xN+1 we then approximate y by a linear function of x, represented
by the secant through the points (xN , yN) and(xN+1, yN+1) , i.e.

y = yN + (x− xN )
yN+1 − yN
xN+1 − xN

.

By setting y = 0 we obtain

x∗ = xN − yN
xN+1 − xN
yN+1 − yN

. (1.4.8)

This is called (linear) inverse interpolation; see Sec. 4.3.3. The error from the
linear approximation in (1.4.8) used for the computation of x∗ is proportional to
h2. It is thus approximately equal to the error committed in one single step with
Euler’s method, and hence of less importance than the other error.

The case without air resistance (i = 0) can be solved exactly. In fact it can
be shown that

x∗ = 2u0v0/9.81 = 5000 ·
√

3/9.81 ≈ 882.7986.

The computer produced x∗ ≈ 883.2985 for h = 0.01, and x∗ ≈ 883.7984 for h = 0.02.
The error for h = 0.01 is therefore 0.4999, and for h = 0.02 it is 0.9998. The
approximate proportionality to h is thus verified, actually more strikingly than
could be expected!

It can be shown that the error in the results obtained with Euler’s method
is also proportional to h (not h2). Hence a disadvantage of the above method is
that the step length h must be chosen quite small if reasonable accuracy is desired.
In order to improve the method we can apply another idea mentioned previously,
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namely Richardson extrapolation. (The application differs a little from the one you
saw previously, because now the error is approximately proportional to h, while
for the trapezoidal rule it was approximately proportional to h2.) For i = 4, the
computer produced x∗ ≈ 500.2646 and x∗ ≈ 500.3845 for, respectively, h = 0.01
and h = 0.02. Now let x∗ denote the exact horizontal coordinate of the landing
point. Then

x∗ − 500.2646 ≈ 0.01k, x∗ − 500.3845 ≈ 0.02k.

By elimination of k we obtain

x∗ ≈ 2 · 500.2646− 500.3845 = 500.1447,

which should be a more accurate estimate of the coordinate. By a more accurate
integration method we obtained 500.1440. So in this case, we gained more than two
decimal digits by the use of Richardson extrapolation.

The simulations shown in Figure 1.4.2 required about 1500 time steps for each
curve. This may seem satisfactory, but we must not forget that this is a very small
task, compared with most serious applications. So we would like to have a method
that allows much larger time steps than Euler’s method.

1.4.3 Second Order Accurate Methods

In step by step computations we have to distinguish between the local error, i.e.
the error that is committed at a single step, and the global error, that is the error
of the final results. Recall that we say that a method is accurate of order p if its
global error is approximately proportional to hp. Euler’s method is only first order
accurate; we shall present a method that is second order accurate. To achieve the
same accuracy as with Euler’s method the number of steps can then be reduced
to about the square root of the number of steps in Euler’s method. In the above
ball problem this means

√
1500 ≈ 40 steps. Since the amount of work is closely

proportional to the number of steps this is an enormous saving!
Another question is how the step size h is to be chosen. It can be shown that

even for rather simple examples (see below) it is adequate to use very different step
size in different parts of the computation. Hence the automatic control of the step
size (also called adaptive control) is an important issue.

Both requests can be met by an improvement of the Euler method (due to
Runge16) obtained by the applying the Richardson extrapolation in every second
step. This is different from our previous application of the Richardson idea. We
first introduce a better notation by writing a system of differential equations
and the initial conditions in vector form

dy/dt = f(t,y), y(a) = c, (1.4.9)

16Carle David Tolmé Runge (1856–1927), German mathematician. Runge had a chair in Applied
Mathematics in Göttingen from 1904 until his death.
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where y is a column vector that contains all the state variables.17 With this notation
methods for large systems of differential equations can be described as easily as
methods for a single equation. The change of a system with time can then be
thought of as a motion of the state vector in a multidimensional space, where the
differential equation defines the velocity field. This is our first example of the
central role of vectors and matrices in modern computing.

For the ball example, we have a = 0 and by (1.4.5) and (1.4.6)

y =






y1
y2
y3
y4




 ≡






x
y
u
v




 , f(t,y) =






y3
y4

−zy3
−g − zy4




 , c = 102






0
0

cosφ
sinφ




 ,

where

z =
cR2

m

√

(y3)2 + (y4)2.

The computations in the step which leads from tn to tn+1 are then as follows:

i. One Euler step of length h yields the estimate:

y∗
n+1 = yn + hf(tn,yn).

ii. Two Euler steps of length 1
2h yield another estimate:

yn+ 1
2

= yn +
1

2
hf(tn,yn); y∗∗

n+1 = yn+ 1
2

+
1

2
hf(tn+1/2,yn+1/2),

where tn+1/2 = tn + h/2.

iii. Then yn+1 is obtained by Richardson extrapolation:

yn+1 = y∗∗
n+1 + (y∗∗

n+1 − y∗
n+1).

It is conceivable that this yields a 2nd order accurate method. It is left as
an exercise (Problem 1.4.2) to verify that this scheme is identical to the following
somewhat simpler scheme known as Runge’s 2nd order method:

k1 = hnf(tn,yn);

k2 = hnf(tn + hn/2,yn + k1/2); (1.4.10)

yn+1 = yn + k2,

where we have replaced h by hn in order to include the use of variable step size.
Another explanation of the 2nd order accuracy of this method is that the displace-
ment k2 equals the product of the step size and a sufficiently accurate estimate of
the velocity at the midpoint of the time step. Sometimes this method is called the
improved Euler method or Heun’s method, but these names are also used to denote
other 2nd order accurate methods.

17The boldface notation is temporarily used for vectors in this section, not in the rest of the
book.
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1.4.4 Adaptive Choice of Step Size

We shall now describe how the step size can be adaptively (or automatically)
controlled by means of a tolerance tol, by which the user tells the program how
large error he tolerates in values of variables (relative to the values themselves).18

Compute
δ = max

i
δi, δi = |k2,i − k1,i|/|3yi|,

where δi is related to the relative error of the ith component of the vector y at the
current step; see below.

A step size is accepted if δ ≤ tol, and the next step should be

hnext = hmin{1.5,
√

tol/(1.2δ)},

where 1.2 is a safety factor, since the future is never exactly like the past! The
square root occurring here is due to the fact that this method is 2nd order accurate,
i.e. the global error is almost proportional to the square of the step size and δ is
approximately proportional to h2.

A step is rejected if δ > tol, and recomputed with the step size

hnext = hmax{0.1,
√

tol/(1.2δ)}.

The program needs a suggestion for the size of the first step. This can be
a very rough guess, because the step size control described above will improve it
automatically, so that an adequate step size is found after a few steps (or recompu-
tations, if the suggested step was too big). In our experience, a program of this sort
can efficiently handle guesses that are wrong by several powers of 10. If y(a) 6= 0
and y′(a) 6= 0 you may try the initial step size

h =
1

4

∑

i

|yi|
/∑

i

|dyi/dt|

evaluated at the initial point t = a. When you encounter the cases y(a) = 0 or
y′(a) = 0 for the first time, you are likely to have gained enough experience to
suggest something that the program can handle. More professional programs take
care of this detail automatically.

The request for a certain relative accuracy may cause trouble when some
components of y are close to zero. So, already in the first version of your program,
you had better replace yi in the above definition of δ by ȳi = max{|yi|, 0.001}. (You
may sometimes have to replace the default value 0.001 by something else.)

It is a good habit to make a second run with a predetermined sequence of
step sizes (if your program allows this) instead of adaptive control. Suppose that
the sequence of time instances used in the first run is t0, t1, t2, . . .. Divide each
subinterval [tn, tn+1] into two steps of equal length. So, the second run still has

18With the terminology that will be introduced in the next chapter, TOL is, with the step size
control described here, related to the global relative errors. At the time of writing, this contrasts
to most codes for the solution of ordinary differential equations, in which the local errors per step
are controlled by the tolerance.
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variable step size and twice as many steps as the first run. The errors are therefore
expected to be approximately 1

4 of the errors of the first run. The first run can
therefore use a tolerance that is 4 times as large than the error you can tolerate in
the final result. Denote the results of the two runs by yI(t) and yII(t). You can
plot 1

3 (yII(t) − yI(t)) versus t; this is an error curve for yII(t). Alternatively you
can add 1

3 (yII(t) − yI(t)) to yII(t). This is another application of the Richardson
extrapolation idea. The cost is only 50% more work than the plain result without
an error curve.

If there are no singularities in the differential equation, 1
3 (yII(t) − yI(t))

strongly overestimates the error of the extrapolated values—typically by a factor
like tol

−1/2. It is, however, a non-trivial matter to find an error curve that strictly
and realistically tells us how good the extrapolated results are. The reader is ad-
vised to test experimentally how this works on examples where the exact results are
known.

An easier, though inferior, alternative is to run a problem with two different
tolerances. One reason why it is inferior is that the two runs do not ”keep in step”,
and then Richardson extrapolation cannot be easily applied.

If you request very high accuracy in your results, or if you are going to sim-
ulate a system over a very long time, you will need a method with a higher order
of accuracy than two. The reduction of computing time if you replace this method
by a higher order method can be large, but the improvements are seldom as dras-
tic as when you replace Euler’s method by a second order accurate scheme like
this. Runge’s 2nd order method is, however, no universal recipe. There are spe-
cial classes of problems, notably the problems which are called “stiff”, which need
special methods.

One advantage of a second order accurate scheme when requests for accuracy
are modest, is that the quality of the computed results is normally not ruined by
the use of linear interpolation at the graphical output, or at the post-processing
of numerical results. (After you have used a more than second order accurate
integration method, it may be necessary to use more sophisticated interpolation at
the graphical or numerical treatment of the results.)

Example 1.4.1.
The differential equation

dy/dt = − 1
2y

3,

with initial condition y(1) = 1, was treated by a program, essentially constructed as
described above, with tol = 10−4 until t = 104. When comparing the result with
the exact solution y(t) = t−1/2, it was found that the actual relative error stayed
a little less than 1.5tol all the time when t > 10. The step size increased almost
linearly with t from h = 0.025 to h = 260. The number of steps increased almost
proportionally to log t; the total number of steps was 374. Only one step had to be
recomputed (except for the first step, where the program had to find an appropriate
step size).

The computation was repeated with tol = 4 · 10−4. The experience was the
same, except that the steps were about twice as long all the time. This is what can
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be expected, since the step sizes should be approximately proportional to
√

tol,
for a second order accurate method. The total number of steps was 194.

Example 1.4.2.
The example of the motion of a ball was treated by Runge’s 2nd order method

with the constant step size h = 0.9. The x-coordinate of the landing point became
x∗ ≈ 500.194, which is more than twice as accurate than the result obtained by
Euler’s method (without Richardson extrapolation) with h = 0.01, which uses about
90 times as many steps.

We have now seen a variety of ideas and concepts which can be used in the
development of numerical methods. A small warning is perhaps warranted here: it
is not certain that the methods will work as well in practice as one might expect.
This is because approximations and the restriction of numbers to a certain number
of digits introduce errors which are propagated to later stages of a calculation. The
manner in which errors are propagated is decisive for the practical usefulness of a
numerical method. We shall examine such questions in Chapter 2. Later chapters
will treat propagation of errors in connection with various typical problems.

The risk that error propagation may up-stage the desired result of a numerical
process should, however, not dissuade one from the use of numerical methods. It is
often wise, though, to experiment with a proposed method on a simplified problem
before using it in a larger context. The development of hardware as well as software
has created a far better environment for such work.

Review Questions

4.1. Explain the difference between the local and global error of a numerical method
for solving a differential equation. What is meant by the order of accuracy of
a method?

4.2. Describe how Richardson extrapolation can be used to increase the order of
accuracy of Euler’s method.

4.3. Discuss some strategies for the adaptive control of step length and estimate
of global accuracy in the numerical solution of differential equations.

Problems and Computer Exercises

4.1. (a) Integrate numerically using Euler’s method the differential equation dy/dt =
y, with initial conditions y(0) = 1, to t = 0.4:

with step length h = 0.2 and h = 0.1.

(b) Extrapolate to h = 0, using the fact that the error is approximately pro-
portional to the step length. Compare the result with the exact solution of
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the differential equation and determine the ratio of the errors in the results in
(a) and (b).

(c) How many steps would have been needed in order to attain, without using
extrapolation, the same accuracy as was obtained in (b)?

4.2. (a) Write a program for the simulation of the motion of the ball using Euler’s
method and the same initial values and parameter values as above. Print only
x, y at integer values of t and at the last two points (i.e. for n = N and
n = N + 1) as well as the x-coordinate of the landing point. Take h = 0.05
and h = 0.1. As post-processing, improve the estimates of x∗ by Richardson
extrapolation, and estimate the error by comparison with the results given in
the text above.

(b) In (1.4.7) replace in the equations for xn+1 and yn+1 the right-hand sides
un and vn by, respectively, un+1 and vn+1. Then proceed as in (a) and compare
the accuracy obtained with that obtained in (a).

(c) Choose initial values which correspond to what you think is reasonable for
shot put. Make experiments with several values of u0, v0 for c = 0. How much
is x∗ influenced by the parameter cR2/m?

4.3. Verify that Runge’s 2nd order method, as described by equation (1.4.10), is
equivalent to the scheme described a few lines earlier (with Euler steps and
Richardson extrapolation).

4.4. Write a program for Runge’s 2nd order method with automatic step size con-
trol that can be applied to a system of differential equations. Store the results
so that they can be processed afterwards, for example, for making a table of
the results, and/or curves to be drawn showing y(t) versus t, or (for a system)
y2 versus y1, or some other interesting curves.
Apply the program to Examples 1.4.1 and 1.4.2, and to the circle test, that is

y′1 = −y2, y′2 = y1,

with initial conditions y1(0) = 1, y2(0) = 0. Verify that the exact solution is
a uniform motion along the unit circle in the (y1, y2)-plane. Stop the com-
putations after 10 revolutions (t = 20π). Make experiments with different
tolerances, and determine how small the tolerance has to be in order that the
circle on the screen should not become “thick”.

1.5 Monte Carlo Methods

1.5.1 Origin of Monte Carlo Methods

In most of the applications of probability theory one makes a mathematical formula-
tion of a stochastic problem (i.e., a problem where chance plays some part) and then
solves the problem by using analytical or numerical methods. In the Monte Carlo
method one does the opposite; a mathematical or physical problem is given, and
one constructs a numerical game of chance, the mathematical analysis of which
leads to the same equations as the given problem, for example, for the probability
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of some event, or for the mean of some random variable in the game. One plays
it N times and estimates the relevant quantities by traditional statistical methods.
Here N is a large number, because the standard deviation of a statistical estimate
typically decreases only inversely proportional to

√
N .

The idea behind the Monte Carlo method was used by the Italian physicist
Enrico Fermi to study neutron diffusion in the early 1930s. Fermi used a small
mechanical adding machine for this purpose. With the development of computers
larger problems could be tackled. At Los Alamos in the late 1940s the use of the
method was pioneered by von Neumann,19 Ulam20 and others for many problems
in mathematical physics including approximating complicated multidimensional in-
tegrals. The picturesque name of the method was coined by Nicholas Metropolis.

The Monte Carlo method is now so popular that the definition is too narrow.
For instance, in many of the problems where the Monte Carlo method is successful,
there is already an element of chance in the system or process which one wants to
study. Thus such games of chance can be considered to be a numerical simulation
of the most important aspects. In this wider sense the “Monte Carlo methods”
also include techniques used by statisticians since around 1900, under names like
experimental or artificial sampling. For example, statistical experiments were used
to check the adequacy of certain theoretical probability laws that had been derived
mathematically by the eminent scientist W. S. Gosset. (He used the pseudonym
“Student” when he wrote on Probability.)

Monte Carlo methods may be used when the changes in the system are de-
scribed with a much more complicated type of equation than a system of ordinary
differential equations. Note that there are many ways to combine analytical meth-
ods and Monte Carlo methods. An important rule is that if a part of a problem
can be treated with analytical or traditional numerical methods, then one should use
such methods.

The following are some areas where the Monte Carlo method has been applied:

(a) Problems in reactor physics; for example, a neutron, because it collides with
other particles, is forced to make a random journey. In infrequent but impor-
tant cases the neutron can go through a layer of (say) shielding material (see
Figure 1.5.1).

(b) Technical problems concerning traffic (telecommunication systems, railway net-
works, regulation of traffic lights and other problems concerning automobile
traffic).

(c) Queuing problems.

19John von Neumann was born János Neumann in Budapest 1903, and died in Washington
D.C. 1957. He studied under Hilbert in Göttingen during 1926–27, was appointed professor at
Princeton University in 1931, and in 1933 joined the newly founded Institute for Advanced Studies
in Princeton. He built a framework for quantum mechanics, worked in game theory and was one
of the pioneers of computer science.

20Stanislaw Marcin Ulam, born in Lemberg, Poland (now Lwow, Ukraine) 1909, died Santa Fe,
New Mexico, USA, 1984. Ulam obtained his Ph.D. in 1933 from the Polytechnic institute of Lwow,
where he studied under Banach. He was invited to Harward University by G. D. Birkhoff in 1935,
and left Poland permanently in 1939. In 1943 he was asked by von Neumann to come to Los
Alamos, where he remained until 1965.
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Inside Shield Outside

Figure 1.5.1. Neutron scattering.

(d) Models of conflict.

(e) Approximate computation of multiple integrals

(f) Stochastic models in financial mathematics.

Monte Carlo methods are often used for the evaluation of high dimensional
(10–100) integrals over complicated regions. Such integrals occur in such diverse
areas as quantum physics and mathematical finance. The integrand is then eval-
uated at random points uniformly distributed in the region of integration. The
arithmetic mean of these function values is then used to approximate the integral;
see Sec. 5.4.5.

In a simulation, one can study the result of various actions more cheaply, more
quickly, and with less risk of organizational problems than if one were to take the
corresponding actions on the actual system. In particular, for problems in applied
operations research, it is quite common to take a shortcut from the actual system to
a computer program for the game of chance, without formulating any mathematical
equations. The game is then a model of the system. In order for the term Monte
Carlo method to be correctly applied, however, random choices should occur
in the calculations. This is achieved by using so-called random numbers; the
values of certain variables are determined by a process comparable to dice throwing.
Simulation is so important that several special programming languages have been
developed exclusively for its use.21

1.5.2 Basic Concepts in Probability and Statistics

In this section we introduce, without proofs, some basic concepts, formulas and
results from Probability and Statistics which will be used later. Proofs may be
found in most texts on these subjects.

21One notable early example is the SIMULA programming language designed and built by Ole-
Johan Dahl and Kristen Nygaard at the Norwegian Computing Center in Oslo 1962–1967. It was
originally built as a language for discrete event simulation, but was influential also because it
introduced object-oriented programming concepts.
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The terminology of Probability and Statistics is varied, in particular within
areas of application. We shall use the following terms for probability distributions
in R:

The distribution function of a random variable X is denoted by F (x) and
defined by

F (x) = Pr{X ≤ x}.
Note that F (x) is non-negative and non-decreasing, F (−∞) = 0, F (∞) = 1. If
F (x) is differentiable, the (probability) density function 22 is f(x) = F ′(x). Note
that

f(x) ≥ 0,

∫

R

f(x) dx = 1,

and
Pr{X ∈ [x, x + ∆x]} = f(x)∆x+ o(∆x).

In the discrete case X can only take on discrete values xi, i = 1 : N , and

Pr{X = xi} = pi, i = 1 : N,

where pi ≥ 0 and
∑

i pi = 1.

The mean or the expectation of X is

E(X) =







∫

R

xf(x) dx, continuous case,

N∑

i=1

pixi, discrete case.

The variance of X equals

σ2 = var(X) = E((X − µ)2),

where µ = E(X) and σ =
√

var(X) is the standard deviation. The mean and
standard deviation are frequently used as measures of the center and spread of a
distribution.

If Xk, k = 1 : n, are random variables with mean values µk, then the covari-
ance between Xj and Xk, j 6= k is is

σjk = cov(Xj , Xk) = E((Xj − µj)(Xk − µk)).

If cov(Xj , Xk) = 0 then Xj and Xk are said to be uncorrelated. The covariance
matrix V is the matrix with elements

Vjk = σjk , 1 ≤ j, k ≤ n.

If the random variables Xk, k = 1 : n, are mutually uncorrelated then V is a
diagonal matrix.

22In old literature a density function is often called a frequency function. The term cumulative
distribution is also used as a synonym of distribution function. Unfortunately, distribution or
probability distribution is sometimes used in the meaning of a density function.
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Some formulas for the estimation of mean, standard deviation, etc., from
results of simulation experiments or other statistical data are given in the computer
exercises of Sec. 2.3. See also the references to the Matlab Reference Guide in the
problems and exercises of the present section.

1.5.3 Generating Pseudo-Random Numbers

In the beginning, coins, dice and roulettes were used for creating the randomness.
For example, the sequence of twenty digits

11100 01001 10011 01100

is a record of twenty tosses of a coin where “heads” are denoted by 1 and “tails”
by 0. Such digits are sometimes called (binary) random digits, assuming that we
have a perfect coin—i.e. that heads and tails have the same probability of occurring.
We also assume that the tosses of the coin are made in a statistically independent
way.23

Similarly, decimal random digits could in principle be obtained by using a well-
made icosahedral (twenty-sided) dice, and assigning each decimal digit to two of its
sides. Such mechanical (or analogous electronic) devices have been used to produce
tables of random sampling digits; the first one by Tippett was published in
1927 and was to be considered as a sequence of 40 000 independent observations
of a random variable that equals one of the integer values 0, 1, 2, . . . , 9, each with
probability 1/10. In the early 1950s the Rand Corporation constructed a million-
digit table of random numbers using an electrical “roulette wheel” ([72, ]). The
wheel had 32 slots, of which 12 were ignored; the others were numbered from 0 to 9
twice. To test the quality of the randomness several tests were applied. Every block
of a thousand digits in the tables (and also the table as a whole) were tested.24

Example 1.5.1.
The random number generator, used for drawing of prizes of Swedish Premium

Saving Bonds, was developed in 1962 by Dahlquist [77]. Speed is not a major con-
cern for this application, since relatively few random decimal digits (about 50 000)
are needed. Therefore an algorithm, which is easier to analyze, was chosen. This
uses a primary series of less than 240 decimal random digits produced by some other
means. The length of this primary series is n = p1 + p2 + · · · + pk, where pi are
prime numbers and pi 6= pj, i 6= j. For the analysis it is assumed that the primary
series is perfectly random.

The primary series is used to generate a much longer secondary series of prime
numbers in a way that is best described by a mechanical analogy. Think of k cog-
wheels with pi cogs, i = 1 : k, and place the digits from the primary series on the
cogs of these. The first digit in the secondary series is obtained by adding the k
digits (modulus 10) that are at the top position of each cog-wheel. Then each wheel

23Of course, these assumptions cannot be obtained in practice as shown in theoretical and
experimental studies by Persi Diaconis, Stanford University.

242500 five digit random numbers compiled from this set are given in Handbook of Mathematical
Functions [1, Table 26.11].
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is turned one cog clock-wise and the second digit is obtained in the same way as
the first, etc. After p1 · p2 · · · pk steps we are back in the original position. This is
the minimum period of the secondary series of random digits.

For the application mentioned above k = 7 prime numbers, in the range 13 ≤
pi ≤ 53, are randomly selected. This gives a varying minimum period approximately
equal to 108, which is much more than the number of digits used to produce the
drawing list. Considering the public reaction, the primary series is generated by a
tombola drawing.

Random digits from a table can be packed together to give a sequence of
equidistributed integers. For example, the sequence

55693 02945 81723 43588 81350 76302 . . .

can be considered as six five-digit random numbers, where each element in the
sequence has probability of 10−5 of taking on the value, 0,1,2,. . . ,99,999. From the
same digits one can also construct the sequence

0.556935, 0.029455, 0.817235, 0.435885, 0.813505, 0.763025, . . . , (1.5.1)

which can be considered a good approximation to a sequence of independent obser-
vations of a variable which is a sequence of uniform deviates in the interval [0, 1).
The 5 in the sixth decimal place is added in order to get the correct mean (without
this the mean would be 0.499995 instead of 0.5).

In a computer it is usually not appropriate to store a large table of random
numbers. Several physical devices for random number generation have been pro-
posed, using for instance electronic or radioactive noise, but very few seem to have
been inserted in an actual computer system. Instead random numbers are usually
produced by arithmetic methods, so called random number generators. The aim
of a random number generator is to generate a sequence of numbers u1, u2, u3, . . .
that imitate the abstract mathematical concept of a sequence of mutually inde-
pendent random variables uniformly distributed over the interval [0, 1). Sequences
obtained in this way are uniquely determined by one or more starting values called
seeds, to be given by the user (or some default values). Random number generators
should be analyzed theoretically and be backed by practical evidence from extensive
statistical testing. According to a much quoted statement by D. H. Lehmer25

“A random sequence is a vague notion . . . in which each term is un-
predictable to the uninitiated and whose digits pass a certain number of
tests traditional with statisticians. . .”

Because the set of floating point numbers in [0, 1] is finite, although very large,
there will eventually appear a number that has appeared before, (say) ui+j = ui
for some positive i, j. The sequence {un} therefore repeats itself periodically for

25Some readers may think that Lehmer’s definition is too vague. There have been many deep
attempts for more precise formulation. See Knuth [204, pp. 149–179], who catches the flavor of
the philosophical discussion of these matters and contributes to it himself.
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n ≥ i; the length of the period is j. A truly random sequence is, of course, never
periodic. For this and other reasons, a sequence generated like this is called a
pseudo-random sequence. But the ability to repeat exactly the same sequence
of numbers, which is needed for program verification and variance reduction, is a
major advantage over generation by physical devices.

There are two popular myths about the making of random number generators:

(1) it is impossible; (2) it is trivial . . . .

We have seen that the first myth is correct, unless we add the prefix “pseudo”.26

The second myth, however, is completely false.
In a computer the fundamental concept is not a sequence of decimal random

digits, but uniform random deviates, i.e. a sequence of mutually independent ob-
servations of a random variable U with a uniform distribution on [0, 1); the density
function of U is thus (with a temporary notation)

f1(u) =

{

1, if u ∈ [0, 1);
0, otherwise.

Random deviates for other distributions are generated by means of uniform deviates.
For example, the variable X = a+(b−a)U is a uniform deviate on [a, b). Its density
function is f(x) = f1((x − a)/(b − a)). If [a, b] = [0, 1] we usually write “uniform
deviate” (without mentioning the interval). We often write “deviate” instead of
“random deviate”, when the meaning is evident from the context. Algorithms for
generating deviates for several other distributions are given in Sec. 1.5.5.

The most widely used generators for producing pseudo-random numbers are
multiple recursive generators. These are based on a linear recurrence of order k

xn = λ1xn−1 + · · · + λkxn−k + c mod P, (1.5.2)

i.e. xn is the remainder obtained when the right-hand side is divided by the modulus
m. Here P is a positive integer and the coefficients λ1, . . . , λk belong to the set
{0, 1, . . . ,m− 1}. The state at step n is sn = (xn−k+1, . . . , xn) and the generator is
started from a seed sk−1 = (x0, . . . , xk−1). When m is large the output can be taken
as the number un = xn/m. For k = 1 we obtain the classical mixed congruential
method

xn = λxn−1 + c mod P.

An important characteristic of a random number generator (RNG) is its pe-
riod, which is the maximum length of the sequence before it begins to repeat. Note
that if the algorithm for computing xn only depends on xn−1, then the entire se-
quence repeats once the seed x0 is duplicated. One can show that if P = 2t (which
is natural on a binary computer) the period of the mixed congruential method is
equal to 2t assuming that c is odd and that λ gives remainder 1 when divided by

26“Anyone who considers arithmetic methods of producing random numbers is, of course, in a
state of sin ”, John von Neumann (1951).
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4. Also, if P is a prime number and if the coefficients λj satisfy certain conditions,
then the generated sequence has the maximal period mk − 1; see Knuth [204].

A good RNG should have a period that is guaranteed to be extremely long
to make sure that no wrap-around can occur in practice. The linear congruential
generator defined by

xn = 16807xn−1 mod (231 − 1), (1.5.3)

with period (231−2), was proposed originally by Lewis, Goodman, and Miller (1969).
It has been widely used in many software libraries for statistics, simulation and
optimization. In the survey by Park and Miller [254] this generator was proposed
as a “minimal standard” against which other generators should be judged. A similar
generator but with the multiplier 77 = 823543 was used in Matlab 4.

Marsaglia [230] pointed out a theoretical weakness of all linear congruential
generators. He showed that if k successive random numbers (xi+1, . . . , xi+k) at a
time are generated and used to plot points in k-dimensional space, then they will lie
on (k − 1)-dimensional hyperplanes, and will not fill up the space; see Figure 1.5.2
(left). More precisely the values will lie on a set of, at most (k!m)1/k ≈ (k/e)m1/k

equidistant parallel hyperplanes in the k-dimensional hypercube (0, 1)k. When the
number of hyperplanes is too small, this obviously is a strong limitation to the k-
dimensional uniformity. For example, for m = 231 − 1 and k = 3, this is only about
1600 planes. This clearly may interfere with a simulation problem.

If the constants m, a and c are not very carefully chosen, there will be many
fewer hyperplanes than the maximum possible. One such infamous example is the
linear congruential generator with a = 65539, c = 0 and m = 231 used by IBM
mainframe computers for many years.

Another weakness of linear congruential generators is that their low-order
digits are much less random than their high-order digits. Therefore when only part
of a generated random number is used one should pick the high-order digits.

One approach to better generators is to combine two RNGs. One possibility
is to use a second RNG to shuffle the output of a linear congruential generator. In
this way it is possible to get rid of some serial correlations in the output; see the
generator ran1 described in Press et. al. [263, Chapter 7.1].

A good generator should have been analyzed theoretically and be supported by
practical evidence from extensive statistical and other tests. Knuth [204, Chapter 3]
points out important ideas, concepts and facts of the topic, but also mentions some
scandalously poor random number generators that were in daily use for decades
as standard tools in widely spread computer libraries. Although the generators in
daily use have improved, many are still not satisfactory. He ends this masterly
chapter on Random Numbers with the following exercise: Look at the subroutine
library at your computer installation, and replace the random number generators by
good ones. Try to avoid to be too shocked at what you find.

L’Ecuyer [218] writes in 2001:

“Unfortunately, despite repeated warnings over the past years about cer-
tain classes of generators, and despite the availability of much better
alternatives, simplistic and unsafe generators still abound in commer-
cial software.”
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L’Ecuyer reports on tests of RNGs used in some popular software products. Mi-
crosoft Excel used the linear congruential generator

ui = 9821.0un−1 + 0.211327 mod 1,

implemented directly for the ui in floating point arithmetic. Its period length
depends on the precision of the arithmetic and it is not clear what it is. Microsoft
Visual Basic used a linear congruential generator with period 224, defined by

xi = 1140671485xi−1 + 12820163 mod (224),

and takes ui = xi/2
24. The Unix standard library uses the recurrence

xi = 25214903917xi−1 + 12820163 mod (248),

with period 248 and sets ui = xi/2
48. The Java standard library uses the same

recurrence but construct random deviates ui from x2i and x2i+1. In Matlab 5 and
later versions the previous linear congruential generator has been replaced with a
much better generator, based on ideas of Marsaglia; see Figure 1.5.2 (right). This
generator has a 35 element state vector and can generate all the floating point
numbers in the closed interval [2−53, 1 − 2−53]. Theoretically it can generate 21492

values before repeating itself; see Moler [237]. If one generates one million random
numbers a second it would take 10435 years before it repeats itself!

Some modern linear RNGs can generate huge samples of pseudo-random num-
bers very fast and reliably. The multiple recursive generator MRG32k3a proposed
by L’Ecuyer has a period near 2191. The Mersenne twister MT19937 by Mat-
sumoto and Nishimura [233], the “World Champion” among RNGs in year 2000,
has a period length of 219937 − 1!

1.5.4 Testing Pseudo-Random Number Generators

Many statistical tests have been adapted and extended for the examination of arith-
metic methods of (pseudo-)random number generation, in use or proposed for digital
computers. In these the observed frequencies (a histogram) for some random vari-
able associated with the test, is compared with the theoretical frequencies on the
hypothesis that the numbers are independent observations from a true sequence
of random digits without bias. This is done by means of the famous χ2-test of
K. Pearson [257]27, which we now describe.

Suppose that the space S of the random variable is divided into a finite number
r of non-overlapping parts S1, . . . , Sr. These parts may be groups into which the
sample values have been arranged for tabulation purposes. Let the corresponding
group probabilities be

pi = Pr(Si), i = 1, . . . , r,

r∑

i=1

pi = 1.

27This paper, published in 1900 by the English mathematician Karl Pearson (1857–1936), is
considered as one of the foundations of modern statistics. In it he gave several examples, e.g. he
proved that some runs at roulette he had observed during a visit to Monte Carlo were so far from
expectations that the odds against an honest wheel was about 1029 to one.
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We now form a measure of the deviation of the observed frequencies ν1, . . . , νr,∑

i νi = n, from the expected frequencies

χ2 =

r∑

i=1

(νi − npi)
2

npi
=

r∑

i=1

ν2
i

npi
− n. (1.5.4)

It is known that as n tends to infinity the distribution of χ2 tends to a limit inde-
pendent of Pr(Si), which is the χ2-distribution with r − 1 degrees of freedom.

Let χ2
p be a value such that Pr(χ2 > χ2

p) = p%. Here p is chosen so small
that we are practically certain that an event of probability p% will not occur in a
single trial. The hypothesis is rejected if the observed value of χ2 is larger than χ2

p.
Often a rejection level of 5% or 1% is used.

Example 1.5.2.
In an experiment consisting of n = 4040 throws with a coin one obtained

ν = 2048 heads and hence n− ν = 1992 tails. Is this consistent with the hypothesis
that there is a probability of p1 = 1/2 of throwing tails? Computing

χ2 =
(ν1 − np)2

np1
+

(n− ν1 − np1)
2

np1
= 2

(2048− 2020)2

2020
= 0.776,

and using a rejection level of 5% we find from a table of the χ2-distribution with
one degree of freedom that χ2

5 = 3.841. Hence the hypothesis is accepted at this
level.

Several tests that have been used for testing RNGs are described in Knuth
[204, Sec. 3.3]. Some of them are:

1. Frequency test. This test is to find out if the generated numbers are equidis-
tributed. One divides the possible outcomes in equal non-overlapping intervals
and tallies the amount of numbers in each interval.

2. Poker test. This test applies to generated digits, which are divided into non-
overlapping groups of 5 digits. Within the groups we study some (unordered)
combinations of interest in poker. These are given below together with their
probabilities.

All different: abcde 0.3024
One pair: aabcd 0.5040
Two pairs: aabbc 0.1080
Three of a kind: aaabc 0.0720
Full house: aaabb 0.0090
Four of a kind: aaaab 0.0045
Five of a kind: aaaaa 0.0001

3. Gap test. This test examines the length of “gaps” between occurrences of
Uj in a certain range. If α and β are two numbers with 0 ≤ α < β ≤
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1, we consider the length of consecutive subsequences Uj , Uj+1, . . . , Uj+r in
which Uj+r lies between α and β but Uj , Uj+1, . . . , Uj+r−1 does not. This
subsequence then represents a gap of length r.

The special cases (α, β) = (0, 1/2) or (1/2, 1) give rise to tests called “runs
above the mean” and “runs below the mean”, respectively.

Working with single digits the gap equals the distance between two equal
digits. The probability of a gap of length r in this case equals

pr = 0.1(1 − 0.1)r = 0.1(0.9)r, r = 0, 1, 2, . . . .
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Figure 1.5.2. Plots of pairs of 106 random uniform deviates (Ui, Ui+1)
such that Ui < 0.0001. Left: Matlab 4; Right: Matlab 5.

Example 1.5.3.
To test the two-dimensional behavior of a RNG we generated 106 pseudo-

random numbers Ui. We then placed the numbers (Ui, Ui+1) in the unit square of
the plot. A thin slice of the surface of the square 0.0001 wide by 1.0 high was then
cut on its left side and stretched out horizontally. This corresponds to plotting only
the pairs (Ui, Ui+1) such that Ui < 0.0001 (about 1000 points).

In Figure 1.5.2 we show the two plots from the generators in Matlab 4 and
Matlab 5, respectively. The lattice structure is quite clear in the first plot. With
the new generator no lattice structure is visible.

A statistical test studied by Knuth [204] is the collision test. In this test
the interval useful [0, 1) is first cut into n equal intervals, for some positive integer
n. This partitions the hypercube [0, 1)d into k = nd cubic boxes. Then N random
points are generated in [0, 1)d and we record the number of times C that a point
falls in a box that already has a point in it. The expectation of the random num-
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ber C is known to very good approximation when N is large. Indeed C follows
approximatively a Poisson distribution with mean equal to N2/(2k).

For this and other similar tests it has been observed that when the sample
size N is is increased the test starts to fail when N reaches a critical value N0 and
the failure is clear for all larger values of N . For the collision test it was observed
by L’Ecuyer [218] that N0 ≈ 16ρ1/2 for good linear congruential generators. For
another statistical test called the birthday spacing test the relation was N0 ≈ 16ρ1/3.

From such tests is can be concluded that when large sample sizes are needed
many RNGs are unsafe to use and can fail decisively. A period of 224 or even 248

may not be enough. Linear RNGs are also unsuitable for cryptographic applications,
because the output is too predictable. For this reason, nonlinear generators have
been developed, but these are in general much slower than the linear generators.

1.5.5 Random Deviates for Other Distributions

We have so far discussed how to generate sequences that behave as if they were
random uniform deviates U on [0, 1). By arithmetic operations one can form random
numbers with other distributions. A simple example is that the random numbers

S = a+ (b − a)U

will be uniformly distributed on [a, b).
Monte Carlo methods often call for other kinds of distributions. We shall

show here how to use uniform deviates to generate random deviates X for several
other distributions. Many of the tricks used were originally suggested by John von
Neumann in the early 1950s, but have since been improved and refined.

Discrete Distributions

To make a random choice from a finite number k of equally probable possibilities is
equivalent to generate a random integer X between 1 and k. To do this we take
a random deviate U uniformly distributed on [0, 1), multiply it by k and take the
integer part

X = ⌈kU⌉;

here ⌈x⌉ denotes the smallest integer larger than or equal to x. There will be a
small error because the set of floating point numbers is finite, but this is usually
negligible.

In a more general situation, we might want to give different probabilities to the
values of a variable. Suppose we give the values X = xi, i = 1 : k, the probabilities
pi, i = 1 : k; note that

∑
pi = 1. We can then generate a uniform number U and

let

X =







x1, if 0 ≤ U < p1;
x2, if p1 ≤ U < p1 + p2;
...
xk, if p1 + p2 + · · · pk−1 ≤ U < 1.
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If k is large, and the sequence {pi} is irregular, it may require some thought how
to find x quickly for a given u. See the analogous question to find a first guess to
the root of equation (1.5.5) below and the discussion in Knuth [204, Sec. 3.4.1].
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Figure 1.5.3. Random number with distribution F (x).

A General Transformation from U to X

Suppose we want to generate numbers for a random variable X with a given con-
tinuous or discrete distribution function F (x). (In the discrete case, the graph of
the distribution function becomes a staircase, see the formulas above.) A general
method for this is to solve the equation

F (X) = U, or equivalently, X = F−1(U), (1.5.5)

see Figure 1.5.3. Because F (x) is a nondecreasing function, and Pr{U ≤ u} =
u, ∀u ∈ [0, 1], equation (1.5.5) is proved by the line

Pr{X ≤ x} = Pr{F (X) ≤ F (x)} = Pr{U ≤ F (x)} = F (x).

How to solve (1.5.5) efficiently is the main problem with this method. For some
distributions we shall describe better methods below.

Exponential Deviates

The exponential distribution with parameter λ > 0 occurs in queuing problems, for
example, in telecommunication, to model arrival and service times. The important
property is that the intervals of time between two successive events are a sequence
of exponential deviates. The exponential distribution with mean 1/λ has density
function f(t) = λe−λt, t > 0, and distribution function

F (x) =

∫ x

0

λe−λt dt = 1 − e−λx. (1.5.6)

Using the general rule given above, exponentially distributed random numbers X
can be generated as follows: Let U be a uniformly distributed random number in
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[0, 1]. Solving the equation 1 − e−λX = U , we obtain

X = −λ−1 ln(1 − U).

A drawback of this method is that the evaluation of the logarithm is relatively slow.
One important use of exponentially distributed random numbers is in the

generation of so-called Poisson processes. Such processes are often fundamental in
models of telecommunication systems and other service systems. A Poisson process
with frequency parameter λ is a sequence of events characterized by the property
that the probability of occurrence of an event in a short time interval (t, t + ∆t)
is equal to λ ·∆t + o(∆t), independent of the sequence of events previous to time
t. An “event” can mean a call on a telephone line, the arrival of a customer to a
store, etc. For simulating a Poisson process one can use the important property that
the intervals of time between two successive events are independent exponentially
distributed random numbers.

Normal Deviates

A normal deviate N = N(0, 1) with zero mean and unit standard deviation has the
density function

f(x) =
1√
2π
e−x

2/2.

Then µ+σN is a normal deviate with mean µ and standard deviation σ with density

function
1

σ
f((x− µ)/σ). Since the normal distribution function

Φ(x) =
1√
2π

∫ x

−∞
e−t

2/2 dt (1.5.7)

is not an elementary function, solving the equation (1.5.5) would be time consuming.
Fortunately random normal deviates can be obtained in easier ways. In the

polar algorithm a random point in the unit disc is first generated as follows. Let
U1, U2 be two independent uniformly distributed random numbers on [0, 1]. Then
the point (V1, V2), where Vi = 2Ui − 1, i = 1, 2, is uniformly distributed in the
square [−1, 1] × [−1, 1]. If we compute S = V 2

1 + V 2
2 and reject the point if it is

outside the unit circle, i.e. if S > 1, remaining points will be uniformly distributed
on the unit disc. For each accepted point we then form

N1 = τV1, N2 = τV2, τ =

√

−2 logS

S
. (1.5.8)

It can be proved that N1, N2 are two independent normally distributed random
numbers with zero mean and unit standard deviation.

We point out that N1, N2 can be considered to be rectangular coordinates of
a point whose polar coordinates (r, φ) are determined by the equations

r2 = N2
1 +N2

2 = −2 lnS, cosφ = U1/
√
S, sinφ = U2/

√
S.
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The correctness of the above procedure follows from the fact that the distribution
function for a pair of independent normally distributed random variables is rota-
tionally symmetric (uniformly distributed angle) and that their sum of squares is
exponentially distributed with mean 2. For a proof of this, see Knuth [204, p. 123].

The polar algorithm (used in Matlab 4) is not optimal. First, about
1 − π/4 ≈ 21.5% of the uniform numbers are rejected because the generated point
falls outside the unit disc. Further, the calculation of the logarithm contributes
significantly to the cost. From Matlab 5 on, a more efficient table look-up algo-
rithm developed by Marsaglia and Tsang [232] is used. This is called the “ziggurat”
algorithm after the name of ancient Mesopotamian terraced temples mounds, that
look like two-dimensional step functions. A popular description of the ziggurat
algorithm is given by Moler [238]; see also [196].
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Figure 1.5.4. Simulated two-dimensional Brownian motion. 32 simulated
paths with h = 0.1 are plotted, each consisting of 64 steps.

Example 1.5.4.
To simulate a two-dimensional Brownian motion trajectories are generated as

follows. Initially the particle is located at the origin w0 = (0, 0)T . At each time
step the particle moves randomly,

wk+1 = wk + h

(
N1k

N2k

)

, k = 0 : n

where N1k and N2k are normal random deviates generated according to (1.5.8).
Figure 1.5.4 shows plots of 32 simulated paths with h = 0.1, each consisting of
n = 64 time steps.
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Chi-Square Distribution

The chi-square distribution function P (χ2, n) is related to the incomplete gamma
function (see Abramowitz and Stegun [1, Sec.6.5]).

P (χ2, n) = γ(n/2, χ2/2). (1.5.9)

Its complement Q(χ2, n) = 1 − P (χ2, n) is the probability that the observed chi-
square will exceed the value χ2 even for a correct model. Subroutines for evaluating
the χ2-distribution function as well as other important statistical distribution func-
tions are given in [263, Sec. 6.2–6.3].

Numbers belonging to the chi-square distribution can also be obtained by
using the definition of the distribution. If N1, N2, . . . , Nn are normal deviates with
zero mean and unit variance, the number

Yn = N2
1 +N2

2 + · · · +N2
n

is distributed as χ2 with n degrees of freedom.

Other Methods

Several other methods to generate random deviates with Poisson, gamma and bi-
nomial distribution, are described in Knuth [204, Sec. 3.4]) and Press et al. [263,
Chapter 7.3]. The rejection method is based on ideas of von Neumann (1951).
A general method introduced by G. Marsaglia [229] is the rectangle-wedge-tail
method; see references in Knuth [204]. Powerful combinations of rejection methods
and the rectangle-wedge-tail method have been developed.

1.5.6 Reduction of Variance

From statistics, we know that if one makes n independent observations of a quantity
whose standard deviation is σ, then the standard deviation of the mean is σ/

√
n.

Hence to increase the accuracy by a factor of 10 (say) we have to increase the
number of experiments n by a factor 100.

Often a more efficient way, than increasing the number of samples, is to try
to decrease the value of σ by redesigning the experiment in various ways. Assume
that one has two ways (which require the same amount of work) of carrying out an
experiment, and these experiments have standard deviations σ1 and σ2 associated
with them. If one repeats the experiments n1 and n2 times (respectively), the same
precision will be obtained if σ1/

√
n1 = σ2/

√
n2, or

n1/n2 = σ2
1/σ

2
2 . (1.5.10)

Thus if a variance reduction by a factor k can be achieved, then the number of
experiments needed is also reduced by the same factor k.
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Example 1.5.5.
In 1777 Buffon28 carried out a probability experiment by throwing sticks over

his shoulder onto a tiled floor and counting the number of times the sticks fell across
the lines between the tiles. He stated that the favourable cases correspond “to the
area of part of the cycloid whose generating circle has diameter equal to the length
of the needle”. To simulate Buffon’s experiment we suppose a board is ruled with
equidistant parallel lines and that a needle fine enough to be considered a segment
of length l not longer than the distance d between consecutive lines is thrown on
the board. The probability is then 2l/(πd) that it will hit one of the lines.
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Figure 1.5.5. The left part shows how the estimate of π varies with the
number of throws. The right part compares |m/n−2/π| with the standard deviation
of m/n.

The Monte Carlo method and this game can be used to approximate the value
of π. Take the distance δ between the center of the needle and the lines and the
angle φ between the needle and the lines to be random numbers. By symmetry we
can choose these to be rectangularly distributed on [0, d/2] and [0, π/2], respectively.
Then the needle hits the line if δ < (l/2) sinφ.

We took l = d. Let m be the number of hits in the first n throws in a Monte
Carlo simulation with 1000 throws. The expected value of m/n is therefore 2/π, and
so 2n/m is an estimate of π after n throws. In the left part of Figure 1.5.5 we see,
how 2n/m varies with n in one simulation. The right part compares |m/n − 2/π|
with the standard deviation of m/n, which equals

√

2

π

(

1 − 2

π

) 1

n

and is, in the log-log-diagram, represented by a straight line, the slope of which is

28Comte de Buffon (1707–1788), French natural scientist that contributed to the understanding
of probability. He also computed the probability that the sun would continue to rise after having
been observed to rise on n consecutive days.



“dqbjV
2007/5/28
page 77

1.5. Monte Carlo Methods 77

−1/2. This can be taken as a test that the random number generator in Matlab is
behaving correctly! (The spikes, directed downwards in the figure, typically indicate
where m/n− 2/π changes sign.)

An important means of reducing the variance of estimates obtained from the
Monte Carlo method is to use antithetic sequences. If Ui, i = 1 : n, is a sequence
of random uniform deviates on [0, 1] then U ′

i = 1 − Ui, i = 1 : n, is an antithetic
uniformly distributed sequence. From the sequence in (1.5.1) we get the antithetic
sequence

0.443065, 0.970545, 0.182765, 0.564115, 0.186495, 0.236975, . . . . (1.5.11)

Antithetic sequences of normally distributed numbers with zero mean are obtained
simply by reversing the sign of the original sequence.

Roughly speaking, since the influence of chance has opposing effects in the
two antithetic experiments, one can presume that the effect of chance on the means
is much less than the effect of chance in the original experiments. In the following
example we show how to make a quantitative estimate of the reduction of variance
accomplished with the use of antithetic experiments.

Example 1.5.6.
Suppose the numbers xi are the results of statistically independent measure-

ments of a quantity with expected value µ, and standard deviation σ. Set

x̄ =
1

n

n∑

i=1

xi, s2 =
1

n− 1

n∑

i=1

(xi − x̄)2.

Then x̄ is an estimate of µ, and s is an estimate of σ.
In ten simulation and their antithetic experiments of a service system the

following values were obtained for the treatment time:

685 1+, 045 718 615 1 021 735 675 635 616 889 .

From this experiment the mean for the treatment time is estimated as 763.4, and
the standard deviation 51.5. Using an antithetic series, one got the following values:

731 521 585 710 527 574 607 698 761 532 .

The series means is thus

708 783 651.5 662.5 774 654.5 641 666.5 688.5 710.5 ,

from which one gets the estimate 694.0± 15.9.
When one instead supplemented the first sequence with ten values using in-

dependent random numbers, the estimate 704 ± 36 using all twenty values was
obtained. These results indicate that, in this example, using antithetical sequence
produces the desired accuracy with (15.9/36)2 ≈ 1/5 of the work required if com-
pletely independent random numbers are used. This rough estimate of the work
saved is uncertain, but indicates that it is profitable to use the technique of anti-
thetic series.
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Table 1.5.1. Simulation of waiting times for patients at a polyclinic.

k = 1 k = 2

Pno Parr Tbeg R Ttime Tend Parr Tend
1 0∗ 0 211 106 106 0∗ 106

2 50 106 3 2 108 0 108

3 100 108 53 26 134 50 134

4 150∗ 150 159 80 230 100 214

5 200 230 24 12 242 150 226

6 250∗ 250 35 18 268 200 244

7 300∗ 300 54 27 327 250∗ 277

8 350∗ 350 39 20 370 300∗ 320

9 400∗ 400 44 22 422 350∗ 372

10 450∗ 450 13 6 456 400∗ 406

Σ 2 250 319 2 663 1+,800 2 407

Example 1.5.7.
Monte Carlo methods have been successfully used to study queuing prob-

lems. A well known example is a study by Bailey [12] to determine how to give
appointment times to patients at a polyclinic. The aim is to find a suitable balance
between the mean waiting times of both patients and doctors. This problem was
in fact solved analytically—much later—after Bailey already had gotten the results
that he wanted; this situation is not uncommon when numerically methods (and
especially Monte Carlo methods) have been used.
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Figure 1.5.6. Mean waiting times for doctor/patients at polyclinic.

Suppose that k patients have been booked at the time t = 0 (when the clinic
opens), and that the rest of the patients (altogether 10) are booked at intervals
of 50 time units thereafter. The time of treatment is assumed to be exponentially
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distributed with mean 50. (Bailey used a distribution function which was based
on empirical data.) We use the following numbers which are taken from a table of
exponentially distributed random numbers with mean 100:

211 3 53 159 24 35 54 39 44 13 .

Three alternatives, k = 1, 2, 3, are to be simulated. By using the same random
numbers for each k (hence the same treatment times) one gets a reduced variance
in the estimate of the change in waiting times as k varies.

The computations are shown in the Table 1.5.1. The following abbreviations
are used in the following: P = patient, D = doctor, T = treatment. An asterisk
indicates that the patient did not need to wait. In the table Parr follows from
the rule for booking patients given previously. The treatment time Ttime equals
50R/100 where R are exponentially distributed numbers with mean 100 taken from
a table. Tbeg equals the larger of the number Parr (on the same row) and Tend (in
the row just above), where Tend = Tbeg + Ttime.

From the table we find that for k = 1 the doctor waited the time D = 456 −
319 = 137; the total waiting time for patients was P = 2 663 − 2 250 − 319 = 94.
For k = 2 the corresponding waiting times were D = 406 − 319 = 87 and P =
2 407− 1 800− 319 = 288. Similar calculations for k = 3 gave D = 28 and P = 553
(see Figure 1.5.6). For k ≥ 4 the doctor never needs to wait.

One cannot, of course, draw any tenable conclusions from one experiment.
More experiments should be made in order to put the conclusions on statistically
solid ground. Even isolated experiments, however, can give valuable suggestions
for the planning of subsequent experiments, or perhaps suggestions of appropriate
approximations to be made in the analytic treatment of the problem. The large-
scale use of Monte Carlo methods requires careful planning to avoid drowning in
enormous quantities of unintelligible results.

Two methods for reduction of variance have here been introduced: anti-
thetic sequence of random numbers and the technique of using the same random
numbers in corresponding situations. The latter technique is used when studying
the changes in behavior of a system when a certain parameter is changed, for ex-
ample, the parameter k in Example 1.5.7. Note that for this we need to able to
restart the RNG using the same seed. Other effective methods for reducing vari-
ance are importance sampling and splitting techniques; see Hammersley and
Handscomb [167].

Review Questions

5.1. What is meant by the Monte Carlo method? Describe the origin of the method
and give some typical applications. In general, how fast does the error decrease
in estimates obtained from the Monte Carlo method?

5.2. Describe a linear congruential generator for generating a sequence of uniformly
distributed pseudo-random numbers. What are some important properties of



“dqbjV
2007/5/28
page 80

80 Chapter 1. Principles of Numerical Calculations

such a generator?

5.3. Describe a general method for obtaining pseudo-random numbers with a given
discrete or continuous distribution from uniformly distributed random num-
bers. Give examples of its use.

5.4. Describe some statistical tests which can be applied to a pseudo-random num-
ber generator.

5.5. What are the most important properties of a Poisson process? How can one
generate a Poisson process with the help of random numbers?

5.6. What is the mixed congruential method for generating pseudo-random num-
bers? What important difference is there between the numbers generated by
this method and “genuine” random numbers?

5.7. Explain what is meant by reduction of variance in estimates made with the
Monte Carlo method. Give three methods for reduction of variance. What
is the quantitative connection between reducing variance and decreasing the
amount of computation needed in a given problem?

Problems and Computer Exercises

5.1. (C. Moler) Consider the toy random number generator, xi = axi mod m, with
a = 13, m = 31 and start with x0 = 1. Show that this generates a sequence
consisting of a permutation of all integers from 1 to 30, and then repeats itself.
Thus this generator has period m− 1 = 30, equal to the maximum possible.

5.2. Simulate (say) 360 throws with two usual dices. Denote the sum of the number
of dots on the two dices in the nth throw by Yn, 2 ≤ Yn ≤ 12. Tabulate or
draw a histogram, that is the (absolute) frequency of the occurrence of j dots
versus j, j = 2 : 12. Make a conjecture about the true value of P (Yn = j). Try
to confirm it by repeating the experiment with fresh uniform random numbers.
When you have found the right conjecture, it is not hard to prove it.

5.3. (a) Let X,Y be independent uniform random numbers on the interval [0, 1].
Show that P (X2 + Y 2 ≤ 1) = π/4, and estimate this probability by a Monte
Carlo experiment with (say) 1000 pairs of random numbers. Make graphical
output like in the Buffon needle problem.

(b) Make an antithetic experiment, and take the average of the two results.
Is the average better than one can expect if the second experiment had been
independent of the first one.

(c) Estimate similarly the volume of the four-dimensional unit ball. If you
have enough time, use more random numbers. (The exact volume of the unit
ball is π2/2.)

5.4. A famous result by P. Diaconis asserts that it takes approximately 3
2 log2 52 ≈

8.55 riffle shuffles to randomize a deck of 52 cards, and that randomization
occurs abruptly according to a “cutoff phenomenon”. (After six shuffles the
deck is still far from random!)
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The following definition can be used for simulating a riffle shuffle. The deck
of cards is first cut roughly in half according to a binomial distribution, i.e.
the probability that ν cards are cut is n

ν /2
n. The two halves are then riffled

together by dropping cards roughly alternately from each half onto a pile, with
the probability of a card being dropped from each half being proportional to
the number of cards in it.
Write a program that uses uniform random numbers (and perhaps uses the
formula X = ⌈kR⌉, for several values of k, to simulate a random “shuffle”
of a deck of 52 cards according to the above precise definition. This is for a
numerical game; do not spend time on drawing beautiful hearts, clubs, etc.

5.5. Brownian motion is the irregular motion of dust particles suspended in a fluid,
being bombarded by molecules in a random way. Generate two sequences of
random normal deviates ai and bi, and use these to simulate Brownian motion
by generating a path defined by the points (xi, yj), where x0 = y0 = 0,
xi = xi−1 + ai, yi = yi−1 + bi. Plot each point and connect the points with a
straight line to visualize the path.

5.6. Repeat the simulation in the queuing problem in Example 1.5.7 for k = 1 and
k = 2 using the sequence of exponentially distributed numbers R

13 365 88 23 154 122 87 112 104 213 ,

antithetic to that used in Example 1.5.7. Compute the mean of the waiting
times for the doctor and for all patients for this and the previous experiment.

5.7. A target with depth 2b and very large width is to be shot at with a can-
non. (The assumption that the target is very wide makes the problem one-
dimensional.) The distance to the center of the target is unknown, but esti-
mated to be D. The difference between the actual distance and D is assumed
to be a normally distributed random variable X = N(0, σ1).
One shoots at the target with a salvo of three shots, which are expected to
travel a distance D − a, D and D + a, respectively. The difference between
the actual and the expected distance traveled is assumed to be a normally
distributed random variable N(0, σ2); the resulting error component in the
three shots is denoted by Y−1, Y0, Y1. We further assume that these three
variables are independent of each other and X .
One wants to know how the probability of at least one “hit” in a given salvo
depends on a and b. Use normally distributed pseudo-random numbers to
shoot ten salvos and determine for each salvo, the least value of b for which
there is at least one “hit” in the salvo. Show that this is equal to

min
k

|X − (Yk + ka)|, k = −1, 0, 1.

Fire an “antithetic salvo” for each salvo.
Draw curves, for both a = 1 and a = 2, which give the probability of a hit as
a function of the depth of the target. Use σ1 = 3 and σ2 = 1, and the same
random numbers.
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Notes and Further References

The development of Numerical Analysis during the period when the foundation was
laid in the 16th through the 19th century is traced in Goldstine [148]. Essays on the
history of Scientific Computing can be found in Nash [245]. An interesting account
of the developments in the 20th century is given in [50]. An eloquent essay on the
foundations of computational mathematics and its relation to other fields is given
by Baxter and Iserles [19].

Many of the methods and problems introduced in this introductory chapter
will be studied in more detail in later chapters and volumes. Numerical quadra-
ture methods are studied in Chapter 5 and iterative methods for solving a single
nonlinear equation in Chapter 6. For a survey of sorting algorithms we refer to
[263, Chapter 8]. A comprehensive treatment of sorting and searching is given in
Knuth [205].

The later chapters in this book assume a working knowledge in numerical
linear algebra. Appendix A gives a brief survey of Matrix Computations. A more
in-depth treatment of direct and iterative methods for linear systems, least squares
and eigenvalue problems is planned to be presented in Volume II. Some knowledge of
modern analysis including analytic functions is also needed for some more advanced
parts of the book. As suitable reference the classical textbook by Apostolé [7] is
highly recommended.

A good introduction to Monte Carlo methods and their applications is Ham-
mersley and Handscomb [167]. Knuth [204] is a comprehensive source of information
on all aspects of random numbers. Another good reference on the state of the art
is the monograph by Niederreiter [246]. An application oriented overview is found
in Press et al. [263, Chapter 7]. Guidelines for choosing a good random number
generator are given in Marsaglia [231], the monograph by Gentle [141], and in the
two surveys L’Ecuyer [216], [217]. Hellekalek [173] explains the art to access random
number generators for practitioners.

An excellent source of survey articles on topics of current interest can be
found in Acta Numerica, a Cambridge University Press Annual started in 1992.
The journal SIAM Review also publishes high quality review papers.

Since Numerical Analysis is still in a dynamic stage it is important to keep
track of new developments. The Journal of Computational and Applied Mathe-
matics published in Volumes 121–128, 2000–2001, a series of papers on “Numerical
Analysis of the 20th Century”, with the aim of presenting the historical development
of numerical analysis and to review current research. The papers were arranged in
seven volumes,

A collection of outstanding survey papers on special topics are being published
in a multi-volume sequence in the Handbook of Numerical Analysis [62], edited by
Philippe G. Ciarlet and Jacques-Louis Lions. It offers comprehensive coverage in
all areas of numerical analysis as well as many actual problems of contemporary
interest. Each volume concentrates on one to three particular subjects under the
following headings:

A more complete guide to relevant literature ans software is given in Ap-
pendix C available at the homepage of the book. Although the selection presented
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is by no means complete and reflects a subjective choice, we hope it can serve as a
guide for a reader who out of interest (or necessity!) wishes to deepen his knowledge.
Both more recent textbooks and older classics are included. Note that reviews of
new books can be found in Mathematical Reviews as well as in the journals SIAM
Review and Mathematics of Computation.

The James & James Mathematics Dictionary [189] is a high quality general
mathematics dictionary covering arithmetic to calculus and which includes a multi-
lingual index. CRC Concise Encyclopedia of Mathematics [327] by Eric Weisstein is
a comprehensive compendium of mathematical definitions, formulas, and references.
A free web encyclopedia containing surveys and references is Eric Weisstein’s World
of Mathematics at mathworld.wolfram.com.
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Chapter 2

How to Obtain and

Estimate Accuracy

I always think I used computers for what
God had intended them for, to do arithmetic.
—Cleve Moler

2.1 Basic Concepts in Error Estimation

The main purpose of numerical analysis and scientific computing is to develop ef-
ficient and accurate methods to compute approximations to quantities that are
difficult or impossible to obtain by analytic means. It has been convincingly argued
(N. Trefethen [318]) that controlling rounding errors is just a small part of this, and
that the main business of computing is the development of algorithms that converge
rapidly. Even if we acknowledge the truth of this statement, it is still necessary to
be able to control different sources of errors, including round-off errors, so that these
will not interfere with the computed results.

2.1.1 Sources of Error

Numerical results are affected by many types of errors. Some sources of error are
difficult to influence; others can be reduced or even eliminated by, for example,
rewriting formulas or making other changes in the computational sequence. Errors
are propagated from their sources to quantities computed later, sometimes with a
considerable amplification or damping. It is important to distinguish between the
new error produced at the computation of a quantity (a source error), and the error
inherited (propagated) from the data that the quantity depends on.

A. Errors in Given Input Data.
Input data can be the result of measurements which have been contaminated
by different types of errors. In general one should be careful to distinguish
between systematic errors and random errors. A systematic error can, for
example, be produced by insufficiencies in the construction of an instrument of

85
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measurement; such an error is the same in each trial. Random errors depend
on the variation in the experimental environment which cannot be controlled.

B. Rounding Errors During the Computations.
A rounding error occurs whenever an irrational number, for example π,
is shortened (“rounded off”) to a fixed number of digits, or when a decimal
fraction is converted to the binary form used in the computer. The limitation
of floating-point numbers in a computer leads at times to a loss of information
that, depending on the context, may or may not be important. Two typical
cases are:

(i) If the computer cannot handle numbers which have more than, say, s
digits, then the exact product of two s-digit numbers (which contains 2s or
2s− 1 digits) cannot be used in subsequent calculations; the product must be
rounded off.

(ii) In a floating-point computation, if a relatively small term b is added to a,
then some digits of b are “shifted out” (see Example 2.3.1, and they will not
have any effect on future quantities that depend on the value of a+ b.

The effect of such rounding can be quite noticeable in an extensive calculation,
or in an algorithm which is numerically unstable.

C. Truncation Errors.
These are errors committed when a limiting process is truncated (broken off)
before one has come to the limiting value. A truncation error occurs, for
example, when an infinite series is broken off after a finite number of terms,
or when a derivative is approximated with a difference quotient (although in
this case the term discretization error is better). Another example is when
a nonlinear function is approximated with a linear function as in Newton’s
method. Observe the distinction between truncation error and rounding error.

D. Simplifications in the Mathematical Model.
In most of the applications of mathematics, one makes idealizations. In a
mechanical problem one might assume that a string in a pendulum has zero
mass. In many other types of problems it is advantageous to consider a given
body to be homogeneously filled with matter, instead of being built up of
atoms. For a calculation in economics, one might assume that the rate of
interest is constant over a given period of time. The effects of such sources
of error are usually more difficult to estimate than the types named in A, B,
and C.

E. “Human” Errors and Machine Errors.
In all numerical work, one must expect that clerical errors, errors in hand cal-
culation, and misunderstandings will occur. One should even be aware that
textbooks (!), tables and formulas may contain errors. When one uses com-
puters, one can expect errors in the program itself, typing errors in entering
the data, operator errors, and (more seldom) pure machine errors.
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Errors which are purely machine errors are responsible for only a very small
part of the strange results which (occasionally with great publicity) are produced
by computers. Most of the errors depend on the so-called human factor. As a
rule, the effect of this type of error source cannot be analyzed with the help of
the theoretical considerations of this chapter! We take up these sources of error
in order to emphasize that both the person who carries out a calculation and the
person who guides the work of others can plan so that such sources of error are
not damaging. One can reduce the risk for such errors by suitable adjustments in
working conditions and routines. Stress and tiredness are common causes of such
errors.

Intermediate results that may reveal errors in a computation are not visible
when using a computer. Hence the user must be able to verify the correctness of
his results or be able to prove that his process cannot fail! Therefore one should
carefully consider what kind of checks can be made, either in the final result or
in certain stages of the work, to prevent the necessity of redoing a whole project
just because a small error has been made in an early stage. One can often discover
whether calculated values are of the wrong order of magnitude or are not sufficiently
regular, for example using difference checks (see Sec. 3.3.1).

Occasionally one can check the credibility of several results at the same time
by checking that certain relations are true. In linear problems, one often has the
possibility of sum checks. In physical problems, one can check to see whether energy
is conserved, although because of the error sources A–D one cannot expect that it
will be exactly conserved. In some situations, it can be best to treat a problem in
two independent ways, although one can usually (as intimated above) check a result
with less work than this.

Errors of type E do occur, sometimes with serious consequences. The first
American Venus probe was lost due to a program fault caused by the inadvertent
substitution of a statement in a Fortran program of the form DO 3 I = 1.3 for
one of the form DO 3 I = 1,3. The erroneous replaced comma “,” with a dot “.”
converts the intended loop statement into an assignment statement! A hardware
error that got much publicity surfaced in 1994, when it was found that the IN-
TEL Pentium processor gave wrong results for division with floating-point numbers
of certain patterns. This was discovered during research on prime numbers (see
Edelman [93]) and later fixed.

From a different point of view, one may distinguish between controllable and
uncontrollable (or unavoidable) error sources. Errors of type A and D are usually
considered to be uncontrollable in the numerical treatment (although a feedback
to the constructor of the mathematical model may sometimes be useful). Errors
of type C are usually controllable. For example, the number of iterations in the
solution of an algebraic equation, or the step size in a simulation can be chosen,
either directly or by setting a tolerance.

The rounding error in the individual arithmetic operation (type B) is, in a
computer, controllable only to a limited extent, mainly through the choice between
single and double precision. A very important fact is, however, that it can often be
controlled by appropriate rewriting of formulas or by other changes of the algorithm,
see Example 2.3.3.
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If it doesn’t cost too much, a controllable error source should be controlled so
that its effects are evidently negligible compared to the effects of the uncontrollable
sources. A reasonable interpretation of “full accuracy” is that the controllable error
sources should not increase the error of a result more than about 20%. Sometimes,
“full accuracy” may be expensive, for example in terms of computing time, memory
space or programming efforts. Then it becomes important to estimate the relation
between accuracy and these cost factors. One goal of the rest of this chapter is to
introduce concepts and techniques useful to this purpose.

Many real-world problems contain some non-standard features, where under-
standing the general principles of numerical methods can save much time in the
preparation of a program as well as in in the computer runs. Nevertheless, we
strongly encourage the reader to use quality library programs whenever possible,
since a lot of experience and profound theoretical analysis has often been built into
these (sometimes far beyond the scope of this text). It is not practical to “reinvent
the wheel”!

2.1.2 Absolute and Relative Errors

Approximation is a central concept in almost all the uses of mathematics. One must
often be satisfied with approximate values of the quantities with which one works.
Another type of approximation occurs when one ignores some quantities which are
small compared to others. Such approximations are often necessary to insure that
the mathematical and numerical treatment of a problem does not become hopelessly
complicated.

We make the following definition:

Definition 2.1.1.
Let x̃ be an approximate value whose exact value is x. Then the absolute

error in x̃ is:
∆x = |x̃− x|,

and if x 6= 0 the relative error is:

∆x/x = |(x̃− x)/x|.

Note that x− x̃ is the correction which should be added to x̃ to get rid of the
error. The correction and the absolute error have then the same magnitude but
may have different sign.

In many situations one wants to compute strict or approximate bound for
the absolute or relative error. Since it is sometimes rather hard to obtain an error
bound that is both strict and sharp, one sometimes prefers to use less strict but
often realistic error estimates. These can be based on the first neglected term in
some expansion or some other asymptotic considerations.

The notation x = x̃ ± ǫ means, in this book, |x̃ − x| ≤ ǫ. For example, if
x = 0.5876 ± 0.0014 then 0.5862 ≤ x ≤ 0.5890, and |x̃ − x| ≤ 0.0014. In other
texts, the same plus-minus notation is sometimes used for the “standard error” (see
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Sec. 2.3.3) or some other measure of deviation of a statistical nature. If x is a vector
‖ · ‖ then the error bound and the relative error bound may be defined as bounds
for

‖x̃− x‖ and ‖x̃− x‖/‖x‖,
respectively, where ‖ · ‖ denotes some vector norm (see Sec. appA.3.3). Then a
bound ‖x̃− x‖/‖x‖ ≤ 1/2 · 10−p implies that components x̃i with |x̃i| ≈ ‖x‖ have
about p significant digits but this is not true for components of smaller absolute
value. An alternative is to use componentwise relative errors,

max
i

|x̃i − xi|/|xi|, (2.1.1)

but this assumes that xi 6= 0, for all i.
We will distinguish between the terms accuracy and precision. By accuracy

we mean the absolute or relative error of an approximate quantity. The term pre-
cision will be reserved for the accuracy with which the basic arithmetic operations
+,−, ∗, / are performed. For floating-point operations this is given by the unit
roundoff; see (2.2.8).

Numerical results which are not followed by any error estimations should often,
though not always, be considered as having an uncertainty of 1

2 a unit in the last
decimal place. In presenting numerical results, it is a good habit, if one does not
want to go to the difficulty of presenting an error estimate with each result, to give
explanatory remarks such as:

• “All the digits given are thought to be significant.”

• “The data has an uncertainty of at most 3 units in the last digit.”

• “For an ideal two-atom gas, cP /cV = 1.4 (exactly).”

We shall also introduce some notations, useful in practice, though their defi-
nitions are not exact in a mathematical sense:

a ≪ b (a ≫ b) is read: “a is much smaller (much greater) than b”. What is
meant by “much smaller”(or “much greater”) depends on the context—among
other things, on the desired precision.

a ≈ b is read: “a is approximately equal to b” and means the same as |a−b| ≪
c, where c is chosen appropriate to the context. We cannot generally say, for
example, that 10−6 ≈ 0.

a / b (or b ' a) is read: “a is less than or approximately equal to b” and
means the same as “a ≤ b or a ≈ b.”

Occasionally we shall have use for the following more precisely defined math-
ematical concepts:

f(x) = O(g(x)), x→ a, means that |f(x)/g(x)| is bounded as x→ a
(a can be finite, +∞, or −∞).

f(x) = o(g(x)), x→ a, means that limx→a f(x)/g(x) = 0.

f(x) ∼ g(x), x→ a, means that limx→a f(x)/g(x) = 1.
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2.1.3 Rounding and Chopping

When one counts the number of digits in a numerical value one should not include
zeros in the beginning of the number, as these zeros only help to denote where the
decimal point should be. For example, the number 0.00147 has five decimals but is
given with three digits. The number 12.34 has two decimals but is given with four
digits but

If the magnitude of the error in a given numerical value ã does not exceed
1
2 ·10−t, then ã is said to have t correct decimals. The digits in ã which occupy
positions where the unit is greater than or equal to 10−t are then called significant
digits (any initial zeros are not counted). Thus, the number 0.001234±0.000004 has
five correct decimals and three significant digits, while 0.001234±0.000006 has four
correct decimals and two significant digits. The number of correct decimals gives
one an idea of the magnitude of the absolute error, while the number of significant
digits gives a rough idea of the magnitude of the relative error.

We distinguish here between two ways of rounding off a number x to a given
number t of decimals. In chopping (or round toward zero) one simply leaves off all
the decimals to the right of the tth. That way is generally not recommended since
the rounding error has, systematically, the opposite sign of the number itself. Also,
the magnitude of the error can be as large as 10−t.

In rounding to nearest (sometimes called “correct” or “optimal” round-
ing”), one chooses, a number with s decimals which is nearest to x. Hence if p is
the part of the number which stands to the right of the sth decimal one leaves the
tth decimal unchanged if and only if |p| < 0.5 ·10−s. Otherwise one raises the sth
decimal by 1. In case of a tie, when x is equidistant to two s digit numbers then
one raises the sth decimal if it is odd or leaves it unchanged if it is even (round
to even). In this way, the error is positive or negative about equally often. The
error in rounding a decimal number to s decimals will always lie in the interval
[
− 1

210−s, 1
210−s

]
.

Example 2.1.1.
Shortening to three decimals:

0.2397 rounds to 0.240 (is chopped to 0.239)
−0.2397 rounds to −0.240 (is chopped to −0.239)
0.23750 rounds to 0.238 (is chopped to 0.237)
0.23650 rounds to 0.236 (is chopped to 0.236)
0.23652 rounds to 0.237 (is chopped to 0.236)

Observe that when one rounds off a numerical value one produces an error;
thus it is occasionally wise to give more decimals than those which are correct. Take
a = 0.1237 ± 0.0004, which has three correct decimals according to the definition
given previously. If one rounds to three decimals, one gets 0.124; here the third
decimal is not correct, since the least possible value for a is 0.1233.

Suppose that you are tabulating a transcendental function and a particular
entry has been evaluated as 1.2845 correct to the digits given. You want to round
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the value to three decimals. Should the final digit be 4 or 5? The answer depends
on whether there is a nonzero trailing digit. You compute the entry more accu-
rately and find 1.28450, then 1.284500, then 1.2845000, etc. Since the function is
transcendental, there clearly is no bound on the number of digits that has to be
computed before distinguishing if to round to 1.284 or 1.285. This is called the
tablemaker’s dilemma.29

Example 2.1.2.
The difference between chopping and rounding can be important as is illus-

trated by the following story. The index of the Vancouver Stock Exchange, founded
at the initial value 1000.000 in 1982, was hitting lows in the 500s at the end of 1983
even though the exchange apparently performed well. It was discovered (The Wall
Street Journal, Nov. 8, 1983, p. 37) that the discrepancy was caused by a computer
program which updated the index thousands of times a day and used chopping
instead of rounding to nearest! The rounded calculation gave a value of 1098.892.

Review Questions

1.1. Clarify with examples the various types of error sources which occur in nu-
merical work.

1.2. (a) Define “absolute error” and “relative error” for an approximation x̄ to a
scalar quantity x. What is meant by an error bound?

(b) Generalize the definitions in (a) to a vector x.

1.3. How is “rounding to nearest” performed?

1.4. Give π to four decimals using: (a) chopping; (b) rounding.

1.5. What is meant by the “tablemaker’s dilemma”?

2.2 Computer Number Systems

2.2.1 The Position System

In order to represent numbers, we use in daily life a position system with base
10 (the decimal system). Thus to represent the numbers, we use ten different
characters, and the magnitude with which the digit a contributes to the value of a
number depends on the digit’s position in the number. If the digit stands n steps
to the right of the decimal point, the value contributed is a · 10−n. For example,
the sequence of digits 4711.303 means

4 · 103 + 7 · 102 + 1 · 101 + 1 · 100 + 3 · 10−1 + 0 · 10−2 + 3 · 10−3.

29This can be used to advantage in order to protect mathematical tables from illegal copying
by rounding a few entries incorrectly where the error in doing so is insignificant due to several
trailing zeros. An illegal copy could then be exposed simply by looking up these entries!
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Every real number has a unique representation in the above way, except for the
possibility of infinite sequences of nines—for example, the infinite decimal fraction
0.3199999 . . . represents the same number as 0.32.

One can very well consider other position systems with base different from
10. Any integer β ≥ 2 (or β ≤ −2) can be used as base. One can show that
every positive real number a has, with exceptions analogous to the nines-sequences
mentioned above, a unique representation of the form

a = dnβ
n + dn−1β

n−1 + . . .+ d1β
1 + d0β

0 + d−1β
−1 + d−2β

−2 + . . . ,

or more compactly a = (dndn−1 . . . d0.d−1d−2 . . .)β , where the coefficients di, the
“digits” in the system with base β, are positive integers di such that 0 ≤ di ≤ β−1.

One of the greatest advantages of the position system is that one can give
simple, general rules for the arithmetic operations. The smaller the base is, the
simpler these rules become. This is just one reason why most computers operate in
base 2, the binary number system. The addition and multiplication tables then
take the following simple form:

0 + 0 = 0; 0 + 1 = 1 + 0 = 1; 1 + 1 = 10;

0 · 0 = 0; 0 · 1 = 1 · 0 = 0; 1 · 1 = 1;

In the binary system the number seventeen becomes 10001, since 1 · 24 + 0 · 23 + 0 ·
22 + 0 · 21 + 1 · 20 = sixteen + one = seventeen. Put another way (10001)2 = (17)10,
where the index (in decimal representation) denotes the base of the number system.
The numbers become longer written in the binary system; large integers become
about 3.3 times as long, since N binary digits suffice to represent integers less than
2N = 10N log10 2 ≈ 10N/3.3.

Occasionally one groups together the binary digits in subsequences of three or
four, which is equivalent to using 23 and 24, respectively, as base. These systems
are called the octal and hexadecimal number systems, respectively. The octal
system uses the digits from 0 to 7; in the hexadecimal system the digits 0 through
9 and the letters A,B,C,D,E, F (“ten” through “fifteen”) are used.

Example 2.2.1.

(17)10 = (10001)2 = (21)8 = (11)16,

(13.25)10 = (1101.01)2 = (15.2)8 = (D.4)16,

(0.1)10 = (0.000110011001 . . .)2 = (0.199999 . . .)16.

Note that the finite decimal fraction 0.1 cannot be represented exactly by a finite
fraction in the binary number system! (For this reason some pocket calculators use
the base 10.)

Example 2.2.2.
In 1991 a Patriot missile in Saudi Arabia failed to track and interrupt an in-

coming Scud due to a precision problem. The Scud then hit an Army barrack and
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killed 28 Americans. The computer used to control the Patriot missile was based on
a design dating from the 1970’s using 24-bit arithmetic. For the tracking computa-
tions time was recorded by the system clock in tenth of a second but converted to
a 24-bit floating-point number. Rounding errors in the time conversions caused an
error in the tracking. After 100 hours of consecutive operations the calculated time
in seconds was 359999.6567 instead of the correct value 360000, an error of 0.3433
seconds leading to an error in the calculated range of 687 meters; see Skeel [291].
Modified software was later installed.

In the binary system the “point” used to separate the integer and fractional
part of a number (corresponding to the decimal point) is called the binary point.
The digits in the binary system are called bits(=binary digits).

We are so accustomed to the position system that we forget that it is built
upon an ingenious idea. The reader can puzzle over how the rules for arithmetic
operations would look if one used Roman numerals, a number system without the
position principle described above.

Recall that rational numbers are precisely those real numbers which can be
expressed as a quotient between two integers. Equivalently rational numbers are
those whose representation in a position system have a finite number of digits or
whose digits are repeating.

We now consider the problem of conversion between two number systems with
different base. Since almost all computers use a binary system this problem arises
as soon as one want to input data in decimal form or print results in decimal form.

Algorithm 2.1. Conversion between number systems.

Let a be an integer given in number systems with base α. We want to determine
its representation in a number system with base β:

a = bnβ
m + bm−1β

n−1 + · · · + b0, 0 ≤ bi < β. (2.2.1)

The computations are to be done in the system with base α and thus also β is
expressed in this representation. The conversion is done by successive divisions of
a with β: Set q0 = a, and

qk/β = qk+1 + bk/β, k = 0, 1, 2, . . . (2.2.2)

(qk+1 is the quotient and bk the remainder in the division).
If a is not an integer, we write a = b+ c, where b is the integer part and

c = c−1β
−1 + c−2β

−2 + c−3β
−3 + · · · (2.2.3)

is the fractional part, where c−1, c−2, . . . are to be determined. These digits are
obtained as the integer parts when successively multiplying c with β: Set p−1 = c,
and

pk · β = ckβ + pk−1, k = −1,−2,−3 . . . . (2.2.4)

Since a finite fraction in a number system with base α usually does not correspond
to a finite fraction in the number system with base β rounding of the result is in
general needed.
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When converting by hand between the decimal system and the binary system
all computations are made in the decimal system (α = 10 and β = 2). It is then more
convenient to convert the decimal number first to octal or hexadecimal, from which
the binary representation easily follows.) If, on the other hand, the conversion is
carried out on a binary computer, the computations are made in the binary system
(α = 2 and β = 10).

Example 2.2.3.
Convert the decimal number 176.524 to ternary form (base β = 3). For the

integer part we get 176/3 = 58 with remainder 2; 58/3 = 19 with remainder 1;
19/3 = 6 with remainder 1; 6/3 = 2 with remainder 0; 2/3 = 0 with remainder 2.
It follows that (176)10 = (20112)3.

For the fractional part we compute .524 · 3 = 1.572, .572 · 3 = 1.716, .716 · 3 =
2.148, . . .. Continuing in this way we obtain (.524)10 = (.112010222 . . .)3. The finite
decimal fraction does not correspond to a finite fraction in the ternary number
system!

2.2.2 Fixed and Floating-Point Representation

A computer is in general built to handle pieces of information of a fixed size called a
word. The number of digits in a word (usually binary) is called the word-length
of the computer. Typical word-lengths are 32 and 64 bits. A real or integer number
is usually stored in a word. Integers can be exactly represented, provided that the
word-length suffices to store all the digits in its representation.

In the first generation of computers calculations were made in a fixed-point
number system, i.e. real numbers were represented with a fixed number of t bi-
nary digits in the fractional part. If the word-length of the computer is s+ 1 bits
(including the sign bit), then only numbers in the interval I = [−2s−t, 2s−t] are
permitted. Some common conventions in fixed-point are t = s (fraction convention)
or t = 0 (integer convention). This limitation causes difficulties, since even when
x ∈ I, y ∈ I, we can have x− y 6∈ I or x/y 6∈ I.

In a fixed-point number system one must see to it that all numbers, even inter-
mediate results, remain within I. This can be attained by multiplying the variables
by appropriate scale factors, and then transforming the equations accordingly.
This is a tedious process. Moreover it is complicated by the risk that if the scale
factors are chosen carelessly, certain intermediate results can have many leading ze-
ros which can lead to poor accuracy in the final results. As a consequence, current
numerical analysis literature rarely deals with other than floating-point arithmetic.
In Scientific Computing fixed-point is mainly limited to computations with integers
as in subscript expressions for vectors and matrices.

On the other hand, fixed-point computations can be much faster than floating-
point, especially since modern microprocessors have super-scalar architectures with
several fixed-point units but only one floating-point unit. In computer graphics,
fixed-point is used almost exclusively once the geometry is transformed and clipped
to the visible window. fixed-point square roots and trigonometric functions are also
pretty quick, and easy to write.
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By a normalized floating-point representation of a real number a, we
mean a representation in the form

a = ±m · βe, β−1 ≤ m < 1, e an integer. (2.2.5)

Such a representation is possible for all real numbers a, and unique if a 6= 0. (The
number 0 is treated as a special case.) Here the fraction part m is called the
mantissa30 or significand), e is the exponent and β the base (also called the
radix).

In a computer, the number of digits for e and m is limited by the word-length.
Suppose that t digits is used to represent m. Then we can only represent floating-
point numbers of the form

ā = ±m · βe, m = (0.d1d2 · · · dt)β , 0 ≤ di < β, (2.2.6)

where m is the mantissa m rounded to t digits, and the exponent is limited to a
finite range

emin ≤ e ≤ emax. (2.2.7)

A floating-point number system F is characterized by the base β, the precision
t, and the numbers emin, emax. Only a finite set F of rational numbers can be
represented in the form (2.2.6). The numbers in this set are called floating-point
numbers. Since d1 6= 0 this set contains, including the number 0, precisely

2(β − 1)βt−1(emax − emin + 1) + 1

numbers. (Show this!) The limited number of digits in the exponent implies that a
is limited in magnitude to an interval which is called the range of the floating-point
system. If a is larger in magnitude than the largest number in the set F , then a
cannot be represented at all (exponent spill). The same is true, in a sense, of
numbers smaller than the smallest nonzero number in F .

0 1
4

1
2

1 2 3

Figure 2.2.1. Positive normalized numbers when β = 2, t = 3, and −1 ≤ e ≤ 2.

Example 2.2.4.
Consider the floating-point number system for β = 2, t = 3, emin = −1,

and emax = 2. The positive normalized numbers in the corresponding set F are
shown in Figure 2.2.1. The set F contains exactly 2 · 16 + 1 = 33 numbers. In this

30Strictly speaking mantissa refers to the decimal part of a logarithm.
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example the nonzero numbers of smallest magnitude that can be represented are
(0.100)2 · 2−1 = 1

4 and the largest is (0.111)2 · 22 = 7
2 .

Notice that floating-point numbers are not equally spaced; the spacing jumps
by a factor β at each power of β. This wobbling is smallest for β = 2.

Definition 2.2.1.
The spacing of floating-point numbers is characterized by the machine ep-

silon, which is the distance ǫM from 1.0 to the next larger floating-point number.

The leading significant digit of numbers represented in a number system with
base β has been observed to closely fit a logarithmic distribution, i.e. the proportion
of numbers with leading digit equal to n is lnβ(1+1/n) (n = 0, 1, . . . , β− 1). It has
been shown that under this assumption taking the base equal to 2 will minimize the
mean square representation error. A discussion of this intriguing fact with historic
references is found in Higham [180, Sec. 2.7].

Even if the operands in an arithmetic operation are floating-point numbers
in F , the exact result of the operation may not be in F . For example, the exact
product of two floating-point t-digit numbers has 2t or 2t− 1 digits.

If a real number a is in the range of the floating-point system the obvious way
is to represent a by ā = fl (a), where fl (a) denotes a number in F which is nearest
to a. This corresponds to rounding of the mantissa m, and according to Sec. 2.1.3,
we have

|m−m| ≤ 1

2
β−t.

(There is one exception. If |m| after rounding should be raised to 1, then |m| is set
equal to 0.1 and e raised by 1.) Since m ≥ 0.1 this means that the magnitude of
the relative error in ā is at most equal to

1
2β

−t · βe
m · βe ≤ 1

2
β−t+1.

Even with the exception mentioned above this relative bound still holds. (If chop-
ping is used, this doubles the error bound above.) This proves the following theorem:

Theorem 2.2.2.
In a floating-point number system F = F (β, t, emin, emax) every real number

in the floating-point range of F can be represented with a relative error, which does
not exceed the unit roundoff u, which is defined by

u =

{
1
2β

−t+1, if rounding is used,
β−t+1, if chopping is used.

(2.2.8)

Note that in a floating-point system both large and small numbers are repre-
sented with nearly the same relative precision. The quantity u is, in many contexts,
a natural unit for relative changes and relative errors. For example, termination
criteria in iterative methods usually depend on the unit roundoff.
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To measure the difference between a floating-point number and the real num-
ber it approximates we shall occasionally use “unit in last place” or ulp. We
shall often say that “the quantity is perturbed by a few ulps”. For example, if in a
decimal floating-point system the number 3.14159 is represented as 0.3142 · 101 this
has an error of 0.41 ulps.

Example 2.2.5.
Sometimes it is useful to be able to approximately determine the unit roundoff

in a program at run time. This may be done using the observation that u ≈ µ, where
µ is the smallest floating-point number x for which fl (1 + x) > 1. The following
program computes a number µ which differs from the unit roundoff u at most by a
factor of 2:

x := 1;

while 1 + x > 1 x := x/2; end;

µ := x;

One reason why u does not exactly equal µ is that so called double rounding may
occur. This is when a result is first rounded to extended format and then to the
target precision.

0 1
4

1
2

1 2 3

Figure 2.2.2. Positive normalized and denormalized numbers when β = 2,
t = 3, and −1 ≤ e ≤ 2.

A floating-point number system can be extended by including denormalized
numbers (also called subnormal numbers). These are numbers with the minimum
exponent and with the most significant digit equal to zero. The three numbers

(.001)22
−1 = 1/16, (.010)22

−1 = 2/16, (.011)22
−1 = 3/16,

can then also be represented. Because the representation of denormalized numbers
have initial zero digits these have fewer digits of precision than normalized numbers.

2.2.3 IEEE Floating-Point Standard

Actual computer implementations of floating-point representations may differ in
detail from the one given above. Although some pocket calculators use a floating-
point number system with base β = 10, almost all modern computers use base
β = 2. Most current computers now conform to the IEEE 754 standard for binary
floating-point arithmetic.31 This standard from 1985 (see [108]) which is the result

31W. Kahan, University of California, Berkeley, was given the Turing Award by the Association
of Computing Machinery for his contribution to this standard.
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of several years work by a subcommittee of the IEEE, is now implemented on almost
all chips used for personal computers and workstations. There is also a standard
IEEE 854 for radix independent floating-point arithmetic [109]. This is used with
base 10 by several hand calculators.

The IEEE 754 standard specifies basic and extended formats for floating-point
numbers, elementary operations and rounding rules available, conversion between
different number formats, and binary-decimal conversion. The handling of excep-
tional cases like exponent overflow or underflow and division by zero are also spec-
ified.

Two main basic formats, single and double precision are defined, using 32 and
64 bits respectively. In single precision a floating-point number a is stored as a
sign s (one bit), the exponent e (8 bits), and the mantissa m (23 bits). In double
precision of the 64 bits 11 are used for the exponent, and 52 bits for the mantissa.
The value v of a is in the normal case

v = (−1)s(1.m)22
e, −emin ≤ e ≤ emax. (2.2.9)

Note that the digit before the binary point is always 1 for a normalized number.
Thus the normalization of the mantissa is different from that in (2.2.6). This bit
is not stored (the hidden bit). In that way one bit is gained for the mantissa. A
biased exponent is stored and no sign bit used for the exponent. In single precision
emin = −126 and emax = 127 and e+ 127 is stored.

The unit roundoff equals

u =

{

2−24 ≈ 5.96 · 10−8, in single precision;
2−53 ≈ 1.11 · 10−16 in double precision.

(The machine epsilon is twice as large.) The largest number that can be represented
is approximately 2.0 · 2127 ≈ 3.4028 × 1038 in single precision and 2.0 · 21023 ≈
1.7977× 10308 in double precision. The smallest normalized number is 1.0 · 2−126 ≈
1.1755 × 10−38 in single precision and 1.0 · 2−1022 ≈ 2.2251 × 10−308 in double
precision.

An exponent e = emin − 1 and m 6= 0, signifies the denormalized number

v = (−1)s(0.m)22
emin ;

The smallest denormalized number that can be represented is 2−126−23 ≈ 1.4013 ·
10−45 in single precision and 2−1022−52 ≈ 4.9407 · 10−324 in double precision.

There are distinct representations for +0 and −0. ±0 is represented by a
sign bit, the exponent emin − 1 and a zero mantissa. Comparisons are defined so
that +0 = −0. One use of a signed zero is to distinguish between positive and
negative underflowed numbers. Another use occurs in the computation of complex
elementary functions; see Sec. 2.2.4.

Infinity is also signed and ±∞ is represented by the exponent emax + 1 and
a zero mantissa. When overflow occurs the result is set to ±∞. This is safer than
simply returning the largest representable number, that may be nowhere near the
correct answer. The result ±∞ is also obtained from the illegal operations a/0,



“dqbjV
2007/5/28
page 99

2.2. Computer Number Systems 99

where a 6= 0. The infinity symbol obeys the usual mathematical conventions, such
as ∞ + ∞ = ∞, (−1) ×∞ = −∞, a/∞ = 0.

The IEEE standard also includes two extended precision formats that offer
extra precision and exponent range. The standard only specifies a lower bound on
how many extra bits it provides.32 Most modern processors use 80-bit registers for
processing real numbers and store results as 64-bit numbers according to the IEEE
double precision standard. Extended formats simplify tasks such as computing
elementary functions accurately in single or double precision. Extended precision
formats are used also by hand calculators. These will often display 10 decimal digits
but use 13 digits internally—“the calculator knows more than it shows.”

The characteristics of the IEEE formats are summarized in Table 2.2.1. (The
hidden bit in the mantissa accounts for the +1 in the table. Note that double
precision satisfies the requirements for single extended, so three different precisions
suffice.)

Table 2.2.1. IEEE floating-point formats.

Format t e emin emax

Single 32 bits 23 + 1 8 bits −126 127
Single extended ≥ 43 bits ≥ 32 ≥ 11 bits ≤ −1022 ≥ 1023
Double 64 bits 52 + 1 11 bits −1022 1023
Double extended ≥ 79 bits ≥ 64 ≥ 15 bits ≤ −16382 ≥ 16383

Example 2.2.6.
Although the exponent range of the floating-point formats seems reassuringly

large, even simple programs can quickly give exponent spill. If x0 = 2, xn+1 = x2
n,

then already x10 = 21024 is larger than what IEEE double precision permits. One
should also be careful in computations with factorials, e.g., 171! ≈ 1.24 · 10309 is
larger than the largest double precision number.

Four rounding modes are supported by the standard. The default rounding
mode is round to nearest representable number, with round to even in case of a
tie. (Some computers in case of a tie round away from zero, i.e. raise the absolute
value of the number, because this is easier to realize technically.) Chopping is also
supported as well as directed rounding to ∞ and to −∞. The latter mode simplifies
the implementation of interval arithmetic, see Sec. 2.5.3.

The standard specifies that all arithmetic operations should be performed as if
they were first calculated to infinite precision and then rounded to a floating point
number according to one of the four modes mentioned above. This also includes
the square root and conversion between integer and floating-point. The standard
also requires the conversion between internal formats and decimal to be correctly
rounded.

32Hardware implementation of extended precision normally does not use a hidden bit, so the
double extended format uses 80 bits rather than 79.
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This can be implemented using extra guard digits in the intermediate result
of the operation before normalization and rounding. Using a single guard digit,
however, will not always ensure the desired result. However by introducing a second
guard digit and a third sticky bit (the logical OR of all succeeding bits) the rounded
exact result can be computed at only a little more cost (Goldberg [146]). One
reason for specifying precisely the results of arithmetic operations is to improve
the portability of software. If a program is moved between two computers both
supporting the IEEE standard intermediate results should be the same.

IEEE arithmetic is a closed system, that is every operation, even mathematical
invalid operations, even 0/0 or

√
−1 produces a result. To handle exceptional

situations without aborting the computations some bit patterns (see Table 2.2.2)
are reserved for special quantities like NaN (“Not a Number”) and ∞. NaNs (there
are more than one NaN) are represented by e = emax + 1 and m 6= 0.

Table 2.2.2. IEEE 754 representation.

Exponent Mantissa Represents
e = emin − 1 m = 0 ±0
e = emin − 1 m 6= 0 ±0.m · 2emin

emin < e < emax ±1.m · 2e
e = emax + 1 m = 0 ±∞
e = emax + 1 m 6= 0 NaN

Note that the gap between 0 and the smallest normalized number is 1.0×2emin.
This is much larger than for the spacing 2−p+1 × 2emin for the normalized numbers
for numbers just larger than the underflow threshold; compare Example 2.2.4. With
denormalized numbers the spacing becomes more regular and permits what is called
gradual underflow. This makes many algorithms well behaved also close to the
underflow threshold. Another advantage of having gradual underflow is that it
makes it possible to preserve the property

x = y ⇔ x− y = 0

as well as other useful relations. Several examples of how denormalized numbers
makes writing reliable floating-point code easier are analyzed by Demmel [85].

One illustration of the use of extended precision is in converting between
IEEE 754 single precision and decimal. The converted single precision number
should ideally be converted with enough digits so that when it is converted back
the binary single precision number is recovered. It might be expected that since
224 < 108 eight decimal digits in the converted number would suffice. But it can be
shown that nine decimal digits are needed to recover the binary number uniquely
(see Goldberg [146, Theorem15] and Problem 2.2.4). When converting back to
binary form a rounding error as small as one ulp will give the wrong answer. To do
this conversion efficiently extended single precision is needed!33

33It should be noted that some computer languages do not include input/output routines, but
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A NaN is generated by operations such as 0/0, +∞+(−∞), 0×∞ and
√
−1.

A NaN compares unequal with everything including itself. (Note that x 6= x is a
simple way to test if x equals a NaN.) When a NaN and an ordinary floating-point
number is combined the result is the same as the NaN operand. A NaN is often
used also for uninitialized or missing data.

Exceptional operations also raise a flag. The default is to set a flag and
continue, but it is also possible to pass control to a trap handler. The flags are
“sticky” in that they remain set until explicitly cleared. This implies that without
a log file everything before the last setting is lost, why it is always wise to use a
trap handler. There is one flag for each of the following five exceptions: underflow,
overflow, division by zero, invalid operation and inexact. By testing the flags it is,
for example, possible to test if an overflow is genuine or the result of division by
zero.

Because of cheaper hardware and increasing problem sizes double precision
is more and more used in scientific computing. With increasing speed and mem-
ory becoming available, bigger and bigger problems are being solved and actual
problems may soon require more than IEEE double precision! When the IEEE 754
standard was defined no one expected computers able to execute more than 1012

floating-point operations per second!

2.2.4 Elementary Functions

Although the square root is included, the IEEE 754 standard does not deal with the
implementation of other familiar elementary functions, such as i.e. the exponential
function exp, the natural logarithm log, the trigonometric and hyperbolic functions
sin, cos, tan, sinh, cosh, tanh, and their inverse functions. With the IEEE 754
standard more accurate implementations are possible which in many cases give
almost correctly rounded exact results. To always guarantee correctly rounded exact
results sometimes require computing many more digits than the target accuracy
(cf. the tablemaker’s dilemma) and therefore is in general too costly. It is also
important to preserve monotonicity, e.g, 0 ≤ x ≤ y ≤ π/2 ⇒ sinx ≤ sin y, and
range restrictions, e.g., sinx ≤ 1, but these demands may conflict with rounded
exact results!

The first step in computing an elementary function is to perform a range
reduction. To compute trigonometric functions, for example, sinx, an additive
range reduction is first performed, in which a reduced argument x∗, −π/4 ≤ x∗ ≤
π/4, is computed by finding an integer k such that

x∗ = x− kπ/2, (π/2 = 1.57079 63267 94896 61923 . . .).

(Quantities such as π/2, log(2), that are often used in standard subroutines are
listed in decimal form to 30 digits and octal form to 40 digits in Hart et al. [170,
Appendix C] and to 40 and 44 digits in Knuth [204, Appendix A].) Then sinx =

these are developed separately. This can lead to double rounding, which spoils the careful designed
accuracy in the IEEE 754 standard. (Some banks use separate routines with chopping even today—
you may guess why!)
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± sinx∗ or sinx = ± cosx∗, depending on if k mod 4 equals 0, 1, 2 or 3. Hence
approximation for sinx and cosx need only be provided for 0 ≤ x ≤ π/4. If the
argument x is very large then cancellation in the range reduction can lead to poor
accuracy; see Example 2.3.7.

To compute log x, x > 0, a multiplicative range reduction is used. If an integer
k is determined such that

x∗ = x/2k, x∗ ∈ [1/2, 1],

then log x = log x∗ + k · log 2.
To compute the exponential function exp(x) an integer k is determined such

that

x∗ = x− k log 2, x∗ ∈ [0, log 2] (log 2 = 0.69314 71805 59945 30942 . . .).

It then holds that exp(x) = exp(x∗) · 2k and hence we only need an approximation
of exp(x) for the range x ∈ [0, log 2];

Coefficients of polynomial and rational approximations suitable for software
implementations are tabulated in Hart et al. [170] and Cody and Waite [67]. But
approximation of functions can now be simply obtained using software such as
Maple [58]. For example in Maple the commands

Digits = 40; minimax(exp(x), x = 0..1, [i,k],1,’err’)

means that we are looking for the coefficients of the minimax approximation of
the exponential function on [0, 1] by a rational function with numerator of de-
gree i and denominator of degree k with weight function 1 and that the variable
err should be equal to the approximation error. The coefficients are to be com-
puted to 40 decimal digits. A trend now is that elementary functions are more
and more implemented in hardware. Hardware implementations are discussed
by Muller [243]. Carefully implemented algorithms for elementary functions are
available from www.netlib.org/fdlibm in the library package fdlibm (Freely Dis-
tributable Math. Library) developed by Sun Microsystems and used by Matlab.

Example 2.2.7.
On a computer using IEEE double precision arithmetic the roundoff unit is

u = 2−53 ≈ 1.1·10−16. One wishes to compute sinhx with good relative accuracy,
both for small and large |x|, at least moderately large. Assume that ex is computed
with a relative error less than u in the given interval. The formula (ex− e−x)/2 for
sinhx is sufficiently accurate except when |x| is very small and cancellation occurs.
Hence for |x| ≪ 1, ex and e−x and hence (ex − e−x)/2 can have absolute errors
of order of magnitude (say) u. Then the relative error in (ex − e−x)/2 can have
magnitude ≈ u/|x|; for example, this is more than 100% for x ≈ 10−16.

For |x| ≪ 1 one can instead use (say) two terms in the series expansion for
sinhx,

sinhx = x+ x3/3! + x5/5! + . . . .

Then one gets an absolute truncation error which is about x5/120, and a round-off
error of the order of 2u|x|. Thus the formula x+x3/6 is better than (ex− e−x)/2 if

|x|5/120 + 2u|x| < u.
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If 2u|x| ≪ u, we have |x|5 < 120u = 15·2−50, or |x| < 151/5 ·2−10 ≈ 0.00168, (which
shows that 2u|x| really could be ignored in this rough calculation). Thus, if one
switches from (ex − e−x)/2 to x + x3/6 for |x| < 0.00168, the relative error will
nowhere exceed u/0.00168 ≈ 0.66·10−13. If one needs higher accuracy, one can take
more terms in the series, so that the switch can occur at a larger value of |x|.

For very large values of |x| one must expect a relative error of order of mag-
nitude |xu| because of round-off error in the argument x. Compare the discussion
of range reduction in Sec. 2.2.4 and Problem 2.2.13.

For complex arguments the elementary functions have discontinuous jumps
across when the argument crosses certain branch cuts in the complex plane. They
are represented by functions which are single-valued excepts for certain straight
lines called branch cuts. Where to put these branch cuts and the role of IEEE
arithmetic in making these choices are discussed by Kahan [195].

Example 2.2.8.
The function

√
x is multivalued and there is no way to select the values so

the function is continuous over the whole complex plane. If a branch cut is made
by excluding all real negative numbers from consideration the square root becomes
continuous. Signed zero provides a way to distinguish numbers of the form x+i(+0)
and x+ i(−0) and to select one or the other side of the cut.

To test the implementation of elementary functions a Fortran package ELE-
FUNT has been developed by Cody [65]. This checks the quality using indentities
like cosx = cos(x/3)(4 cos2(x/3)− 1). For complex elementary functions a package
CELEFUNT serves the same purpose; see Cody [66].

2.2.5 Multiple Precision Arithmetic

Hardly any quantity in the physical world is known to an accuracy beyond IEEE
double precision. A value of π correct to 20 decimal digits would suffice to cal-
culate the circumference of a circle around the sun at the orbit of the earth to
within the width of an atom. There seems to be little need for multiple precision
calculations. Occasionally, however, one may want to perform some calculations,
for example, the evaluation of some mathematical constant (such as π and Euler’s
constant γ) or elementary functions, to very high precision.34 Extremely high preci-
sion is sometimes needed in experimental mathematics when trying to discover new
mathematical identities. Algorithms, which may be used for these purposes include
power series, continued fractions, solution of equations with Newton’s method, or
other superlinearly convergent methods.

For performing such tasks it is convenient to use arrays to represent numbers
in a floating-point form with a large base and a long mantissa and have routines
for performing floating-point operations on such numbers. In this way it is possible

34In Oct. 1995 Yasumasa Kanada of the University of Tokyo computed π to 6,442,458,938
decimals on a Hitachi supercomputer; see [11].
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to simulate arithmetic of arbitrarily high precision using standard floating point
arithmetic.

Brent [40, 39] developed the first major such multiple-precision package in
Fortran 66. His package represents multiple precision numbers as arrays of integers
and operates on them with integer arithmetic. It includes subroutines for multiple
precision evaluation of elementary functions. A more recent package called MPFUN,
written in Fortran 77 code, is that of Bailey [9]. In MPFUN a multiple precision
number is represented as a vector of single precision floating-point numbers with
base 224. Complex multiprecision numbers are also supported. There is also a
Fortran 90 version of this package [10], which is easy to use.

A package Mulprec of Matlab m-files for computations in, in principle,
unlimited precision floating-point has been developed by the first named author. A
documentation of Mulprec and the m-files can be downloaded from the homepage of
the book at www.mai.liu.se/∼akbjo/NMbook.html together with some examples
of its use.

Fortran routines for high-precision computation are also provided in Press et
al [263, §20.6], and is also supported by symbolic manipulation systems such as
Maple [58] and Mathematica [338]; see Appendix C..

Review Questions

2.1. What base β is used in the binary, octal and hexadecimal number systems?

2.2. Show that any finite decimal fraction corresponds to a binary fraction that
eventually is periodic.

2.3. What is meant by a normalized floating-point representation of a real number?

2.4. (a) How large can the maximum relative error be in representation of a real
number a in the floating-point system F = F (β, p, emin, emax)? It is assumed
that a is in the range of F .

(b) How are the quantities “machine epsilon” and “unit round off”defined?

2.5. What are the characteristics of the IEEE single and double precision formats?

2.6. What are the advantages of including denormalized numbers in the IEEE
standard?

2.7. Give examples of operations that give NaN as result.

Problems and Computer Exercises

2.1. Which rational numbers can be expressed with a finite number of binary digits
to the right of the binary point?

2.2. (a) Prove the algorithm for conversion between number systems given in
Sec. 2.2.1.

(b) Give the hexadecimal form of the decimal numbers 0.1 and 0.3. What
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error is incurred in rounding these numbers to IEEE 754 single and double
precision?

(c) What is the result of the computation 0.3/0.1 in IEEE 754 single and
double precision ?

2.3. (W. Kahan) An (over-)estimate of u can be obtained for almost any computer
by evaluating |3×(4/3−1)−1| using rounded floating-point for every operation.
Test this on a calculator or computer available to you.

2.4. (Goldberg [146]) The binary single precision numbers in the half-open interval
[103, 1024) have 10 bits to the left and 14 bits to the right of the binary
point. Show that there are (210 − 103) · 214 = 393, 216 such numbers, but only
(210 −103) ·104 = 240, 000 decimal numbers with 8 decimal digits in the same
interval. Conclude that 8 decimal digits are not enough to uniquely represent
single precision binary numbers in the IEEE 754 standard.

2.5. Suppose one wants to compute the power An of a square matrix A, where n
is a positive integer. To compute Ak+1 = A · Ak, for k = 1 : n − 1 requires
n− 1 matrix multiplications. Show that the number of multiplications can be
reduced to less than 2⌊log2 n⌋ by converting n into binary form and successive
squaring A2k = (Ak)2, k = 1 : ⌊log2 n⌋.

2.6. Give in decimal representation: (a) (10000)2; (b) (100)8; (c) (64)16; (d)
(FF )16; (e) (0.11)8; (g) the largest positive integer which can be written with
thirty–one binary digits (answer with one significant digit).

2.7. (a) Show how the following numbers are stored in the basic single precision
format of the IEEE 754 standard: 1.0; −0.0625; 250.25; 0.1.

(b) Give in decimal notation the largest and smallest positive numbers which
can be stored in this format.

2.8. (Goldberg [146, Theorem7].) When β = 2, if m and n are integers with
m < 2p−1 (p is the number of bits in the mantissa) and n has the special form
n = 2i + 2j, then fl((m/n) · n) = m provided that floating-point operations
are exactly rounded to nearest. The sequence of possible values of n start with
1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17. Test the theorem on your computer for these
numbers.

2.9. Let pi be the closest floating-point number to π in double precision IEEE 754
standard. Find a sufficiently accurate approximation to π from a table and
show that π − pi ≈ 1.2246 · 10−16. What value do you get on your computer
for sinπ?

2.10. (A. Edelman.) Let x, 1 ≤ x < 2, be a floating-point number in IEEE double
precision arithmetic. Show that fl(x · fl(1/x)) is either 1 or 1− ǫM/2, where
ǫM = 2−52 (the machine epsilon).

2.11. (N. J. Higham.) Let a and b be floating-point numbers with a ≤ b. Show that
the inequalities a ≤ fl((a + b)/2) ≤ b can be violated in base 10 arithmetic.
Show that a ≤ fl(a+ (b − a)/2) ≤ b in base β arithmetic.
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2.12. (J.-M. Muller) A rational approximation of tanx in [−π/4, π/4] is

r(x) =
(0.99999 99328− 0.09587 5045x2)x

1 − (0.42920 9672+ 0.00974 3234x2)x2
.

Determine the approximate maximum error of this approximation by compar-
ing with the function on your system on 100 equidistant points in [0, π/4].

2.13. (a) Show how on a binary computer the exponential function can be approx-
imated by first performing a range reduction based on the relation ex = 2y,
y = x/ log 2, and then approximating 2y on y ∈ [0, 1/2].

(b) Show that since 2y satisfies 2−y = 1/2y a rational function r(y) approxi-
mating 2y should have the form

r(y) =
q(y2) + ys(y2)

q(y2) − ys(y2)
,

where q and s are polynomials.

(c) Suppose the r(y) in (b) is used for approximating 2y with

q(y) = 20.81892 37930 062+ y,

s(y) = 7.21528 91511 493+ 0.05769 00723 731y.

How many additions, multiplications and divisions are needed in this case to
evaluate r(y)? Investigate the accuracy achieved for y ∈ [0, 1/2].

2.3 Accuracy and Rounding Errors

2.3.1 Floating-Point Arithmetic

It is useful to have a model of how the basic floating-point operations are carried
out. If x and y are two floating-point numbers, we denote by

fl (x+ y), f l (x− y), f l (x · y), f l (x/y)

the results of floating addition, subtraction, multiplication, and division, which the
machine stores in memory (after rounding or chopping). We will in the following
assume that underflow or overflow does not occur, and that the following standard
model for the arithmetic holds:

Definition 2.3.1.
Assume that x, y ∈ F . Then in the standard model it holds

fl (x op y) = (x op y)(1 + δ), |δ| ≤ u, (2.3.1)

where u is the unit roundoff and “op” stands for one of the four elementary opera-
tions +, −, ·, and /.
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The standard model holds with the default rounding mode for computers
implementing the IEEE 754 standard. In this case we also have

fl (
√
x) =

√
x(1 + δ), |δ| ≤ u, (2.3.2)

If a guard digit is lacking then instead of (2.3.1) only the weaker model

fl (x op y) = x(1 + δ1) op y(1 + δ2), |δi| ≤ u, (2.3.3)

holds for addition/subtraction. The lack of a guard digit is a serious drawback
and can lead to damaging inaccuracy caused by cancellation. Many algorithms
can be proved to work satisfactorily only if the standard model (2.3.1) holds. We
remark that on current computers multiplication is as fast as addition/subtraction.
Division usually is 5–10 times slower than a multiply and a square root about twice
slower than division.

Some earlier computers lack a guard digit in addition/subtraction. Notable
examples are several models of Cray computers (Cray 1,2, X-MP,Y-MP, and C90)
before 1995, which were designed to have the highest possible floating-point perfor-
mance. The IBM 360, which used a hexadecimal system, lacked a (hexadecimal)
guard digit between 1964–1967. The consequences turned out to be so intolerable
that a guard digit had to be retrofitted.

Sometimes the floating-point computation is more precise than what the stan-
dard model assumes. An obvious example is that when the exact value x op y can
be represented as a floating-point number there is no rounding error at all.

Some computers can perform a fused multiply-add operation, i.e. an expression
of the form a× x + y can be evaluated with just one instruction and there is only
one rounding error at the end

fl (a× x+ y) = (a× x+ y)(1 + δ), |δ| ≤ u.

Fused multiply-add can be used to advantage in many algorithms. For example,
Horner’s rule to evaluate the polynomial p(x) = a0x

n + a1x
n−1 + · · ·+ an−1x+ an,

which uses the recurrence relation b0 = a0, bi = bi−1 · x + ai, i = 1 : n, needs only
n fused multiply-add operations.

It is important to realize that these floating-point operations have, to some
degree, other properties than the exact arithmetic operations. floating-point addi-
tion and multiplication are commutative, but not associative and the distributive
law also fails for them. This makes the analysis of floating point computations quite
difficult.

Example 2.3.1.
To show that associativity does not, in general, hold for floating addition,

consider adding the three numbers

a = 0.1234567 · 100, b = 0.4711325 · 104, c = −b.
in a decimal floating-point system with t = 7 digits in the mantissa. The following
scheme indicates how floating-point addition is performed:

fl (b+ c) = 0, f l (a+ fl (b+ c)) = a = 0.1234567 · 100
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a = 0.0000123 4567 · 104

+b = 0.4711325 ·104

fl (a+ b) = 0.4711448 ·104

c = −0.4711325 ·104

The last four digits to the right of the vertical line are lost by outshifting, and

fl (fl (a+ b) + c) = 0.0000123 · 104 = 0.1230000 · 100 6= fl (a+ fl (b+ c)).

An interesting fact is that, assuming a guard digit is used, floating-point sub-
traction of two sufficiently close numbers is always exact.

Lemma 2.3.2 (Sterbenz [298]).
Let the floating-point numbers x and y satisfy

y/2 ≤ x ≤ 2y.

Then fl(x− y) = x− y, unless x− y underflows.

Proof. By the assumption the exponent of x and y in the floating-point represen-
tations of x and y can differ at most by one unit. If the exponent is the same then
the exact result will be computed. Therefore assume the exponents differ by one.
After scaling and, if necessary, interchanging x and y it holds that x/2 ≤ y ≤ x < 2
and the exact difference z = x− y is of the form

x = x1.x2 . . . xt
y = 0 .y1 . . . yt−1yt
z = z1.z2 . . . ztzt+1

But from the assumption x/2− y ≤ 0 or x− y ≤ y. Hence we must have z1 = 0, so
after shifting the exact result is obtained also in this case.

With gradual underflow, as in the IEEE 754 standard, the condition that x−y
does not underflow can be dropped.

Example 2.3.2.
A corresponding result holds for any base β. For example, using four digit

floating decimal arithmetic we get with guard digit

fl (0.1000 · 101 − 0.9999) = 0.0001 = 1.000 · 10−4,

(exact) but without guard digit

fl (0.1000 · 101 − 0.9999) = (0.1000− 0.0999)101 = 0.0001 · 101 = 1.000 · 10−3.

The last result satisfies equation (2.3.3) with |δi| ≤ 0.5 · 10−3 since 0.10005 · 101 −
0.9995 = 10−3.

Outshiftings are common causes of loss of information that may lead to catas-
trophic cancellation later, in the computations of a quantity that one would have
liked to obtain with good relative accuracy.
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Figure 2.3.1. Computed values for n = 10p, p = 1 : 14, of the sequences:
solid line |(1 + 1/n)n − e|; dashed line | exp(n log(1 + 1/n)) − e| using (2.3.4).

Example 2.3.3.
An example where the result of Lemma 2.3.2 can be used to advantage is in

computing compounded interest. Consider depositing the amount c every day on
an account with an interest rate i compounded daily. Then with the accumulated
capital at the end of the year equals

c[(1 + x)n − 1]/x, x = i/n≪ 1,

and n = 365. Using this formula does not give accurate results. The reason is that
a rounding error occurs in computing fl(1 + x) = 1 + x̄ and low order bits of x is
lost. For example, if i = 0.06 then i/n = 0.0001643836 and in decimal arithmetic
using six digits when this is added to one we get fl(1+ i/n) = 1.000164 so four low
order digits are lost.

The problem then is to accurately compute (1+x)n = exp(n log(1 + x)). The
formula

log(1 + x) =







x, if fl (1 + x) = 1;

x
log(1 + x)

(1 + x) − 1
, otherwise.

(2.3.4)

can be shown to yield accurate results when x ∈ [0, 3/4] and the computed value of
log(1 + x) equals the exact result rounded; see Goldberg [146, p. 12].

To check this formula we recall that the base e of the natural logarithm can
be defined by the limit

e = lim
n→∞

(1 + 1/n)n

In Figure 2.3.1 we show computed values, using double precision floating-point
arithmetic, of the sequence |(1 + 1/n)n − e| for n = 10p, p = 1 : 14. More precisely,
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the expression was computed as

| exp(n log(1 + 1/n)) − exp(1)|.

The smallest difference 3 · 10−8 occur for n = 108, for which about half the number
of bits in x = 1/n are lost. For larger values of n rounding errors destroy the
convergence. But using (2.3.4) we obtain correct results for all values of n! (The
Maclaurin series

log(1 + x) = x− x2/2 + x3/3 − x4/4 + · · ·

will also give good results.

A fundamental insight from the above examples can be expressed in the fol-
lowing way:

“mathematically equivalent” formulas or algorithms are not in general
“numerically equivalent”.

This adds a new dimension to calculations in finite precision arithmetic and it will
be a recurrent theme in the analysis of algorithms in this book!

By mathematical equivalence of two algorithms we mean here that the
algorithms give exactly the same results from the same input data, if the com-
putations are made without rounding error (“with infinitely many digits”). One
algorithm can then, as a rule, formally be derived from the other using the rules
of algebra for real numbers, and with the help of mathematical identities. Two
algorithms are numerically equivalent if their respective floating-point results,
using the same input data are the same.

In error analysis for compound arithmetic expressions based on the standard
model (2.3.1) one often needs an upper bound for quantities of this form

ǫ ≡ |(1 + δ1)(1 + δ2) · · · (1 + δn) − 1|, |δi| ≤ u, i = 1 : n.

Then ǫ ≤ (1 + u)n − 1. Assuming that nu < 1 an elementary calculation gives

(1 + u)n − 1 = nu+
n(n− 1)

2!
u2 + · · · +

(
n

k

)

uk + · · ·

< nu
(

1 +
nu

2
+ · · · +

(nu

2

)k−1

+ · · ·
)

=
nu

1 − nu/2
(2.3.5)

Similarly it can be shown that (1−u)−n−1 < nu/(1−nu), and the following useful
result follows (N. J. Higham [180, Lemma3.1]):

Lemma 2.3.3.
Let |δi| ≤ u, ρi = ±1, i = 1:n, and set

n∏

i=1

(1 + δi)
ρi = 1 + θn. (2.3.6)
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If nu < 1, then |θn| < γn, where

γn = nu/(1 − nu). (2.3.7)

Complex arithmetic can be reduced to real arithmetic. Let x = a + ib and
y = c+ id be two complex numbers. Then we have:

x± y = a± c+ i(b± d),

xy = (ac− bd) + i(ad+ bc), (2.3.8)

x/y =
ac+ bd

c2 + d2
+ i

bc− ad

c2 + d2
,

Using the above formula complex addition (subtraction) needs two real additions
and multiplying two complex numbers requires four real multiplications

Lemma 2.3.4.
Assume that the standard model (2.3.1) for floating point arithmetic holds.

Then, provided that no overflow or underflow occurs, no denormalized numbers are
produced, the complex operations computed according to (2.3.8) satisfy

fl (x± y) = (x ± y)(1 + δ), |δ| ≤ u,

fl (xy) = xy(1 + δ), |δ| ≤
√

5u, (2.3.9)

fl (x/y) = x/y(1 + δ), |δ| ≤
√

2γ4,

where δ is a complex number and γn is defined in (2.3.7).

Proof. See Higham [180, Sec. 3.6]. The result for complex multiplication is due to
Brent et al. [42].

The square root of a complex number u+ iv =
√
x+ iy is given by

u =

(
r + x

2

)1/2

, v =

(
r − x

2

)1/2

, r =
√

x2 + y2. (2.3.10)

When x > 0 there will be cancellation when computing v, which can be severe if
also |x| ≫ |y| (cf. Sec. 2.3.4). To avoid this we note that uv =

√
r2 − x2/2 = y/2,

so v can be computed from v = y/(2u). When x < 0 we instead compute v from
(2.3.10) and set u = y/(2v).

Most rounding error analysis given in this book are formulated for real arith-
metic. Since the bounds in Lemma 2.3.4 are of the same form as the standard model
for real arithmetic, these can simply be extended to complex arithmetic.

In some cases it may be desirable to avoid complex arithmetic when working
with complex matrices. This can be achieved in a simple way by replacing the
complex matrices and vectors by real ones of twice the order. Suppose that a
complex matrix A ∈ Cn×n and a complex vector z ∈ Cn are given, where

A = B + iC, z = x+ iy,
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with real B,C, x and y. Form the real matrix Ã ∈ R2n×2n and real vector z̃ ∈ R2n

defined by

Ã =

(
B −C
C B

)

, z̃ =

(
x
y

)

.

It is easy to verify the following rules

(̃Az) = Ãz̃, (̃AB) = ÃB̃, (̃A−1) = (Ã)−1,

Thus we can solve complex valued matrix problems using algorithms for the real
case. But this incurs a penalty in storage and arithmetic operations.

2.3.2 Basic Rounding Error Results

We now use the notation of Sec. 2.3.1 and the standard model of floating-point
arithmetic (Definition 2.3.1) to carry out rounding error analysis of some basic
computations. Most but not all results are still true if only the weaker bound
(2.3.3) hold for addition and subtraction. Note that fl (x op y) = (x op y)(1 + δ),
|δ| ≤ u, can be interpreted for multiplication to mean that fl (x · y) is the exact
result of x · y(1 + δ) for some δ, |δ| ≤ u. In the same way, the results using the
three other operations can be interpreted as the result of exact operations where
the operands have been perturbed by a relative amount which does not exceed u. In
backward error analysis (see Sec. 2.4.5) one applies the above interpretation step
by step backwards in an algorithm.

By repeated use of the formula (2.3.1) in case of multiplication, one can show
that

fl (x1x2 · · ·xn) = x1x2(1 + δ2)x3(1 + δ3) · · ·xn(1 + δn),

|δi| ≤ u, i = 2 : n.

holds, i.e. the computed product fl (x1x2 · · ·xn) is exactly equal to a product of
the factors

x̃1 = x1, x̃i = xi(1 + δi), i = 2 : n.

Using the estimate and notation of (2.3.7) it follows from this analysis that

|fl (x1x2 · · ·xn) − x1x2 · · ·xn| < γn−1|x1x2 · · ·xn|, (2.3.11)

which bounds the forward error of the computed result.
For a sum of n floating-point numbers similar results can be derived. If the

sum is computed in the natural order we have

fl (· · · (((x1 + x2) + x3) + · · · + xn))

= x1(1 + δ1) + x2(1 + δ2) + · · · + xn(1 + δn),

where
|δ1| < γn−1, |δi| < γn+1−i. i = 2 : n,
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and thus the computed sum is the exact sum of the numbers xi(1 + δi). This also
gives an estimate of the forward error

|fl (· · · (((x1 + x2) + x3) + · · · + xn)) − (x1 + x2 + x3 + · · · + xn)|

<

n∑

i=1

γn+1−i|xi| ≤ γn−1

n∑

i=1

|xi|, (2.3.12)

where the last upper bound holds independent of the summation order.
Notice that to minimize the first upper bound in equation (2.3.12), the terms

should be added in increasing order of magnitude! For large n an even better bound
can be shown if the summation is done using the divide-and-conquer technique
described in Sec. 1.2.3; see Problem 2.3.5.

Example 2.3.4.
Using a hexadecimal machine (β = 16), with t = 6 and chopping (u = 16−5 ≈

10−6) we computed
10,000
∑

n=1

n−2 ≈ 1.644834

in two different orders. Using the natural summation order n = 1, 2, 3, . . . the error
was 1.317 · 10−3. Summing in the opposite order n = 10, 000, 9, 999, 9, 998 . . . the
error was reduced to 2 · 10−6. This was not unexpected. Each operation is an
addition, where the partial sum s is increased by n−2. Thus, in each operation,
one commits an error of about s · u, and all these errors are added. Using the first
summation order, we have 1 ≤ s ≤ 2 in every step, but using the other order of
summation we have s < 10−2 in 9, 900 of the 10, 000 additions.

Similar bounds for roundoff errors can easily be derived for basic vector and
matrix operations; see Wilkinson [333, pp. 114–118]. For an inner product xT y
computed in the natural order we have

fl (xT y) = x1y1(1 + δ1) + x2y2(1 + δ2) + · · · + xnyn(1 + δn)

where
|δ1| < γn, |δr| < γn+2−i, i = 2 : n.

The corresponding forward error bound becomes

|fl (xT y) − xT y| <
n∑

i=1

γn+2−i|xi||yi| < γn

n∑

i=1

|xi||yi|,

If we let |x|, |y| denote vectors with elements |xi|, |yi| the last estimate can be
written in the simple form

|fl (xT y) − xT y| < γn|xT ||y|. (2.3.13)

This bound is independent of the summation order and holds also for the weaker
model (2.3.3) valid with no guard digit rounding.
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The outer product of two vectors x, y ∈ Rn is the matrix xyT = (xiyj). In
floating-point arithmetic we compute the elements fl (xiyj) = xiyj(1+δij), δij ≤ u,
and so

|fl (xyT ) − xyT | ≤ u |xyT |. (2.3.14)

This is a satisfactory result for many purposes, but the computed result is not
in general a rank one matrix and it is not possible to find ∆x and ∆y such that
fl(xyT ) = (x+ ∆x)(x + ∆y)T .

The product of two t digit floating-point numbers can be exactly represented
with at most 2t digits. This allows inner products to be computed in extended pre-
cision without much extra cost. If fle denotes computation with extended precision
and ue the corresponding unit roundoff then the forward error bound for an inner
product becomes

|fl (fle((xT y)) − xT y| < u|xT y| + nue
1 − nue/2

(1 + u)|xT ||y|, (2.3.15)

where the first term comes form the final rounding. If |xT ||y| ≤ u|xT y| then the
computed inner product is almost as accurate as the correctly rounded exact re-
sult. These accurate inner products can be used to improve accuracy by so-called
iterative refinement in many linear algebra problems. But since computations in
extended precision are machine dependent it has been difficult to make such pro-
grams portable.35 The recent development of Extended and Mixed Precision BLAS
(Basic Linear Algebra Subroutines) (see [219]) may now make this more feasible!

Similar error bounds can easily be obtained for matrix multiplication. Let
A ∈ Rm×n, B ∈ Rn×p, and denote by |A| and |B| matrices with elements |aij | and
|bij |. Then it holds that

|fl (AB) −AB| < γn|A||B|. (2.3.16)

where the inequality is to be interpreted elementwise. Often we shall need bounds
for some norm of the error matrix. From (2.3.16) it follows that

‖fl (AB) −AB‖ < γn‖ |A| ‖ ‖ |B| ‖. (2.3.17)

Hence, for the 1-norm, ∞-norm and the Frobenius norm we have

‖fl (AB) −AB‖ < γn‖A‖ ‖B‖. (2.3.18)

but unless A and B have only non-negative elements, we get for the 2-norm only
the weaker bound

‖fl (AB) −AB‖2 < nγn‖A‖2 ‖B‖2. (2.3.19)

To reduce the effects of rounding errors in computing a sum
∑n
i=1 xi one can

use compensated summation. In this algorithm the rounding error in each addi-
tion is estimated and then compensated for with a correction term. Compensated

35It was suggested that the IEEE 754 standard should require inner products to be precisely
specified, but that did not happen.
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summation can be useful when a large number of small terms are to be added as in
numerical quadrature. Another example is the case in the numerical solution of ini-
tial value problems for ordinary differential equations. Note that in this application
the terms have to be added in the order in which they are generated.

Compensated is based on the possibility to simulate double precision floating-
point addition in single precision arithmetic. To illustrate the basic idea we take as
in Example 2.3.1

a = 0.1234567 · 100, b = 0.4711325 · 104,

so that s = fl (a+ b) = 0.4711448 · 104, Suppose we form

c = fl (fl (b − s) + a) = −0.1230000 · 100 + 0.1234567 · 100 = 4567000 · 10−3.

Note that the variable c is computed without error and picks up the information
that was lost in the operation fl (a+ b).

Algorithm 2.2. Compensated Summation.

The following algorithm uses compensated summation to accurately compute the
sum

∑n
i=1 xi:

s := x1; c := 0;

for i = 2 : n

y := c+ xi;

t := s+ y;

c := (s− t) + y;

s := t;

end

It can be proved (see Goldberg [146, ]) that on binary machines with a
guard digit the computed sum satisfies

s =
n∑

i=1

(1 + ξi)xi, |ξi| < 2u+O(nu2). (2.3.20)

This formulation is a typical example of a backward error analysis; see Sec. 2.4.5.
The first term in the error bound is independent of n.

2.3.3 Statistical Models for Rounding Errors

The bounds for the accumulated rounding error we have derived so far are estimates
of the maximal error. These bounds ignore the sign of the errors and tend to be
much too pessimistic when the number of variables is large. They can still give
valuable insight into the behavior of a method and be used for the purpose of
comparing different methods.
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An alternative is a statistical analysis of rounding errors, which is based on the
assumption that rounding errors are independent and have some statistical distri-
bution. It was observed already in the 1950s that rounding errors occurring in the
solution of differential equations are not random and often are strongly correlated.
This does not in itself preclude that useful information can sometimes be obtained
by modeling them by random uncorrelated variables! In many computational situ-
ations and scientific experiments, where the error can be considered to have arisen
from the addition of a large number of independent error sources of about the same
magnitude, an assumption that the errors are normally distributed is justified.

Example 2.3.5.
Figure 2.3.2 illustrates the effect of rounding errors on the evaluation of two

different expressions for the polynomial p(x) = (x − 1)5 for x ∈ [0.999, 1.001], in
IEEE double precision (unit roundoff u = 1.1 ·10−16). Among other things it shows
that the monotonicity of a function can be lost due to rounding errors. The model
of rounding errors as independent random variables works well in this example. It
is obvious that it would be impossible to locate the zero of p(x) to a precision better
than about (0.5 ·10−14)1/6 ≈ 0.0007 using the expanded form of p(x). But using the
expression p(x) = (1 − x)5 function values can be evaluated with constant relative
precision even close to x = 1, and the problem disappears!

0.999 0.9995 1 1.0005 1.001
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2
x 10

−15

Figure 2.3.2. Calculated values of a polynomial near a multiple root: solid
line p(x) = x5 − 5x4 + 10x3 − 10x2 + 5x− 1 = 0; dashed line p(x) = (x− 1)5.

This example shows that although multiple roots are in general ill-conditioned
an important exception is when the function f(x) if is given in such a form that it
can be computed with less absolute error as x approaches α.

The theory of standard error is based on probability theory and will not be
treated in detail here. The standard error of an estimate of a given quantity is the
same as the standard deviation of its sampling distribution.
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If in a sum y =
∑n
i=1 xi each xi has error |∆i| ≤ δ, then the maximum

error bound for y is nδ. Thus, the maximal error grows proportionally to n. If
n is large—for example, n = 1000—then it is in fact highly improbable that the
real error will be anywhere near nδ, since that bound is attained only when every
∆xi has the same sign and the same maximal magnitude. Observe, though, that
if positive numbers are added, each of which has been abridged to t decimals by
chopping, then each ∆xi has the same sign and a magnitude which is on the average
1
2δ, where δ = 10−t. Thus, the real error is often about 500δ.

If the numbers are rounded instead of chopped, and if one can assume that the
errors in the various terms are stochastically independent with standard deviation
ǫ, then the standard error in y becomes (see Theorem 2.4.5)

(ǫ2 + ǫ2 + . . .+ ǫ2)1/2 = ǫ
√
n.

Thus the standard error of the sum grows only proportionally to
√
n. This supports

the following rule of thumb, suggested by Wilkinson [332, p. 26], that if a rounding
error analysis gives a bound f(n)u for the maximum error, then one can expect the
real error to be of size

√

f(n)u.
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Figure 2.3.3. The frequency function of the normal distribution for σ = 1.

If n≫ 1, then the error in y is, under the assumptions made above, approxi-
mately normally distributed with standard deviation σ = ǫ

√
n. The corresponding

frequency function,

f(t) =
1√
2π
e−t

2/2,

is illustrated in Figure 2.3.3; the curve shown there is also called the Gauss curve.
The assumption that the error is normally distributed with standard deviation σ
means, for example, that the statement “the magnitude of the error is greater than
2σ” (see the shaded area of Figure 2.3.3) is true in about only 5 % of all cases (the
clear area under the curve). More generally, the assertion that the magnitude of
the error is larger than σ, 2σ, and 3σ respectively, is about 32%, 5%, and 0.27%.

One can show that if the individual terms in a sum y =
∑n

i=1 xi have a uni-
form probability distribution in the interval [− 1

2δ,
1
2δ], then the standard deviation
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of an individual term is δ/12. Therefore, in only about 5% of the cases is the error
in the sum of 1, 000 terms greater than 2δ

√

1000/12 ≈ 18δ, which can be compared
to the maximum error 500δ. This shows that rounding can be far superior to chop-
ping when a statistical interpretation (especially, the assumption of independence)
can be given to the principal sources of errors. Observe that, in the above, we have
only considered the propagation of errors which were present in the original data,
and have ignored the effect of possible round-off errors in the additions themselves.

For rounding errors the formula for standard errors is used. For systematic
errors, however, the formula for maximal error (2.4.5) should be used.

2.3.4 Avoiding Overflow and Cancellation

In the rare cases when input and output data are so large or small in magnitude
that the range of the machine is not sufficient, one can, use higher precision or
else work with logarithms or some other transformation of the data. One should,
however, keep in mind the risk that intermediate results in a calculation can produce
an exponent which is too large (overflow) or too small (underflow) for the floating-
point system of the machine. Different actions may be taken in such situations,
as well for division by zero. Too small an exponent is usually, but not always,
unproblematic. If the machine does not signal underflow, but simply sets the result
equal to zero, there is a risk, however, of harmful consequences. Occasionally,
“unexplainable errors” in output data are caused by underflow somewhere in the
computations.

The Pythagorean sum c =
√
a2 + b2 occurs frequently, for example, in

conversion to polar coordinates and in computing the complex modulus and complex
multiplication. If the obvious algorithm is used, then damaging underflows and
overflows may occur in the squaring of a and b even if a and b and the result c are
well within the range of the floating-point system used. This can be avoided by
using instead the algorithm: If a = b = 0 then c = 0; otherwise set p = max(|a|, |b|),
q = min(|a|, |b|), and compute

ρ = q/p; c = p
√

1 + ρ2. (2.3.21)

Example 2.3.6.
The formula (2.3.8) for complex division suffers from the problem that inter-

mediate results can overflow even if the final result is well within the range of the
floating-point system. This problem can be avoided by rewriting the formula as for
the Pythagorean sum: If |c| > |d| then compute

a+ ib

c+ id
=
a+ be

r
+ i

b− ae

r
, e = d/c, r = c+ de.

If |d| > |c| then e = c/d is computed and a corresponding formula used.
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Similar precautions are also needed for computing the Euclidian length (norm)

of a vector ‖x‖2 =
(∑n

i=1 x
2
i

)1/2
, x 6= 0. We could avoid overflows by first finding

xmax = max1≤i≤n |xi| and then forming

s =

n∑

i=1

(xi/xmax)
2, ‖x‖2 = xmax

√
s. (2.3.22)

This has the drawback of needing two passes through the data.

Algorithm 2.3.

The following algorithm, due to S. J. Hammarling, for computing the Euclidian
length of a vector requires only one pass through the data. It is used in the level-1
BLAS routine xNRM2:

t = 0; s = 1;

for i = 1 : n

if |xi| > 0

if |xi| > t

s = 1 + s(t/xi)
2; t = |xi|;

else

s = s+ (xi/t)
2;

end

end

end

‖x‖2 = t
√
s;

On the other hand this code does not vectorize and can therefore be slower if
implemented on a vector computer.

One very common reason for poor accuracy in the result of a calculation is
that somewhere a subtraction has been carried out in which the difference between
the operands is considerably less than either of the operands. This causes a loss of
relative precision. (Note that, on the other hand, relative precision is preserved in
addition of nonegative quantities, multiplication and division.)

Consider the computation of y = x1−x2 where x̃1 = x1 +∆x1, x̃2 = x2 +∆x2

are approximations to the exact values. If the operation is carried out exactly the
result is ỹ = y + ∆y, where ∆y = ∆x1 − ∆x2. But, since the errors ∆x1 and ∆x2

can have opposite sign, the best error bound for ỹ is

|∆y| ≤ |∆x1| + |∆x2|. (2.3.23)

Notice the plus sign! Hence for the relative error we have

∣
∣
∣
∣

∆y

y

∣
∣
∣
∣
≤ |∆x1| + |∆x2|

|x1 − x2|
. (2.3.24)
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This shows that there can be very poor relative accuracy in the difference between
two nearly equal numbers. This phenomenon is called cancellation of terms.

In Sec. 1.2.1 it was shown that when using the well-known “text-book” formula

r1,2 =
(
− b±

√

b2 − 4ac
)/

(2a).

for computing the real roots of the quadratic equation ax2 + bx + c = 0 (a 6= 0)
cancellation could cause a loss of accuracy in the root of smallest magnitude. This
can be avoided by computing the root of smaller magnitude from the relation r1r2 =
c/a between coefficients and roots. The following is a suitable algorithm:

Algorithm 2.4. Solving a Quadratic Equation.

d := b2 − 4ac;

if d ≥ 0 % real roots

r1 := −sign(b)
(
|b| +

√
d
)
/(2a);

r2 := c/(a · r1);
else % complex roots x+ iy

x := −b/(2a);
y :=

√
−d/(2a);

end

Note that we define sign (b) = 1, if b ≥ 0, else sign (b) = −1.36 It can be proved that
in IEEE arithmetic this algorithm computes a slightly wrong solution to a slightly
wrong problem.

Lemma 2.3.5.
Assume that the Algorithm 2.3.2 is used to compute the roots r1,2 of the

quadratic equation ax2 + bx + c = 0. Denote the computed roots by r̄1,2 and let
r̃1,2 be the exact roots of the nearby equation ax2 + bx+ c̃ = 0, where |c̃− c| ≤ γ2|c̃|.
Then |r̃i − r̄i| ≤ γ5|r̃i|, i = 1, 2.

Proof. See Kahan [194].

More generally, if |δ| ≪ x, then one should rewrite

√
x+ δ −√

x =
x+ δ − x√
x+ δ +

√
x

=
δ√

x+ δ +
√
x
.

There are other exact ways of rewriting formulas which are as useful as the
above; for example,

cos(x+ δ) − cosx = −2 sin(δ/2) sin(x+ δ/2).

36In Matlab sign (0) = 0, which can lead to failure of this algorithm!
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If one cannot find an exact way of rewriting a given expression of the form f(x +
δ) − f(x), it is often advantageous to use one or more terms in the Taylor series

f(x+ δ) − f(x) = f ′(x)δ +
1

2
f ′′(x)δ2 + · · ·

Example 2.3.7 (Cody [65]).

To compute sin 22 we first find ⌊22/(π/2)⌋ = 14. It follows that sin 22 =
− sinx∗, where x∗ = 22 − 14(π/2). Using the correctly rounded 10 digit approxi-
mation π/2 = 1.57079 6327 we obtain

x∗ = 22 − 1.57079 6327 = 8.85142 · 10−3.

Here cancellation has taken place and the reduced argument has a maximal error
of 7 · 10−9, The actual error is slightly smaller since the correctly rounded value
is x∗ = 8.85144 8711 · 10−3, which corresponds to a relative error in the computed
sin 22 of about 2.4 · 10−6, in spite of using a ten digit approximation to π/2.

For very large arguments the relative error can be much larger. Techniques for
carrying out accurate range reductions without actually needing multiple precision
calculations are discussed by Muller [243]; see also Problem 2.3.9.

In previous examples we got a warning that cancellation would occur, since
x2 was found as the difference between two nearly equal numbers each of which
was, relatively, much larger than the difference itself. In practice, one does not
always get such a warning, for two reasons: first, in using a computer one has no
direct contact with the individual steps of calculation; secondly, cancellation can be
spread over a great number of operations. This may occur in computing a partial
sum of an infinite series. For example, in a series where the size of some terms are
many orders of magnitude larger than the sum of the series, small relative errors in
the computation of the large terms can then produce large errors in the result.

It has been emphasized here that calculations where cancellation occur should
be avoided. But there are cases, where one has not been able to avoid it, and there
is no time to wait for a better method. Situations occur in practice where (say)
the first ten digits are lost, and we need a decent relative accuracy in what will be
left.37 Then, high accuracy is required in intermediate results. This is an instance
where the high accuracy in IEEE double precision is needed!

Review Questions

3.1. What is the standard model for floating-point arithmetic? What weaker model
holds if a guard digit is lacking?

3.2. Give examples to show that some of the axioms for arithmetic with real num-
bers do not always hold for floating-point arithmetic.

37G. Dahlquist has encountered just this situation in a problem of financial mathematics.
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3.3. (a) Give the results of a backward and forward error analysis for computing
fl (x1 + x2 + · · · + xn). It is assumed that the standard model holds.

(b) Describe the idea in compensated summation.

3.4. Explain the terms “maximum error” and “standard error”. What statistical
assumption about rounding errors is often made when calculating the standard
error in a sum due to rounding?

3.5. Explain, what is meant by “cancellation of terms”. Give an example how this
can be avoided by rewriting a formula.

Problems and Computer Exercises

3.1. Rewrite the following expression to avoid cancellation of terms:
(a) 1 − cosx, |x| ≪ 1; (b) sinx− cosx, |x| ≈ π/4;

3.2. (a) The expression x2−y2 exhibits catastrophic cancellation if |x| ≈ |y|. Show
that it is more accurate to evaluate it as (x+ y)(x− y).

(b) Consider using the trigonometric identity sin2 x + cos2 x = 1 to compute
cosx = (1 − sin2 x)1/2. For which arguments in the range 0 ≤ x ≤ π/4 will
this formula fail to give good accuracy?

3.3. The polar representation of a complex number is

z = x+ iy = r(sin φ+ cosφ) ≡ r · eiφ.
Develop accurate formulas for computing this polar representation from x and
y using real operations.

3.4. (Kahan) Show that with the use of fused multiply-add the algorithm

w := bc; c := w − bc; y := (ad− w) + c;

computes x = det

(
a b
c d

)

with high relative accuracy.

3.5. Suppose that the sum s =
∑n

i=1 xi, n = 2k, is computed using the the divide-
and-conquer technique described in Sec. 1.2.3. Show that this summation al-
gorithm computes an exact sum

s̄ =

n∑

i=1

xi(1 + δi), |δi| ≤ ũ log2 n.

Hence for large values of n this summation order can be much more accurate
than the conventional order.

3.6. Show that for the evaluation of a polynomial p(x) =
∑n

i=0 aix
i by Horner’s

rule the following roundoff error estimate holds:

|fl (p(x)) − p(x)| < γ1

n∑

i=0

(2i+ 1)|ai| |x|i, (2nu ≤ 0.1).
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3.7. In solving linear equations by Gaussian elimination there often occurs expres-
sions of the form s = (c −∑n−1

i=1 aibi)/d. Show that by a slight extension of
the result above that the computed s̄ satisfies

∣
∣
∣s̄d− c+

n−1∑

i=1

aibi

∣
∣
∣ ≤ γn

(

|s̄d| +
n−1∑

i=1

|ai||bi|
)

,

where the inequality holds independent of the summation order.

3.8. The zeros of the reduced cubic polynomial z3 + 3qz − 2r = 0, can be found
from the Cardano–Tartaglia formula:

z =
(

r +
√

q3 + r2
)1/3

+
(

r −
√

q3 + r2
)1/3

.

The two cubic roots are to be chosen so that their product equals −q. One
real root is obtained if q3 + r2 ≥ 0, which is the case unless all three roots are
real and distinct.
The above formula can lead to cancellation. Rewrite it so that it becomes
more suitable for numerical calculation and requires the calculation of only
one cubic root.

3.9. (Eldén and Wittmeyer-Koch) In the interval reduction for computing sinx
there can be a loss of accuracy through cancellation in the computation of
the reduced argument x∗ = x − k · π/2 when k is large. A way to avoid
this without reverting to higher precision has been suggested by Cody and
Waite [67]). Write

π/2 = π0/2 + r,

where π0/2 is exactly representable with a few digits in the (binary) floating-
point system. The reduced argument is now computed as x∗ = (x−k ·π0/2)−
kr. Here, unless k is very large, the first term can be computed without
rounding error. The rounding error in the second term is bounded by k|r|u,
where u is the unit roundoff.
In IEEE single precision one takes

π0/2 = 201/128 = 1.573125 = (10.1001001)2, r = 4.838267949 · 10−4

Estimate the relative error in the computed reduced argument x∗ when x =
1000 and r is represented in IEEE single precision.

3.10. (W. Kahan [1983]) The area A of a triangle with sides equal to a, b, c is given
by Heron’s formula

A =
√

s(s− a)(s− b)(s− c), s = (a+ b+ c)/2.

Show that this formula fails for needle-shaped triangles, using five digit decimal
floating arithmetic and a = 100.01, b = 99.995, c = 0.025.
The following formula can be proved to work if addition/subtraction satisfies
(2.3.21):
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Order the sides so that a ≥ b ≥ c, and use

A =
1

4

√

(a+ (b+ c))(c − (a− b))(c+ (a− b))(a+ (b− c)).

Compute a correct result for the data above using this modified formula. If a
person tells you that this gives an imaginary result if a− b > c, what do you
answer him?

3.11. As is well known f(x) = (1 + x)1/x has the limit e = 2.71828 18284 59045 . . .,
when x → ∞. Study the sequences f(xn) for xn = 10−n and xn = 2−n, for
n = 1, 2, 3, . . .. Stop when xn < 10−10 (or when xn < 10−20 if you are using
double precision). Give your results as a table of n, xn, and the relative error
gn = (f(xn) − e)/e. Also plot log(|gn|) against log(|xn|). Comment on and
explain your observations.

3.12. (a) Compute the derivative of the exponential function ex at x = 0, by approx-
imating with the difference quotients (ex+h − ex)/h, for h = 2−i, i = 1 : 20.
Explain your results.

(b) Same as in (a) but approximate instead with the central difference ap-
proximation (ex+h − ex−h)/(2h).

3.13 The hyperbolic cosine is defined by cosh t = (et + e−t)/2, and its inverse
function t = arccosh (x) is the solution to the equation

x = (et + e−t)/2.

Solving the quadratic equation (et)2 − 2xet + 1, we find et = x± (x2 − 1)1/2

and

arccosx = log(x± (x2 − 1)1/2).

(a) Show that this formula suffers from serious cancellation when the minus
sign is used and x is large. Try, e.g., x = cosh(10) using double precision
IEEE. (Using the plus sign will just transfer the problem to negative x.)

(b) An better formula is

arccosx = 2 log
(
((x + 1)/2)1/2 + ((x− 1)/2)1/2

)
.

This also avoids the squaring of x which can lead to overflow. Derive this
formulas and show that it is well behaved!

3.14 (W. Gautschi) Euler’s constant γ = 0.57721566490153286 . . . is defined as the
limit

γ = lim
n→∞

γn, where γn = 1 + 1/2 + 1/3 + · · · + 1/n− logn.

Assuming that γ− γn ∼ cn−d, n→ ∞, for some constants c and d > 0, try to
determine c and d experimentally on your computer.



“dqbjV
2007/5/28
page 125

Problems and Computer Exercises 125

3.15. In the statistical treatment of data, one often needs to compute the quantities

x̄ =
1

n

n∑

i=1

xi, s2 =
1

n

n∑

i=1

(xi − x̄)2.

If the numbers xi are the results of statistically independent measurements of
a quantity with expected value m, then x̄ is an estimate of m, whose standard
deviation is estimated by s/

√
n− 1.

(a) The computation of x̄ and m using the formulas above have the drawback
that they require two passes through the data xi. Let α be a provisional mean,
chosen as an approximation to x̄, and set x′i = xi−α. Show that the formulas

x̄ = α+
1

n

n∑

i=1

x′i, s2 =
1

n

n∑

i=1

(x′i)
2 − (x̄− α)2.

hold for an arbitrary α.

(b) In sixteen measurements of a quantity x one got the following results:

i xi i xi i xi i xi

1 546.85 5 546.81 9 546.96 13 546.84
2 546.79 6 546.82 10 546.94 14 546.86
3 546.82 7 546.88 11 546.84 15 546.84
4 546.78 8 546.89 12 546.82 16 546.84

Compute x̄ and s2 to two significant digits using α = 546.85.
(c) In the computations in (b), one never needed more than three digits.
If one uses the value α = 0, how many digits is needed in (x′i)

2 in order
to get two significant digits in s2? If one uses five digits throughout the
computations, why is the cancellation in the s2 more fatal than the cancellation
in the subtraction x′i − α? (one can even get negative values for s2!)

(d) If we define

mk =
1

k

k∑

i=1

xi, qk =
k∑

i=1

(xi −mk)
2 =

k∑

i=1

x2
i −

1

k

( k∑

i=1

xi

)2

,

then it holds that x̄ = mn, and s2 = qn/n. Show the recursion formulas

m1=x1, mk = mk−1 + (xk −mk−1)/k

q1=0, qk = qk−1 + (xk −mk−1)
2(k − 1)/k

3.14. Compute the sum in Example 2.3.4 using the natural summation ordering
in IEEE 754 double precision. Repeat the computations using compensated
summation (Algorithm 2.3.1).
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2.4 Error Propagation

2.4.1 Numerical Problems, Methods and Algorithms

By a numerical problem we mean here a clear and unambiguous description of
the functional connection between input data —that is, the “independent vari-
ables” in the problem—and output data—that is, the desired results. Input data
and output data consist of a finite number of real (or complex) quantities and are
thus representable by finite dimensional vectors. The functional connection can be
expressed in either explicit or implicit form. We require for the following discussion
also that the output data should be uniquely determined and depend continuously on
the input data.

By an algorithm38 for a given numerical problem we mean a complete descrip-
tion of well-defined operations through which each permissible input data vector is
transformed into an output data vector. By “operations” we mean here arithmetic
and logical operations, which a computer can perform, together with references to
previously defined algorithms. It should be noted that, as the field of computing
has developed, more and more complex functions (for example, square root, circu-
lar and hyperbolic functions) are built into the hardware. In many programming
environments operations like matrix multiplication, solution of linear systems, etc.,
are considered as “elementary operations” and for the user appear as black boxes.

(The concept algorithm can be analogously defined for problems completely
different from numerical problems, with other types of input data and fundamental
operations—for example, inflection, merging of words, and other transformations of
words in a given language.)

Example 2.4.1.
To determine the largest real root of the cubic equation

p(z) = a0z
3 + a1z

2 + a2z + a3 = 0,

with real coefficients a0, a1, a2, a3, is a numerical problem. The input data vector
is (a0, a1, a2, a3). The output data is the desired root x; it is an implicitly defined
function of the input data.

An algorithm for this problem can be based on Newton’s method, supple-
mented with rules for how the initial approximation should be chosen and how the
iteration process is to be terminated. One could also use other iterative methods,
or algorithms based upon the formula by Cardano–Tartaglia for the exact solution
of the cubic equation (see Problem 2.3.8). Since this uses square roots and cube
roots, one needs to assume that algorithms for the computation of these functions
have been specified previously.

One often begins the construction of an algorithm for a given problem by
breaking down the problem into subproblems in such a way that the output data

38The term “algorithm” is a latinization of the name of the Arabic 9th century mathematician Al-
Khowârizmı̂. He also introduced the word algebra (Al-jabr). Western Europe became acquainted
with the Hindu positional number system from a latin translation of his book entitled “Algorithmi
de numero Indorum”.
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from one subproblem is the input data to the next subproblem. Thus the distinction
between problem and algorithm is not always so clearcut. The essential point is that,
in the formulation of the problem, one is only concerned with the initial state and
the final state. In an algorithm, however, one should clearly define each step along
the way, from start to finish.

We use the term numerical method in this book to mean a procedure ei-
ther to approximate a mathematical problem with a numerical problem or to solve
a numerical problem (or at least to transform it to a simpler problem). A numer-
ical method should be more generally applicable than an algorithm, and set lesser
emphasize on the completeness of the computational details. The transformation of
a differential equation problem to a system of nonlinear equations can be called a
numerical method—even without instructions as to how to solve the system of non-
linear equations. Newton’s method is a numerical method for determining a root
of a large class of nonlinear equations. In order to call it an algorithm, conditions
for starting and stopping the iteration process should be added.

For a given numerical problem one can consider many differing algorithms. As
we have seen in Sec. 2.3 these can, in floating-point arithmetic, give approximations
of widely varying accuracy to the exact solution.

Example 2.4.2.
The problem of solving the differential equation

d2y

dx2
= x2 + y2

with boundary conditions y(0) = 0, y(5) = 1, is not a numerical problem according
to the definition stated above. This is because the output data is the function y,
which cannot in any conspicuous way be specified by a finite number of parameters.
The above mathematical problem can be approximated with a numerical problem
if one specifies the output data to be the values of y for x = h, 2h, 3h, . . . , 5 − h.
Also the domain of variation of the unknowns must be restricted in order to show
that the problem has a unique solution. This can be done, however, and there are a
number of different algorithms for solving the problem approximately, which have
different properties with respect to number of arithmetic operations needed and the
accuracy obtained.

Before an algorithm can be used it has to be implemented in an algorithmic
program language in a reliable and efficient manner. We leave these aspects aside
for the moment, but this is far from a trivial task—it has been said that when the
novice thinks the job is done then the expert knows that most of the hard work lies
ahead!

2.4.2 Propagation of Errors

In scientific computing the given input data is usually imprecise. The errors in the
input will propagate and give rise to errors in the output. In this section we develop
some general tools for studying the propagation of errors. Error-propagation formu-
las are also of great interest in the planning and analysis of scientific experiments.



“dqbjV
2007/5/28
page 128

128 Chapter 2. How to Obtain and Estimate Accuracy

Note that rounding errors from each step in a calculation are also propagated
to give errors in the final result. For many algorithms a rounding error analysis can
be given, which shows that the computed result always equals the exact (or slightly
perturbed) result of a nearby problem, where the input data has been slightly
perturbed (see, e.g, Lemma 2.3.5). The effect of rounding errors on the final result
can then be estimated using the tools of this section.

We first consider two simple special cases of error propagation. For a sum of
an arbitrary number of terms we get from (2.3.23) by induction:

Lemma 2.4.1.
In addition (and subtraction) a bound for the absolute errors in the result is

given by the sum of the bounds for the absolute errors of the operands

y =

n∑

i=1

xi, |∆y| ≤
n∑

i=1

|∆xi|. (2.4.1)

To obtain a corresponding result for the error propagation in multiplication
and division, we start with the observations that for y = log x we have ∆(log x) ≈
∆(x)/x. In words: the relative error in a quantity is approximately equal to the
absolute error in its natural logarithm. This is related to the fact that displacements
of the same length at different places on a logarithmic scale, mean the same relative
change of the value. From this we obtain the following result:

Lemma 2.4.2.
In multiplication and division, an approximate bound for the relative error is

obtained by adding the relative errors of the operands. More generally, for y =
xm1

1 xm2
2 · · ·xmn

n ,
∣
∣
∣
∣

∆y

y

∣
∣
∣
∣
/

n∑

i=1

|mi|
∣
∣
∣
∣

∆xi
xi

∣
∣
∣
∣
. (2.4.2)

Proof. The proof follows by differentiating log y = m1 log x1 + m2 log x2 + · · · +
mn log xn.

Example 2.4.3.
In Newton’s method for solving a nonlinear equation a correction is to be

calculated as a quotient ∆x = f(xk)/f
′(xk). Close to a root the relative error in

the computed value of f(xk) can be quite large due to cancellation. How accurately
should one compute f ′(xk), assuming that the work grows as one demands higher
accuracy? Since the limit for the relative error in ∆x is equal to the sum of the
bounds for the relative errors in f(xk) and f ′(xk), there is no gain in making
the relative error in f ′(xk) very much less than the relative error in f(xk). This
observation is of great importance in particular in the generalization of Newton’s
method to systems of nonlinear equations.
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We now study the propagation of errors in more general non-linear expressions.
Consider first the case when we want to compute a function y = f(x) of a single
real variable x. How is the error in x propagated to y? Let x̃ − x = ∆x. Then, a
natural way is to approximate ∆y = ỹ − y with the differential of y By the mean
value theorem, ∆y = f(x+ ∆x) − f(x) = f ′(ξ)∆x, where ξ is a number between x
and x+ ∆x. Suppose that |∆x| ≤ ǫ. Then it follows that

|∆y| ≤ max
ξ

|f ′(ξ)|ǫ, ξ ∈ [x− ǫ, x+ ǫ]. (2.4.3)

In practice, it is usually sufficient to replace ξ by the available estimate of x. Even
if high precision is needed in the value of f(x), one rarely needs a high relative
precision in an error bound or an error estimate. (In the neighborhood of zeros of
the first derivative f ′(x) one has to be more careful!)

By the implicit function theorem a similar result holds if y is an implicit
function of x defined by g(x, y) = 0. If g(x, y) = 0 and ∂g

∂y (x, y) 6= 0, then in a

neighborhood of x, y there exists a unique function y = f(x) such that g(x, f(x)) = 0
and it holds that

f ′(x) = −∂g
∂x

(x, f(x))
/∂g

∂y
(x, f(x)).

Example 2.4.4.
The result in Lemma 2.3.5 does not say that the computed roots of the

quadratic equation are close to the exact roots r1, r2. To answer that question
we must determine how sensitive the roots are to a relative perturbation in the
coefficient c. Differentiating ax2 + bx + c = 0, where x = x(c) with respect to c
we obtain (2ax+ b)dx/dc+ 1 = 0, dx/dc = −1/(2ax+ b). With x = r1 and using
r1 + r2 = −b/a, r1r2 = c/a this can be written

dr1
r1

= −dc
c

r2
r1 − r2

.

This shows that when |r1 − r2| ≪ |r2| the roots can be very sensitive to small
relative perturbations in c.

When r1 = r2, that is when there is a double root, this linear analysis breaks
down. Indeed it is easy to see that the equation (x − r)2 − ∆c = 0 has roots
x = r ±

√
∆c.

To analyze error propagation in a function of several variables f = f(x1, . . . , xn),
we need the following generalization of the mean value theorem:

Theorem 2.4.3.
Assume that the real valued function f is differentiable in a neighborhood of

the point x = (x1, x2, . . . , xn), and let x = x + ∆x be a point in this neighborhood.
Then there exists a number θ, such that

∆f = f(x+ ∆x) − f(x) =

n∑

i=1

∂f

∂xi
(x+ θ∆x)∆xi, 0 ≤ θ ≤ 1.
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Proof. The proof follows by considering the function F (t) = f(x+ t∆x) and using
the mean value theorem for functions of one variable and the chain rule.

From Theorem 2.4.3 it follows that the perturbation ∆f is approximately equal
to the total differential. The use of this approximation means that the function
f(x) is, in a neighborhood of x that contains the point x + ∆x, approximated
by a linear function. All the techniques of differential calculus, such as logarithmic
differentiation, implicit differentiation, may be useful for the calculation of the total
differential; see the examples and the problems at the end of this section.

Theorem 2.4.4 (General Formula for Error Propagation).

Let the real valued function f = f(x1, x2, . . . , xn) be differentiable in a neigh-
borhood of the point x = (x1, x2, . . . , xn) with errors ∆x1,∆x2, . . . ,∆xn. Then it
holds

∆f ≈
n∑

i=1

∂f

∂xi
∆xi. (2.4.4)

Then for the maximal error in f(x1, . . . , xn) we obtain the approximate upper bound

|∆f | /
n∑

i=1

∣
∣
∣
∣

∂f

∂xi

∣
∣
∣
∣
|∆xi|. (2.4.5)

where the partial derivatives are evaluated at x.

In order to get a strict bound for |∆f |, one should use in (2.4.5) the maximum
absolute values of the partial derivatives in a neighborhood of the known point x.
In most practical situations it suffices to calculate |∂f/∂xi| at x and then add a
certain marginal amount (5 to 10 percent, say) for safety. Only if the ∆xi are
large or if the derivatives have a large relative variation in the neighborhood of x,
need the maximal values be used. (The latter situation occurs, for example, in a
neighborhood of an extremal point of f(x).)

The bound in Theorem 2.4.4 is the best possible, unless one knows some
dependence between the errors of the terms. Sometimes it can, for various reasons,
be a gross overestimate of the real error.

Example 2.4.5.
Compute error bounds for f = x2

1−x2, where x1 = 1.03±0.01, x2 = 0.45±0.01.
We obtain ∣

∣
∣
∣

∂f

∂x1

∣
∣
∣
∣
= |2x1| ≤ 2.1,

∣
∣
∣
∣

∂f

∂x2

∣
∣
∣
∣
= | − 1| = 1,

and find |∆f | ≤ 2.1 · 0.01 + 1 · 0.01 = 0.031, or f = 1.061 − 0.450 ± 0.032 =
0.611±0.032. the error bound has been raised 0.001 because of the rounding in the
calculation of x2

1.

One is seldom asked to give mathematically guaranteed error bounds. More
often it is satisfactory to give an estimate of the order of magnitude of the anticipated
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error. The bound for |∆f | obtained with Theorem 2.4.3 estimates the maximal
error, i.e, covers the worst possible cases, where the sources of error ∆xi contribute
with the same sign and magnitudes equal to the error bounds for the individual
variables.

In practice, the trouble with formula (2.4.5) is that it often gives bounds which
are too coarse. More realistic estimates are often obtained using the standard error
introduced in Sec. 2.3.3. Here we give without proof the result for the general case,
which can be derived using probability theory and the formula (2.4.4). (Compare
with the result for the standard error of a sum given in Sec. 2.3.3.)

Theorem 2.4.5.
Assume that the errors ∆x1,∆x2, . . . ,∆xn are independent random variables

with mean zero and standard deviations ǫ1, ǫ2, . . . , ǫn. Then the standard error ǫ for
f(x1, x2, . . . , xn) is given by the formula:

ǫ ≈
(

n∑

i=1

(
∂f

∂xi

)2

ǫ2i

)1/2

(2.4.6)

Analysis of error propagation is more than just a means for judging the relia-
bility of calculated results. As remarked above, it has an equally important function
as a means for the planning of a calculation or scientific experiment. It can help
in the choice of algorithm, and in making certain decisions during a calculation.
Examples of such decisions are the choice of step length during a numerical inte-
gration. Increased accuracy often has to be bought at the price of more costly or
complicated calculations. One can also shed some light to what degree it is advis-
able to obtain a new apparatus to improve the measurements of a given variable,
when the measurements of other variables are subject to error as well.

2.4.3 Condition Numbers of Problems

It is useful to have a measure of how sensitive the output data is to small changes
in the input data. In general, if “small” changes in the input data can result in
“large” changes in the output data, we call the problem ill-conditioned; otherwise
it is called well-conditioned. (The definition of large may differ from problem
to problem depending on the accuracy of the data and the accuracy needed in the
solution.)

Definition 2.4.6.
Consider a numerical problem y = f(x) ∈ Rm, x ∈ Rn, or in component form

yj = fj(x1, . . . , xn), j = 1 : m. Let x̂ be fixed and assume that neither x̂ or ŷ0f(x̂)
is zero. The sensitivity of y with respect to small changes in x can be measured by
the relative condition number

κ(f ; x̂) = lim
ǫ→0

sup
‖h‖=ǫ

{‖f(x+ h) − f(x)‖
‖f(x)‖

/‖h‖
‖x‖

}

, (2.4.7)
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We have used a vector norm ‖ · ‖ to measure the size of a vector; see Ap-
pendix A.3.3. Common vector norms are the p-norms defined by

‖x‖p = (x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p <∞,

where one usually takes p = 1, 2, or p = ∞.
The condition number (2.4.7) is a function of the input data x̂ and also depends

on the choice of norms in the data space and the solution space. It measures the
maximal amount which a given relative perturbation is magnified by the function
f , in the limit of infinitely small perturbations. For perturbations of sufficiently
small size we have the estimate

‖ỹ − y‖ ≤ κǫ‖y‖ +O(ǫ2).

We can expect to have roughly s = log10κ less significant decimal digits in the
solution than in the input data. However, this may not hold for all components of
the output.

Assume that f has partial derivatives with respect to xi, i = 1 : n, and let
J(x) be the Jacobian matrix

Jij(x) =
∂fj(x)

∂xi
, j = 1 : m, i = 1 : n. (2.4.8)

Then, for any matrix norm subordinate to the vector norm (see Appendix A.3.3),
the condition number defined above can be expressed as

κ(f ; x̂) =
‖J(x̂)‖‖x̂‖
‖f(x̂)‖ . (2.4.9)

For a composite function g ◦ f the chain rule for derivatives can be used to
show that

κ(g ◦ f ; x̂) ≤ κ(g; ŷ)κ(f ; x̂) (2.4.10)

If the composite function is ill-conditioned we can infer from this that at least one
of the functions g and f must be ill-conditioned.

If y = f(x) is a linear (bounded) function y = Mx, where M ∈ Rm×n, then
according to (2.4.9)

κ(M ;x) = ‖M‖‖x‖‖y‖ .

This inequality is sharp in the sense that for any matrix norm and for any M and
x there exists a perturbation δb such that equality holds.

If M is a square and invertible matrix then from x = M−1y we conclude that
‖x‖ ≤ ‖M−1‖ ‖y‖. This gives the upper bound

κ(M ;x) ≤≡ ‖M‖‖M−1‖. (2.4.11)

which is referred to as the condition number of M . For given x (or y), this upper
bound may not be achievable for any perturbation of x. The inequality (2.4.11)
motivates the following definition.
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Theorem 2.4.7.
The condition number for a square nonsingular matrix M ∈ Rn×n equals

κ(M) = ‖M‖ ‖M−1‖, where ‖ · ‖ is a subordinate matrix norm. In particular, for
the Euclidean norm

κ(M) = κ2(M) = ‖M‖2 ‖M−1‖2 = σ1/σn, (2.4.12)

where σ1 and σn are the largest and smallest singular value of M .

The last expression in (2.4.12) follows by the observation that ifM has singular
values σi, i = 1 : n, then M−1 has singular values 1/σi, i = 1 : n; see Theorem 1.3.3.

We note some simple properties of κ(M). From (αM)−1 = M−1/α it follows
that κ(αM) = κ(M), i.e. the condition number is invariant under multiplication of
M by a scalar. Matrix norms are submultiplicative, i.e. ‖KM‖ ≤ ‖K‖ ‖M‖. From
the definition and the identity MM−1 = I it follows that

κ(M) = ‖M‖2‖M−1‖2 ≥ ‖I‖ = 1,

i.e. the condition number κ2 is always greater or equal to one. The composite
mapping of z = Ky and y = Mx is represented by the matrix product KY , and we
have

κ(KM) ≤ κ(K)κ(M).

It is important to note that the condition number is a property of the mapping
x→ y and does not depend on the algorithm used to evaluate y! An ill-conditioned
problem is intrinsically difficult to solve accurately using any numerical algorithm.
Even if the input data is exact rounding errors made during the calculations in
floating-point arithmetic may cause large perturbations in the final result. Hence,
in some sense an ill-conditioned problem is not well posed.

Space of
Input data

Space of
Output data

X Y
P

Figure 2.4.1. Geometrical illustration of the condition number.

Example 2.4.6.
If we get an inaccurate solution to an ill-conditioned problem, then often

nothing can be done about the situation. (If you ask a stupid question you get a
stupid answer!) But sometimes the difficulty depends on the form one has chosen
to represent the input and output data of the problem.
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The polynomial

P (x) = (x− 10)4 + 0.200(x− 10)3 + 0.0500(x− 10)2 − 0.00500(x− 10) + 0.00100,

is identical with a polynomial Q which if the coefficients are rounded to six digits,
becomes

Q̃(x) = x4 − 39.8000x3 + 594.050x2 − 3941.00x+ 9805.05.

One finds that P (10.11) = 0.0015± 10−4, where only three digits are needed in the
computation, while Q̃(10.11) = −0.0481 ± 1

2 · 10−4, in spite of the fact that eight
digits were used in the computation. The rounding to six digits of the coefficients
of Q has thus caused an error in the polynomial’s value at x = 10.11; the erroneous
value is more than 30 times larger than the correct value and has the wrong sign.
When the coefficients of Q are input data, the problem of computing the value of
the polynomial for x ≈ 10 is far more ill-conditioned than when the coefficients of
P are input data.

The conditioning of a problem can to some degree be illustrated geometrically.
A numerical problem P means a mapping of the space X of possible input data
onto the space Y of the output data. The dimensions of these spaces are usually
quite large. In Figure 2.4.2 we picture a mapping in two dimensions. Since we
are considering relative changes, we take the coordinate axis to be logarithmically
scaled. A small circle of radius r is mapped onto an ellipse whose ratio of major to
minor axis is κr, where κ is the condition number of the problem P .

2.4.4 Perturbation Analysis for Linear Systems

Consider the linear system y = Ax, where A is nonsingular and y 6= 0. From the
analysis in the previous section we know that the condition number of the inverse
mapping x = A−1y 6= 0 is bounded by the condition number

κ(A−1) = κ(A) = ‖A−1‖ ‖A‖.

Assume that the elements of the matrix A are given data and subject to
perturbations δA. The perturbed solution x+ δx satisfies the linear system

(A+ δA)(x + δx) = y.

Subtracting Ax = y we obtain (A+ δA)δx = −δAx. Assuming that also the matrix
(A+ δA) = A(I +A−1δA) is nonsingular, and solving for δx yields

δx = −(I +A−1δA)−1A−1δAx, (2.4.13)

which is the basic identity for the analysis. Taking norms gives

‖δx‖ ≤ ‖(I +A−1δA)−1‖ ‖A−1‖‖δA‖ ‖x‖.
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It can be shown (see Problem 2.4.9) that if ‖A−1δA‖ < 1, then A+δA is nonsingular
and

‖(I +A−1δA)−1‖ < 1/(1 − ‖A−1δA‖).
Neglecting second order terms,

‖δx‖
‖x‖ / κ(A)

‖δA‖
‖A‖ . (2.4.14)

This shows that κ(A) also is the condition number of x = A−1y with respect to
perturbations in A.

For any real, orthogonal matrix Q we have

κ2(Q) = ‖Q‖2‖Q−1‖2 = 1,

so Q is perfectly conditioned. By Lemma 1.6.3 we have ‖QAP‖2 = ‖A‖2 for any
orthogonal P and Q. It follows that

κ2(PAQ) = κ2(A),

i.e. the condition number of a matrix A is invariant under orthogonal transforma-
tions. This important fact is one reason why orthogonal transformations play a
central role in numerical linear algebra!

How large may κ be before we consider the problem to be ill-conditioned?
That depends on the accuracy of the data and the accuracy desired in the solution.
If the data have a relative error of 10−7 then we can guarantee a (normwise) relative
error in the solution ≤ 10−3 if κ ≤ 0.5 · 104. But to guarantee a (normwise) relative
error in the solution ≤ 10−6 we need to have κ ≤ 5.

Table 2.4.1. Condition numbers of Hilbert matrices of order ≤ 12.

n κ2(Hn) n κ2(Hn)
1 1 7 4.753·108

2 19.281 8 1.526·1010

3 5.241·102 9 4.932·1011

4 1.551·104 10 1.602·1013

5 4.766·105 11 5.220·1014

6 1.495·107 12 1.678·1016

Example 2.4.7.
The Hilbert matrix Hn of order n with elements

Hn(i, j) = hij = 1/(i+ j − 1), 1 ≤ i, j ≤ n.

is a notable example of an ill-conditioned matrix. In Table 2.4.1 approximate condi-
tion numbers of Hilbert matrices of order ≤ 12, computed in IEEE double precision,
are given. For n > 12 the Hilbert matrices are too ill-conditioned even for IEEE
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double precision! From a result by G. Szegö (see Gautschi [136, p. 34]) it follows
that

κ2(Hn) ≈ (
√

2 + 1)4(n+1)

215/4
√
πn

∼ e3.5n,

i.e. the condition numbers grows exponentially with n. Although the severe ill-
conditioning exhibited by the Hilbert matrices is rare, moderately ill-conditioned
linear systems do occur regularly in many practical applications!

The normwise condition analysis in the previous section usually is satisfactory
when the linear system is “well scaled”. If this is not the case then a component-
wise analysis may give sharper bounds. We first introduce some notations. The
absolute values |A| and |b| of a matrix A and vector b is interpreted componentwise,

|A|ij = (|aij |), |b|i = (|bi|).

The partial ordering “≤” for the absolute values of matrices |A|, |B| and vectors
|b|, |c|, is to be interpreted component-wise39

|A| ≤ |B| ⇐⇒ |aij | ≤ |bij |, |b| ≤ |c| ⇐⇒ |bi| ≤ |ci|.

It follows easily that |AB| ≤ |A| |B| and a similar rule holds for matrix-vector
multiplication.

Taking absolute values in (2.4.13) gives component-wise error bounds for the
corresponding perturbations in x,

|δx| ≤ |(I +A−1δA)−1| |A−1|(|δA||x| + |δb|)

The matrix (I − |A−1||δA|) is guaranteed to be nonsingular if ‖ |A−1| |δA| ‖ < 1.
Assume now that we have component-wise bounds for the perturbations in A

and b, say

|δA| ≤ ω|A|, |δb| ≤ ω|b|. (2.4.15)

Neglecting second order terms in ω and using (2.4.15) gives

|δx| / |A−1|(|δA||x| + |δb|) ≤ ω|A−1|(|A| |x| + |b|), (2.4.16)

Taking norms in (2.4.16) we get

‖δx‖ / ω‖ |A−1|(|A| |x| + |b|) ‖ +O(ω2). (2.4.17)

The scalar quantity

κ|A|(A) = ‖ |A−1| |A| ‖ (2.4.18)

is called the Bauer–Skeel condition number of the matrix A.
A different way to examine the sensitivity of various matrix problems is the

differentiation of a parametrized matrix. Suppose that λ is a scalar and that A(λ)

39Note that A ≤ B in other contexts means that B − A is positive semidefinite.
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is a matrix with elements aij(λ) that are differentiable functions of λ. Then by the
derivative of the matrix A(λ) we mean the matrix

A′(λ) =
d

dλ
A(λ) =

(
daij
dλ

)

(2.4.19)

Many of the rules for differentiation of scalar functions are easily generalized to
differentiation of matrices. For differentiating a product of two matrices there holds

d

dλ
[A(λ)B(λ)] =

d

dλ
[A(λ)]B(λ) +A(λ)

d

dλ
[B(λ)]. (2.4.20)

Assuming that A−1(λ) exists, using this rule on the identity A−1(λ)A(λ) = I, we
obtain

d

dλ
[A−1(λ)]A(λ) +A−1(λ)

d

dλ
[A(λ)] = 0.

or solving for the derivative of the inverse

d

dλ
[A−1(λ)] = −A−1(λ)

d

dλ
[A(λ)]A−1(λ). (2.4.21)

2.4.5 Error Analysis and Stability of Algorithms

One common reason for poor accuracy in the computed solution is that the problem
is ill-conditioned. But poor accuracy can also be caused by a poorly constructed
algorithm. We say in general that an algorithm is unstable if it can introduce large
errors in the computed solutions to a well-conditioned problem.

We consider in the following a finite algorithm with input data (a1, . . . , ar),
which by a sequence of arithmetic operations is transformed into the output data
(w1, . . . , ws), There are two basic forms of roundoff error analysis for such an algo-
rithm, which both are useful:

(i) In forward error analysis one attempts to find bounds for the errors in the
solution |wi −wi|, i = 1 : s, where wi denotes the computed value of wi. The
main tool used in forward error analysis is the propagation of errors as studied
in Sec. 2.4.2.

(ii) In backward error analysis, one attempts to determine a modified set of data
ai + ∆ai such that the computed solution wi is the exact solution, and give
bounds for |∆ai|. There may be an infinite number of such sets; in this case
we seek to minimize the size of|∆ai|. However, it can also happen, even for
very simple algorithms, that no such set exists.

Sometimes, when a pure backward error analysis cannot be achieved, one can
show that the computed solution is a slightly perturbed solution to a problem with
slightly modified input data. An example of such a mixed error analysis is the
error analysis given in Lemma 2.3.5 for the solution of a quadratic equation.
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In backward error analysis no reference is made to the exact solution for the
original data. In practice, when the data is known only to a certain accuracy,
the “exact” solution may not be well-defined. Then any solution, whose backward
error is smaller than the domain of uncertainty of the data, may be considered to a
satisfactory result.

A frequently occurring backward error problem is the following. Suppose we
are given an approximate solution y to a linear system Ax = b. We want to find
out if y is the exact solution to a nearby perturbed system (A+ ∆A)y = b+ ∆b. To
this end we define the norm-wise backward error of y as

η(y) = min{ǫ | (A+ ∆A)y = b + ∆b, ‖∆A‖ ≤ ǫ‖A‖, ‖∆b‖ ≤ ǫ‖b‖} (2.4.22)

The following theorem tells us that the norm-wise backward error of y is small if
the residual vector b−Ay is small.

Theorem 2.4.8 (Rigal and Gaches [271]).
The norm-wise backward error of y is given by

η(y) =
‖r‖

‖A‖ ‖y‖+ ‖b‖ (2.4.23)

where r = b−Ay, and ‖ · ‖ is any consistent norm.

Similarly we define the component-wise backward error ω(y) of y by

ω(y) = min{ǫ | (A+ ∆A)y = b + ∆b, |∆A| ≤ ǫ‖A‖, |∆b| ≤ ǫ|b|}. (2.4.24)

As the following theorem shows there is a simple expression also for ω(y).

Theorem 2.4.9 (Oettli and Prager [248]).
Let r = b−Ax̄, E and f be nonnegative and set

ω(y) = max
i

|ri|
(E|x̄| + f)i

, (2.4.25)

where ξ/0 is interpreted as zero if ξ = 0 and infinity otherwise.

By means of backward error analysis it has been shown, even for many quite
complicated matrix algorithms, that the computed results the algorithm produces
under the influence of roundoff error are the exact output data of a problem of
the same type in which the relative change data only is of the order of the unit
roundoff u.

Definition 2.4.10.
An algorithm is backward stable if the computed solution w for the data a

is the exact solution of a problem with slightly perturbed data ā such that for some
norm ‖ · ‖ it holds

‖ā− a‖/‖a‖ < c1u, (2.4.26)
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where c1 is a not too large constant and u is the unit roundoff.

We are usually satisfied if we can prove normwise forward or backward stability
for some norm, for example, ‖ · ‖2 or ‖ · ‖∞. Occasionally we may like the estimates
to hold component-wise,

|āi − ai|/|ai| < c2u, i = 1 : r. (2.4.27)

For example, by equation (2.3.16) the usual algorithm for computing an inner prod-
uct xT y is backward stable, for element-wise relative perturbations.

We would like stability to hold for some class of input data. For example,
a numerical algorithm for solving systems of linear equations Ax = b is backward
stable for a class of matrices A if for each A ∈ A and for each b the computed
solution x̄ satisfies Āx̄ = b̄ where Ā and b̄ are close to A and b.

To yield error bounds for wi, a backward error analysis has to be comple-
mented with a perturbation analysis. For this the error propagation formulas in
Sec. 2.4.2 can often be used. If the condition number of the problem is κ, then it
follows that

‖w − w‖ ≤ c1uκ‖w‖ +O(u2). (2.4.28)

Hence the error in the solution may still be large if the problem is ill-conditioned.
But we have obtained an answer which is the exact mathematical solution to a
problem with data close to the one we wanted to solve. If the perturbations ā− a
are within the uncertainties of the given data, the computed solution is as good as
our data warrants!

A great advantage of backward error analysis is that, when it applies, it tends
to give much sharper results than a forward error analysis. Perhaps more important,
it usually also gives a better insight into the stability (or lack of it) of the algorithm.

By the definition of the condition number κ it follows that backward stability
implies forward stability, but the converse is not true. Many important direct algo-
rithms for solving linear systems are known to be backward stable. The following
result for the Cholesky factorization is an important example.

Theorem 2.4.11. [J. H. Wilkinson [334]]
Let A ∈ Rn×n be a symmetric positive definite matrix. Provided that

2n3/2uκ(A) < 0.1, (2.4.29)

the Cholesky factor of A can be computed without breakdown and the computed
factor R̄ satisfies

R̄T R̄ = A+ E, ‖E‖2 < 2.5n3/2u‖A‖2, (2.4.30)

and hence is the exact Cholesky factor of a matrix close to A.

For the LU factorization of matrix A the following component-wise backward
error result is known.
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Theorem 2.4.12.
If the LU factorization of the matrix A ∈ Rn×n runs to completion, then the

computed factors L̄ and Ū satisfy

A+ E = L̄Ū , |E| ≤ γn|L̄| |Ū |, (2.4.31)

where γn = nu/(1 − nu), and u is the unit roundoff.

This shows that unless the elements in the computed factors |L̄| and |Ū | be-
come large LU factorization is backward stable.

Example 2.4.8.
For ǫ = 10−6 the system

(
ǫ 1
1 1

)(
x1

x2

)

=

(
1
0

)

,

is well-conditioned and has the exact solution x1 = −x2 = −1/(1 − ǫ) ≈ −1. If
Gaussian elimination is used, multiplying the first equation by 106 and subtracting
from the second, we obtain (1 − 106)x2 = −106. Rounding this to x2 = 1 is
correct to six digits. In the back-substitution to obtain x1, we then get 10−6x1 =
1 − 1, or x1 = 0, which is a completely wrong result. This shows that Gaussian
elimination can be an unstable algorithm unless row (and/or column) interchanges
are performed to limit element growth.

Some algorithms, for example, most iterative methods are not backward sta-
ble. Then it is necessary to weaken the definition of stability. In practice an algo-
rithm can be considered stable if it produces accurate solutions for well-conditioned
problems. Such an algorithm can be called weakly stable. Weak stability may be
sufficient for giving confidence in an algorithm.

Example 2.4.9.
In the method of normal equations for computing the solution of a linear

least squares problem one first forms the matrix ATA. This product matrix can be
expressed in outer form as

ATA =

m∑

i=1

aia
T
i ,

where aTi is the ith row of A, i.e. AT = ( a1 a2 . . . am ). From (2.3.14) it follows
that this computation is not backward stable, i.e. it is not true that fl(ATA) =
(A+E)T (A+E) for some small error matrix E. In order to avoid loss of significant
information higher precision need to be used.

Backward stability is easier to prove when there is a sufficiently large set of
input data compared to the number of output data. When computing the outer
product xyT (as in Example 2.4.9) there are 2n data and n2 results. This is not a
backward stable operation. When the input data is structured rather than general
backward stability often does not hold.
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Example 2.4.10.
Many algorithms for solving a linear system Ax = b are known to be backward

stable, i.e. the computed solution is the exact solution of a system (A + E)x = b,
where the normwise relative error ‖E‖/‖A‖ is not much larger than the machine
precision. In many cases the system matrix is structured. An important example
is Toeplitz matrices T , whose entries are constant along every diagonal

T = (ti−j)1≤i,j≤n =







t0 t1 . . . tn−1

t−1 t0 . . . tn−2

...
...

. . .
...

t−n+1 t−n+2 . . . t0







∈ Rn×n. (2.4.32)

Note that a Toeplitz matrix is completely specified by its first row and column, i.e.
the 2n− 1 quantities t = (t−n+1, . . . , t0, . . . , tn−1).

Ideally, in a strict backward error analysis, we would like to show that a
solution algorithm always computes an exact solution to a nearby Toeplitz system
defined by t + s, where s is small. It has been shown that no such algorithm can
exist! We have to be content with algorithms that (at best) compute the exact
solution of (T + E)x = b, where ‖E‖ is small but E unstructured.

In the construction of an algorithm for a given problem, one often breaks
down the problem into a chain of subproblems, P1, P2, . . . , Pk for which algorithms
A1, A2, . . . , Ak are known, in such a way that the output data from Pi−1 is the input
data to Pi. Different ways of decomposing the problem give different algorithms with,
as a rule, different stability properties. It is dangerous if the last subproblem in such
a chain is ill-conditioned. On the other hand, it need not be dangerous if the first
subproblem is ill-conditioned, if the problem itself is well-conditioned. Even if the
algorithms for all the subproblems are stable, we cannot conclude that the composed
algorithm is stable!

Example 2.4.11.
The problem of computing the eigenvalues λi of a symmetric matrix A, given

its elements (aij), is always a well-conditioned numerical problem with absolute
condition number equal to 1. Consider an algorithm which breaks down this problem
into two subproblems:

• P1: compute the coefficients of the characteristic polynomial of the matrix A
p(λ) = det(A− λI) of the matrix A.

• P2: compute the roots of the polynomial p(λ) obtained from P1.

It is well known that the second subproblem P2 can be very ill-conditioned.
For example, for a symmetric matrix A with eigenvalues ±1,±2, . . . ,±20 the con-
dition number for P2 is 1014 in spite of the fact that the origin lies exactly between
the largest and smallest eigenvalues, so that one cannot blame the high condition
number on a difficulty of the same type as that encountered in Example 2.4.7.

The important conclusion that eigenvalues should not be computed as outlined
above is further discussed in Sec. 6.5.2.
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On the other hand, as the next example shows, it need not be dangerous if
the first subproblem of a decomposition is ill-conditioned, even if the problem itself
is well-conditioned.

Example 2.4.12.
The first step in many algorithms for computing the eigenvalues λi of a sym-

metric matrix A is to use orthogonal similarity transformations to symmetric tridi-
agonal form,

QTAQ = T =









α1 β2

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn
βn αn









.

In the second step the eigenvalues of T , which coincide with those of A, are com-
puted.

Wilkinson [333, §5.28] showed that the computed tridiagonal matrix can differ
a lot from the matrix corresponding to exact computation. Hence here the first
subproblem is ill-conditioned. (This fact is not as well known as it should be and
still alarms many users!) But the second subproblem is well-conditioned and the
combined algorithm is known to be backward stable, i.e. the computed eigenvalues
are the exact eigenvalues of a matrix A + E, where ‖E‖2 < c(n)u‖A‖2. This is a
more complex example of a calculation, where rounding errors cancel!

It should be stressed that the primary purpose of a rounding error analysis is
to give insight in the properties of the algorithm. In practice we can usually expect
much smaller backward error in the computed solutions than the bounds derived in
this section. It is appropriate to recall here a remark by J. H. Wilkinson:

“All too often, too much attention is paid to the precise error bound
that has been established. The main purpose of such an analysis is either
to establish the essential numerical stability of an algorithm or to show
why it is unstable and in doing so expose what sort of change is necessary
to to make it stable. The precise error bound is not of great importance.”

The treatment in this section is geared towards matrix problems and is not
very useful, for example, for time dependent problems in ordinary and partial dif-
ferential equations. In Sec. 1.4 some methods for the numerical solution of an initial
value problem

y′′ = −y, y(0) = 0, y′(0) = 1,

were studied. As will be illustrated in Example 3.3.28, catastrophic error growth
can occur in such processes. The notion of stability is here related to the stability of
linear difference equations. A more detailed discussion of these concepts is deferred
to Vol. III.
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Review Questions

4.1. The maximal error bounds for addition and subtraction can for various reasons
be a coarse overestimate of the real error. Give, preferably with examples, two
such reasons.

4.2. How is the condition number κ(A) of a matrix A defined? How does κ(A)
relate to perturbations in the solution x to a linear system Ax = b, when A
and b are perturbed?

4.3. Define the condition number of a numerical problem P of computing output
data y1, . . . , ym given input data x1, . . . , xn.

4.4. Give examples of well-conditioned and ill-conditioned problems.

4.5. What is meant by (a) a forward error analysis; (b) a backward error analysis;
(c) a mixed error analysis?

4.6. What is meant by (a) a backward stable algorithm; (b) a forward stable algo-
rithm; (c) a mixed stable algorithm; (d) a weakly stable algorithm?

Problems and Computer Exercises

4.1. (a) Determine the maximum error for y = x1x
2
2/
√
x3, where x1 = 2.0 ± 0.1,

x2 = 3.0 ± 0.2, and x3 = 1.0 ± 0.1. Which variable contributes most to the
error?

(b) Compute the standard error using the same data as in (a), assuming that
the error estimates for the xi indicate standard deviations.

4.2. One wishes to compute f = (
√

2 − 1)6, using the approximate value 1.4 for√
2. Which of the following mathematically equivalent expressions gives the

best result

1

(
√

2 + 1)6
; (3 − 2

√
2)3;

1

(3 + 2
√

2)3
; 99 − 70

√
2;

1

99 + 70
√

2
?

4.3. Analyze the error propagation in xα:

(a) If x is exact and α in error. (b) If α is exact and x in error.

4.4. One is observing a satellite in order to determine its speed. At the first
observation, R = 30, 000 ± 10 miles. Five seconds later, the distance has
increased by r = 125.0 ± 0.5 miles and the change in the angle was φ =
0.00750 ± 0.00002 radians. What is the speed of the satellite, assuming that
it moves in a straight line and with constant speed in the interval?

4.5. One has measured two sides and the included angle of a triangle to be a =
100.0± 0.1, b = 101.0± 0.1, and the angle C = 1.00o ± 0.01o. Then the third
side is given by the cosine theorem

c = (a2 + b2 − 2ab cosC)1/2.
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(a) How accurately is it possible to determine c from the given data?

(b) How accurately does one get c if one uses the value cos 1o = 0.9998, which
is correct to four decimal places.

(c) Rewrite the cosine theorem so that it is possible to compute c to full
accuracy using only a four-decimal table for the trigonometric functions.

4.6. Consider the linear system
(

1 α
α 1

)(
x
y

)

=

(
1
0

)

,

where α 6= 1. What is the relative condition number for computing x? Using
Gaussian elimination and four decimal digits compute x and y for α = 0.9950
and compare with the exact solution x = 1/(1 − α2), y = −α/(1 − α2).

4.7. (a) Let two vectors u and v be given with components (u1, u2) and (v1, v2).
The angle φ between u and v is given by the formula

cosφ =
u1v1 + u2v2

(u2
1 + u2

2)
1/2(v2

1 + v2
2)

1/2
.

Show that computing the angle φ from the components of u and v is a well-
conditioned problem.

Hint: Take the partial derivative of cosφ with respect to u1, and from this
compute ∂φ/∂u1. The other partial derivatives are obtained by symmetry.

(b) Show that the formula in (a) is not stable for small angles φ.

(c) Show that the following algorithm is stable. First normalize the vectors
ũ = u/‖u‖2, ṽ = v/‖v‖2. Then compute α = ‖ũ− ṽ‖2, β = ‖ũ+ ṽ‖2 and set

φ =

{
2 arctan(α/β), if α ≤ β;
π − 2 arctan(β/α), if α > β.

4.8. For the integral

I(a, b) =

∫ 1

0

e−bx

a+ x2
dx.

the physical quantities a and b have been measured to be a = 0.4000± 0.003,
b = 0.340±0.005. When the integral is computed for various perturbed values
of a and b, one obtains:

a b I

0.39 0.34 1.425032
0.40 0.32 1.408845
0.40 0.34 1.398464
0.40 0.36 1.388198
0.41 0.34 1.372950

Estimate the uncertainty in I(a, b)!
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4.9. Let B ∈ Rn×n be a matrix for which ‖B‖ < 1. Show that the infinite sum
and product

(I −B)−1 =

{

I +B +B2 +B3 +B4 · · · ,
(I +B)(I +B2)(I + B4)(I +B8) · · ·

both converge to the indicated limit.

Hint: Use the identity (I −B)(I +B + · · · +Bk) = I −Bk+1.

(b) Show that the matrix (I −B) is nonsingular and that

‖(I −B)−1‖ ≤ 1/(1 − ‖B‖).

4.10. Solve the linear system in Example 2.4.8 with Gaussian elimination after ex-
changing the two equations. Do you now get an accurate result?

4.11. Derive forward and backward recursion formulas for calculating the integrals

In =

∫ 1

0

xn

4x+ 1
dx.

Why is one algorithm stable and the other unstable?

4.12. (a) Use the results in Table 2.4.1 to determine constants c and q such that
κ(Hn) ≈ c · 10q.

(b) Compute the Bauer–Skeel condition number cond (Hn) = ‖ |H−1
n ||Hn| ‖2,

of the Hilbert matrices for n = 1 : 12. Compare the result with the values of
κ(Hn) given in Table 2.4.1.

4.13. Vandermonde matrices are structured matrices of the form

Vn =







1 1 · · · 1
α1 α2 · · · αn
...

... · · ·
...

αn−1
1 αn−1

2 · · · αn−1
n






.

Let αj = 1 − 2(j − 1)/(n − 1), j = 1 : n. Compute the condition numbers
κ2(Vn) for n = 5, 10, 15, 20, 25. Is the growth in κ2(Vn) exponential in n?

2.5 Automatic Control of Accuracy and Verified
Computing

2.5.1 Running Error Analysis

A different approach to rounding error analysis is to perform the analysis automat-
ically, for each particular computation. This gives an a posteriori error analysis as
compared to the a priori error analysis discussed above.

A simple form of a posteriori analysis, called running error analysis, was used
in the early days of computing, see Wilkinson [336]. To illustrate his idea we rewrite
the basic model for floating-point arithmetic as

x op y = fl (x op y)(1 + ǫ).
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These are also satisfied for most implementations of floating-point arithmetic. Then,
the actual error can be estimated |fl (x op y) − x op y| ≤ u|fl (x op y)|. Note that
the error is now given in terms of the computed result and is available in the computer
at the time the operation is performed. This running error analysis can often be
easily implemented. We just take an existing program and modify it, so that as
each arithmetic operation is performed, the absolute value of the computed results
is added into the accumulating error bound.

Example 2.5.1.
The inner product fl (xT y) is computed by the program

s = 0; η = 0;
for i = 1, 2, . . . , n

t = fl (xiyi); η = η + |t|;
s = fl (s+ t); η = η + |s|;

end

For the final error we have the estimate |fl (xT y)−xTy| ≤ ηu. Note that a running
error analysis takes advantage of cancellations in the sum. This is in contrast to the
previous estimates, which we call a priori error analysis, where the error estimate
is the same for all distribution of signs of the elements xi and yi.

Efforts have been made to design the computational unit of a computer so
that it gives, in every arithmetic operation, only those digits of the result which
are judged to be significant (possibly with a fixed number of extra digits), so-called
unnormalized floating arithmetic. This method reveals poor construction in al-
gorithms, but in many other cases it gives a significant and unnecessary loss of
accuracy. The mechanization of the rules, which a knowledgeable and experienced
person would use for control of accuracy in hand calculation, is not as free from
problems as one might expect. As complement to arithmetical operations of con-
ventional type, the above type of arithmetic is of some interest, but it is doubtful
that it will ever be widely used.

A fundamental difficulty in automatic control of accuracy is that to decide how
many digits are needed in a quantity to be used in later computation, one needs
to consider the entire context of the computations. It can in fact occur that the
errors in many operands depend on each other in such a way that they cancel each
other. Such cancellation of error, is a completely different phenomenon from the
previously discussed cancellation of terms, is most common in larger problems, but
will be illustrated here with a simple example.

Example 2.5.2.
Suppose we want to compute y = z1 + z2, where z1 =

√
x2 + 1, z2 = 200 − x,

x = 100 ± 1, with a rounding error which is negligible compared to that resulting
from the errors in z1 and z2. The best possible error bounds in the intermediate
results are z1 = 100 ± 1, z2 = 100 ± 1. It is then tempting to be satisfied with the
result y = 200 ± 2.
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But the errors in z1 and z2 due to the uncertainty in x will, to a large extent,
cancel each other! This becomes clear if we rewrite the expression as

y = 200 + (
√

x2 + 1 − x) = 200 +
1√

x2 + 1 + x
.

It follows that y = 200 + z, where 1/202 / z ≤ 1/198. Thus y can be computed
with an absolute error less than about 2/(200)2 = 0.5 · 10−4. Therefore using the
expression y = z1 + z2 the intermediate results z1 and z2 should be computed
to four decimals even though the last integer in these is uncertain! The result is
y = 200.0050± 1

210−4.

In larger problems, such a cancellation of errors can occur even though one
cannot easily give a way to rewrite the expressions involved. The authors have
seen examples where the final result, a sum of seven terms, was obtained correctly
to eight decimals even though the terms, which were complicated functions of the
solution to a system of nonlinear equations with fourteen unknowns, were correct
only to three decimals! Another nontrivial example is given in Example 2.4.12.

2.5.2 Experimental Perturbations

In many practical problems, the functional dependence between input data and
output data are so complicated that it is difficult to directly apply the general
formulas for error propagation derived in Sec. 2.4.4. One can then investigate the
sensitivity of the output data for perturbations in the input data by means of an
experimental perturbational calculation: One the performs the calculations
many times with perturbed input data and studies the perturbations in the output
data. For example, instead of using the formula for standard error of a function of
many variables, given in in Theorem 2.4.5, it is often easier to compute the function
a number of times with randomly perturbed arguments and to use them to estimate
the standard deviation of the function numerically.

Important data, such as the step length in a numerical integration or the
parameter which determines when an iterative process is going to be broken off,
should be varied with all the other data left unchanged. If one can easily vary the
precision of the machine in the arithmetic operations one can get an idea of the
influence of rounding errors. It is generally not necessary to make a perturbational
calculation for each and every data component; one can instead perturb many input
data simultaneously–for example, by using random numbers.

A perturbational calculation often gives not only an error estimate, but also
greater insight into the problem. Occasionally, it can be difficult to interpret the
perturbational data correctly, since the disturbances in the output data depend not
only on the mathematical problem, but also on the choice of numerical method
and the details in the design of the algorithm. The rounding errors during the
computation are not the same for the perturbed and unperturbed problem. Thus if
the output data reacts more sensitively than one had anticipated, it can be difficult
to immediately point out the source of the error. It can then be profitable to plan
a series of perturbation experiments with the help of which one can separate the
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effects of the various sources of error. If the dominant source of error is the method
or the algorithm, then one should try another method or another algorithm. It is
beyond the scope of this book to give further comments on the planning of such
experiments. Imagination and the general insights regarding error analysis, which
this chapter is meant to give, play a large role.

2.5.3 Introduction to Interval Arithmetic

In interval arithmetic one assumes that all input values are given as intervals
and systematically calculates an inclusion interval for each intermediate result. It
is partly an automation of calculation with maximal error bounds. The importance
of interval arithmetic is that it provides a tool for computing validated answers to
mathematical problems.

The most frequently used representations for the intervals are the infimum-
supremum representation

I = [a, b] := {x | a ≤ x ≤ b}, (a ≤ b). (2.5.1)

where x is a real number. The absolute value or the magnitude of an interval is
defined as

| [a, b] | = mag([a, b]) = max{|x| | x ∈ [a, b]}, (2.5.2)

and the mignitude of an interval is defined as

mig([a, b]) = min{|x| | x ∈ [a, b]}. (2.5.3)

In terms of the endpoints we have

mag([a, b]) = max{|a|, |b|},

mig([a, b]) =

{

min{|a|, |b|}, if 0 /∈ [a, b],
0, otherwise

.

The result of an interval operation equals the range of the corresponding real
operation. For example, the difference between the intervals [a1, a2] and [b1, b2],
is defined as the shortest interval which contains all the numbers x1 − x2, where
x1 ∈ [a1, a2], x2 ∈ [b1, b2], i.e. [a1, a2]− [b1, b2] := [a1−b2, a2−b1]. Other elementary
interval arithmetic operations are similarly defined:

[a1, a2] op [b1, b2] := {x1 opx2 | x1 ∈ [a1, a2], x2 ∈ [b1, b2]}, (2.5.4)

where op ∈ {+,−, ·, div }. The interval value of a function φ (for example, the
elementary functions sin, cos, exp, log) evaluated on an interval is defined as

φ([a, b]) = [ inf
x∈[a,b]

φ(x), sup
x∈[a,b]

φ(x)].
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Operational Definitions

Although (2.5.4) characterizes interval arithmetic operations we also need opera-
tional definitions. We take

[a1, a2] + [b1, b2] = [a1 + b1, a2 + b2],

[a1, a2] − [b1, b2] = [a1 − b2, a2 − b1],

[a1, a2] · [b1, b2] =
[
min{a1b1, a1b2, a2b1, a2b2},max{a1b1, a1b2, a2b1, a2b2}

]
,

1/[a1, a2] = [1/a2, 1/a1], for a1a2 > 0, (2.5.5)

[a1, a2]/[b1, b2] = [a1, a2] · (1/[b1, b2]).

It is easy to prove that in exact interval arithmetic the operational definitions above
give the exact range (2.5.4) of the interval operations. Division by an interval
containing zero is not defined and may cause an interval computation to come to a
premature end.

A degenerate interval with radius zero is called a point interval and can be
identified with a single number a ≡ [a, a]. In this way the usual arithmetic is
recovered as a special case. The intervals 0 = [0, 0] and 1 = [1, 1] are the neutral
elements with respect to interval addition and interval multiplication, respectively.
A non-degenerate interval has no inverse with respect to addition or multiplication
For example, we have

[1, 2] − [1, 2] = [−1, 1], [1, 2]/[1, 2] = [0.5, 2].

For interval operations the commutative law

[a1, a2] op [b1, b2] = [b1, b2] op [a1, a2]

holds. But the distributive law has to be replaced by so called subdistributivity

[a1, a2]([b1, b2] + [c1, c2]) ⊆ [a1, a2][b1, b2] + [a1, a2][c1, c2]. (2.5.6)

This unfortunately means that expressions, which are equivalent in real arithmetic,
differ in exact interval arithmetic. The simple example

[−1, 1]([1, 1] + [−1,−1]) = 0 ⊂ [−1, 1][1, 1] + [−1, 1][−1,−1] = [−2, 2]

shows that −[−1, 1] is not the additive inverse to [−1, 1] and also illustrates (2.5.6).
The operations introduced are inclusion monotonic, i.e,

[a1, a2] ⊆ [c1, c2], [b1, b2] ⊆ [d1, d2] ⇒ [a1, a2] op [b1, b2] ⊆ [c1, c2] op [d1, d2].
(2.5.7)

An alternative representation for an interval is the midpoint-radius repre-
sentation, for which we use brackets

〈c, r〉 := {x
∣
∣ |x− c| ≤ r} (0 ≤ r), (2.5.8)

where the midpoint and radius of the interval [a, b] are defined as

c = mid ([a, b]) =
1

2
(a+ b), r = rad ([a, b]) = 1

2 (b− a). (2.5.9)
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For intervals in the midpoint-radius representation we take as operational definitions

〈c1, r1〉 + 〈c2, r2〉 = 〈c1 + c2, r1 + r2〉,
〈c1, r1〉 − 〈c2, r2〉 = 〈c1 − c2, r1 + r2〉,
〈c1, r1〉 · 〈c2, r2〉 = 〈c1c2, |c1|r2 + r1|c2| + r1r2〉, (2.5.10)

1/〈c, r〉 = 〈c/(|c|2 − r2), r/(|c|2 − r2)〉, (|c| > r),

〈c1, r1〉/〈c2, r2〉 = 〈c1, r1〉 · (1/〈c2, r2〉).

For addition, subtraction and inversion, these give the exact range, but for multi-
plication and division they overestimate the range (see Problem 2.5.2). For multi-
plication we have for any x1 ∈ 〈c1, r1〉 and x2 ∈ 〈c2, r2〉

|x1x2 − c1c2| = |c1(x2 − c2) + c2(x1 − c1) + (x1 − c1)(x2 − c2)|
≤ |c1|r2 + |c2|r1 + r1r2.

In implementing interval arithmetic using floating-point arithmetic the oper-
ational interval results may not be exactly representable as floating-point numbers.
Then if the lower bound is rounded down to the nearest smaller machine num-
ber and the upper bound rounded up, the exact result must be contained in the
resulting interval. Recall that these rounding modes (rounding to −∞ and +∞)
are supported by the IEEE 754 standard. For example, using 5 significant decimal
arithmetic, we would like to get

[1, 1] + [−10−10, 10−10] = [0.99999, 1.0001],

or in midpoint-radius representation

〈1, 0〉+ 〈0, 10−10〉 = 〈1, 10−10〉.

Note that in the conversion between decimal and binary representation rounding
the appropriate rounding mode must also be used where needed. For example, con-
verting the point interval 0.1 to binary IEEE double precision we get an interval
with radius 1.3878 · 10−17. The conversion between the infimum-supremum repre-
sentation is straightforward but the infimum-supremum and midpoint may not be
exactly representable.

Interval arithmetic applies also to complex numbers. A complex interval in
the infimum-supremum representation is

[z1, z2] = {z = x+ iy | x ∈ [x1, x2], y ∈ [y1, y2]}.

This defines a closed rectangle in the complex plane defined by the two real intervals,

[z1, z2] = [x1, x2] + i[y1, y2], x1 ≤ x2, y1 ≤ y2.

This can be written more compactly as [z1, z2] := {z | z1 ≤ z ≤ z2}, where we use
the partial ordering

z ≤ w ⇐⇒ ℜz ≤ ℜw & ℑz ≤ ℑw.
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Complex interval operations in the infimum-supremum arithmetic are defined in
terms of the real intervals in the same way as the complex operations are defined
for complex numbers z = x+ iy. For addition and subtraction the result coincides
with the exact range. This is not the case for complex interval multiplication,
where the result is a rectangle in the complex plane, whereas the actual range is
not of this shape. Therefore, for complex intervals multiplication will result in an
overestimation.

In the complex case the midpoint-radius representation is

〈c, r〉 := {z ∈ C | |z − c| ≤ r}, 0 ≤ r,

where the midpoint c now is a complex number. This represents a closed circular
disc in the complex plane. The operational definitions (2.5.10) are still valid, except
that some operations now are complex operations and that inversion becomes

1/〈c, r〉 = 〈c̄/(|c|2 − r2), r/(|c|2 − r2)〉, for |c| > r,

where c̄ is the complex conjugate of c. Complex interval midpoint-radius arithmetic
is also called circular arithmetic. For complex multiplications it generates less
overestimation than the infimum-supremum notation.

Although the midpoint-radius arithmetic seems more appropriate for complex
intervals, most older implementations of interval arithmetic use infimum-supremum
arithmetic. One reason for this is the overestimation caused also for real inter-
vals by the operational definitions for midpoint-radius multiplication and division.
Rump [272] has shown that the overestimation is bounded by a factor 1.5 in radius
and that midpoint-radius arithmetic allows for a much faster implementation for
modern vector and parallel computers.

2.5.4 Range of Functions

One use of interval arithmetic is to enclose the range of a real valued function. This
can be used, for example, for localizing and enclosing global minimizers and global
minima of a real function of one or several variables in a region. It can also be used
for verifying the nonexistence of a zero of f(x) in a given interval.

Let f(x) be a real function composed of a finite number of elementary oper-
ations and standard functions. If one replaces the variable x by an interval [x, x]
and evaluates the resulting interval expression one gets as result an interval denoted
by f([x, x]).(It is assumed that all operations can be carried out.) A fundamental
result in interval arithmetic is that this evaluation is inclusion monotonic, i.e.

[x, x] ⊆ [y, y], ⇒ f([x, x]) ⊆ f([y, y]).

In particular this means that

x ⊆ [x, x] ⇒ f(x) ⊆ f([x, x]),

i.e. f([x]) contains the range of f(x) over the interval [x, x]. A similar result holds
also for functions of several variables f(x1, . . . , xn).
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An important case when interval evaluation gives the exact range of a function
is when f(x1, . . . , xn) is a rational expression, where each variable xi occurs only
once in the function.

Example 2.5.3.
In general narrow bounds cannot be guaranteed. For example, if f(x) =

x/(1 − x) then

f([2, 3]) = [2, 3]/(1 − [2, 3]) = [2, 3]/[−2,−1] = [−3,−1].

The result contains but does not coincide with the exact range [−2,−3/2]. But if
we rewrite the expression as f(x) = 1/(1/x− 1), where x only occurs once, then we
get

f([2, 3]) = 1/(1/[2, 3]− 1) = 1/[−2/3,−1/2] = [−2,−3/2],

which is the exact range.

When interval analysis is used in a naive manner as a simple technique for
simulating forward error analysis it does not in general give sharp bounds on the
total computational error. To get useful results the computations in general need
to be arranged so that overestimation as far as possible is minimized. Often a
refined design of the algorithm is required in order to prevent the bounds for the
intervals from becoming unacceptably coarse. The answer [−∞,∞] is of course
always correct but not at all useful!

The remainder term in Taylor expansions includes a variable ξ, which is known
to lie in an interval ξ ∈ [a, b]. This makes it suitable to treat the remainder term
with interval arithmetic.

Example 2.5.4.
Evaluate for [x] = [2, 3] the polynomial

p(x) = 1 − x+ x2 − x3 + x4 − x5

Using exact interval arithmetic we find

p([2, 3]) = [−252, 49]

(verify this!). This is an overestimate of the exact range, which is [−182,−21].
Rewriting p(x) in the form p(x) = (1− x)(1 + x2 + x4) we obtain the correct range.
In the first example there is a cancellation of errors in the intermediate results
(cf. Example 2.5.2), which is not revealed by the interval calculations.

Sometimes it is desired to compute a tiny interval that is guaranteed to enclose
a real simple root x∗ of f(x). This can be done using an interval version of Newton’s
method. Suppose that the function f(x) is continuously differentiable. Let f ′([x0])
denote an interval containing f ′(x) for all x in a finite interval [x] := [a, b]. Define
the Newton operator N([x]), [x] = [a, b], by

N([x]) := m− f(m)

f ′([x])
, m = mid [x]. (2.5.11)
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For the properties of the interval Newton’s method

[xk+1] = N([xk]), k = 0, 1, 2, . . . ;

see Sec. 6.3.3.
Another important application of interval arithmetic is to initial value prob-

lems for ordinary differential equations

y′ = f(x, y), y(x0) = y0, y ∈ Rn.

Interval techniques can be used to provide for errors in the initial values, as well as
truncation and rounding errors, so that at each step intervals are computed that
contain the actual solution. But it is a most demanding task to construct an interval
algorithm for the initial value problem, and they tend to be significantly slower than
corresponding point algorithms. One problem is that a wrapping effect occurs at
each step and causes the computed interval widths to grow exponentially. This is
illustrated in the following example.

Example 2.5.5.
The recursion formulas

xn+1 = (xn − yn)/
√

2, yn+1 = (xn + yn)/
√

2,

mean a series of 45-degree rotations in the xy-plane (see Figure 2.3.5). By a two-
dimensional interval one means a rectangle whose sides are parallel to the coordinate
axes.

If the initial value (x0, y0) is given as an interval [x0] = [1−ǫ, 1+ǫ], [y0] = [−ǫ, ǫ]
(see the dashed square, in the leftmost portion of Figure 2.3.5), then (xn, yn) will,
with exact performance of the transformations, also be a square with side 2ǫ, for
all n (see the other squares in Figure 2.3.5). If the computations are made using
interval arithmetic, rectangles with sides parallel to the coordinate axis will, in
each step, be circumscribed about the exact image of the interval one had in the
previous step. Thus the interval is multiplied by

√
2 in each step. After 40 steps,

for example, the interval has been multiplied by 220 > 106. This phenomenon,
intrinsic to interval computations, is called the wrapping effect. (Note that if one
uses discs instead of rectangles, there would not have been any difficulties in this
example.)

2.5.5 Interval Matrix Computations

In order to treat multidimensional problems we introduce interval vectors and matri-
ces. An interval vector is denoted by [x] and has interval components [xi] = [xi, xi]),
i = 1 : n. Likewise an interval matrix [A] = ([aij ]) has interval elements

[aij ] = [aij , aij ], i = 1 : m, j = 1 : n.
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Figure 2.5.1. Wrapping effect in interval analysis.

Operations between interval matrices and interval vectors are defined in an obvious
manner. The interval matrix-vector product [A][x] is the smallest interval vector,
which contains the set

{Ax | A ∈ [A], x ∈ [x]}
but normally does not coincide with it. By the inclusion property it holds that

{Ax | A ∈ [A], x ∈ [x]} ⊆ [A][x] =

(
n∑

j=1

[aij ][xj ]

)

.

In general, there will be an overestimation in enclosing the image with an inter-
val vector, caused by the fact that the image of an interval vector under a linear
transformation in general is not an interval vector. This phenomenon, intrinsic to
interval computations, is similar to the wrapping effect described in Example 2.5.5.

Example 2.5.6.
We have

A =

(
1 1
−1 1

)

, [x] =

(
[0, 1]
[0, 1]

)

, ⇒ A[x] =

(
[0, 2]

[−1, 1]

)

.

Hence b = ( 2 −1 )T ∈ A[x], but there is no x ∈ [x] such that Ax = b. (The

solution to Ax = b is x = ( 3/2 1/2 )
T
.)

The magnitude of an interval vector or matrix is interpreted component-wise
and defined by

| [x] | = (| [x1] |, | [x2] |, . . . , | [xn] |)T ,
where the magnitude of the components are defined by

| [a, b] | = max{|x| | x ∈ [a, b]}, (2.5.12)

The ∞-norm of an interval vector or matrix is defined as the ∞-norm of their
magnitude,

‖ [x] ‖∞ = ‖ | [x] | ‖∞, ‖ [A] ‖∞ = ‖ | [A] | ‖∞. (2.5.13)
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In implementing matrix multiplication it is important to avoid case distinc-
tions in the inner loops, because that would make it impossible to use fast vector
and matrix operations. Using interval arithmetic it is possible to compute strict
enclosures of the product of two matrices. Note that this is needed also in the case
of the product of two point matrices since rounding errors will in general occur.

We assume that the command

setround(i), i = −1, 0, 1,

sets the rounding mode to −∞, to nearest, and to +∞, respectively. (Recall that
these rounding modes are supported by the IEEE standard.) Let A and B be point
matrices and suppose we want to compute an interval matrix [C] such that

fl(A ·B) ⊂ [C] = [Cinf , Csup].

Then the following simple code, using two matrix multiplications, does that:

setround(−1); Cinf = A · B;

setround(1); Csup = A · B;

We next consider the product of a point matrix A and an interval matrix [B] =
[Binf , Bsup]. The following code performs this using four matrix multiplications:

A− = min(A, 0); A+ = max(A, 0);

setround(−1);

Cinf = A+ · Binf +A− ·Bsup;

setround(1);

Csup = A− · Binf +A+ ·Bsup;

(Note that the commands A− = min(A, 0) and A+ = max(A, 0) acts component-
wise.) An algorithm for computing the product of two interval matrices using eight
matrix multiplications is given by Rump [273].

Fast portable codes for interval matrix computations are now available. that
makes use of the Basic Linear Algebra Subroutines (BLAS) and IEEE 754 standard.
This makes it possible to efficiently use high-performance computers for interval
computation. INTLAB (INTerval LABoratory) by Rump [273, 272], is based on
Matlab, and particularly easy to use. It includes many useful subroutines, for
example, one to compute an enclosure of the difference between the solution and
an approximate solution xm = Cmid [b]. Verified solutions of linear least squares
problems can also be computed.

Review Questions

5.1. (a) Define the magnitude and mignitude of an interval I = [a, b].

(b) How is the ∞-norm of an interval vector defined?



“dqbjV
2007/5/28
page 156

156 Chapter 2. How to Obtain and Estimate Accuracy

5.2. Describe the two different ways of representing intervals used in real and com-
plex interval arithmetic. Mention some of the advantages and drawbacks of
each of these!

5.3. An important property of interval arithmetic is that the operations are inclu-
sion monotonic. Define this term!

5.4. What is meant by the “wrapping effect” in interval arithmetic and what are
its implications? Give some examples of where it occurs.

5.5. Assume that the command

setround(i), i = −1, 0, 1,

sets the rounding mode to −∞, to nearest, and to +∞, respectively. Give
a simple code that, using two matrix multiplications, computes an interval
matrix [C] such that for point matrices A and B,

fl(A · B) ⊂ [C] = [Cinf , Csup].

Problems and Computer Exercises

5.1. Carry out the following calculations in exact interval arithmetic:

(a) [0, 1] + [1, 2]; (b) [3, 3.1]− [0, 0, 2]; (c) [−4.− 1] · [−6, 5];

(d) [2, 2] · [−1, 2]; (e) [−1, 1]/[−2,−0.5]; (f) [−3, 2] · [−3.1, 2.1];

5.2. Show that using the operational definitions (2.5.5) the product of the discs
〈c1, r1〉 and 〈c2, r2〉 contains zero if c1 = c2 = 1 and r1 = r2 =

√
2 − 1.

5.3. (J. Stoer) Evaluate using Horner’s scheme and exact interval arithmetic the
cubic polynomial

p(x) = ((x− 3)x+ 3)x, [x] = [0.9, 1.1].

Compare the result with the exact range, which can be determined by observ-
ing that p(x) = (x− 1)3 + 1.

5.4. Treat the Example 1.2.2 using interval analysis and four decimal digits. Start-
ing with the inclusion interval I10 = [0, 1/60] = [0, 0.01667] generate succes-
sively intervals Ik, k = 9 : −1 : 5, using interval arithmetic and the recursion

In−1 = 1/(5n)− In/5.

Notes and References

A treatment of many different aspects of number systems and floating-point com-
putations is given in Knuth [204, Chapter 4]. It contains an interesting overview of
the historical development of number representation. Leibniz 1703 seems to have
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been the first to discuss binary arithmetic. He did not advocate it for practical
calculations, but stressed its importance for number-theoretic investigations. King
Charles XII of Sweden came upon the idea of radix 8 arithmetic in 1717. He felt
this to be more convenient than the decimal notation and considered introducing
octal arithmetic into Sweden. He died in battle before decreeing such a change!

In the early days of computing floating-point computations were not built into
the hardware but implemented in software. The earliest subroutines for floating-
point arithmetic were probably those developed by J. H. Wilkinson at the National
Physical Laboratory, England, in 1947. A general source on floating-point computa-
tion is Sterbenz [298]. An excellent tutorial on IEEE 754 standard for floating-point
arithmetic, defined in [108, ], is Goldberg [146, ]. A self-contained, accessi-
ble and easy to read introduction with many illustrating examples is the monograph
by Overton [251, ]. An excellent treatment on floating-point computation,
rounding error analysis, and related topics is given in Higham [180, Chapter 2].
Different aspects of accuracy and reliability are discussed in [98].

The fact that thoughtless use of mathematical formulas and numerical meth-
ods can lead to disastrous results are exemplified by Stegun and Abramowitz [296]
and Forsythe [112, ]. Numerous examples in which incorrect answers are ob-
tained from plausible numerical methods can be found in Fox [115, ].

Statistical analysis of rounding errors goes back to an early paper of Goldstine
and von Neumann [149, ]. Barlow and Bairess [15] have investigated the dis-
tribution of rounding errors for different modes of rounding under the assumption
that the mantissa of the operands are from a logarithmic distribution.

Conditioning numbers of general differentiable functions were first studied by
Rice [267]. Backward error analysis was developed and popularized by J. H. Wilkin-
son in the 1950s and 1960s and the classic treatise on rounding error analysis is [332].
The more recent survey [336] gives a good summary and a historical background.
Kahan [194] gives an in depth discussion of rounding error analysis with examples
how flaws in the design of hardware and software in computer systems can have
undesirable effects on accuracy. The normwise analysis is natural for studying the
effect of orthogonal transformations in matrix computations; see Wilkinson [332].
The componentwise approach, used in perturbation analysis for linear systems by
Bauer [17], can give sharper results and has gained in popularity.

Condition numbers are often viewed pragmatically as the coefficients of the
backward errors in bounds on forward errors. Wilkinson in [332] avoids a precise
definition of condition numbers in order to use them more freely. The more precise
limsup definition in Definition 2.4.6 is usually attributed to Rice [267].

Even in the special literature, the discussion of planning of experimental per-
turbations is surprisingly meager. An exception is the collection of software tools
called PRECISE, developed by Chaitin-Chatelin et al., see [56, 57]. These are de-
signed to help the user set up computer experiments to explore the impact of the
quality of convergence of numerical methods. It involves a statistical analysis of the
effect on a computed solution of random perturbations in data.

The modern development of interval arithmetic was initiated by the work
of R. E. Moore [242, ]. Interval arithmetic has since been developed into a
useful tool for many problems in scientific computing and engineering. A notewor-
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thy example of its use is the verification of the existence of a Lorenz attractor by
W. Tucker [321]. Several extensive surveys on interval arithmetic are available; see
[3, 4, 200]. Hargreaves [169] gives a short tutorial on INTLAB and also a good
introduction to interval arithmetic.
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Chapter 3

Series, Operators and

Continued Fractions

Methods of numerical computations can be
simultaneously efficient, clever and clear.
The viewpoint that they must be so complex
as to be useful only in “black box” form,
we firmly reject.
—Preface to Press et al. Numerical Recipes

3.1 Some Basic Facts about Series

3.1.1 Introduction

Series expansions are a very important aid in numerical calculations, especially for
quick estimates made in hand calculation—for example, in evaluating functions, in-
tegrals, or derivatives. Solutions to differential equations can often be expressed in
terms of series expansions. Since the advent of computers it has, however, become
more common to treat differential equations directly, using, for example, finite dif-
ference or finite element approximations instead of series expansions. Series have
some advantages, especially in problems containing parameters. Automatic meth-
ods for formula manipulation and some new numerical methods provide, however,
new possibilities for series.

In this section we will discuss general questions concerning the use of infinite
series for numerical computations including, for example, the estimation of remain-
ders, power series and various algorithms for computing their coefficients. Often a
series expansion can be derived by simple operations with a known series. We also
give an introduction to formal power series. The next section treats perturbation
expansions, ill-conditioned and semi-convergent expansions, from the point of view
of computing.

Methods and results will sometimes be formulated in terms of series, some-
times in terms of sequences. These formulations are equivalent, since the sum of an

159
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infinite series is defined as the limit of the sequence Sn of its partial sums

Sn = a1 + a2 + . . .+ an.

Conversely, any sequence S1, S2, S3, . . . can be written as the partial sums of a series,

S1 + (S2 − S1) + (S3 − S2) + . . . .

In practice, one is seldom seriously concerned about a rigorous error bound
when the computed terms decrease rapidly, and it is “obvious” that the terms will
continue to decrease equally quickly. One can then break off the series and use
either the last included term or a coarse estimate of the first neglected term as
an estimate of the remainder.

This rule is not very precise. How rapidly is “rapidly”? Questions like this
occur everywhere in scientific computing. If mathematical rigor costs little effort
or little extra computing time, then it should, of course, be used. Often, however,
an error bound that is both rigorous and realistic may cost more than what is felt
reasonable for (say) a one-off problem.

In problems, where guaranteed error bounds are not asked for, when it is
enough to obtain a feeling for the reliability of the results, one can handle these
matters in the same spirit as one handles risks in every day life. It is then a matter
of experience to formulate a simple and sufficiently reliable termination criterion
based on the automatic inspection of the successive terms.40

The unexperienced scientific programmer may, however, find such questions
hard, also in simple cases. In the production of general purpose mathematical soft-
ware, or in a context where an inaccurate numerical result can cause a disaster,
such questions are serious and sometimes hard also for the experienced scientific
programmer. For this reason, we shall formulate a few theorems, with which one
can often transform the feeling that “the remainder is negligible” to a mathemat-
ical proof. There are, in addition, actually numerically useful divergent series; see
Sec. 3.2.6. When one uses such series, estimates of the remainder are clearly essen-
tial.

Assume that we want to compute a quantity S, which can be expressed in a
series expansion, S =

∑∞
j=0 aj , and set

Sn =
∑n

j=0 aj , Rn = S − Sn.

We call
∑∞
j=n+1 aj the tail of the series; an is the “last included term” and an+1

is the “first neglected term”. The remainder Rn with reversed sign is called the
truncation error.41

The tail of a convergent series can often be compared to a series with a known
sum, for example, a geometric series, or with an integral which can be computed
directly.

40Termination criteria for iterative methods will be discussed in Sec. 6.1.3.
41In this terminology the remainder is the correction one has to make in order to eliminate the

error.
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Theorem 3.1.1 (Comparison with a Geometric Series).

If |aj+1| ≤ k|aj |, ∀j ≥ n, where k < 1, then

|Rn| ≤
|an+1|
1 − k

≤ k|an|
1 − k

.

In particular if k < 1/2, then it is true that the absolute value of the remainder is
less than the last included term.

Proof. By induction, one finds that |aj | ≤ kj−1−n|an+1|, j ≥ n+ 1, since

|aj | ≤ kj−1−n|an+1| ⇒ |aj+1| ≤ k|aj | ≤ kj−n|an+1|.

Thus

|Rn| ≤
∞∑

j=n+1

|aj | ≤
∞∑

j=n+1

kj−1−n|an+1| =
|an+1|
1 − k

≤ k|an|
1 − k

,

according to the formula for the sum of an infinite geometric series. The last
statement follows from the inequality k/(1 − k) < 1, when k < 1/2.

Example 3.1.1.
In a power series with slowly varying coefficients aj = j1/2π−2j . Then a6 <

2.45·0.0000011< 3·10−6, and

|aj+1|
|aj |

≤ (j + 1)1/2

j1/2
π2j−2

π−2j
≤ (1 + 1/6)1/2π−2 < 0.11,

for j ≥ 6. Thus, by Theorem 3.1.1 |R6| < 3·10−6 0.11

1 − 0.11
< 4·10−7.

Theorem 3.1.2 (Comparison of a Series with an Integral).

If |aj| ≤ f(j) for all j ≥ n + 1, where f(x) is a nonincreasing function for
x ≥ n, then

|Rn| ≤
∞∑

j=n+1

|aj | ≤
∫ ∞

n

f(x) dx,

which yields an upper bound for |Rn|, if the integral is finite.
If aj+1 ≥ g(j) > 0 for all j ≥ n, we also obtain a lower bound for the error,

namely

Rn =

∞∑

j=n+1

aj >

∫ ∞

n

g(x) dx.

Proof. See Figure 3.1.1.
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Figure 3.1.1. Comparison a series with an integral, (n = 5).

Example 3.1.2.
When aj is slowly decreasing, the two error bounds are typically rather close

to each other, and are hence rather realistic bounds, much larger than the first
neglected term an+1. Let aj = 1/(j3 + 1), f(x) = x−3. It follows that

0 < Rn ≤
∫ ∞

n

x−3 dx = n−2/2.

In addition this bound gives an asymptotically correct estimate of the remainder,
as n→ ∞, which shows that Rn is here significantly larger than the first neglected
term.

For alternating series the situation is typically quite different.

Definition 3.1.3.
A series is alternating for j ≥ n if, for all j ≥ n, aj and aj+1 have opposite

signs, or equivalently signajsign aj+1 ≤ 0, where sign x (read “signum” of x), is
defined by

sign x =

{
+1, if x > 0;

0, if x = 0;
−1, if x < 0.

Theorem 3.1.4.
If Rn and Rn+1 have opposite signs, then S lies between Sn and Sn+1. Fur-

thermore

S =
1

2
(Sn + Sn+1) ±

1

2
|an+1|.
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Sn S Sn+1

Rn −Rn+1

an+1

Figure 3.1.2. A series where Rn and Rn+1 have different signs.

We also have the weaker results:

|Rn| ≤ |an+1|, |Rn+1| ≤ |an+1|, signRn = sign an+1.

This theorem has non-trivial applications to practically important divergent
sequences; see Sec. 3.2.6.

Proof. The fact that Rn+1 and Rn have opposite signs means, quite simply, that
one of Sn+1 and Sn is too large and the other is too small, i.e., S lies between
Sn+1 and Sn. Since an+1 = Sn+1 − Sn, one has for positive values of an+1, the
situation shown in Figure 3.1.2. From this figure, and an analogous one for the case
of an+1 < 0, the remaining assertions of the theorem clearly follow.

The actual error of the average 1
2 (Sn + Sn+1) is, for slowly convergent alter-

nating series, usually much smaller than the error bound 1
2 |an+1|. For example, if

Sn = 1− 1
2 + 1

3 − . . .± 1
n , limSn = ln 2 ≈ 0.6931, the error bound for n = 4 is 0.1,

while the actual error is less than 0.01. A systematic exploration of this observation,
by means of repeated averaging, is carried out in Sec. 3.4.3.

0 2 4 6 8 10 12
−0.5

0

0.5

1

1.5

Figure 3.1.3. Successive sums of an alternating series.
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Theorem 3.1.5.
For an alternating series, the absolute values of whose terms approach zero

monotonically, the remainder has the same sign as the first neglected term an+1,
and the absolute value of the remainder does not exceed |an+1|. (It is well known
that such a series is convergent).

Proof. (Sketch) That the theorem is true is almost clear from Figure 3.1.3. The
figure shows how Sj depends on j when the premises of the theorem are fulfilled.
A formal proof is left to the reader.

The use of this theorem will be illustrated in Example 3.1.3. An important
generalization is given as Problem 3.3.2 (g).

In the preceding theorems the ideas of well known convergence criteria are
extended to bounds or estimates of the error of a truncated expansion. In Sec. 3.4,
we shall see a further extension of these ideas, namely for improving the accuracy
obtained from a sequence of truncated expansions. This is known as convergence
acceleration.

3.1.2 Taylor’s Formula and Power Series

Consider an expansion into powers of a complex variable z, and suppose that it is
convergent for some z 6= 0, and denote its sum by f(z),

f(z) =

∞∑

j=0

ajz
j, z ∈ C. (3.1.1)

It is then known from complex analysis that the series (3.1.1) either converges for
all z, or it has a circle of convergence with radius ρ, such that it converges for all
|z| < ρ, and diverges for |z| > ρ. (For |z| = ρ convergence or divergence is possible).
The radius of convergence is determined by the relation

ρ = lim sup |an|−1/n. (3.1.2)

Another formula is ρ = lim |an|/|an+1|, if this limit exists.
The function f(z) can be expanded into powers of z − a around any point of

analyticity,

f(z) =

∞∑

j=0

aj(z − a)j , z ∈ C. (3.1.3)

By Taylor’s formula the coefficients are given by

a0 = f(a), aj = f (j)(a)/j!, j ≥ 1. (3.1.4)

This infinite series is in the general case called a Taylor series, while the special
case, a = 0, is by tradition called a Maclaurin series.42

42Brook Taylor (1685–1731), who announced his theorem in 1712, and Colin Maclaurin (1698–
1746), were British mathematicians.
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Figure 3.1.4. Partial sums of the Maclaurin expansions for two functions.
The upper curves are for cosx, n = 0 : 2 : 26, 0 ≤ x ≤ 10. The lower curves are
for 1/(1 + x2), n = 0 : 2 : 18, 0 ≤ x ≤ 1.5.

The function f(z) is analytic inside its circle of convergence, and has at least
one singular point on its boundary. The singularity of f , which is closest to the
origin, can often be found easily from the expression that defines f(z); so the radius
of convergence of a Maclaurin series can often be easily found.

Note that these Taylor coefficients are uniquely determined for the function f .
This is true also for a non-analytic function, for example if f ∈ Cp[a, b], although in
this case the coefficient aj exists only for j ≤ p. In Figure 3.1.4 the partial sums of
the Maclaurin expansions for the functions f(x) = cosx and f(x) = 1/(1 + x2) are
shown. The series for cosx converges for all x, but rounding errors cause trouble
for large values of x; see Sec. 3.2.5. For 1/(1 + x2) the radius of convergence is 1.

There are several expressions for the remainder Rn(z), when the expansion
for f(z) is truncated after the term that contains zn−1. In order to simplify the
notation, we put a = 0, and consider the Maclaurin series. The following integral
form can be obtained by the application of repeated integration by parts to the

integral z
∫ 1

0
f ′(zt) dt:

Rn(z) = zn
∫ 1

0

(1 − t)n−1

(n− 1)!
f (n)(zt) dt; (3.1.5)
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the details are left for Problem 3.2.13 (b). From this follows the upper bound

|Rn(z)| ≤
1

n!
|z|n max

0≤t≤1
|f (n)(zt)|. (3.1.6)

This holds also in the complex case; if f is analytic on the segment from 0 to z, one
integrates along this segment, i.e. for 0 ≤ t ≤ 1; otherwise another path is to be
chosen. The remainder formulas (3.1.5) (3.1.6) require only that f ∈ Cn. It is thus
not necessary that the infinite expansion converges or even exists.

For a real-valued function, Lagrange’s43 formula for the remainder term

Rn(x) =
f (n)(ξ)xn

n!
, ξ ∈ [0, x], (3.1.7)

is obtained by the mean value theorem of integral calculus. For complex-valued
functions and, more generally, for vector-valued functions the mean value theorem
and Lagrange’s remainder term are not valid with a single ξ. (Sometimes com-
ponentwise application with different ξ is possible.) A different form (3.2.11) for
the remainder, valid in the complex plane is given in Sec. 3.2.2, in terms of the
maximum modulus M(r) = max|z|=r |f(z)|, which may sometimes be easier to
estimate than the nth derivative. A power series is uniformly convergent in any
closed bounded region strictly inside its circle of convergence. Roughly speaking,
the series can be manipulated like a polynomial, as long as z belongs to such a
region:

• it can be integrated or differentiated term by term,

• substitutions can be performed, and terms can be rearranged.

A power series can also be multiplied by another power series:

Theorem 3.1.6 (Cauchy product).

If f(z) =
∑n

j=0 ajz
j, and g(z) =

∑n
j=0 bkz

k, then

f(z)g(z) =

n∑

j=0

cnz
n, cn =

n∑

j=0

ajbn−j. (3.1.8)

The expression on the right side of (3.1.8) is called the convolution or the Cauchy
product of the coefficient sequences of f and g.

43Joseph Louis Lagrange (1736–1813) was born in Turin, Italy. In 1766 he succeeded Euler
in Berlin but in 1787 went to Paris, where he remained until his death. He gave fundamental
contributions to most branches of Mathematics and Mechanics.
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Example 3.1.3.
Many important functions in applied mathematics cannot be expressed in fi-

nite terms of elementary functions, and must be approximated by numerical meth-
ods. One such function is the error function defined by

erf(x) =
2√
π

∫ x

0

e−t
2

dt. (3.1.9)

This function is encountered, for example, in computing the distribution function
of a normal deviate. It takes the values erf(0) = 0, erf(∞) = 1 and is related to the
incomplete gamma functions (see the Handbook [1, 6.5]) by erf(x) = γ(1/2, x2).

Suppose one wishes to compute erf(x) for x ∈ [−1, 1] with a relative error
less than 10−10. One can then approximate the function by a power series. Setting
z = −t2 in the well known Maclaurin series for ez, truncating after n + 1 terms,
and integrating term by term we obtain

erf(x) ≈ 2√
π

∫ x

0

n∑

j=0

(−1)j
t2j

j!
dt =

2√
π

n∑

j=0

ajx
2j+1, (3.1.10)

where

a0 = 1, aj =
(−1)j

j!(2j + 1)
.

(Note that erf(x) is a odd function of x.) This series converges for all x, but is
suitable for numerical computations only for values of x which are not too large. To
evaluate the series we note that the coefficients aj satisfies the recurrence relation

aj = −aj−1
(2j − 1)

j(2j + 1)
.

This recursion shows that for x ∈ [0, 1] the absolute values of the terms tj = ajx
2j+1

decrease monotonically. By Theorem 3.1.5 this implies that the absolute error in a
partial sum is bounded by the absolute value of the first neglected term anx

n.
A possible algorithm for evaluating the sum in (3.1.10) is then: Set s0 = t0 =

x; for j = 1, 2, . . . compute

tj = −tj−1
(2j − 1)

j(2j + 1)
x2, sj = sj−1 + tj , until |tj | ≤ ·10−10sj . (3.1.11)

Here we have estimated the error by the last term added in the series. Since we have
to compute this term for the error estimate we might as well use it! Note also that
in this case, where the number of terms is not fixed in advance, Horner’s scheme is
not suitable for the evaluation. Figure 3.1.4 shows the graph of the relative error
in the computed approximation p2n+1(x). At most twelve terms in the series were
needed.

The use of the Taylor coefficient formula and Lagrange’s form of the remainder
may be inconvenient, and it is often easier to obtain an expansion by manipulating
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Figure 3.1.5. Relative error in approximations of the error function by a
Maclaurin series truncated after the first term that satisfies the condition in (3.1.11).

some known expansions. The geometric series,

1

1 − z
= 1 + z + z2 + z3 + · · · + zn−1 +

zn

1 − z
, z 6= 1, (3.1.12)

is of particular importance; note that the remainder zn/(1 − z) is valid even when
the expansion is divergent.

Example 3.1.4.
Set z = −t2 in the geometric series, and integrate:

∫ x

0

(1 + t2)−1 dt =

n−1∑

j=0

∫ x

0

(−t2)j dt+

∫ x

0

(−t2)n(1 + t2)−1 dt.

Using the mean-value theorem of integral calculus on the last term we get

arctanx =

n−1∑

j=0

(−1)jx2j+1

2j + 1
+

(1 + ξ2)−1(−1)nx2n+1

2n+ 1
, (3.1.13)

for some ξ ∈ int[0, x]. Both the remainder term and the actual derivation are
much simpler than what one would get by using Taylor’s formula with Lagrange’s
remainder term. Note also that Theorem 3.1.4 is applicable to the series obtained
above for all x and n, even for |x| > 1, when the infinite power series is divergent.

Some useful expansions are collected in Table 3.1.1.These formulas will be
used often without a reference; the reader is advised to memorize the expansions.
“Remainder ratio” denotes the ratio of the remainder to the first neglected term, if
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Table 3.1.1. Maclaurin expansions for some elementary functions.

Function Expansion (x ∈ C) Remainder ratio (x ∈ R)

(1 − x)−1 1 + x+ x2 + x3 + · · · if |x| < 1 (1 − x)−1 if x 6= 1

(1 + x)k 1 + kx+

(
k

2

)

x2 + · · · if |x| < 1 (1 + ξ)k−n if x > −1

ln(1 + x) x− x2

2
+
x3

3
− x4

4
+ · · · if |x| < 1 (1 + ξ)−1 if x > −1

ex 1 + x+
x2

2!
+
x3

3!
+ · · · all x eξ, all x

sinx x− x3

3!
+
x5

5!
− x7

7!
+ · · · all x cos ξ, all x, n odd

cosx 1 − x2

2!
+
x4

4!
− x6

6!
+ · · · all x cos ξ, all x, n even

1
2 ln
(1 + x

1 − x

)

x+
x3

3
+
x5

5
+ · · · if |x| < 1

1

1 − ξ2
, |x| < 1, n even

arctanx x− x3

3
+
x5

5
+ · · · if |x| < 1

1

1 + ξ2
, all x

x ∈ R; ξ means a number between 0 and x. Otherwise these expansions are valid
in the unit circle of C or in the whole of C.

The binomial coefficients are, also for non-integer k, defined by

(
k

n

)

=
k(k − 1) · · · (k − n+ 1)

1 · 2 · · ·n .

For example, setting k = 1/2 gives

(1 + x)1/2 = 1 +
x

2
− x2

8
+
x3

16
− · · ·, if |x| < 1.

Depending on the context, the binomial coefficients may be computed by one of the
following well known recurrences:

(
k

n+ 1

)

=

(
k

n

)
(k − n)

(n+ 1)
; or

(
k + 1

n

)

=

(
k

n

)

+

(
k

n− 1

)

, (3.1.14)

with appropriate initial conditions. The latter recurrence follows from the matching
of the coefficients of tn in the equation (1 + t)k+1 = (1 + t)(1 + t)k. (Compare the
Pascal triangle; see Problem 1.2.3.) The explicit formula

(
k
n

)
= k!/(n!(k − n)!), for
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integers k, n, is to be avoided, if k can become large, because k! has overflow for
k > 170 in IEEE double precision arithmetic.

The exponent k in (1+x)k is not necessarily an integer; it can even be an irra-
tional or a complex number. This function may be defined as (1 + x)k = ek ln(1+x).
Since ln(1+x) is multi-valued, (1+x)k is multi-valued too, unless k is an integer.
We can, however, make them single-valued by forbidding the complex variable x to
take real values less than −1. In other words, we make a cut along the real axis from
−1 to −∞ that the complex variable must not cross. (The cut is outside the circle
of convergence.) We obtain the principal branch by requiring that ln(1 + x) > 0
if x > 0. Let 1 + x = reiφ, r > 0, φ→ ±π. Note that

1 + x→ −r, ln(1 + x) → ln r +

{
+iπ, if φ→ π;
−iπ, if φ→ −π.

(3.1.15)

Two important power series, not given in Table 3.1.1, are:

The Gauss hypergeometric function44

F (a, b, c; z) = 1 +
ab

c

z

1!
+
a(a+ 1)b(b+ 1)

c(c+ 1)

z2

2!

+
a(a+ 1)(a+ 2)b(b+ 1)(b+ 2)

c(c+ 1)(c+ 2)

z3

3!
+ . . . , (3.1.16)

where a and b are complex constants and c 6= −1,−2. . . . . The radius of convergence
for this series equals unity; see [1, Chap. 15].45

Kummer’s confluent hypergeometric function46

M(a, b; z) = 1 +
a

b

z

1!
+
a(a+ 1)

b(b+ 1)

z2

2!
+
a(a+ 1)(a+ 2)

b(b + 1)(b+ 2)

z3

3!
+ . . . , (3.1.17)

converges for all z (see [1, Ch. 13]). It is named “confluent” because

M(a, c; z) = lim
b→∞

F (a, b, c, z/b).

The coefficients of these series are easily computed and the functions are easily
evaluated by recurrence relations. (You also need some criterion for the truncation
of the series, adapted to your demands of accuracy.) In Sec. 3.5, these functions are
also expressed in terms of infinite continued fractions that typically converge faster
and in larger regions than the power series do.

44Gauss presented his paper on this series in 1812.
45This classical Handbook of Mathematical Functions, edited by Milton Abramowitz and Irene

A. Stegun, will be used as a reference throughout this book. We will often refer to it just as “the
Handbook”.

46Ernst Eduard Kummer (1810–1893), a German mathematician, was professor in Berlin from
1855. He extended Gauss work on hypergeometric series. Together with Weierstrass and Kro-
necker, he made Berlin into one of the leading centers of mathematics at that time.



“dqbjV
2007/5/28
page 171

3.1. Some Basic Facts about Series 171

Example 3.1.5.
The following procedure can generally be used in order to find the expansion

of the quotient of two expansions. We illustrate it in a case, where the result is of
interest to us later.

The Bernoulli47 numbers Bn are defined by the Maclaurin series

x

ex − 1
≡

∞∑

j=0

Bjx
j

j!
(3.1.18)

For x = 0 the left-hand side is defined by Hôpital’s rule; the value is 1. If we
multiply this equation by the denominator, we obtain

x ≡
( ∞∑

i=1

xi

i!

)( ∞∑

j=0

Bjx
j

j!

)

.

By matching the coefficients of xn, n ≥ 1, on both sides, we obtain a recurrence
relation for the Bernoulli numbers, which can be written in the form

B0 = 1,

n−1∑

j=0

1

(n− j)!

Bj
j!

= 0, n ≥ 2, i.e.

n−1∑

j=0

(
n

j

)

Bj = 0. (3.1.19)

The last equation is a recurrence that determines Bn−1 in terms of Bernoulli num-
bers with smaller subscripts, hence B0 = 1, B1 = − 1

2 , B2 = 1
6 , B3 = 0, B4 = − 1

30 ,
B5 = 0, B6 = 1

42 , . . . .
We see that the Bernoulli numbers are rational. We shall now demonstrate

that Bn = 0, when n is odd, except for n = 1.

x

ex − 1
+
x

2
=
x

2

ex + 1

ex − 1
=
x

2

ex/2 + e−x/2

ex/2 − e−x/2
=

∞∑

n=0

B2nx
2n

(2n)!
. (3.1.20)

Since the next to last term is an even function its Maclaurin expansion contains
only even powers of x, and hence the last expansion is also true.

The recurrence obtained for the Bernoulli numbers by the matching of coeffi-
cients in the equation,

(ex/2 − e−x/2)

( ∞∑

n=0

B2nx
2n/(2n)!

)

= 1
2x
(

ex/2 + e−x/2
)

,

is not the same as the one we found above. It turns out to have better properties
of numerical stability. We shall look into this experimentally in Problem 3.1.10 (g).

47Jacob (or James) Bernoulli (1654-1705), a Swiss mathematician, was one of the earliest to
realize the power of the infinitesimal calculus. The Bernoulli numbers were published posthumously
in 1713, in his fundamental work Ars Conjectandi (on Probability). The notation for Bernoulli
numbers varies in the literature. Our notation seems to be the most common in modern texts.
Several members of the same family enriched mathematics by their teaching and writing. Their
role in the history of mathematics resembles the role of the Bach family in the history of music.
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The singularities of the function x/(ex − 1) are poles at x = 2nπi, n =
±1,±2,±3, . . ., hence the radius of convergence is 2π. Further properties of Bernoulli
numbers and the related Bernoulli polynomials and periodic functions, are presented
in Sec. 3.4.5, where they occur as coefficients in the important Euler–Maclaurin for-
mula.

If r is large the following formula is very efficient; the series on its right-hand
side then converges rapidly.

B2r/(2r)! = (−1)r−12(2π)−2r
(

1 +

∞∑

n=2

n−2r
)

. (3.1.21)

This is a particular case (t = 0) of a Fourier series for the Bernoulli functions that
we shall encounter in Lemma 3.4.9 (c). In fact, you obtain IEEE double accuracy
for r > 26, even if the infinite sum on the right-hand side is totally ignored. Thanks
to (3.1.21) we do not need to worry much over the instability of the recurrences.
When r is very large, however, we must be careful about underflow and overflow.

The Euler numbers En, which will be used later, are similarly defined by
the generating function

1

cosh z
≡

∞∑

n=0

Enz
n

n!
, |z| < π

2
. (3.1.22)

Obviously En = 0 for all odd n. It can be shown that the Euler numbers are
integers, E0 = 1, E2 = −1, E4 = 5, E6 = −61; see Problem 3.1.7 (c).

Example 3.1.6.
Let f(x) = (x3 +1)−

1
2 . Compute

∫∞
10 f(x) dx to 9 decimal places, and f ′′′(10),

with at most 1% error. Since x−1 is fairly small, we expand in powers of x−1:

f(x) = x−3/2(1 + x−3)−1/2 = x−3/2
(

1 − 1

2
x−3 +

1·3
8
x−6 − . . .

)

= x−1.5 − 1

2
x−4.5 +

3

8
x−7.5 − . . . .

By integration,
∫ ∞

10

f(x) dx = 2·10−0.5 − 1

7
10−3.5 +

3

52
10−6.5 + . . . = 0.632410375.

Each term is less than 0.001 of the previous term.
By differentiating the series three times, we similarly obtain

f ′′′(x) = −105

8
x−4.5 +

1, 287

16
x−7.5 + . . . .

For x = 10 the second term is less than 1% of the first; the terms after the second
decrease quickly and are negligible. One can show that the magnitude of each term
is less than 8 x−3 of the previous term. We get f ′′′(10) = −4.12 ·10−4 to the desired
accuracy. The reader is advised to carry through the calculation in more detail.



“dqbjV
2007/5/28
page 173

3.1. Some Basic Facts about Series 173

Example 3.1.7.
One wishes to compute the exponential function ex with full accuracy in IEEE

double precision arithmetic (unit round off u = 2−53 ≈ 1.1·10−16). The method of
scaling and squaring is based on the following idea. If we let m ≥ 1 be an integer
and set y = x/2m, then

ex = (ey)2
m

.

Here the right-hand side can be computed by squaring ey m times. By choosing m
large enough ey can be computed by a truncated Taylor expansion with k terms;
see Sec. 3.1.2.

The integers m and k should be chosen so that the bound

1

k!
yk ≤ 1

k!

(
log 2

2m

)k

,

for the truncation error, multiplied by 2m to take the propagation of error due
to squaring ex

∗
into account, is bounded by the unit roundoff u. Subject to this

constraint m and k are determined to minimize the computing time. If the Taylor
expansion is evaluated by Horner’s this is approximately proportional to (m+ 2k),
In IEEE double precision arithmetic with u = 2−53 we find that (k,m) = (7, 7) and
(8, 5) are good choices. Note that to keep the rounding error sufficiently small part
of the computations must be done in extended precision.

We remark that rational approximations often give much better accuracy than
polynomial approximations. This as related to the fact that continued fraction ex-
pansions often converge much faster than those based on power series: see Sec. 3.5.3
where Padé approximations for the exponential function are given.

In numerical computation a series should be regarded as a finite expansion
together with a remainder. Taylor’s formula with the remainder (3.1.5) is valid for
any function f ∈ Cn[a, a+ x], but the infinite series is valid only if the function is
analytic in a complex neighborhood of a.

If a function is not analytic at 0, it can happen that the Maclaurin expansion
converges to a wrong result. A classical example (see Appendix to Chapter 6 in
Courant [73]) is

f(x) =

{

e−1/x2

, if x 6= 0,
0, if x = 0.

It can be shown that all its Maclaurin coefficients are zero. This trivial Maclaurin
expansion converges for all x, but the sum is wrong for x 6= 0. There is nothing
wrong with the use of Maclaurin’s formula as a finite expansion with a remainder.
Although the remainder that in this case equals f(x) itself, does not tend to 0 as
n → ∞ for a fixed x 6= 0, it tends to 0 faster than any power of x, as x → 0,
for any fixed n. The “expansion” gives, for example, an absolute error less than
10−43 for x = 0.1, but the relative error is 100%. Also note that this function (and
there are lots of other examples) can be added to any function without changing its
Maclaurin expansion.

From the point of view of complex analysis, however, the origin is a singular
point for this function. Note that |f(z)| → ∞ as z → 0 along the imaginary
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axis, and this prevents the application of any theorem that would guarantee that
the infinite Maclaurin series represents the function. This trouble does not occur
for a truncated Maclaurin expansion around a point, where the function under
consideration is analytic. The size of the first non-vanishing neglected term then
gives a good hint about the truncation error, when |z| is a small fraction of the
radius of convergence.

The above example may sound like a purely theoretical matter of curiosity.
We emphasize this distinction between the convergence and the validity of an infi-
nite expansion in this text, as a background to other expansions of importance in
numerical computation such as the Euler–Maclaurin expansion in Sec. 3.4.5, which
may converge to the wrong result, also in the application to a well-behaved analytic
function. On the other hand, we shall see in Sec. 3.2.6, that divergent expansions
can sometimes be very useful. The universal recipe in numerical computation is
to consider an infinite series as a finite expansion plus a remainder term. But a
more algebraic point of view on a series is often useful in the design of a numerical
method; see Sec. 3.1.5 (Formal Power Series) and Sec. 3.3.2 (The Calculus of Opera-
tors). Convergence of an expansion is neither necessary nor sufficient for its success
in practical computation.

3.1.3 Analytic Continuation

Analytic functions have many important properties that you may find in any text on
Complex Analysis. A good summary for the purpose of numerical mathematics is
found in the first chapter of Stenger [297]. Two important properties are contained
in the following lemma.

We remark that the region of analyticity of a function f(z) is an open set. If
we say that f(z) is analytic on a closed real interval, it means that there exists an
open set in C that contains this interval, where f(z) is analytic.

Lemma 3.1.7.
An analytic function can only have a finite number of zeros in a compact subset

of the region of analyticity, unless the function is identically zero.
Suppose that two functions f1 and f2 are analytic in regions D1 and D2,

respectively. Suppose that D1 ∩D2 contains an interval throughout which f1(z) =
f2(z). Then f1(z) = f2(z) in the intersection D1 ∩D2.

Proof. We refer, for the first part, to any text on Complex Analysis. We here
follow Titchmarsh [312] closely. The second part follows by the application of the
first part to the function f1 − f2.

A consequence of this is known as the permanence of functional equations.
That is, in order to prove the validity of a functional equation (or “a formula for a
function”) in a region of the complex plane, it may be sufficient to prove its validity
in (say) an interval of the real axis, under the conditions specified in the lemma.

Example 3.1.8 (The permanence of functional equations).
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We know from elementary real analysis that the functional equation

e(p+q)z = epzeqz, (p, q ∈ R),

holds for all z ∈ R. We also know that all the three functions involved are analytic
for all z ∈ C. Set in the lemma D1 = D2 = C, and let “the interval” be any
compact interval of R. The lemma then tells us that that the displayed equation
holds for all complex z.

The right and the left-hand side then have identical power series. Applying
the convolution formula and matching the coefficients of zn, we obtain

(p+ q)n

n!
=

n∑

j=0

pj

j!

qn−j

(n− j)!
, i.e., (p+ q)n =

n∑

j=0

n!

j!(n− j)!
pjqn−j .

This is not a very sensational result. It is more interesting to start from the following
functional equation

(1 + z)p+q = (1 + z)p(1 + z)q.

The same argumentation holds, except that—by the discussion around Table 3.1.1—
D1, D2 should be equal to the complex plane with a cut from −1 to −∞, and that
the Maclaurin series is convergent in the unit disk only. We obtain the equations

(
p+ q

n

)

=
n∑

j=0

(
p

j

)(
q

n− j

)

, n = 0, 1, 2, . . . . (3.1.23)

(They can also be proved by induction, but it is not needed.) This sequence of alge-
braic identities, where each identity contains a finite number of terms, is equivalent
to the above functional equation.

We shall see that this observation is useful for motivating certain “symbolic
computations” with power series, that can provide elegant derivations of useful
formulas in numerical mathematics.

Now we may consider the aggregate of values of f1(z) and f2(z) at points
interior to D1 or D2 as a single analytic function f . Thus f is analytic in the union
D1 ∪D2, and f(z) = f1(z) in D1, f(z) = f2(z) in D2.

The function f2 may be considered as extending the domain in which f1 is
defined, and it is called a (single-valued) analytic continuation of f1. In the
same way f1 is an analytic continuation of f2. Analytic continuation denotes both
this process of extending the definition of a given function, and the result of the
process. We shall see examples of this, e.g., in Sec. 3.1.4. Under certain conditions
the analytic continuation is unique.

Theorem 3.1.8.
Suppose that a region D is overlapped by regions D1, D2, and that (D1∩D2)∩D

contains an interval. Let f be analytic in D, and let f1 be an analytic continuation
of f to D1, and let f2 an analytic continuation of f to D2, so that

f(z) = f1(z) = f2(z) in (D1 ∩D2) ∩D.
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Then either of these functions provides a single-valued analytic continuation of f
to D1 ∩D2. The results of the two processes are the same.

Proof. Since f1−f2 is analytic in D1∩D2, and f1−f2 = 0 in the set (D1∩D2)∩D,
which contains an interval, it follows from Lemma 3.1.7 that f1(z) = f2(z) in
D1 ∩D2, which proves the theorem.

If the set (D1 ∩ D2) ∩ D is void, the conclusion in the theorem may not be
valid. We may still consider the aggregate of values as a single analytic function,
but this function can be multi-valued in D1 ∩D2.

Example 3.1.9.
For |x| < 1 the important formula

arctanx =
1

2i
ln

(
1 + ix

1 − ix

)

easily follows from the expansions in the Table 3.1.1. The function arctanx has
an analytic continuation as single-valued functions in the complex plane with cuts
along the imaginary axis from i to ∞ and from −i to −∞. It follows from the
theorem that “the important formula” is valid in this set.

3.1.4 Manipulating Power Series

In some contexts, algebraic recurrence relations can be used for the computation of
the coefficients in Maclaurin expansions, in particular if only a moderate number
of coefficients are wanted. We shall study a few examples.

Example 3.1.10 (Expansion of a composite function).

Let g(x) = b0 + b1x + b2x
2 + . . . , f(z) = a0 + a1z + a2z

2 + . . . , be given
functions, analytic at the origin. Find the power series

h(x) = f(g(x)) ≡ c0 + c1x+ c2x
2 + . . . .

In particular, we shall study the case f(z) = ez.
The first idea we may think of is to substitute the expansion b0+b1x+b2x

2+. . .
for z into the power series for f(z). This is, however, no good unless g(0) = b0 = 0,
because

(g(x))k = bk0 + kbk−1
0 b1x+ . . .

gives a contribution to, c0, c1, . . . , for every k, so we cannot successively compute
the cj by finite computation.

Now suppose that b0 = 0, b1 = 1, i.e. g(x) = x + b2x
2 + b3x

3 + . . .. (The
assumption that b1 = 1 is not important, but it simplifies the writing.) Then cj
depends only on bk, ak, k ≤ j, since (g(x))k = xk + kb2x

k+1 + . . . . We obtain

h(x) = a0 + a1x+ (a1b2 + a2)x
2 + (a1b3 + 2a2b2 + a3)x

3 + . . . ,
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and the coefficients of h(x) come out recursively,

c0 = a0; c1 = a1, c2 = a1b2 + a2, c3 = a1b3 + 2a2b2 + a3, . . . .

Now consider the case f(z) = ez, i.e. an = 1/n!. We first see that it is then
also easy to handle the case that b0 6= 0, since

eg(x) = eb0eb1x+b2x
2+b3x

3+....

But there exists a more important simplification if f(z) = ez. Note that h satisfies
the differential equation h′(x) = g′(x)h(x), h(0) = eb0 . Hence

∞∑

n=0

(n+ 1)cn+1x
n ≡

∞∑

j=0

(j + 1)bj+1x
j

∞∑

k=0

ckx
k.

Set c0 = eb0 , apply the convolution formula (3.1.8), and match the coefficients of
xn on the two sides:

(n+ 1)cn+1 = b1cn + 2b2cn−1 + . . .+ (n+ 1)bn+1c0, (n = 0, 1, 2, . . .).

This recurrence relation is more easily programmed than the general procedure
indicated above. Other functions that satisfy appropriate differential equations can
be treated similarly; see Problem 3.1.8. More information is found in Knuth [204,
Sec. 4.7].

Formulas like these are often used in packages for symbolic differentiation
and for automatic or algorithmic differentiation. Expanding a function into a
Taylor series is equivalent to finding the sequence of derivatives of the function at a
given point. The goal of symbolic differentiation is to obtain analytic expressions
for derivatives of functions given in analytic form. This is handled by computer
algebra systems, for example, Maple or Mathematica.

In contrast, the goal of automatic or algorithmic differentiation is to ex-
tend an algorithm (a program) for the computation of the numerical values of a few
functions to an algorithm that also computes the numerical values of a few deriva-
tives of these functions, without truncation errors. A simple example, Horner’s rule
for computing values and derivatives for a polynomial, was given in Sec. 1.2.1. At
the time of writing, there is a lively activity about automatic differentiation—theory,
software development and applications. Typical applications are in the solution of
ordinary differential equations by Taylor expansion; see the example in Sec. 1.2.4.
Such techniques are also used in optimization for partial derivatives of low order for
the computation of Jacobian and Hessian matrices.

Sometimes power series are needed with many terms, although rarely more
than 30 (say). (The ill-conditioned series are exceptions; see Sec. 3.2.5.) The de-
termination of the coefficients can be achieved by the Toeplitz matrix method
using floating-point computation and an interactive matrix language. Computa-
tional details will be given in Problems 3.1.10–3.1.13 for Matlab. These problems
are available from the home page of the book mai.liu.se/akbjo. (Systems like
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Maple and Mathematica that include exact arithmetic and other features, are evi-
dently also useful here.) An alternative method, the Cauchy–FFT method, will
be described in Sec. 3.2.2.

Both methods will be applied later in the book. See in particular Sec. 3.3.4,
where they are used for deriving approximation formulas in the form of expansions
in powers of elementary difference or differential operators. In such applications,
the coefficient vector, v (say), is obtained in floating-point (usually in a very short
time).

Very accurate rational approximations to v, often even the exact values, can
be obtained (again in a very short time) by applying the Matlab function [N,D] =
rat(z,Tol) to the results, with two different values of the tolerance. This function
is based on a continued fraction algorithm, given in Sec. 3.5.1 for finding the best
rational approximation to a real number. This can be used for the “cleaning” of
numerical results which have, for practical reasons, been computed by floating-
point arithmetic, although the exact results are known to be (or strongly believed
to be) rather simple rational numbers. The algorithm attempts to remove the
“dirt” caused by computational errors. In Sec. 3.5.1 you also find some comments
of importance for the interpretation of the results, for example, for judging whether
the rational numbers are exact results or good approximations only.

Let f(z) be a function analytic at z = 0 with power series

f(z) =

∞∑

j=0

ajz
j .

With this power series we can associate an infinite upper triangular semicirculant
matrix

Cf =









a0 a1 a2 a3 . . .
a0 a1 a2 . . .

a0 a1 . . .
a0 . . .

. . .









. (3.1.24)

This matrix has constant entries along each diagonal in Cf and is therefore also a

Toeplitz matrix48. A truncated power series fN (z) =
∑N−1

j=0 ajz
j is represented

by the finite leading principal N ×N submatrix of Cf (see Definition A.1.1, which
can be written as

fN(SN ) =

N−1∑

j=0

ajS
j
N , (3.1.25)

where SN is a shift matrix. For example, with N = 4,

fN(SN ) =






a0 a1 a2 a3

0 a0 a1 a2

0 0 a0 a1

0 0 0 a0




 , SN =






0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0




 .

48Otto Toeplitz (1881-1940) German mathematician.
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The following properties of SN explains the term “shift matrix”:

SN






x1

x2

x3

x4




 =






x2

x3

x4

0




 , (x1, x2, x3, x4)SN = (0, x1, x2, x3).

What do the powers of SN look like? Note that SNN = 0, i.e. SN is a nilpo-
tent matrix. This is one of the reasons why the Toeplitz matrix representation is
convenient for work with truncated power series, since it follows that

f(SN ) =

∞∑

j=0

ajS
j
N =

N−1∑

j=0

ajS
j
N = fN (SN ).

It is easily verified that a product of upper triangular Toeplitz matrices is of the
same type. Also note that the multiplication of such matrices is commutative. It
is also evident that a linear combination of such matrices is of the same type.
Further it holds that

(f · g)(SN ) = f(SN )g(SN ) = fN (SN )gN (SN );

(αf + βg)(SN ) = αfN (SN ) + βgN (SN ).

(In general, Toeplitz matrices are not nilpotent, and the product of two non-
triangular Toeplitz matrices is not a Toeplitz matrix. Similarly for the inverse.
In this section we shall only deal with upper triangular Toeplitz matrices.)

Denote by eT1 the first row of the unit matrix of a size appropriate in the
context. An upper triangular Toeplitz matrix of order N is uniquely determined by
its first row r by means of a simple and fast algorithm that we call toep (r,N). For
example, the unit matrix of order N is IN = toep (eT1 , N), and the shift matrix is
SN = toep ([0 eT1 ], N). A Matlab implementation is given in Problem 3.1.10.

Now it will be indicated how one can save CPU time and memory space by
working on the row vector level, with the first rows instead of with the full triangular
matrices.49 We shall denote by f1, g1, the row vectors with the first N coefficients
of the Maclaurin expansions of f(z), g(z). They are equal to the first rows of the
matrices f(SN ), g(SN ), respectively. Suppose that f1, g1 are given and we shall
compute f · g1, i.e. the first row of f(SN ) · g(SN ) in a similar notation. Then

f · g1 = eT1 (f(SN ) · g(SN )) = (eT1 f(SN )) · g(SN) = f1 · toep(g1, N). (3.1.26)

Note that you never have to multiply two triangular matrices, if you work with
the first rows only. So, only about N2/2 flops and (typically) an application of
the toep(r,N) algorithm, are needed instead of about N3/6 if two upper trian-
gular matrices are multiplied; see Sec. 1.3.1, where the operation count for matrix
multiplication is discussed.

49In interactive computations with rather short series the gain of time may sometimes be neu-
tralized by an increased number of manual operations. See the computer exercises.
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Similarly the quotient of two upper triangular Toeplitz matrices, (say)

Q(SN) = f(SN ) · g(SN )−1,

is also a matrix of the same type. (A hint to a proof is given in Problem 3.1.10.50)
Note that Q(SN) · g(SN ) = f(SN ). With similar notations as above, we obtain for
the first row of this matrix equation the following triangular linear system where
the row vector q1 is the unknown.

q1 · toep(g1, N) = f1. (3.1.27)

Although the discussion in Sec. 1.3.2 is concerned with a linear system with a column
as the unknown (instead of a row), we draw from it the conclusion that only about
N2/2 scalar flops (including N scalar divisions) and one application of the toep
algorithm, are needed, instead of the N3/6 needed in the solution of the matrix
equation Q · g(SN ) = f(SN ).51

A library called toeplib is given in Problem 3.1.10 (a), which consists of short
Matlab scripts mainly based on Table 3.1.1. In the following problems the series of
the library are combined by elementary operations to become interesting examples
of the Toeplitz matrix method. The convenience, the accuracy and the execution
time are probably much better than you expect; even the authors were surprised.

Next we shall study how a composite function h(z) = f(g(z)) can be
expanded in powers of z. Suppose that f(z) and g(z) are analytic at z = 0,
f(z) =

∑∞
j=1 f1(j)zj−1. An important assumption is that g(0) = 0. Then we

can set g(z) = zḡ(z), hence (g(z))n = zn(ḡ(z))n and, because SnN = 0, n ≥ N , we
obtain

(g(SN ))n = SnN · (ḡ(SN ))n = 0, if n ≥ N and g(0) = 0,

h(SN ) ≡ f(g(SN)) =

N∑

j=1

f1(j)(g(SN ))j−1, if g(0) = 0. (3.1.28)

This matrix polynomial can be computed by a matrix version of Horner’s scheme.
The row vector version of this equation is written

h1 = comp(f1, g1, N). (3.1.29)

A Matlab implementation of the function comp is listed and applied in Prob-
lem 3.1.12.

If g(0) 6= 0, Equation (3.1.28) still provides an “expansion”, but it is wrong;
see Problem 3.1.12 (c). Suppose that |g(0)| is less than the radius of convergence

50In the terminology of algebra, the set of upper triangular N × N Toeplitz matrices, i.e.
{

PN−1
j=0 αjSj

N}, αj ∈ C, is a commutative integral domain, i.e. isomorphic with the set

of polynomials
PN−1

j=0 αjxj modulo xN , where x is an indeterminate.
51The equations (3.1.26) and (3.1.27) are mathematically equivalent to the convolution product

in (3.1.8) and the procedure demonstrated in Example 3.1.10, respectively. Sometimes both pro-
cedures suffer from the growth of the effects of rounding errors when n is very large, in particular
when the power series are ill-conditioned; see Sec. 3.2.5. An advantage of the Toeplitz matrix
method is that the coding, in a language with convenient matrix handling, becomes easier.
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of the Maclaurin expansion of f(x). Then a correct expansion is obtained by a
different decomposition. Set g̃(z) = g(z)− g(0), f̃(x) = f(x+ g(0)). Then f̃ , g̃ are
analytic at z = 0. g̃(0) = 0 and f̃(g̃(z)) = f(g(z)) = h(z). So, (3.1.28) and its row
vector implementations can be used if f̃ , g̃ are substituted for f, g.

Analytic functions of matrices are defined, in terms of their Taylor series. For
example, the series

eA = I +A+
A2

2!
+
A2

2!
+ · · · ,

converges elementwise for any matrix A. There exist several algorithms for comput-
ing eA,

√
A, logA, where A is a square matrix. One can form linear combinations,

products, quotients and composite functions of them. For example, a “principal
matrix value” of Y = (I +A)α is obtained by

B = log(I +A), Y = eαB.

For a composite function f(g(A)), it is here not necessary that g(0) = 0, but it
is important that g(z) and f(g(z)) are analytic when z is an eigenvalue of A. We
obtain truncated power series if A = SN ; note that SN has a multiple eigenvalue at
0. The coding, and the manual handling in interactive computing, are convenient
with matrix functions, but the computer has to perform more operations on full
triangular matrices than with the row vector level algorithms described above. So,
for very long expansions the earlier algorithms are notably faster.

If the given power series, f(x), g(x), . . . have rational coefficients, then the
exact results of a sequence of additions, multiplications, divisions, compositions,
differentiations, integrations will have rational coefficients, because the algorithms
are all formed by a finite number of scalar additions, multiplications and divisions.
As mentioned above, very accurate rational approximations, often even the exact
values, can be quickly obtained by applying a continued fraction algorithm that is
presented in Sec. 3.5.1 to the results of a floating-point computation.

If f(x) is an even function, its power series contains only even powers of x.
You gain space and time, by letting the shift matrix SN correspond to x2 (instead
of x). Similarly, if f(x) is an odd function, you can instead work with the even
function f(x)/x, and let SN correspond to x2.

Finally we consider a classical problem of mathematics, known as power
series reversion. The task is to find the power series for the inverse function
x = g(y) of the function y = f(x) =

∑∞
j=0 ajx

j , in the particular case where a0 = 0,
a1 = 1. Note that even if the series for f(x) is finite, the series for g(y) is in general
infinite!

The following simple cases of power series reversion are often sufficient and
useful in low order computations with paper and pencil.

y = x+ axk + . . . , (k > 1),

⇒ x = y − axk − . . . = y − ayk − . . . ; (3.1.30)

y = f(x) ≡ x+ a2x
2 + a3x

3 + a4x
4 + . . . ,

⇒ x = g(y) ≡ y − a2y
2 + (2a2

2 − a3)y
3 − (5a2

2 − 5a2a3 + a4)y
4 + . . . . (3.1.31)
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An application of power series reversion occurs in the derivation of a family of
iterative methods of arbitrary high order for solving scalar non-linear equations; see
Sec. 6.2.3.

Knuth [204, Sec 4.7] presents several algorithms for power series reversion,
including a classical algorithm due to Lagrange 1768 that requires O(N3) operations
to compute the first N terms. An algorithm due to Brent and Kung [41] is based
on an adaptation to formal power series of Newton’s method (1.2.3) for solving a
numerical algebraic equation. For power series reversion, the equation to be solved
reads

f(g(y)) = y, (3.1.32)

where the coefficients of g are the unknowns. The number of correct terms is
roughly doubled in each iteration, as long as N is not exceeded. In the usual nu-
merical application of Newton’s method to a scalar non-linear equation (see Secs. 1.2
and 6.3) it is the number of significant digits that is (approximately) doubled, so-
called quadratic convergence. Brent–Kung’s algorithm can be implemented in about
150 (N logN)3/2 scalar flops.

In Problem 3.1.13, a convenient Toeplitz matrix implementation of the idea
of Brent and Kung is presented. It requires about cN3 logN scalar flops with a
moderate value of c. It is thus much inferior to the original algorithm if N is very
large. In some interesting interactive applications, however, N rarely exceeds 30.
In such cases our implementation is satisfactory, unless (say) hundreds of series are
to be reversed.

3.1.5 Formal Power Series

A power series is not only a means for numerical computation; it is also an aid
for deriving formulas in numerical mathematics and in other branches of applied
mathematics. Then one has another, more algebraic, aspect of power series that
we shall briefly introduce. A more rigorous and detailed treatment is found in
Henrici [177, Chapter 1], and in the literature quoted there.

The set P of formal power series consists of all expressions of the form

P = a0 + a1x + a2x
2 + · · · ,

where the coefficients aj may be real or complex numbers (or elements in some other
field), while x is an algebraic indeterminate; x and its powers can be viewed as
place keepers. The sum of P and another formal power series, Q = b0 + b1x +
b2x

2 + · · ·, is defined as

P + Q = (a0 + b0) + (a1 + b1)x + (a2 + b2)x
2 + · · · .

Similarly, the Cauchy product is defined as

PQ = c0 + c1x + c2x
2 + · · · , cn =

n∑

j=0

ajbn−j.
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where the coefficients are given by the convolution formula (3.1.8). The multiplica-
tive identity element is the series I := 1+0x+0x2 + . . .. The division of two formal
power series is defined by a recurrence, as indicated in Example 3.1.5, if and only
if the first coefficient of the denominator is not zero. In algebraic terminology, the
set P together with the operations of addition and multiplication, is an integral
domain.

No real or complex values are assigned to x and P. Convergence, divergence
and remainder term have no relevance for formal power series. The coefficients of
a formal power series may even be such that the series diverges for any non-zero
complex value that you substitute for the indeterminate, for example, the series

P = 0!x − 1!x2 + 2!x3 − 3!x4 + · · · . (3.1.33)

Other operations are defined without surprises, for example, the derivative of P is
defined as P′ = 1a1 +2a2x+3a3x

2 + . . .. The limit process, by which the derivative
is defined in Calculus, does not exist for formal power series. The usual rules for
differentiation are still valid, and as an exercise you may verify that the formal power
series defined by (3.1.33) satisfies the formal differential equation x2P′ = x − P.

Formal power series can be used for deriving identities. In most applications
in this book difference operators or differential operators are substituted for the
indeterminates, and the identities are then used in the derivation of approximation
formulas, for interpolation, numerical differentiation and integration.

The formal definitions of the Cauchy product, (i.e. convolution) and division
are rarely used in practical calculation. It is easier to work with upper triangular
N×N Toeplitz matrices, as in Sec. 3.1.4, where N is any natural number. Algebraic
calculations with these matrices are isomorphic with calculations with formal power
series modulo xN .

If you perform operations on matrices fM (S), gM (S), . . ., where M < N ,
the results are equal to the principal M ×M submatrices of the results obtained
with the matrices fN(S), gN(S), . . .. This fact follows directly from the equivalence
with power series manipulations. It is related to the fact that in the multiplication
of block upper triangular matrices, the diagonal blocks of the product equals the
products of the diagonal blocks, and no new off-diagonal blocks enter; see Appendix
Sec. A.2.1.

So, we can easily define the product of two infinite upper triangular matrices,
C = AB, by stating that if i ≤ j ≤ n then cij has the same value that it has in
the N × N submatrix CN = ANBN for every N ≥ n. In particular C is upper
triangular, and note that there are no conditions on the behaviour of the elements
aij , bij as i, j → ∞. One can show that this product is associative and distributive.
For the infinite triangular Toeplitz matrices it is commutative too.52

The mapping of formal power series onto the set of infinite semicirculant ma-
trices is an isomorphism. (see Henrici [177, Sec. 1.3]). If the formal power series
a0 + a1x + a2x

2 + · · ·, and its reciprocal series, which exists if and only if a0 6= 0,
are represented by the semicirculants A and B, respectively, Henrici proves that

52For infinite non-triangular matrices the definition of a product generally contains conditions
on the behaviour of the elements as i, j → ∞, but we shall not discuss this here.
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AB = BA = I, where I is the unit matrix of infinite order. This indicates how to
define the inverse of any infinite upper triangular matrix if all diagonal elements
aii 6= 0.

If a function f of a complex variable z is analytic at the origin, then we define53

f(x) as the formal power series with the same coefficients as the Maclaurin series
for f(z). In the case of a multivalued function we take the principal branch.

There is a kind of “permanence of functional equations” also for the gener-
alization from a function g(z) of a complex variable that is analytic at the origin,
to the formal power series g(x). We illustrate a general principle on an important
special example that we formulate as a lemma, since we shall need it in the next
section.

Lemma 3.1.9.

(ex)θ = eθx, (θ ∈ R). (3.1.34)

Proof. Let the coefficient of xj in the expansion of the left hand side be φj(θ).
The corresponding coefficient for the right hand side is θj/j!. If we replace x by
a complex variable z, the power series coefficients are the same, and we know that
(ez)θ = eθz, hence φj(θ) = θj/j!, j = 1, 2, 3 . . ., hence

∑∞
0 φj(θ)x

j =
∑∞

0 (θj/j!)xj ,
and the lemma follows.

Example 3.1.11.
Find (if possible) a formal power series Q = 0 + b1x + b2x

2 + b3x
3 + . . ., that

satisfies the equation

e−Q = 1 − x, (3.1.35)

where e−Q = 1 − Q + Q2/2! − . . ..
We can, in principle, determine an arbitrarily long sequence b1, b2, b3, . . . bk by

matching the coefficients of x,x2,x3, . . .xk, in the two sides of the equation. We
display the first three equations.

1 − (b1x + b2x
2 + b3x

3 + . . .) + (b1x + b2x
2 + . . .)2/2 − (b1x + . . .)3/6 + . . .

= 1 − 1x + 0x2 + 0x3 + . . . .

For any natural number k, the matching condition is of the form

−bk + φk(bk−1, bk−2, . . . , b1) = 0.

This shows that the coefficients are uniquely determined.

−b1 = −1 ⇒ b1 = 1;

−b2 + b21/2 = 0 ⇒ b2 = 1/2;

−b3 + b1b2 − b1/6 = 0 ⇒ b3 = 1/3;

53Henrici, loc. cit., does not use this concept—it may not be established.
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There exists, however, a much easier way to determine the coefficients. For the
analogous problem with a complex variable z, we know that the solution is unique:
q(z) = − ln(1 − z) =

∑∞
1 zj/j (the principal branch, where b0 = 0), and hence

∑∞
1 xj/j is the unique formal power series that solves the problem, and we can use

the notation Q = − ln(1 − x) for it.54

The theory of formal power series can in a similar way justify many elegant
“symbolic” applications of power series for deriving mathematical formulas.

Review Questions

1.1. (a) Formulate three general theorems that can be used for estimating the
remainder term in numerical series.

(b) What can you say about the remainder term, if the nth term is O(n−k),
k > 1? Suppose in addition that the series is alternating. What further
condition should you add, in order to guarantee that the remainder term will
be O(n−k)?

1.2. Give, with convergence conditions, the Maclaurin series for ln(1+x), ex, sinx,

cosx, (1 + x)k, (1 − x)−1, ln
1 + x

1 − x
, arctanx.

1.3. Describe the main features of a few methods to compute the Maclaurin coef-
ficients of, e.g.,

√
2ex − 1.

1.4. Give generating functions of the Bernoulli and the Euler numbers. Describe
generally how to derive the coefficients in a quotient of two Maclaurin series.

1.5. If a functional equation, for example, 4(cosx)3 = cos 3x + 3 cosx, is known
to be valid for real x, how do you know that it holds also for all complex x?
Explain what is meant by the statement that it holds also for formal power
series, and why is this true?

1.6. (a) Show that multiplying two arbitrary upper triangular matrices of order

N uses
∑N
k=1 k(N − k) ≈ N3/6 flops, compared to

∑N
k=1 k ≈ N2/2 for the

product of a row vector and an upper triangular matrix.

(b) Show that if g(x) is a power series and g(0) = 0, then g(SN )n = 0, n ≥ N .
Make an operation count for the evaluation of the matrix polynomial f(g(SN))
by the matrix version of Horner’s scheme.

(c) Consider the product f(SN)g(SN ), where f(x) and g(x) are two power
series. Show, using rules for matrix multiplication, that for any M < N the
leading M ×M block of the product matrix equals f(SM )g(SM ).

1.7. Consider a power series y = f(x) =
∑∞
j=0 ajx

j , where a0 = 0, a1 = 1. What
is meant by reversion of this power series? In the Brent–Kung method the
problem of reversion of a power series is formulated as a nonlinear equation.

54The three coefficients bj computed above agree, of course, with 1/j, j = 1 : 3.
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Write this equation for the Toeplitz matrix representation of the series.

1.8. Let P = a0 + a1x + a2x
2 + · · · and Q = b0 + b1x + b2x

2 + · · · be two formal
power series. Define the sum P + Q and the Cauchy product PQ.

Problems and Computer Exercises

1.1. In how large a neighborhood of x = 0 does one get, respectively, four and six
correct decimals using the following approximations?

(a) sinx ≈ x; (b) (1+x2)−1/2 ≈ 1−x2/2; (c) (1+x2)−1/2e
√

cosx ≈ e(1− 3
4x

2).

Comment: The truncation error is asymptotically qxp where you know (?) p.

An alternative to an exact algebraic calculation of q, is a numerical estimation
of q, by means of the actual error for a suitable value of x—neither too big
nor too small (!). (Check the estimate of q for another value of x.)

1.2. (a) Let a, b, be the lengths of the two smaller sides of a right angle triangle,
b ≪ a. Show that the hypotenuse is approximately a+ b2/(2a) and estimate
the error of this approximation. If a = 100, how large is b allowed to be, in
order that the absolute error should be less than 0.01?

(b) How large a relative error do you commit, when you approximate the
length of a small circular arc by the length of the chord? How big is the error
if the arc is 100 km on a great circle of the earth? (Approximate the earth by
a ball of radius 40000/(2π) km.)

(c) How accurate is the formula arctanx ≈ π/2 − 1/x for x≫ 1 ?

1.3. (a) Compute 10−(999.999)1/3 to 9 significant digits, by the use of the binomial
expansion. Compare with the result obtained by a computer in IEEE double
precision arithmetic, directly from the first expression.

(b) How many terms of the Maclaurin series for ln(1 + x) would you need in
order to compute ln 2 with an error less than 10−6 ? How many terms do you
need, if you use instead the series for ln (1 + x)/(1 − x), with an appropriate
choice of x?

1.4. It is well known that erf(x) → 1 as x → ∞. If x ≫ 1 the relative accuracy
of the complement 1 − erf(x) is of interest. But the series expansion used in
Example 3.1.3 for x ∈ [0, 1] is not suitable for large values of x. Why?

Hint: Derive an approximate expression for the largest term.

1.5. Compute, by means of appropriate expansions, not necessarily in powers of t,
the following integrals to (say) five correct decimals.
(This is for paper, pencil and a pocket calculator.)

(a)

∫ 0.1

0

(1 − 0.1 sin t)1/2 dt; (b)

∫ ∞

10

(t3 − t)−1/2 dt.

1.6. (a) Expand arcsinx into powers of x by the integration of the expansion of
(1 − x2)−1/2.
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(b) Use the result in (a) to prove the expansion

x = sinhx− 1

2

sinh3 x

3
+

1·3
2·4

sinh5 x

5
− 1·3·5

2·4·6
sinh7 x

7
+ . . .

1.7. (a) Consider the power series for

(1 + x)−α, x > 0, 0 < α < 1.

Show that it is equal to the hypergeometric function F (α, 1, 1,−x). Is it true
that the expansion is alternating, and that the remainder has the same sign
as the first neglected term, also if x > 1, where the series is divergent? What
do the Theorems 3.1.4 and 3.1.5 tell you in the cases x < 1 and x > 1?

Comment: An application of the divergent case for α = 1
2 is found in Prob-

lem 3.2.9 (c).

(b) Express the coefficients of the power series expansions of y cot y and
ln(sin y/y) in terms of the Bernoulli numbers.

Hint: Set x = 2iy into (3.1.20). Differentiate the second function.

(c) Find a recurrence relation for the Euler numbers En (3.1.22) and use it
for showing that these numbers are integers.

(d) Show that

ln
(z + 1

z − 1

)

= 2
(1

z
+

1

3z3
+

1

5z5
+ . . .

)

, |z| > 1.

Find a recurrence relation for the coefficients of the expansion

(

ln
(z + 1

z − 1

))−1

=
1

2
z − µ1z

−1 − µ3z
−3 − µ5z

−5 − . . . , |z| > 1.

Compute µ1, µ3, µ5 and determine
∑∞

0 µ2j+1 by letting z ↓ 1. (Full rigor is
not required.)

Hint: Look at Example 3.1.5.

1.8. The power series expansion g(x) = b1x+ b2x
2 + . . . is given. Find recurrence

relations for the coefficients of the expansion for h(x) ≡ f(g(x)) = c0 + c1x+
c2x

2 + . . . in the following cases:

(a) h(x) = ln(1 + g(x)), f(x) = ln(1 + x).

Hint: Show that h′(x) = g′(x) − h′(x)g(x). Then proceed analogously to
Example 3.1.10.

Answer:

c0 = 0, cn = bn − 1

n

n−1∑

j=1

(n− j)cn−jbj.

(b) h(x) = (1 + g(x))k, f(x) = (1 + x)k, k ∈ R, k 6= 1.

Hint: Show that g(x)h′(x) = kh(x)g′(x) − h′(x). Then proceed analogously
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to Example 3.1.10.

Answer:

c0 = 1, cn =
1

n

n∑

j=1

(
(k + 1)j − n

)
cn−jbj ,

n = 1, 2,. . . . The recurrence relation is known as the J.C. P. Miller formula.

(c) h1(y) = cos g(x), h2(y) = sin g(x), simultaneously.

Hint: Consider instead h(y) = eig(x), and separate real and imaginary parts
afterwards.

1.9. Let y(w) = wew; the inverse function w(y) is known as the Lambert W func-
tion.55 The power series expansion for w(y) is

w(y) = y +

∞∑

n=2

(−1)n−1nn−2

(n− 1)!
yn

= y − y2 +
3

2
y3 − 8

3
y4 +

125

24
y5 − 54

5
y6 +

16807

720
y7 − · · · .

Estimate the radius of convergence for f(x) = xex, approximately by means
of the ratios of the coefficients computed in (d), and exactly.

Comment: The radius of convergence of the power series of the inverse function
to y = f(x) depends on the singularities of g(y), and are typically related to
the singularities of g(y) and to the zeros of f ′(x), (why?).

1.10. Problems 1.10–1.13 are available at the homepage of the book.

3.2 More About Series

3.2.1 Laurent and Fourier Series

A Laurent series is a series of the form

∞∑

n=−∞
cnz

n. (3.2.1)

Its convergence region is the intersection of the convergence regions of the expansions

∞∑

n=0

cnz
n and

∞∑

m=1

c−mz
−m,

the interior of which are determined by conditions of the form |z| < r2 and |z| > r1.
The convergence region can be void, for example, if r2 < r1.

55Johann Heinrich Lambert (1728–1777), a German mathematician, physicist and astronomer,
was a colleague of Euler and Lagrange at the Berlin Academy of Sciences. He is best known for his
illumination laws and for the continued fraction expansions of elementary functions; see Sec. 3.5.1.
His W function was “rediscovered” a few years ago, [71].
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If 0 < r1 < r2 < ∞ then the convergence region is an annulus, r1 < |z| < r2.
The series defines an analytic function in the annulus. Conversely, if f(z) is a
single-valued analytic function in this annulus, it is there represented by a
Laurent series, that converges uniformly in every closed subdomain of the annulus.

The coefficients are determined by the following formula, due to Cauchy56

cn =
1

2πi

∫

|z|=r
z−n−1f(z)dz, r1 < r < r2,−∞ < n <∞, (3.2.2)

and
|cn| ≤ r−n max

|z|=r
|f(z)|. (3.2.3)

The extension to the case when r2 = ∞ is obvious; the extension to r1 = 0 depends
on whether there are any terms with negative exponents or not. In the extension
of formal power series to formal Laurent series, however, only a finite number of
terms with negative indices are allowed to be different from zero; see Henrici [177,
Sec. 1.8]. If you substitute z for z−1 an infinite number of negative indices is allowed,
if the number of positive indices is finite.

Example 3.2.1.
A function may have several Laurent expansions (with different regions of

convergence), for example,

(z − a)−1 =







−∑∞
n=0 a

−n−1zn if |z| < |a|
∑∞

m=1 a
m−1z−m if |z| > |a|.

The function 1/(z − 1) + 1/(z − 2) has three Laurent expansions, with validity
conditions |z| < 1, 1 < |z| < 2, 2 < |z|, respectively. The series contains both
positive and negative powers of z in the middle case only. The details are left for
Problem 3.2.4 (a).

Remark 3.2.1. The restriction to single-valued analytic functions is important
in this subsection. In this book we cannot entirely avoid to work with multi-
valued functions such as

√
z, ln z, zα, (α non-integer). We always work with such

a function, however, in some region where one branch of it, determined by some
convention, is single-valued. In the examples mentioned, the natural conventions
are to require the function to be positive when z > 1, and to forbid z to cross the
negative real axis. In other words, the complex plane has a cut along the negative
real axis. The annulus mentioned above is in these cases incomplete; its intersection
with the negative real axis is missing, and we cannot use a Laurent expansion.

For a function like ln
(z + 1

z − 1

)

, we can, depending on the context, cut out

either the interval [−1, 1] or the complement of this interval with respect to the

56Augustin Cauchy (1789–1857) is the father of modern analysis. He is the creator of complex
analysis, in which this formula plays a fundamental role.
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real axis. We then use an expansion into negative or into positive powers of z,
respectively.

If r1 < 1 < r2, we set F (t) = f(eit). Note that F (t) is a periodic function;
F (t+2π) = F (t). By (3.2.1) and (3.2.2), the Laurent series then becomes for z = eit

a Fourier series:

F (t) =

∞∑

n=−∞
cne

int, cn =
1

2π

∫ π

−π
e−intF (t) dt. (3.2.4)

Note that c−m = O(rm1 ) form→ +∞, and cn = O(r−n2 ) for n→ +∞. The formulas
in (3.2.4), however, are valid in much more general situations, where cn → 0 much
more slowly, and where F (t) cannot be continued to an analytic function f(z), z =
reit, in an annulus. (In such a case r1 = 1 = r2, typically.)

A Fourier series is often written in the following form,

F (t) = 1
2a0 +

∞∑

k=1

(ak cos kt+ bk sin kt). (3.2.5)

Consider cke
ikt + c−ke−ikt ≡ ak cos kt+ bk sinkt. Since e±ikt = cos kt± i sinkt, we

obtain for k ≥ 0:

ak = ck + c−k =
1

π

∫ π

−π
F (t) cos kt dt; bk = i(ck − c−k) =

1

π

∫ π

−π
F (t) sin kt dt.

(3.2.6)
Also note that ak − ibk = 2ck. If F (t) is real for t ∈ R then c−k = c̄k.

We mention without proof the important Riemann–Lebesgue theorem,57
58 by which the Fourier coefficients cn tend to zero as n → ∞ for any function
that is integrable (in the sense of Lebesgue), a fortiori for any periodic function that
is continuous everywhere. A finite number of finite jumps in each period are also
allowed.

A function F (t) is said to be of bounded variation in an interval if, in this
interval, it can expressed in the form F (t) = F1(t)−F2(t), where F1 and F2 are non-
decreasing bounded functions. A finite number of jump discontinuities are allowed.

The variation of F over the interval [a, b] is denoted
∫ b

a |dF (t)|. If F is differentiable

the variation of F equals
∫ b

a
|F ′(t)| dt.

Another classical result in the theory of Fourier series reads:

If F (t) is of bounded variation in the closed interval [−π, π] then cn = O(n−1);
see Titchmarsh [312, § 13.21,§13.73]. This result can be generalized:

Theorem 3.2.1.

57George Friedrich Bernhard Riemann (1826–1866), a German mathematician, made fundamen-
tal contributions to Analysis and Geometry. In his habilitation lecture 1854 in Göttingen Riemann
introduced the curvature tensor and laid the groundwork for Einstein’s general theory of relativity.

58Henri Léon Lebesgue (1875–1941), a French mathematician, created path-breaking general
concepts of measure and integral.
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Suppose that F (p) is of bounded variation on [−π, π], and that F (j) is con-

tinuous everywhere for j < p. Denote the Fourier coefficients of F (p)(t) by c
(p)
n .

Then
cn = (in)−pc(p)n = O(n−p−1). (3.2.7)

Proof. The theorem follows from the above classical result, after the integration
of the formula for cn in (3.2.2) by parts p times.

Bounds for the truncation error of a Fourier series can also be obtained from
this. The details are left for Problem 3.2.4 (d), together with a further generaliza-
tion. A similar result is that cn = o(n−p) if F (p) is integrable, hence a fortiori if
F ∈ Cp.

In particular, we find for p = 1 (since
∑
n−2 is convergent) that the Fourier

series (3.2.2) converges absolutely and uniformly in R. It can also be shown that the
Fourier series is valid, i.e. the sum is equal to F (t).

3.2.2 The Cauchy–FFT Method

An alternative method for deriving coefficients of power series, when many terms
are needed is based on the following classic result. Suppose that the value f(z)
of an analytic function can be computed at any point inside and on the circle
Cr = {z : |z − a| = r}, and set

M(r) = max |f(z)|, z = a+ reiθ ∈ Cr.

Then the coefficients of the Taylor expansion around a are determined by
Cauchy’s formula,

an =
1

2πi

∫

Cr

f(z)

(z − a)(n+1)
dz =

r−n

2π

∫ 2π

0

f(a+ reiθ)e−niθ dθ. (3.2.8)

For a derivation, multiply the Taylor expansion (3.1.3) by (z − a)−n−1, integrate
term by term over Cr, and note that

1

2πi

∫

Cr

(z − a)j−n−1 dz =
1

2π

∫ 2π

0

rj−ne(j−n)iθ dθ =

{
1, if j = n;
0, if j 6= n.

(3.2.9)

The following inequalities are useful consequences of the definitions and of
(3.2.8).

|an| ≤ r−nM(r), (3.2.10)

Let z′ = a+ r′eiθ, 0 ≤ r′ < r. Then

|Rn(z′)| ≤
∞∑

j=n

|aj(z′ − a)j |

≤
∞∑

j=n

r−jM(r)(r′)j =
M(r)(r′/r)n

1 − r′/r
, 0 ≤ r′ < r. (3.2.11)
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This form of the remainder term of a Taylor series is useful in theoretical studies,
and also for practical purpose, if the maximum modulus M(r) is easier to estimate
than the nth derivative.

Set ∆θ = 2π/N , and apply the trapezoidal rule to the second integral in
(3.2.8). Then59

an ≈ ãn ≡ 1

Nrn

N−1∑

k=0

f(a+ reik∆θ)e−ink∆θ , n = 0 : N − 1. (3.2.12)

The approximate Taylor coefficients ãn, or rather the numbers a⋆n = ãnNr
n, are

here expressed as a case of the (direct) Discrete Fourier Transform (DFT).
More generally, this transform maps an arbitrary sequence {αk}N−1

0 to a sequence
{a⋆n}N−1

0 , by the following equations:

a⋆n =

N−1∑

k=0

αke
−ink∆θ, n = 0 : N − 1. (3.2.13)

It will be studied more systematically in Sec. 4.6.2.
If N is a power of 2, it is shown in Sec. 4.7 that, given the N values αk, k =

0 : N − 1, and e−i∆θ, no more than N log2N complex multiplications and additions
are needed for the computation of all the N coefficients a⋆n, if an implementation of
the discrete Fourier transform known as the Fast Fourier Transform (FFT) is
used. This makes our theoretical considerations very practical.60

It is also shown in Sec. 4.7 that the inverse of the discrete Fourier transform
(3.2.13) is given by the formulas,

αk = (1/N)

N−1∑

n=0

a⋆ne
ink∆θ, k = 0 : N − 1. (3.2.14)

It looks almost like the direct discrete Fourier transform (3.2.13), except for the
sign of i and the factor 1/N . It can therefore also be performed by means of
O(N logN) elementary operations, instead of the O(N3) operations that the most
obvious approach to this task would require, (i.e. by solving the linear system
(3.2.13)).

In our context, i.e. the computation of Taylor coefficients, we have, by (3.2.12)
and the line after that equation,

αk = f(a+ reik∆θ), a⋆n = ãnNr
n. (3.2.15)

59See (1.2.6). Note that the integrand has the same value for θ = 2π as for θ = 0. The terms
1
2
f0 and 1

2
fN that appear in the general trapezoidal rule can therefore in this case be replaced

by f0.
60The idea of using Cauchy’s formula and FFT for numerical differentiation was suggested by

Lyness and Moler [225].
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Set zk = a+ reik∆θ . Using (3.2.15), the inverse transformation then becomes,61

f(zk) =

N−1∑

n=0

ãn(zk − a)n, k = 0 : N − 1. (3.2.16)

Since the Taylor coefficients are equal to f (n)(a)/n!, this is de facto a method
for the accurate numerical differentiation of an analytic function. If r and N are
chosen appropriately, it is more well-conditioned than most methods for numeri-
cal differentiation, such as the difference approximations mentioned in Chapter 1;
see also Sec. 3.3. It requires, however, complex arithmetic for a convenient imple-
mentation. We call this the Cauchy–FFT method for Taylor coefficients and
differentiation.

The question arises, how to choose N and r. Theoretically, any r less than the
radius of convergence ρ would do, but there may be trouble with cancellation if r is
small. On the other hand, the truncation error of the numerical integration usually
increases with r. “Scylla and Charybdis situations”62 like this are very common
with numerical methods.

Typically it is the rounding error that sets the limit for the accuracy; it is
usually not expensive to choose r and N , so that the truncation error becomes
much smaller. A rule of thumb for this situation is to guess a value of n̂, i.e. how
many terms will be needed in the expansion, and then to try two values for N
(powers of 2) larger than n̂. If ρ is finite try r = 0.9ρ and r = 0.8ρ, and compare
the results. They may or may not indicate that some other values of N and r (and
perhaps also n̂) should also be tried. On the other hand, if ρ = ∞, try, for example,
r = 1 and r = 3, and compare the results. Again the results indicate whether or
not more experiments should be made.

One can also combine numerical experimentation with a theoretical analysis
of a more or less simplified model, including a few elementary optimization calcu-
lations. The authors take the opportunity to exemplify below this type of “hard
analysis” on this question.

We first derive two lemmas, which are important also in many other contexts.
First we have a discrete analogue of equation (3.2.9).

Lemma 3.2.2.
Let p,N be integers. Then

N−1∑

k=0

e2πipk/N = 0,

unless p = 0 or p is a multiple of N . In these exceptional cases every term equals
1, and the sum equals N .

61One interpretation of these equations is that the polynomial
PN−1

n=0 ãn(z − a)n is the solution
of a special, although important, interpolation problem for the function f , analytic inside a circle
in C.

62According to American Heritage Dictionary Scylla is a rock on the Italian side of the Strait
of Messina, opposite to the whirlpool Charybdis, personified by Homer (Ulysses) as a female sea
monster who devoured sailors. The problem is to navigate safely between them.
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Proof. If p is neither 0 nor a multiple of N , the sum is a geometric series, the sum
of which is equal to

(e2πip − 1)/(e2πip/N − 1) = 0.

The rest of the statement is obvious.

Lemma 3.2.3.
Suppose that f(z) =

∑∞
0 an(z− a)n is analytic in the disc |z− a| < ρ. Let ãn

be defined by (3.2.12), where 0 < r < ρ. Then

ãn − an = an+N r
N + an+2N r

2N + an+3N r
3N + . . . , 0 ≤ n < N. (3.2.17)

Proof. Since ∆θ = 2π/N ,

ãn =
1

Nrn

N−1∑

k=0

e−2πink/N
∞∑

m=0

am

(

re2πik/N
)m

=
1

Nrn

∞∑

m=0

amr
m
N−1∑

k=0

e2πi(−n+m)k/N .

By the previous lemma, the inner sum of the last expression is zero, unless m − n
is a multiple of N . Hence (recall that 0 ≤ n < N),

ãn =
1

Nrn
(
anr

nN + an+N r
n+NN + an+2N r

n+2NN + . . .
)
,

from which equation (3.2.17) follows.

Lemma 3.2.3 can, with some modifications, be generalized to Laurent series
(and to complex Fourier series), for example, (3.2.17) becomes

c̃n − cn = . . . cn−2Nr
−2N + cn−Nr

−N + cn+Nr
N + cn+2Nr

2N . . . (3.2.18)

Let M(r) be the maximum modulus for the function f(z) on the circle Cr ,
and denote by M(r)U an upper bound for the error of a computed function value
f(z), |z| = r, where U ≪ 1. Assume that rounding errors during the computation
of ãn are of minor importance. Then, by (3.2.12), M(r)U/rn is a bound for the
rounding error of ãn. (The rounding errors during the computation can be included
by a redefinition of U .)

Next we shall consider the truncation error of (3.2.12). First we estimate the
coefficients that occur in (3.2.17) by means of max |f(z)| on a circle with radius r′;
r′ > r, where r is the radius of the circle used in the computation of the first N
coefficients. So, in (3.2.8) we substitute r′, j for r, n, respectively, and obtain the
inequality

|aj | ≤M(r′)(r′)−j , 0 < r < r′ < ρ.
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The actual choice of r′, strongly depends on the function f . (In rare cases we may
choose r′ = ρ.) Put this inequality into (3.2.17), where we shall choose r < r′ < ρ.
Then

|ãn − an| ≤M(r′)
(
(r′)−n−NrN + (r′)−n−2Nr2N + (r′)−n−3Nr3N + . . .

)

= M(r′)(r′)−n
(
(r/r′)N + (r/r′)2N + (r/r′)3N + . . .

)
=
M(r′)(r′)−n

(r′/r)N − 1
.

We make a digression here, because this is an amazingly good result. The trapezoidal
rule that was used in the calculation of the Taylor coefficients is typically expected
to have an error that is O

(
(∆θ)2

)
= O

(
N−2

)
. (As before, ∆θ = 2π/N .) This

application is, however, a very special situation: a periodic analytic function is
integrated over a full period. We shall return to results like this several times. In
this case, for fixed values of r, r′, the truncation error is O

(
(r/r′)N

)
= O

(
e−η/∆θ

)
,

where η > 0, ∆θ → 0+. This tends to zero faster than any power of ∆θ.
It follows that a bound for the total error of ãn, i.e. the sum of the bounds

for the rounding and the truncation errors, is given by

UM(r)r−n +
M(r′)(r′)−n

(r′/r)N − 1
, r < r′ < ρ. (3.2.19)

Example 3.2.2 (“Scylla and Charybdis” in the Cauchy–FFT).

We shall discuss how to choose the parameters r and N , so that the absolute
error bound of an, given in (3.2.19) becomes uniformly small for (say) n = 0 : n̂.
1 + n̂ ≫ 1 is thus the number of Taylor coefficients requested. The parameter r′

does not belong to the Cauchy–FFT method, but it has to be chosen well in order
to make the bound for the truncation error realistic.

The discussion is rather technical, and you may omit it at a first reading.
It may, however, be useful to study this example later, because similar technical
subproblems occur in many serious discussions of numerical methods that contain
parameters that should be appropriately chosen.

First consider the rounding error. By the maximum modulus theorem, M(r)
is an increasing function, hence, for r > 1, maxnM(r)r−n = M(r) > M(1). On
the other hand, for r ≤ 1, maxnM(r)r−n = M(r)r−n̂; n̂ was introduced in the
beginning of this example. Let r∗ be the value of r, for which this maximum is
minimal. Note that r∗ = 1 unless M ′(r)/M(r) = n̂/r for some r ≤ 1.

Then try to determine N and r′ ∈ [r∗, ρ) so that, for r = r∗, the bound
for the second term of (3.2.19) becomes much smaller than the first term, i.e. the
truncation error is made negligible compared to the rounding error. This works well
if ρ ≫ r∗. In such cases, we may therefore choose r = r∗, and the total error is
then just a little larger than UM(r∗)(r∗)−n̂.

For example, if f(z) = ez then M(r) = er, ρ = ∞. In this case r∗ = 1
(since n̂ ≫ 1). Then we shall choose N and r′ = N , so that er

′
/((r′)N − 1) ≪ eU .

One can show that it is sufficient to choose N ≫ | lnU/ ln | lnU ||. For instance,
if U = 10−16, this is satisfied with a wide margin by N = 32. In IEEE double
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precision arithmetic, the choice r = 1, N = 32, gave an error less than 2 ·10−16.
The results were much worse for r = 10, and for r = 0.1; the maximum error of the
first 32 coefficients became 4 · 10−4 and 9 · 1013(!), respectively. In the latter case
the errors of the first 8 coefficients did not exceed 10−10, but the rounding error of
an, due to cancellations, increase rapidly with n.

If ρ is not much larger than r∗, the procedure described above may lead to a
value of N that is much larger than n̂. In order to avoid this, we now set n̂ = αN .
We now confine the discussion to the case that r < r′ < ρ ≤ 1, n = 0 : n̂. Then, with
all other parameters fixed, the bound in (3.2.19) is maximal for n = n̂. We simplify
this bound; M(r) is replaced by the larger quantity M(r′), and the denominator is
replaced by (r′/r)N . Then, for given r′, α,N , we set x = (r/r′)N and determine x
so that

M(r′)(r′)−αN (Ux−α + x)

is minimized. The minimum is obtained for x = (αU)1/(1+α), i.e. for r = r′x1/N ,
and the minimum is equal to63

M(r′)(r′)−nU1/(1+α)c(α), where c(α) = (1 + α)α−α/(1+α).

We see that the error bound contains the factor U1/(1+α). This is, proportional
to 2U1/2 for α = 1, and to 1.65U4/5 for α = 1

4 . The latter case is thus much more
accurate, but, for the same n̂, one has to choose N four times as large, which leads
to more than four times as many arithmetic operations. In practice, n̂ is usually
given, and the order of magnitude of U can be estimated. Then α is to be chosen to
make a compromise between the requirements for a good accuracy and for a small
volume of computation. If ρ is not much larger than r∗, we may choose

N = n̂/α, x = (αU)1/(1+α), r = r′x1/N .

Experiments were made with

f(z) = ln(1 − z),

for which ρ = 1, M(1) = ∞. Take n̂ = 64, U = 10−15, r′ = 0.999. Then M(r′) =
6.9. For α = 1, 1/2, 1/4, we have N = 64, 128, 256, respectively. The above theory
suggests r = 0.764, 0.832, 0.894, respectively. The theoretical estimates of the
absolute errors become, 10−9, 2.4·10−12, 2.7·10−14, respectively. The smallest errors
obtained in experiments with these three values of α are, 6·10−10, 1.8·10−12, 1.8·10−14,
which were obtained for r = 0.766, 0.838, 0.898, respectively. So, the theoretical
predictions of these experimental results are very satisfactory.

3.2.3 Chebyshev Expansions

The Chebyshev64 polynomials of the first kind are defined by

Tn(z) = cos(n arccos z), n ≥ 0, (3.2.20)

63This is a rigorous upper bound of the error for this value of r, in spite of the fact that
simplifications in the formulation of the minimization.

64Pafnuti Lvovich Chebyshev (1821–1894), a Russian mathematician, pioneer in approximation
theory and the constructive theory of functions. His name has many different transcriptions, for
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that is Tn(z) = cos(nφ), where z = cosφ. From the well known trigonometric
formula

cos(n+ 1)φ+ cos(n− 1)φ = 2 cosφ cosnφ.

follows, by induction, the important recurrence relation: T0(z) = 1, T1(z) = z,

Tn+1(z) = 2zTn(z) − Tn−1(z), (n ≥ 1), (3.2.21)

Using this recurrence relation we obtain,

T2(z) = 2z2 − 1; T3(z) = 4z3 − 3z; T4(z) = 8z4 − 8z2 + 1,

T5(z) = 16z5 − 20z3 + 5z; T6(z) = 32z6 − 48z + 18z2 − 1, . . .

Clearly Tn(z) is the nth degree polynomial,

Tn(z) = zn −
(
n

2

)

zn−2(1 − z2) +

(
n

4

)

zn−4(1 − z2)2 − . . . .

The Chebyshev polynomials of the second kind,

Un−1(z) =
1

n+ 1
T ′(z) =

sin(nφ)

sinφ
, φ = arccos z. (3.2.22)

These satisfy the same recurrence relation, with the initial conditions U−1(z) = 0,
U0(z) = 1; its degree is n− 1. (When we write just Chebyshev polynomial we refer
to the first kind.)

The Chebyshev polynomial Tn(x) has n zeros in [−1, 1] given by

xk = cos
(2k − 1

n

π

2

)

, k = 1 : n, (3.2.23)

the Chebyshev points, and n+ 1 extrema

x′k = cos
(kπ

n

)

, k = 0 : n. (3.2.24)

These results follow directly from the fact that cos(nφ) = 0 for φ = (2k+1)π/(2n),
and that cos(nφ) = ±1 for φ = kπ/n.

Note that from (3.2.20) it follows that |Tn(x)| ≤ 1 for x ∈ [−1, 1], even though
its leading coefficient is as large as 2n−1.

Example 3.2.3.
Figure 3.2.1 shows a plot of the Chebyshev polynomial T20(x) for x ∈ [−1, 1].

Setting z = 1 in the recurrence relation (3.2.21) and using T0(1) = T1(1) = 1, it
follows that Tn(1) = 1, n ≥ 0. From T ′

0(1) = 0 an T ′
1(1) = 1 and differentiating the

recurrence relation we get

T ′
n+1(z) = 2(zT ′

n(z) + Tn(z)) − T ′
n−1(z), (n ≥ 1).

example, Tschebyscheff. This may explain why the polynomials that bear his name are denoted
Tn(x). He also gave important contributions to probability theory and number theory.
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Figure 3.2.1. Graph of the Chebyshev polynomial T20(x), x ∈ [−1, 1].

It follows easily by induction that T ′
n(1) = n2, i.e. outside the interval [−1, 1] the

Chebyshev polynomials grow rapidly.

The Chebyshev polynomials have a unique minimax property. (For a use
of this property; see, Example 3.2.4.)

Lemma 3.2.4 (Minimax Property).

The Chebyshev polynomials have the following minimax property: Of all
nth degree polynomials with leading coefficient 1, the polynomial 21−nTn(x) has the
smallest magnitude 21−n in [−1, 1].

Proof. Suppose there were a polynomial pn(x), with leading coefficient 1 such that
|pn(x)| < 21−n for all x ∈ [−1, 1]. Let x′k, k = 0 : n, be the abscissae of the extrema
of Tn(x). Then we would have

pn(x
′
0) < 21−nTn(x

′
0), pn(x

′
1) > 21−nTn(x

′
1), pn(x

′
2) < 21−nTn(x

′
2), . . . ,

etc., up to x′n. From this it follows that the polynomial

pn(x) − 21−nTn(x)

changes sign in each of the n intervals (x′k, x
′
k+1), k = 0 : n− 1. This is impossible,

since the polynomial is of degree n− 1. This proves the minimax property.

The Chebyshev expansion of a function f(z)

f(z) =

∞∑

j=0

cjTj(z), (3.2.25)

are an important aid in studying functions on the interval [−1, 1]. If one is working
with a function f(t), t ∈ [a, b], then one should make the substitution

t = 1
2 (a+ b) + 1

2 (b − a)x, (3.2.26)
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which maps the interval [−1, 1] onto [a, b].
Consider the approximation to the function f(x) = xn on [−1, 1] by a poly-

nomial of lower degree. From the minimax property of Chebyshev polynomials it
follows that the maximum magnitude of the error is minimized by the polynomial

p(x) = xn − 21−nTn(x). (3.2.27)

From the symmetry property Tn(−x) = (−1)nTn(x), it follows that this polynomial
has in fact degree n−2. The error 21−nTn(x) assumes its extrema 21−n in a sequence
of n+ 1 points, xi = cos(iπ/n). The sign of the error alternates at these points.

Suppose that one has obtained, for example, by Taylor series, a truncated
power series approximation to a function f(x). By repeated use of (3.2.27), the
series can be replaced by a polynomial of lower degree with a moderately increased
bound for the truncation error. This process, called economization of power
series often yields a useful polynomial approximation to f(x) with a considerably
smaller number of terms than the original power series.

Example 3.2.4.
If the series expansion cosx = 1 − x2/2 + x4/24 − · · · is truncated after the

x4-term, the maximum error is 0.0014 in [−1, 1]. Since T4(x) = 8x4 − 8x2 + 1, it
holds that

x4/24 ≈ x2/24 − 1/192

with an error which does not exceed 1/192 = 0.0052. Thus the approximation

cosx = (1 − 1/192)− x2(1/2 − 1/24) = 0.99479− 0.45833x2

has an error whose magnitude does not exceed 0.0052+0.0014 < 0.007. This is less
than one-sixth of the error 0.042, which is obtained if the power series is truncated
after the x2-term.

Note that for the economized approximation cos(0) is not approximated by 1.
It may not be acceptable that such an exact relation is lost. In this example one
could have asked for a polynomial approximation to (1 − cosx)/x2 instead.

If a Chebyshev expansion converges rapidly, the truncation error is, by and
large, determined by the first few neglected terms. As indicated by Figures 3.2.1
and 3.2.5 the error curve is oscillating with slowly varying amplitude in [−1, 1]. In
contrast, the truncation error of a power series is proportional to a power of x. Note
that f(z) is allowed to have a singularity arbitrarily close to the interval [−1, 1],
and the convergence of the Chebyshev expansion will still be exponential, although
the exponential rate deteriorates, as R ↓ 1.

Important properties of trigonometric functions and Fourier series can be re-
formulated in the terminology of Chebyshev polynomials. For example, they satisfy
certain orthogonality relations; see Example 4.5.10. Also results like (3.2.7) con-
cerning how the rate of decrease of the coefficients or the truncation error of a
Fourier series, is related to the smoothness properties of its sum, can be translated
to Chebyshev expansions. So, even if f is not analytic, its Chebyshev expansion
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converges under amazingly general conditions (unlike a power series), but the con-
vergence is much slower than exponential. A typical result reads: if f ∈ Ck[−1, 1],
k > 0, there exists a bound for the truncation error that decreases uniformly like
O(n−k logn). Sometimes convergence acceleration can be successfully applied to
such series.

Set w = eiφ = cosφ+ i sinφ, where φ and z = cosφ may be complex. Then

w = z ±
√

z2 − 1, z = cosφ = 1
2 (w + w−1),

and
Tn(z) = cosnφ = 1

2 (wn + w−n), (3.2.28)
(

z +
√

z2 − 1
)n

= Tn(z) + Un−1(z)
√

z2 − 1,

where Un−1(z) is the Chebyshev polynomials of the second kind; see (3.2.22). It
follows that the Chebyshev expansion (3.2.25) formally corresponds to a symmetric
Laurent expansion,

g(w) = f
(

1
2 (w + w−1)

)
=

∞∑

−∞
ajw

j ; a−j = aj =

{
1
2cj , if j > 0;

c0, if j = 0.

It can be shown by the parallelogram law, that |z+1|+ |z−1| = |w|+ |w|−1, Hence,
if R > 1, z = 1

2 (w + w−1) maps the annulus {w : R−1 < |w| < R}, twice onto an
ellipse ER, determined by the relation,

ER = {z : |z − 1| + |z + 1| ≤ R+R−1}, (3.2.29)

with foci at 1 and −1. The axes are, respectively, R+R−1 and R−R−1, and hence
R is the sum of the semi-axes.

Note that, as R → 1, the ellipse degenerates into the interval [−1, 1]. As
R → ∞, it becomes close to the circle |z| < 1

2R. It follows from (3.2.28) that this

family of confocal ellipses are level curves of |w| = |z ±
√
z2 − 1|. In fact, we can

also write,

ER =
{

z : 1 ≤ |z +
√

z2 − 1| ≤ R
}

. (3.2.30)

Theorem 3.2.5 (Bernštein’s Approximation Theorem).

Let f(z) be real-valued for z ∈ [−1, 1], analytic and single-valued for z ∈
ER, R > 1. Assume that |f(z)| ≤M for z ∈ ER. Then65

∣
∣
∣f(x) −

n−1∑

j=0

cjTj(x)
∣
∣
∣ ≤ 2MR−n

1 − 1/R
for x ∈ [−1, 1].

Proof. Set as before, z = 1
2 (w + w−1), g(w) = f

(
1
2 (w + w−1)

)
. Then g(w) is

analytic in the annulus R−1 + ǫ ≤ |w| ≤ R − ǫ, and hence the Laurent expansion

65A generalization to complex values of x is formulated in Problem 3.2.13.
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(3.2.1) converges there. In particular it converges for |w| = 1, hence the Chebyshev
expansion for f(x) converges when x ∈ [−1, 1].

Set r = R− ǫ. By Cauchy’s formula, we obtain, for j > 0,

|cj | = 2|aj| =
∣
∣
∣

2

2πi

∫

|w|=r
g(w)w−(j+1)dw

∣
∣
∣ ≤ 2

2π

∫ 2π

0

Mr−j−1rdφ = 2Mr−j .

We then obtain, for x ∈ [−1, 1],

∣
∣
∣f(x) −

n−1∑

j=0

cjTj(x)
∣
∣
∣ =

∣
∣
∣

∞∑

n

cjTj(x)
∣
∣
∣ ≤

∞∑

n

|cj | ≤ 2M

∞∑

n

r−j ≤ 2M
r−n

1 − 1/r
.

This holds for any ǫ > 0. We can here let ǫ→ 0 and thus replace r by R.

The Chebyshev polynomials are perhaps the most important example of a
family of orthogonal polynomials; see Sec. 4.5.5. The numerical value of a trun-
cated Chebyshev expansion can be computed by means of Clenshaw’s algorithm;
see Theorem 4.5.21

3.2.4 Perturbation Expansions

In the equations of applied mathematics it is often possible to identify a small
dimensionless parameter (say) ǫ, ǫ ≪ 1. The case when ǫ = 0 is called the reduced
problem or the unperturbed case, and one asks for a perturbation expansion,
i.e. an expansion of the solution of the perturbed problem into powers of the
perturbation parameter ǫ. In many cases it can be proved that the expansion has
the form c0+c1ǫ+c2ǫ

2+. . ., but there are also important cases, where the expansion
contains fractional or a few negative powers.

In this subsection, we consider an analytic equation φ(z, ǫ) = 0 and seek
expansions for the roots zi(ǫ) in powers of ǫ. This has some practical interest in its
own right, but it is mainly to be considered as a preparation for more interesting
applications of perturbation methods to more complicated problems. A simple
perturbation example for a differential equation is given in Problem 3.2.9.

If zi(0) is a simple root, i.e. if ∂φ/∂z 6= 0, for (z, ǫ) = (zi(0), 0), then a theorem
of complex analysis tells us that zi(ǫ) is an analytic function in a neighborhood of
the origin. Hence the expansion

zi(ǫ) − zi(0) = c1ǫ+ c2ǫ
2 + . . .

has a positive (or infinite) radius of convergence. We call this a regular pertur-
bation problem. The techniques of power series reversion, presented in Sec. 3.1.4,
can often be applied after some preparation of the equation. Computer algebra
systems are also used in perturbation problems, if expansions with many terms are
needed.
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Example 3.2.5.
We shall expand the roots of

φ(z, ǫ) ≡ ǫz2 − z + 1 = 0

into powers of ǫ. The reduced problem −z+1 = 0 has only one finite root z1(0) = 1.
Set z = 1 + xǫ, x = c1 + c2ǫ+ c3ǫ

2 + . . .. Then φ(1 + xǫ, ǫ)/ǫ = (1 + xǫ)2 − x = 0,
i.e.

(1 + c1ǫ+ c2ǫ
2 + . . .)2 − (c1 + c2ǫ+ c3ǫ

2 + . . .) = 0.

Matching the coefficients of ǫ0, ǫ1, ǫ2, we obtain the system

1 − c1 = 0 ⇒ c1 = 1;

2c1 − c2 = 0 ⇒ c2 = 2;

2c2 + c21 − c3 = 0 ⇒ c3 = 5;

hence z1(ǫ) = 1 + ǫ+ 2ǫ2 + 5ǫ3 + . . ..
Now, the easiest way to obtain the expansion for the second root z2(ǫ), is to

use the fact that the sum of the roots of the quadratic equation equals ǫ−1, hence
z2(ǫ) = ǫ−1 − 1 − ǫ− 2ǫ2 + . . ..

Note the appearance of the term ǫ−1. This is due to a characteristic feature
of this example. The degree of the polynomial is lower for the reduced problem
than it is for ǫ 6= 0; one of the roots escapes to ∞ as ǫ → 0. This is an example of
a singular perturbation problem, an important type of problem for differential
equations; see Problem 3.2.9.

If ∂φ/∂z = 0, for some zi, the situation is more complicated; zi is a multiple
root, and the expansions look differently. If zi(0) is a k-fold root then there may
exist an expansion of the form

zi(ǫ) = c0 + c1ǫ
1/k + c2(ǫ

1/k)2 + . . .

for each of the k roots of ǫ, but this is not always the case. See (3.2.31) below, where
the expansions are of a different type. If one tries to determine the coefficients in an
expansion of the wrong form, one usually runs into contradictions, but the question
about the right form of the expansions still remains.

The answers are given by the classical theory of algebraic functions, where
Riemann surfaces and Newton polygons are two of the key concepts, see, e.g.,
Bliss [31]. We shall, for several reasons, not use this theory here. One reason
is that it seems hard to generalize some of the methods of algebraic function theory
to more complicated equations, such as differential equations. We shall instead use
a general balancing procedure, recommended in Lin and Segel [220, Sec. 9.1],
where it is applied to singular perturbation problems for differential equations too.

The basic idea is very simple: each term in an equation behaves like some
power of ǫ. The equation cannot hold, unless there is a β, such that a pair of terms
of the equation behave like Aǫβ, (with different values of A), and the ǫ-exponents of
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the other terms are larger than or equal to β. (Recall that larger exponents make
smaller terms.)

Let us return to the previous example. Although we have already determined
the expansion for z2(ǫ) (by a trick that may not be useful for other problems than
single analytic equations), we shall use this task to illustrate the balancing proce-
dure. Suppose that

z2(ǫ) ∼ Aǫα, (α < 0).

The three terms of the equation ǫz2 − z + 1 = 0 then get the exponents

1 + 2α, α, 0.

Try the first two terms as the candidates for being the dominant pair. Then 1+2α =
α, hence α = −1. The three exponents become −1, −1, 0. Since the third exponent
is larger than the exponent of the candidates, this choice of pair seems possible, but
we have not shown that it is the only possible choice.

Now try the first and the third terms as candidates. Then 1 + 2α = 0, hence
α = − 1

2 . The exponent of the non-candidate is − 1
2 ≤ 0; this candidate pair is thus

impossible. Finally, try the second and the third terms. Then α = 0, but we are
only interested in negative values of α.

The conclusion is that we can try coefficient matching in the expansion z2(ǫ) =
c−1ǫ

−1 + c0 + c1ǫ+ . . .. We don’t need to do it, since we know the answer already,
but it indicates how to proceed in more complicated cases.

Example 3.2.6.
First consider the equation z3 − z2 + ǫ = 0. The reduced problem z3 − z2 = 0

has a single root, z1 = 1, and a double root, z2,3 = 0. No root has escaped
to ∞. By a similar coefficient matching as in the previous example we find that
z1(ǫ) = 1− ǫ− 2ǫ2 + . . .. For the double root, set z = Aǫβ , β > 0. The three terms
of the equation obtain the exponents 3β, 2β, 1. Since 3β is dominated by 2β we
conclude that 2β = 1, i.e. β = 1/2,

z2,3(ǫ) = c0ǫ
1/2 + c1ǫ+ c2ǫ

3/2 + . . . .

By matching the coefficients of ǫ, ǫ3/2, ǫ2, we obtain the system

−c20 + 1 = 0 ⇒ c0 = ±1,

−2c0c1 + c30 = 0 ⇒ c1 = 1
2 ,

−2c0c2 − c21 + 2c20c1 + c1c
2
0 = 0 ⇒ c2 = ± 5

8 ,

hence z2,3(ǫ) = ±ǫ1/2 + 1
2ǫ± 5

8 ǫ
3/2 + . . ..

There are, however, equations with a double root, where the perturbed pair
of roots do not behave like ±c0ǫ1/2 as ǫ→ 0. In such cases the balancing procedure
may help. Consider the equation

(1 + ǫ)z2 + 4ǫz + ǫ2 = 0. (3.2.31)

The reduced problem iss z2 = 0, with a double root. Try z ∼ Aǫα, α > 0. The
exponents of the three terms become 2α, α + 1, 2. We see that α = 1 makes the
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three exponents all equal to 2; this is fine. So, set z = ǫy. The equation reads,
after division by ǫ2, (1 + ǫ)y2 + 4y + 1 = 0, hence y(0) = a ≡ −2 ±

√
3. Coefficient

matching yields the result

z = ǫy = aǫ+ (−a2/(2(a+ 2)))ǫ2 + . . . ,

where all exponents are natural numbers.

If ǫ is small enough, the last term included can serve as an error estimate. A
more reliable error estimate (or even an error bound) can be obtained by inserting
the truncated expansion into the equation. It shows that the truncated expansion
satisfies a modified equation exactly. The same idea can be applied to equations of
many other types; see also Problem 3.2.9.

3.2.5 Ill-Conditioned Series

Slow convergence is not the only numerical difficulty that occurs in connection with
infinite series. There are also series with oscillating terms and a complicated type
of catastrophic cancellation. The size of some terms are many orders of magnitude
larger than the sum of the series. Small relative errors in the computation of the
large terms lead to a large relative error in the result. We call such a series ill-
conditioned.

Such series have not been subject to many systematic investigations. One
simply tries to avoid them. For the important “special functions” of Applied Math-
ematics, such as Bessel Functions, confluent hypergeometric functions, etc., there
usually exists expansions into descending powers of z that can be useful, when
|z| ≫ 1 and the usual series, in ascending powers, are divergent or ill-conditioned.
Another possibility is to use multiple precision in computations with ill-conditioned
power series; this is relatively expensive and laborious (but the difficulties should
not be exaggerated). There are, however, also other, less known, possibilities that
will now be exemplified. The subject is still open for new fresh ideas, and we hope
that the following pages and the related problems at the end of the section will
stimulate some readers to thinking about it.

First, we shall consider power series of the form

∞∑

n=0

(−x)ncn
n!

, (3.2.32)

where x≫ 1, although not so large that there is risk for overflow. We assume that
the coefficients cn are positive and slowly varying (relatively to (−x)n/n!). The
ratio of two consecutive terms is

cn+1

cn

−x
n+ 1

≈ −x
n+ 1

.

We see that the series converges for all x, and that the magnitude increases if and
only if n+ 1 < |x|. The term of largest magnitude is thus obtained for n ≈ |x|. De-
note its magnitude by M(x). Then, for x≫ 1, the following type of approximations
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can be used for crude estimates of the number of terms needed and the arithmetic
precision that is to be used in computations related to ill-conditioned power series:
M(x) ≈ cxe

x(2πx)−1/2, i.e.

log10M(x)/c0 ≈ 0.43x− 1
2 log10(2πx). (3.2.33)

This follows from the classical Stirling’s formula,

x! ∼ (x/e)x
√

2πx

[

1 +
1

12x
+

1

288x2
+ · · ·

]

, x≫ 1, (3.2.34)

that gives x! with a relative error that is about 1/(12x). You find a proof of this in
most textbooks on calculus. It will often be used in the rest of this book. A more
accurate and general version is given in Example 3.4.12 together with a few more
facts about the gamma function, Γ(z), an analytic function that interpolates the
factorial, Γ(n+ 1) = n! if n is a natural number. Sometimes the notation z! is used
instead of Γ(z + 1) also if z is not an integer.

There exist preconditioners, i.e. transformations that can convert classes
of ill-conditioned power series (with accurately computable coefficients) to more
well-conditioned problems. One of the most successful preconditioners known to
the authors is the following

∞∑

n=0

(−x)ncn
n!

= e−x
∞∑

n=0

xnbn
n!

, bn = (−∆)nc0. (3.2.35)

A hint for proving this identity is given in Problem 3.3.22. The notation ∆ncn for
high order differences was introduced in Sec. 1.1.5.

For the important class of sequences {cn}, which are completely monotonic,
(−∆)nc0 is positive and smoothly decreasing; see Sec. 3.4.4.

Table 3.2.1. Results of three different ways of computing the function
F (x) = (1/x)

∫ x

0
(1/t)(1 − e−t) dt.

x 10 20 30 40 50

F (x) ≈ 0.2880 0.1786 0.1326 0.1066 0.0898

lasttermA 1 · 10−82 8 · 10−47 7 · 10−26 6 · 10−11 2 · 101

M(x;A) 3 · 101 1 · 105 9 · 108 1 · 1013 1 · 1017

|FA(x) − F (x)| 2 · 10−15 5 · 10−11 2 · 10−7 3 · 10−3 2 · 101

lasttermB 4 · 10−84 1 · 10−52 4 · 10−36 2 · 10−25 2 · 10−18

M(x;B) 4 · 10−2 2 · 10−2 1 · 10−2 7 · 10−3 5 · 10−3

|FC(x) − FB(x)| 7 · 10−9 2 · 10−14 6 · 10−17 0 1 · 10−16
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Figure 3.2.2. Example 3.2.7A: Terms of (3.2.32), cn = (n+1)−2, x = 40,
no preconditioner.

Example 3.2.7.
Consider the function

F (x) =
1

x

∫ x

0

1 − e−t

t
dt = 1 − x

22 · 1!
+

x2

32 · 2!
− . . . ,

i.e. F (x) is a particular case of (3.2.32) with cn = (n + 1)−2. We shall look
at three methods of computing F (x) for x = 10 : 10 : 50, named A,B,C. F (x)
decreases smoothly from 0.2880 to 0.0898. The computed values of F (x) are denoted
FA(x), FB(x), FC(x).

The coefficients cn, n = 0 : 119, are given in IEEE floating-point, double
precision. The results in Table 3.2.1 show that (except for x = 50) 120 terms
is much more than necessary for the rounding of the coefficients to become the
dominant error source.

A We use (3.2.32) without preconditioner. M(x;A) is the largest magnitude
of the terms of the expansion. M(x;A) · 10−16 gives the order of magnitude of
the effect of the rounding errors on the computed value FA(x). Similarly, the
truncation error is crudely estimated by lasttermA. See also Figure 3.2.2. Since the
largest term is 1013, it is no surprise that the relative error of the sum is not better
than 0.03, in spite that double precision floating-point has been used. Note the
scale, and look also in the table.

B. We use the preconditioner (3.2.35). In this example cn = (n + 1)−2. In
Problem 3.3.3 (c) we find the following explicit expressions, related to the series on
the right-hand side of the preconditioner for this example.

(−∆)nc0 = (−∆)ncm|m=0 = c0(−∆)nx−2|x=1 =
c0

n+ 1

n∑

k=0

1

k + 1
,
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Figure 3.2.3. Example 3.2.7B: cn = (n + 1)−2, x = 40, with precondi-
tioner in (3.2.35).

F (x) = c0e
−x

∞∑

n=0

xn

(n+ 1)!

n∑

k=0

1

k + 1
. (3.2.36)

Note that (−∆)mc0 is positive and smoothly decreasing.
The largest term is thus smaller than the sum, and the series (3.2.36) is well-

conditioned. The largest term is now about 7 · 10−3 and the computed sum is
correct to 16 decimal places. Multiple precision is not needed here. It can be shown
that, if x ≫ 1, the mth term is approximately proportional to the value at m of
the normal probability density with mean x and standard deviation equal to

√
x;

note the resemblance to a Poisson distribution. The terms of the right-hand side,
including the factor e−x, becomes a so-called bell sum; see Figure 3.2.3.

M(x;B) and lasttermB are defined analogously to M(x;A) and lasttermA,
The B-values are very different from the A-values. In fact they indicate that all
values of FB(x), referred to in the table, give F (x) to full accuracy.

C. The following expression for F (x),

xF (x) ≡
∞∑

n=1

(−x)n
nn!

= −γ − lnx− E1(x); E1(x) =

∫ ∞

x

e−t

t
dt, (3.2.37)

is valid for all x > 0; see [1, 5.1.11]. E1(x) is known as the exponential integral,
and

γ = 0.57721 56649 01532 86061 . . .

is the well known Euler’s constant. In the next section, an asymptotic expansion
for E1(x) for x ≫ 1 is derived, the first two terms of which are used here in the
computation of F (x;C) for the table above.

E1(x) ≈ e−x(x−1 − x−2), x≫ 1.
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This approximation is the dominant part of the error of F (x;C); it is less than
e−x2x−4. F (x;C) gives full accuracy for (say) x > 25.

More examples of sequences, for which rather simple explicit expressions for
the high order differences are known, are given in Problem 3.3.3. Kummer’s con-
fluent hypergeometric function M(a, b, x) was defined in (3.1.17). We have

M(a, b,−x) = 1 +

∞∑

n=1

(−x)ncn
n!

, cn = cn(a, b) =
a(a+ 1) . . . (a+ n− 1)

b(b+ 1) . . . (b + n− 1)
.

In our context b > a > 0, n > 0. The oscillatory series for M(a, b,−x), x > 0, is
ill-conditioned if x≫ 1.

By Problem 3.3.3, (−∆)nc0(a, b) = cn(b − a, b) > 0, n > 0, hence the precon-
ditioner (3.2.35) yields the equation

M(a, b,−x) = e−xM(b− a, b, x), (3.2.38)

where the series on the right-hand side has positive terms, because b−a > 0, x > 0,
and is a well-conditioned bell sum. The mth term has typically a sharp maximum
for m ≈ x; compare Figure 3.2.3. Equation (3.2.38) is in the theory of the confluent
hypergeometric functions known as Kummer’s first identity. It is emphasized
here, because several functions with famous names of their own are particular cases
of the Kummer function. (Several other particular cases are presented in Sec. 3.5.1
together with continued fractions.) These share the numerous useful properties of
Kummer’s function, for example, the above identity; see the theory in Lebedev [214,
Secs. 9.9–9.14]66 and the formulas in [1, Ch. 13] in particular Table 13.6 of special
cases. An important example is the error function (see Example 3.1.3) that can be
expressed in terms of Kummer’s confluent hypergeometric as .

erf(x) =
2√
π

∫ x

0

e−t
2

dt =
2x√
π
M

(
1

2
,
3

2
,−x2

)

. (3.2.39)

If we cannot find explicit expressions for high order differences, we can make
a difference scheme by the recurrence ∆m+1cn = ∆mcn+1 − ∆mcn. Unfortunately
the computation of a difference scheme suffers from numerical instability. Suppose
that the absolute errors of the cn are bounded by ǫ. Then the absolute errors can
become as large as 2ǫ in the first differences, 4ǫ in the second differences, etc. More
generally, the absolute errors of (−∆)mcn can become as large as 2mǫ. (You find
more about this in Examples 3.3.2 and 3.2.3.) In connection with ill-conditioned
series, this instability is much more disturbing than in the traditional applications of
difference schemes to interpolation where m is seldom much larger than 10. Recall
that m ≈ x for the largest term of the preconditioned series. So, if x > 53 even this
term may not have any correct bit if IEEE double precision arithmetic is used, and
many terms are needed after this.

66Unfortunately, the formulation of Kummer’s first identity in [214, Eq. (9.11.2)] contains a
serious sign error.
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So, during the computation of the new coefficients, (−∆)mcn, (only once for
the function F , and with double accuracy in the results), the old coefficients cn
must be available with multiple accuracy, and multiple precision must be used in
the computation of their difference scheme. Otherwise, we cannot evaluate the
series with a decent accuracy for much larger values of x than we could have done
without preconditioning. Note, however, that if satisfactory coefficients have been
obtained for the preconditioned series, double precision is sufficient when the series
is evaluated for large values of x. (It is different for method A above.)

Let F (x) be the function that we want to compute for x ≫ 1, where it is
defined by an ill-conditioned power series F1(x). A more general preconditioner can
be described as follows. Try to find a power series P (x) with positive coefficients
such that the power series P (x)F1(x) has less severe cancellations than than F1(x).

In order to distinguish between the algebraic manipulation and the numerical
evaluation of the functions defined by these series, we introduce the indeterminate
x and describe a more general preconditioner as follows:

F∗
2(x) = P(x) ·F1(x); F2(x) = F ∗

2 (x)/P (x). (3.2.40)

The second statement is a usual scalar evaluation (no bold-face). Here P (x) may
be evaluated by some other method than the power series, if it is more practical. If
P (x) = ex, and F1(x) is the series defined by (3.2.32), then it can be shown that
F2(x) is mathematically equivalent to the right-hand side of (3.2.35). In these cases
F2(x) has positive coefficients.

If, however, F1(x) has a positive zero, this is also a zero of F ∗
2 (x), and hence it is

impossible that all coefficients of the series F∗
2(x) have the same sign. Nevertheless,

the following example shows that the preconditioner (3.2.40) can sometimes be
successfully used in such a case too.

Table 3.2.2. Evaluation of some Bessel functions.

1 x 10 20 30 40 50

2 J0(x) ≈ −2 · 10−1 2·10−1 −9 · 10−2 7 · 10−3 6 · 10−2

3 N1(x) 26 41 55 69 82

4 J(x; N1) − J0(x) 9 · 10−14 3 · 10−10 −2 · 10−6 −1 · 10−1 −2 · 102

5 N2(x) 16 26 36 46 55

6 IJ(x; N2) ≈ −7 · 102 7 · 106 −7 · 1010 1 · 1014 2 · 1019

7 I0(x) ≈ 3 · 103 4 · 107 8 · 1011 1 · 1016 3 · 1020

8 IJ(x)/I0(x) − J0(x) 3 · 10−17 2 · 10−14 3 · 10−13 −5 · 10−12 2 · 10−10

Example 3.2.8.
The two functions

J0(x) =

∞∑

n=0

(−1)n
(x2/4)n

(n!)2
, I0(x) =

∞∑

n=0

(x2/4)n

(n!)2
,
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are examples of Bessel functions of the first kind; I0 is nowadays called a modified
Bessel function. J0(x) is oscillatory and bounded, while I0(x) ∼ ex/

√
2πx for x≫ 1.

Since all coefficients of I0 are positive, we shall set P = I0, F1 = J0, and try

F∗
2(x) = IJ(x) ≡ I0(x) · J0(x), F2(x) = F ∗

2 (x)/I0(x),

as a preconditioner for the power series for J0(x), which is ill-conditioned if x≫ 1.
In Table 3.2.2, line 2 and line 7 are obtained from the fully accurate built-in functions
for J0(x) and I0(x). J(x;N1) is computed in IEEE double precision arithmetic
from N1 terms of the above power series for J0(x). N1 = N1(x) is obtained by a
termination criterion that should give full accuracy or, if the estimate of the effect
of the rounding error is bigger than 10−16, the truncation error should be smaller
than this estimate. We omit the details; see also Problem 3.2.9 (d).

The coefficients of IJ(x) are obtained from the second expression for γm given
in Problem 3.2.9 (c). N2 = N2(x) is the number of terms used in the expansion
of IJ(x), by a termination criterion, similar to the one described for J(x;N1).
Compared to line 4, line 8 is a remarkable improvement, obtained without the use
of multiple precision.

For series of the form
∞∑

n=0

an
(−x2)n

(2n)!

one can generate a preconditioner from P (x) = coshx. This can also be applied to
J0(x) and other Bessel functions; see Problem 3.2.9 (e).

There are several procedures for transforming a series into an integral that can
then be computed by numerical integration or be expanded in another series that
may have better convergence or conditioning properties. An integral representation
may also provide an analytic continuation of the function represented by the original
series. Integral representations may be obtained in several different ways; we men-
tion two of these. Either there exist integral representations of the coefficients,67

or one can use general procedures in Complex Analysis that transform series into
integrals. They are due to Cauchy, Plana and Lindelöf; see Dahlquist [79].

3.2.6 Divergent or Semiconvergent Series

That a series is convergent is no guarantee that it is numerically useful. In this
section, we shall see examples of the reverse situation: a divergent series can be of
use in numerical computations. This sounds strange, but it refers to series where
the size of the terms decreases rapidly at first and increases later, and where an
error bound (see Figure 3.2.4), can be obtained in terms of the first neglected term.
Such series are sometimes called semiconvergent68. An important subclass are
the asymptotic series; see below.

67For hypergeometric or confluent hypergeometric series see Lebedev [214, Secs. 9.1 and 9.11],
or [1, Secs. 15.3 and 13.2.].

68A rigorous theory of semi-convergent series was developed by Stieltjes and Poincaré in 1886.



“dqbjV
2007/5/28
page 211

3.2. More About Series 211

Example 3.2.9.
We shall derive a semiconvergent series for the computation of Euler’s function

f(x) = exE1(x) = ex
∫ ∞

x

e−tt−1 dt =

∫ ∞

0

e−u(u + x)−1 du

for large values of x. (The second integral was obtained from the first by the
substitution t = u + x.) The expression (u + x)−1 should first be expanded in a
geometric series with remainder term, valid even for u > x,

(u + x)−1 = x−1(1 + x−1u)−1 = x−1
n−1∑

j=0

(−1)jx−juj + (−1)n(u+ x)−1(x−1u)n

We shall frequently use the well known formula
∫ ∞

0

uje−u du = j! = Γ(j + 1).

We write f(x) = Sn(x) +Rn(x), where

Sn(x) = x−1
n−1∑

j=0

(−1)jx−j
∫ ∞

0

uje−udu =
1

x
− 1!

x2
+

2!

x3
− . . .+ (−1)n−1 (n− 1)!

xn
,

Rn(x) = (−1)n
∫ ∞

0

(u+ x)−1
(u

x

)n

e−udu.

The terms in Sn(x) qualitatively behave as in Figure 3.2.4. The ratio between
the last term in Sn+1 and the last term in Sn is

− n!

xn+1

xn

(n− 1)!
= −n

x
, (3.2.41)

and since the absolute value of that ratio for fixed x is unbounded as n → ∞, the
sequence {Sn(x)}∞n=1 diverges for every positive x. But since signRn(x) = (−1)n

for x > 0, it follows from Theorem 3.1.4 that

f(x) =
1

2

(

Sn(x) + Sn+1(x)
)

± 1

2

n!

xn+1
. (3.2.42)

The idea is now to choose n so that the estimate of the remainder is as small
as possible. According to (3.2.41), this happens when n is equal to the integer part
of x. For x = 5 we choose n = 5,

S5(5) = 0.2 − 0.04 + 0.016− 0.0096 + 0.00768 = 0.17408,

S6(5) = S5(5) − 0.00768 = 0.16640,

which gives f(5) = 0.17024 ± 0.00384. The correct value is 0.17042, so the actual
error is only 5% of the error bound. For n = x = 10, the error estimate is 1.0144 ·
10−5.
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Figure 3.2.4. Error estimates of the semiconvergent series of Exam-
ple 3.2.7 for x = 10; see (3.2.42).

For larger values of x the accuracy attainable increases. One can show that
the bound for the relative error using the above computational scheme decreases
approximately as (π·x/2)1/2e−x; an extremely good accuracy for large values of x,
if one stops at the smallest term. It can even be improved further, by the use of
the convergence acceleration techniques presented in Sec. 3.4, notably the repeated
averages algorithm, also known as the Euler transformation; see Sec. 3.4.3. The
algorithms for the transformation of a power series into a rapidly convergent con-
tinued fraction, mentioned in Sec. 3.5.1, can also be successfully applied to this
example and to many other divergent expansions.

One can derive the same series expansion as above by repeated integration by
parts. This is often a good way to derive numerically useful expansions, convergent
or semi-convergent, with a remainder in the form of an integral. For convenient
reference, we formulate this as a lemma that is easily proved by induction and the
mean value theorem of integral calculus. See Problem 3.2.10 for applications.

Lemma 3.2.6 (Repeated Integration by Parts).

Let F ∈ Cp(a, b), let G0 be a piecewise continuous function, and let G0, G1, . . .
be a sequence of functions such that G′

j+1(x) = Gj(x) with suitably chosen constants
of integration. Then

∫ b

a

F (t)G0(t) dt =

p−1
∑

j=0

(−1)jF (j)(t)Gj+1(t)
∣
∣
∣

b

t=a
+ (−1)p

∫ b

a

F (p)(t)Gp(t) dt.

The sum is the “expansion”, and the last integral is the “remainder”. If Gp(t) has
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a constant sign in (a, b), the remainder term can also be written in the form

(−1)pF (p)(ξ)(Gp+1(b) −Gp+1(a)), ξ ∈ (a, b).

The expansion in Lemma 3.2.6 is valid as an infinite series, if and only if the
remainder tends to 0 as p → ∞. Even if the sum converges as p → ∞, it may
converge to the wrong result.

The series in Example 3.2.9 is an expansion in negative powers of x, with the
property that for all n, the remainder, when x→ ∞, approaches zero faster than the
last included term. Such an expansion is said to represent f(x) asymptotically
as x→ ∞. Such an asymptotic series can be either convergent or divergent (semi-
convergent). In many branches of applied mathematics, divergent asymptotic series
are an important aid, though they are often needlessly surrounded by an air of
mysticism.

It is important to appreciate that an asymptotic series does not define a sum
uniquely. For example f(x) = e−x is asymptotically represented by the series
∑
j = 0∞0 · x−j , as x→ ∞. So e−x, (and many other functions), can therefore be

added to the function, for which the expansion was originally obtained.
Asymptotic expansions are not necessarily expansions into negative powers of

x. An expansion into positive powers of x− a,

f(x) ∼
n−1∑

ν=0

cν(x− a)ν +Rn(x),

represents f(x) asymptotically when x→ a if

lim
x→a

(x − a)−(n−1)Rn(x) = 0.

Asymptotic expansions of the error of a numerical method into positive powers of
a step-length h are of great importance in the more advanced study of numeri-
cal methods. Such expansions form the basis of simple and effective acceleration
methods for improving numerical results; see Sec. 3.4.

Review Questions

2.1. Give the Cauchy formula for the coefficients of Taylor and Laurent series, and
describe the Cauchy–FFT method. Give the formula for the coefficients of
a Fourier series. For which of the functions in Table 3.1.1 does also another
Laurent expansion exist?

2.2. Describe by an example the balancing procedure that was mentioned in the
subsection about perturbation expansions.

2.3. Define the Chebyshev polynomials, and tell some interesting properties of
these and of Chebyshev expansions. For example, what do you know about the
speed of convergence of a Chebyshev expansion for various classes of functions?
(The detailed expressions are not needed.)
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2.4. Describe and exemplify, what is meant by an ill-conditioned power series and
a preconditioner for such a series.

2.5. Define what is meant, when one says that the series
∑∞

0 anx
−n

(a) converges to a function f(x) for x ≥ R;

(b) represents a function f(x) asymptotically as x→ ∞.

(c) Give an example of a series that represents a function asymptotically as
x→ ∞, although it diverges for every finite positive x.

(d) What is meant by semi-convergence? Say a few words about termination
criteria and error estimation.

Problems and Computer Exercises

2.1. Some of the functions appearing in Table 3.1.1, and in other examples and
problems are not single-valued in the complex plane. Brush up your Complex
Analysis, and find out how to define the branches, where these expansions are
valid, and (if necessary) define cuts in the complex plane that must not be
crossed. It turns out not to be necessary for these expansions. Why?

(a) If you have access to programs for functions of complex variables (or to
commands in some package for interactive computation), find out the conven-
tions used for functions like square root, logarithm, powers, arc tangent, etc.
If the manual does not give enough detail, invent numerical tests, both with
strategically chosen values of z and with random complex numbers in some
appropriate domain around the origin. For example, do you obtain

ln

(
z + 1

z − 1

)

− ln(z + 1) + ln(z − 1) = 0, ∀z?

Or, what values of
√
z2 − 1 do you obtain for z = ±i? What values should

you obtain, if you want the branch which is positive for z > 1?

(b) What do you obtain, if you apply Cauchy’s coefficient formula or the
Cauchy–FFT method to find a Laurent expansion for

√
z? Note that

√
z is

analytic everywhere in an annulus, but that does not help. The expansion is
likely to become weird. Why?

2.2. Apply (on a computer) the Cauchy–FFT method to find the Maclaurin coeffi-
cients an of (say) ez, ln(1−z) and (1+z)1/2. Make experiments with different
values of r and N , and compare with the exact coefficients. This presupposes
that you have access to good programs for complex arithmetic and FFT.

Try to summarize your experiences of how the error of an depends on r, N .
You may find some guidance in Example 3.2.2.

2.3. (a) Suppose that r is located inside the unit circle; t is real. Show that

1 − r2

1 − 2r cos t+ r2
= 1 + 2

∞∑

n=1

rn cosnt,
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Figure 3.2.5. The error of the expansion of f(x) = 1/(1 + x2) in a sum
of Chebyshev polynomials {Tn(x/1.5)}, n ≤ 12.

2r sin t

1 − 2r cos t+ r2
= 2

∞∑

n=1

rn sinnt.

Hint: First suppose that r is real. Set z = reit. Show that the two series
are the real and imaginary parts of (1 + z)/(1 − z). Finally make analytic
continuation of the results.

(b) Let a be positive, x ∈ [−a, a], while w is complex, w /∈ [−a, a]. Let
r = r(w), |r| < 1 be a root of the quadratic r2 − (2w/a)r + 1 = 0. Show that
(with an appropriate definition of the square root)

1

w − x
=

1√
w2 − a2

·
(

1 + 2

∞∑

n=1

rnTn

(x

a

))

, (w /∈ [−a, a], x ∈ [−a, a]).

(c) Find the expansion of 1/(1 + x2) for x ∈ [−1.5, 1.5] into the polynomials
Tn(x/1.5). Explain the order of magnitude of the error and the main features
of the error curve in Figure 3.2.5.

Hint: Set w = i, and take the imaginary part. Note that r becomes imaginary.

2.4. (a) Find the Laurent expansions for

f(z) = 1/(z − 1) + 1/(z − 2).

(b) How do you use the Cauchy–FFT method for finding Laurent expansions?
Test your ideas on the function in the previous subproblem (and on a few
other functions). There may be some pitfalls with the interpretation of the
output from the FFT program, related to so-called aliasing; see Sec. 4.6.6 and
Strang [303].

(c) As in Sec. 3.2.1, suppose that F (p) is of bounded variation in [−π, π] and

denote the Fourier coefficients of F (p) by c
(p)
n . Derive the following general-
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ization of (3.2.7):

cn =
(−1)n−1

2π

p−1
∑

j=0

F (j)(π) − F (j)(−π)

(in)j+1
+

c
(p)
n

(in)p
,

and show that if we add the condition that F ∈ Cj [−∞,∞], j < p, then the
asymptotic results given in (and after) (3.2.7) hold.

(d) Let z = 1
2 (w + w−1). Show that |z − 1| + |z + 1| = |w| + |w|−1.

Hint: Use the parallelogram law, |p− q|2 + |p+ q|2 = 2(|p|2 + |q|2).
2.5. (a) The expansion of arcsinh t into powers of t, truncated after t7, is ob-

tained from Problem 3.1.6 (b). Using economization of a power series con-
struct from this a polynomial approximation of the form c1t + c3t

3 for the
interval t ∈ [− 1

2 ,
1
2 ]. Give bounds for the truncation error for the original

truncated expansion and for the economized expansion.

(b) The graph of T12(x) for x ∈ [−1, 1] is shown in Figure 3.2.1. Draw the
graph of T12(x) for (say) x ∈ [−1.1, 1.1].

2.6. Compute a few terms of the expansions into powers of ǫ or k of each of the
roots of the following equations, so that the error is O(ǫ2) or O(k−2) (ǫ is
small and positive; k is large and positive). Note that some terms may have
fractional or negative exponents. Also try to fit an expansion of the wrong
form in some of these examples, and see what happens.

(a) (1 + ǫ)z2 − ǫ = 0; (b) ǫz3 − z2 + 1 = 0; (c) ǫz3 − z + 1 = 0;

(d) z4 − (k2 + 1)z2 − k2 = 0, (k2 ≫ 1).

2.7. The solution of the boundary value problem

(1 + ǫ)y′′ − ǫy = 0, y(0) = 0, y(1) = 1,

has an expansion of the form y(t; ǫ) = y0(t) + y1(t)ǫ+ y2(t)ǫ
2 + . . ..

(a) By coefficient matching, set up differential equations and boundary condi-
tions for y0, y1, y2, and solve them. You naturally use the boundary conditions
of the original problem for y0. Make sure you use the right boundary condi-
tions for y1, y2.

(b) Set R(t) = y0(t) + ǫy1(t) − y(t; ǫ). Show that R(t) satisfies the (modified)
differential equation

(1 + ǫ)R′′ − ǫR = ǫ2(7t− t3)/6, R(0) = 0, R(1) = 0.

2.8. (a) Apply Kummer’s first identity (3.2.38) to the error function erf(x), to show
that

erf(x) =
2x√
π
e−x

2

M
(

1,
3

2
, x2
)

=
2x√
π
e−x

2
(

1 +
2x2

3
+

(2x2)2

3 · 5 +
(2x2)3

3 · 5 · 7 + . . .
)

.

Why is this series well conditioned? (Note that it is a bell sum; compare
Figure 3.2.3.) Investigate the largest term, rounding errors, truncation errors
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and termination criterion, in the same way as in (a).

(b) erfc(x) has a semi-convergent expansion for x≫ 1 that begins

erfc(x) = 1 − erf(x) =
2√
π

∫ ∞

x

e−t
2

dt =
e−x

2

x
√
π

(

1 − 1

2x2
+

3

4x4
− 15

8x6
+ . . .

)

.

Give an explicit expression for the coefficients, and show that the series di-
verges for every x. Where is the smallest term? Estimate its size.

Hint: Set t2 = x2 + u, and proceed analogously to Example 3.2.8. See Prob-
lem 3.1.7 (c), α = 1

2 , about the remainder term. Alternatively, apply repeated
integration by parts. It may be easier to find the remainder in this way.

2.9. Other notations for series, with application to Bessel functions.

(a) Set

f(x) =

∞∑

n=0

anx
n

n!
; g(x) =

∞∑

n=0

bnx
n

n!
; h(x) =

∞∑

n=0

cnx
n

n!
;

φ(w) =

∞∑

n=0

αnw
n

n!n!
; ψ(w) =

∞∑

n=0

βnw
n

n!n!
; χ(w) =

∞∑

n=0

γnw
n

n!n!
.

Let h(x) = f(x) · g(x); χ(w) = φ(w) · ψ(w). Show that

cn =

n∑

j=0

(
n

j

)

ajbn−j; γn =

n∑

j=0

(
n

j

)2

αjβn−j .

Derive analogous formulas for series of the form
∑∞

n=0 anw
n/(2n)!.

Suggest how to divide two power series in these notations.

(b) Let aj = (−1)ja′j; g(x) = ex. Show that

cn =

n∑

j=0

(
n

j

)

(−1)ja′j .

Comment: By (3.2.1), this can can also be written cn = (−1)n∆na0. This
proves the mathematical equivalence of the preconditioners (3.1.55) and (3.1.59)
if P (x) = ex.

(c) Set, according to Example 3.2.8 and (a) (of this problem), w = −x2/4,

J0(x) =

∞∑

n=0

(−1)nwn

n!n!
; I0(x) =

∞∑

n=0

wn

n!n!
; IJ(x) ≡ I0(x)J0(x) =

∞∑

n=0

γnw
n

n!n!
.

Show that

γn =
n∑

j=0

(−1)j
(
n

j

)(
n

n− j

)

=

{

(−1)m
(
2m
m

)
, if n = 2m;

0, if n = 2m+ 1.
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Hint: The first expression for γn follows from (a). It can be interpreted as the
coefficient of tn in the product (1 − t)n(1 + t)n. The second expression for γn
is the same coefficient in (1 − t2)n.

(d) The second expression for γn in (c) is used in Example 3.2.8.69 Reconstruct
and extend the results of that example. Design a termination criterion. Where
is the largest modulus of a term of the preconditioned series, and how large
is it approximately? Make a crude guess in advance of the rounding error in
the preconditioned series.

*(e) Show that the power series of J0(x) can be written in the form

∞∑

n=0

an
(−x2)n

(2n)!
,

where an is positive and decreases slowly and smoothly.

Hint: Compute an+1/an.

*(f) It is known; see Lebedev [214, (9.13.11)], that

J0(x) = e−ixM
(

1
2 , 1; 2ix

)
,

where M(a, b, c) is Kummer’s confluent hypergeometric function, this time
with an imaginary argument. Show that Kummer’s first identity is unfortu-
nately of no use here for preconditioning the power series.

Comment: Most of the formulas and procedures in this problem can be gener-
alized to the series for the Bessel functions of the first kind of general integer
order, (z/2)−nJn(x). These belong to the most studied functions of Applied
Mathematics, and there exist more efficient methods for computing them; see,
e.g., Press et al. [263, Chapter 6]. This problem shows, however, that precon-
ditioning can work well for a non-trivial power series, and it is worth to be
tried.

2.10. (a) Derive the expansion of Example 3.2.5 by repeated integration by parts.

(b) Derive the Maclaurin expansion with the remainder according to (3.1.5)
by the application of repeated integration by parts to the equation

f(z) − f(0) = z

∫ 1

0

f ′(zt) d(t− 1).

2.11. Show the following generalization of Theorem 3.2.5. Assume that |f(z)| ≤M
for z ∈ ER. Let |ζ| ∈ Eρ, 1 < ρ < r ≤ R − ǫ. Then the Chebyshev expansion
of f(ζ) satisfies the inequality

∣
∣
∣
∣
f(ζ) −

n−1∑

j=0

cjTj(ζ)

∣
∣
∣
∣
≤ 2M(ρ/R)n

1 − ρ/R
.

Hint: Set ω = ζ +
√

ζ2 − 1, and show that |Tj(ζ)| = | 12 (ωj + ω−j)| ≤ ρj .

69It is much better conditioned than the first expression. This may be one reason why multiple
precision is not needed here.
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3.3 Difference Operators and Operator Expansions

3.3.1 Properties of Difference Operators

Difference operators are handy tools for the derivation, analysis, and practical ap-
plication of numerical methods for many problems for interpolation, differentiation,
and quadrature of a function in terms of its values at equidistant arguments. The
simplest notations for difference operators and applications to derivatives were men-
tioned in Sec. 1.1.5.

Let y denote a sequence {yn}. Then we define the shift operator E (or
translation operator) and the forward difference operator ∆ by the relations

Ey = {yn+1}, ∆y = {yn+1 − yn},

E and ∆ are thus operators which map one sequence to another sequence. Note,
however, that if yn is defined for a ≤ n ≤ b only, then Eyb is not defined, and the
sequence Ey has fewer elements than the sequence y. (It is therefore sometimes
easier to extend the sequences to infinite sequences, for example, by adding zeros
in both directions outside the original range of definition.)

These operators are linear, i.e. if α, β are real or complex constants and if
y, z are two sequences, then E(αy + βz) = αEy + βEz, and similarly for ∆.

Powers of E and ∆ are defined recursively, i.e.

Eky = E(Ek−1y), ∆ky = ∆(∆k−1y).

By induction, the first relation yields Eky = {yn+k}. We extend the validity of this
relation to k = 0 by setting E0y = y and to negative values of k. ∆ky is called
the kth difference of the sequence y. We make the convention that ∆0 = 1. There
will be little use of ∆k for negative values of k in this book, although ∆−1 can be
interpreted as a summation operator.

Note that ∆y = Ey − y, and Ey = y + ∆y for any sequence y. It is therefore
convenient to express these as equations between operators:

∆ = E − 1, E = 1 + ∆.

The identity operator is in this context traditionally denoted by 1. It can be shown
that all formulas derived from the axioms of commutative algebra can be used for
these operators, for example, the binomial theorem for positive integral k.

∆k = (E − 1)k =

k∑

j=0

(−1)k−j
(
k

j

)

Ej , Ek = (1 + ∆)k =

k∑

j=0

(
k

j

)

∆j , (3.3.1)

giving

(∆ky)n =

k∑

j=0

(−1)k−j
(
k

j

)

yn+j , yn+k = (Eky)n =

k∑

j=0

(
k

j

)

(∆jy)n. (3.3.2)

We abbreviate the notation further and write, for example, Eyn = yn+1 instead of
(Ey)n = yn+1, and ∆kyn instead of (∆ky)n. But it is important to remember that
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∆ operates on sequences and not on elements of sequences. Thus, strictly speaking,
this abbreviation is incorrect, though convenient. The formula for Ek will, in the
next subsection, be extended to an infinite series for non-integral values of k, but
that is beyond the scope of algebra.

A difference scheme consists of a sequence and its difference sequences,
arranged in the following way:

y0
∆y0

y1 ∆2y0
∆y1 ∆3y0

y2 ∆2y1 ∆4y0
∆y2 ∆3y1

y3 ∆2y2
∆y3

y4

A difference scheme is best computed by successive subtractions; the formulas in
(3.3.1) are used mostly in theoretical contexts.

In many applications the quantities yn are computed in increasing order
n = 0, 1, 2, . . ., and it is natural that a difference scheme is constructed by means
of the quantities previously computed. One therefore introduces the backward
difference operator

∇yn = yn − yn−1 = (1 − E−1)yn.

For this operator we have

∇k = (1 − E−1)k, E−k = (1 −∇)k. (3.3.3)

Note the reciprocity in the relations between ∇ and E−1.
Any linear combination of the elements yn, yn−1, . . . yn−k can also be ex-

pressed as a linear combination of yn, ∇yn, . . . ,∇kyn, and vice versa70. For exam-
ple,

yn + yn−1 + yn−2 = 3yn − 3∇yn + ∇2yn,

because 1+E−1 +E−2 = 1+(1−∇)+ (1−∇)2 = 3−3∇+∇2. By the reciprocity,
we also obtain yn + ∇yn + ∇2yn = 3yn − 3yn−1 + yn−2.

In this notation the difference scheme reads

y0
∇y1

y1 ∇2y2
∇y2 ∇3y3

y2 ∇2y3 ∇4y4
∇y3 ∇3y4

y3 ∇2y4
∇y4

y4

70An analogous statement holds for the elements yn, yn+1, . . . , yn+k and forward differences.
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In the backward difference scheme the subscripts are constant along diagonals di-
rected upwards (backwards) to the right, while, in the forward difference scheme,
subscripts are constant along diagonals directed downwards (forwards). Note, for
example, that ∇kyn = ∆kyn−k. In a computer, a backward difference scheme is
preferably stored as a lower triangular matrix.

Example 3.3.1.
Part of the difference scheme for the sequence y = {. . . , 0, 0, 0, 1, 0, 0, 0, . . .} is

given below.
0 1 −7

0 1 −6 28
0 1 −5 21

0 1 −4 15 −56
1 −3 10 −35

1 −2 6 −20 70
−1 3 −10 35

0 1 −4 15 −56
0 −1 5 −21

0 1 −6 28
0 −1 7

This example shows the effect of a disturbance in one element on the sequence
of the higher differences. Because the effect broadens out and grows quickly, dif-
ference schemes are useful in the investigation and correction of computational and
other errors, so-called difference checks. Notice that, since the differences are
linear functions of the sequence, a superposition principle holds. The effect of
errors can thus be estimated by studying simple sequences such as the one above.

Example 3.3.2.
The following is a difference scheme for a 5 decimal table of the function

f(x) = tanx, x ∈ [1.30, 1.36], with step h = 0.01. The differences are given with
10−5 as unit.

x y ∇y ∇2y ∇3y ∇4y ∇5y ∇6y

1.30 3.60210
14498

1.31 3.74708 1129
15627 140

1.32 3.90335 1269 26
16896 166 2

1.33 4.07231 1435 28 9
18331 194 11

1.34 4.25562 1629 39
19960 233

1.35 4.45522 1862
21822

1.36 4.67344
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We see that the differences decrease roughly by a factor of 0.1—that indicates that
the step size has been chosen suitably for the purpose of interpolation, numeri-
cal quadrature, etc., until the last two columns, where the rounding errors of the
function values have a visible effect.

Example 3.3.3.
For the sequence yn = (−1)n one finds easily that

∇yn = 2yn, ∇2yn = 4yn, . . . , ∇kyn = 2kyn.

If the error in the elements of the sequence are bounded by ǫ, it follows that the
errors of the kth differences are bounded by 2kǫ. A rather small reduction of this
bound is obtained if the errors are assumed to be independent random variables (cf.
Problem 3.4.24).

It is natural also to consider difference operations on functions not just on
sequences. E and ∆ map the function f onto functions whose values at the point
x are

E f(x) = f(x+ h), ∆f(x) = f(x+ h) − f(x),

where h is the step size. Of course, ∆f depends on h; in some cases this should
be indicated in the notation. One can, for example, write ∆hf(x), or ∆f(x;h). If
we set yn = f(x0 + nh), the difference scheme of the function with step size h is
the same as for the sequence {yn}. Again it is important to realize that, in this
case, the operators act on functions, not on the values of functions. It would be
more correct to write f(x0 + h) = (Ef)(x0). Actually, the notation (x0)Ef would
be even more logical, since the insertion of the value of the argument x0 is the last
operation to be done, and the convention for the order of execution of operators
proceeds from right to left.71

Note that no new errors are introduced during the computation of the differ-
ences, but the effects of the original irregular errors, for example, rounding errors in
y, grow exponentially. Note that systematic errors, for example, truncation errors
in the numerical solution of a differential equation, often have a smooth difference
scheme. For example, if the values of y have been produced by the iterative solution
of an equation, where x is a parameter, with the same number of iterations for every
x and y and the same algorithm for the first approximation, then the truncation
error of y is likely to be a smooth function of x.

Difference operators are in many respects similar to differentiation operators.
Let f be a polynomial. By Taylor’s formula,

∆f(x) = f(x+ h) − f(x) = hf ′(x) +
1

2
h2f ′′(x) + . . . .

We see from this that deg ∆f = deg f − 1. Similarly for differences of higher order;
if f is a polynomial of degree less than k, then

∆k−1f(x) = constant, ∆pf(x) = 0, ∀p ≥ k.

71The notation [x0]f occurs, however, naturally in connection with divided differences; see
Sec. 4.2.1.
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The same holds for backward differences.
The following important result can be derived directly from Taylor’s theorem

with the integral form of the remainder. Assume that all derivatives of f up to kth
order are continuous. If f ∈ Ck,

∆kf(x) = hkf (k)(ζ), ζ ∈ [x, x+ kh]. (3.3.4)

Hence h−k∆kf(x) is an approximation to f (k)(x); the error of this approximation
approaches zero as h → 0 (i.e. as ζ → x). As a rule, the error is approximately
proportional to h. We postpone the proof to Sec. 4.2.1, where it appears as a
particular case of a theorem concerning divided differences.

Even though difference schemes do not have the same importance today that
they had in the days of hand calculations or calculation with desk calculators, they
are still important conceptually, and we shall also see how they are still useful also
in practical computing. In a computer it is more natural to store a difference scheme
as an array, with yn, ∇yn, ∇2yn, . . ., ∇kyn in a row (instead of along a diagonal).

Many formulas for differences are analogous to formulas for derivatives, though
usually more complicated. The following results are among the most important.

Lemma 3.3.1.
It holds that

∆k(ax) = (ah − 1)kax, ∇k(ax) = (1 − a−h)kax. (3.3.5)

For sequences, i.e. if h=1,

∆k{an} = (a− 1)k{an}, ∆k{2n} = {2n}. (3.3.6)

Proof. Let c be a given constant. For k = 1 we have

∆(cax) = cax+h − cax = caxah − cax = c(ah − 1)ax

The general result follows easily by induction. The backward difference formula is
derived in the same way.

Lemma 3.3.2 (Difference of a Product).

∆(unvn) = un∆vn + ∆un vn+1. (3.3.7)

Proof. We have

∆(unvn) = un+1vn+1 − unvn

= un(vn+1 − vn) + (un+1 − un)vn+1.

Compare the above result with the formula for differentials, d(uv) = udv + vdu.
Note that we have vn+1 (not vn) on the right-hand side.
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Lemma 3.3.3 (Summation by Parts).

N−1∑

n=0

un∆vn = uNvN − u0v0 −
N−1∑

n=0

∆un vn+1. (3.3.8)

Proof. (Compare the rule for integration by parts and its proof!) Notice that

N−1∑

n=0

∆wn = (w1 − w0) + (w2 − w1) + . . .+ (wN − wN−1)

= wN − w0.

Use this on wn = unvn. From the result in Lemma 3.3.1 one gets after summation,

uNvN − u0v0 =

N−1∑

n=0

un∆vn +

N−1∑

n=0

∆unvn+1,

and the result follows. (For an extension; see Problem 3.3.2 (d).)

3.3.2 The Calculus of Operators

Formal calculations with operators, using the rules of algebra and analysis, are
often an elegant means of assistance in finding approximation formulas that are
exact for all polynomials of degree less than (say) k, and they should therefore be
useful for functions that can be accurately approximated by such a polynomial.
Our calculations often lead to divergent (or semi-convergent) series, but the way
we handle them can usually be justified by means of the theory of formal power
series, of which a brief introduction was given at the end of Sec. 3.1.5. The opera-
tor calculations also provide error estimates, asymptotically valid as the step size
h → 0. Rigorous error bounds can be derived by means of Peano’s remainder
theorem in Sec. 3.3.3.

Operator techniques are sometimes successfully used (see Sec. 3.3.4) in a way
that it is hard, or even impossible, to justify by means of formal power series. It
is then not trivial to formulate appropriate conditions for the success and to derive
satisfactory error bounds and error estimates, but it can sometimes be done.

We make a digression about terminology. More generally, the word operator
is in this book used for a function that maps a linear space S into another linear
space S′. S can, for example, be a space of functions, a coordinate space, or a space
of sequences. The dimension of these spaces can be finite or infinite. For example,
the differential operator D maps the infinite-dimensional space C1[a, b] of functions
with a continuous derivative, defined on the interval [a, b], into the space C[a, b] of
continuous functions on the same interval.

In the following we denote by Pn the set of polynomials of degree less than n.72

Note that Pn is an n-dimensional linear space, for which {1, x, x2, . . ., xn−1} is a

72Some authors use similar notations to denote the set of polynomials of degree less than or
equal to n.
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basis called the power basis; the coefficients (c1, c2, . . ., cn) are then the coordinates
of the polynomial p defined by p(x) =

∑n
i=1 cix

i−1.
For simplicity, we shall assume that the space of functions on which the op-

erators are defined is C∞(−∞,∞), i.e. the functions are infinitely differentiable on
(−∞,∞). This sometimes requires (theoretically) a modification of a function out-
side the bounded interval where it is interesting. There are techniques for achieving
this, but they are beyond the scope of this book. Just imagine that they have been
applied.

We define the following operators:

Ef(x) = f(x+ h) Shift (or translation) operator

∆f(x) = f(x+ h) − f(x) Forward difference operator

∇f(x) = f(x) − f(x− h) Backward difference operator

Df(x) = f ′(x) Differentiation operator

δf(x) = f(x+ 1
2h) − f(x− 1

2h) Central difference operator

µf(x) = 1
2

(
f(x+ 1

2h) + f(x− 1
2h)
)

Averaging operator

Suppose that the values of f are given on an equidistant grid only, e.g., xj = x0+jh,
j = −M : N , (j is integer). Set fj = f(xj). Note that δfj , δ

3fj . . ., (odd powers)
and µfj cannot be exactly computed; they are available halfway between the grid
points. (A way to get around this is given later; see (3.3.45)) The even powers
δ2fj , δ

4fj . . ., and µδfj, µδ
3fj . . ., can be exactly computed. This follows from the

formulas

µδf(x) =
1

2

(
f(x+ h) − f(x− h)

)
, µδ = 1

2 (∆ + ∇), δ2 = ∆ −∇. (3.3.9)

Several other notations are in use. For example, in the study of difference methods
for partial differential equations D+h, D0h, and D−h are used instead of ∆, µδ, and
∇, respectively.

An operator P is said to be a linear operator if

P (αf + βg) = αPf + βPg

holds for arbitrary complex constants α, β and arbitrary functions f, g. The above
six operators are all linear. The operation of multiplying by a constant α, is also a
linear operator.

If P and Q are two operators, then their sum and product can be defined in
the following way:

(P +Q)f = Pf +Qf,

(P −Q)f = Pf −Qf,

(PQ)f = P (Qf),

(αP )f = α(Pf),

Pnf = P · P · · ·Pf, n factors.
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Two operators are equal, P = Q if Pf = Qf , for all f in the space of functions
considered. Notice that ∆ = E − 1. One can show that the following rules hold for
all linear operators:

P +Q = Q+ P, P + (Q+R) = (P +Q) +R,

P (Q+R) = PQ+ PR, P (QR) = (PQ)R.

The above six operators, E, ∆, ∇, hD, δ, and µ, and the combinations of them by
these algebraic operations make a commutative ring, so PQ = QP holds for these
operators, and any algebraic identity that is generally valid in such rings can be
used.

If S = Rn, S′ = Rm, and the elements are column vectors, then the linear
operators are matrices of size [m,n]. They do generally not commute.

If S′ = R or C, the operator is called a functional. Examples of functionals
are, if x0 denotes a fixed (though arbitrary) point,

Lf = f(x0), Lf = f ′(x0), Lf =

∫ 1

0

e−xf(x) dx,

∫ 1

0

|f(x)|2 dx;

all except the last one are linear functionals.
There is a subtle distinction here. For example, E is a linear operator that

maps a function to a function. Ef is the function whose value at the point x is
f(x+h). If we consider a fixed point x0, then (Ef)(x0) is a scalar. This is therefore
a linear functional. We shall allow ourselves to simplify the notation and to write
Ef(x0), but it must be understood that E operates on the function f , not on the
function value f(x0). This was just one example; simplifications like this will be
made with other operators than E, and similar simplifications in notation were
suggested earlier in this chapter. There are, however, situations, where it is, for
the sake of clarity, advisable to return to the more specific notation with a larger
number of parentheses.

If we represent the vectors in Rn by columns y, the linear functionals in Rn are
the scalar products aTx =

∑n
i=1 aiyi; every row aT thus defines a linear functional.

Examples of linear functionals in Pk are linear combinations of a finite number
of function values, Lf =

∑
ajf(xj). If xj = x0 + jh the same functional can

be expressed in terms of differences, e.g.,
∑
a′j∆

jf(x0); see Problem 3.3.4. The
main topic of this section is to show how operator methods can be used for finding
approximations of this form to linear functionals in more general function spaces.
First, we need a general theorem.

Theorem 3.3.4.
Let x1, x2, . . . , xk be k distinct real (or complex) numbers. Then no non-

trivial relation of the form
k∑

j=1

ajf(xj) = 0 (3.3.10)

can hold for all f ∈ Pk. If we add one more point (x0), there exists only one non-

trivial relation of the form
∑k

j=0 a
′
jf(xj) = 0, (except that it can be multiplied by
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an arbitrary constant). In the equidistant case, i.e. if xj = x0 + jh, then

k∑

j=0

a′jf(xj) ≡ c∆kf(x0), c 6= 0.

Proof. If (3.3.10) were valid for all f ∈ Pk, then the linear system
∑k

j=1 x
i−1
j aj = 0,

i = 1 : k, would have a non-trivial solution (a1, a2, . . ., ak). The matrix of the
system, however, is a Vandermonde matrix73

V = [xi−1
j ]ki,j=1 =







1 1 · · · 1
x1 x2 · · · xk
...

... · · ·
...

xk−1
1 xk−1

2 · · · xk−1
k






. (3.3.11)

Its determinant can be shown to equal the product of all differences, i.e.

det(V ) =
∏

1≤i<j≤k
(xi − xj). (3.3.12)

This is nonzero if and only if the points are distinct.
Now we add the point x0. Suppose that there exist two relations,

k∑

j=0

bjf(xj) = 0,

k∑

j=0

cjf(xj) = 0.

with linearly independent coefficient vectors. Then we can find a (non-trivial) linear
combination, where x0 has been eliminated, but this contradicts the result that we
have just proved. Hence the hypothesis is wrong; the two coefficient vectors must
be proportional.

We have seen above that, in the equidistant case, ∆kf(x0) = 0 is such a
relation. More generally, we shall see in Chapter 4 that, for k+ 1 arbitrary distinct
points, the kth order divided difference is zero for all f ∈ Pk.

Corollary 3.3.5.
Suppose that a formula for interpolation, numerical differentiation, or integra-

tion has been derived by an operator technique. If it is a linear combination of the
values of f(x) at k given distinct points xj, j = 1 : k, and is exact for all f ∈ Pk,
this formula is unique. (If it is exact for all f ∈ Pm, m < k, only, it is not unique.)

In particular, for any {cj}kj=1, a unique polynomial P ∈ Pk is determined by
the interpolation conditions P (xj) = cj, j = 1 : k.

Proof. The difference between two formulas that use the same function values
would lead to a relation that is impossible, by the theorem.

73Alexandre Théophile Vandermonde (1735–1796), a member of the French Academy of Sci-
ences, is regarded as the founder of the theory of determinants. What is now referred to as the
“Vandermonde matrix” does not seem to appear in his writings!
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Now we shall go outside of polynomial algebra and consider also infinite series
of operators. The Taylor series

f(x+ h) = f(x) + hf ′(x) +
h2

2!
f ′′(x) +

h3

3!
f ′′′(x) + . . .

can be written symbolically as

Ef =
(

1 + hD +
(hD)2

2!
+

(hD)3

3!
+ . . .

)

f.

We can here treat hD like an algebraic indeterminate, and consider the series inside
the parenthesis (without the operand) as a formal power series74

For a formal power series the concepts of convergence and divergence do not
exist. When the operator series acts on a function f , and is evaluated at a point c, we
obtain an ordinary numerical series, related to the linear functional Ef(c) = f(c+h).
We know that this Taylor series may converge or diverge, depending on f , c, and h.

Roughly speaking, the last part of Sec. 3.1.5 tells us that, with some care,“analytic
functions” of one indeterminate can be handled with the same rules as analytic func-
tions of one complex variable.

Theorem 3.3.6.

ehD = E = 1 + ∆, e−hD = E−1 = 1 −∇,
2 sinh 1

2hD = ehD/2 − e−hD/2 = δ,

(1 + ∆)θ = (ehD)θ = eθhD, (θ ∈ R).

Proof. The first formula follows from the previous discussion. The second and the
third formulas are obtained in a similar way. (Recall the definition of δ.) The last
formula follows from the first formula together with Lemma 3.1.9 (in Sec. 3.1.5).

It follows from the power series expansion that

(ehD)θf(x) = eθhDf(x) = f(x+ θh),

when it converges. Since E = ehD it is natural to define

Eθf(x) = f(x+ θh),

and we extend this definition also to such values of θ that the power series for
eθhDf(x) is divergent. Note that, for example, the formula

Eθ2Eθ1f(x) = Eθ2+θ1f(x),

74We now abandon the bold-type notation for indeterminates and formal power series used in
Sec. 3.1.5 for the function ehD , which is defined by this series. The reader is advised to take a look
again at the last part of Sec. 3.1.5.
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follows from this definition.
When one works with operators or functionals it is advisable to avoid notations

like ∆xn, Deαx, where the variables appear in the operands. For two important
functions we therefore set

Fα : Fα(x) = eαx; fn : fn(x) = xn. (3.3.13)

Let P be any of the operators mentioned above. When applied to Fα it acts like a
scalar that we shall call the scalar of the operator 75 and denote it by sc(P ),

PFα = sc(P )Fα.

We may also write sc(P ;hα) if it is desirable to emphasize its dependence on hα.
(We normalize the operators so that this is true, for example, we work with hD
instead of D.) Note that

sc(βP + γQ) = βsc(P ) + γsc(Q), (β, γ ∈ C),

sc(PQ) = sc(P )sc(Q).

For our most common operators we obtain

sc(Eθ) = eθhα;

sc(∇) = sc(1 − E−1) = 1 − e−hα;

sc(∆) = sc(E − 1) = ehα − 1;

sc(δ) = sc(E1/2 − E−1/2) = ehα/2 − e−hα/2.

Let Qh be one of the operators hD, ∆, δ, ∇. It follows from the last formulas that

sc(Qh) ∼ hα, (h→ 0); |sc(Qh)| ≤ |hα|e|hα|

The main reason for grouping these operators together is that each of them has the
important property (3.3.4), i.e. Qkhf(c) = hkf (k)(ζ), where ζ lies in the smallest
interval that contains all the arguments used in the computation of Qkhf(c). Hence,

f ∈ Pk ⇒ Qnhf = 0, ∀n ≥ k. (3.3.14)

This property 76 makes each of these four operators well suited to be the indetermi-
nate in a formal power series that, hopefully, will be able to generate a sequence of
approximations, L1, L2, L3 . . ., to a given linear operator L. Ln is the nth partial
sum of a formal power series for L. Then

f ∈ Pk ⇒ Lnf = Lkf, ∀n ≥ k. (3.3.15)

We shall see in the next theorem that, for expansion into powers of Qh,

lim
n→∞

Lnf(x) = Lf(x)

75In applied Fourier analysis this scalar is, for α = iω, often called the symbol of the operator.
76The operators E and µ do not possess this property.
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if f is a polynomial. This is not quite self-evident, because it is not true for all
functions f , and we have seen in Sec. 3.1.5 that it can happen that an expansion
converges to a “wrong result”. We shall see more examples of that later. Conver-
gence does not necessarily imply validity.

Suppose that z is a complex variable, and that φ(z) is analytic at the origin,
i.e. φ(z) is equal to its Maclaurin series, (say)

φ(z) = a0 + a1z + a2z
2 + . . . ,

if |z| < ρ for some ρ > 0. For multivalued functions we always refer to the principal
branch. The operator function φ(Qh) is usually defined by the formal power series,

φ(Qh) = a0 + a1Qh + a2Q
2
h + . . . ,

where Qh is treated like an algebraic indeterminate.

Table 3.3.1. Bickley’s table of relations between difference operators.

E ∆ δ ∇ hD

E E 1 + ∆ 1 + 1
2
δ2 + δ

q

1 + 1
4
δ2

1

1 −∇
ehD

∆ E − 1 ∆ δ
q

1 + 1
4
δ2 + 1

2
δ2 ∇

1 −∇
ehD − 1

δ E1/2 − E−1/2 ∆(1 + ∆)−1/2 δ ∇(1 −∇)−1/2 2 sinh 1
2
hD

∇ 1 − E−1 ∆

1 + ∆
δ
q

1 + 1
4
δ2 − 1

2
δ2 ∇ 1 − e−hD

hD ln E ln(1 + ∆) 2 sinh−1 1
2
δ − ln(1 −∇) hD

µ 1
2
(E1/2 + E−1/2)

1 + 1
2
∆

(1 + ∆)1/2

q

1 + 1
4
δ2

1 − 1
2
∇

(1 −∇)1/2
cosh 1

2
hD

The operators E, hD, ∆, δ, ∇ and µ are related to each others. See Table 3.3.1
that is adapted from an article by the eminent blind British mathematician W. G.
Bickley (1948). Some of these formulas follow almost directly from the definitions,
others are derived in this section. We find the value sc(·) for each of these operators
by substituting α for D in the last column of the table. (Why?)

Example 3.3.4.
The definition of ∇ reads in operator form E−1 = 1 −∇. This can be looked

upon as a formal power series (with only two non-vanishing terms) for the reciprocal
of E with ∇ as the indeterminate. By the rules for formal power series mentioned
in Sec. 3.1.5, we obtain uniquely

E = (E−1)−1 = (1 −∇)−1 = 1 + ∇ + ∇2 + . . . .

We find in the table an equivalent expression containing a fraction line. Suppose
that we have proved the last column of the table. So, sc(∇) = 1 − e−hα, hence

sc((1 −∇)−1) = (e−hα)−1 = ehα = sc(E).
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Example 3.3.5.
Suppose that we have proved the first and the last columns of Bickley’s table

(except for the equation hD = lnE). We shall prove one of the formulas in the
second column, namely the equation

δ = ∆(1 + ∆)−1/2.

By the first column, the right-hand side is equal to (E−1)E−1/2 = E1/2−E−1/2 = δ,
Q.E.D.

We shall also compute sc(∆(1 + ∆)−1/2). Since sc(∆) = ehα − 1 we obtain

sc(∆(1 + ∆)−1/2) = (ehα − 1)(ehα)−1/2 = ehα/2 − e−hα/2

= 2 sinh 1
2hα = sc(δ).

With the aid of Bickley’s table, we are in a position to transform L into the
form φ(Qh)Rh. (A sum of several such expressions with different indeterminates
can also be treated.)

• Qh is the one of the four operators, hD, ∆, δ, ∇, which we have chosen to be the
“indeterminate”.

Lf ≃ φ(Qh)f = (a0 + a1Qh + a2Q
2
h + . . .)f. (3.3.16)

The coefficients aj are the same as the Maclaurin coefficients of φ(z), z ∈ C if φ(z)
is analytic at the origin. They can be determined by the techniques described in
Sec. 3.1.4 and Sec. 3.1.5. The meaning of the relation ≃ will hopefully be clear from
the following theorem.

• Rh is, e.g., µδ or Ek, k integer, or more generally any linear operator with the
properties that RhFα = sc(Rh)Fα, and that the values of Rhf(xn) on the grid
xn = x0 + nh, n integer, are determined by the values of f on the same grid.

Theorem 3.3.7.
Recall the notation Qh for either of the operators ∆, δ, ∇, hD, and the nota-

tions Fα(x) = eαx, fn(x) = xn. Note that

Fα(x) =
∞∑

n=0

αn

n!
fn (x). (3.3.17)

Also recall the scalar of an operator and its properties, for example,

LFα = sc(L)Fα, QjhFα = (sc(Qh))
jFα;

for the operators under consideration the scalar depends on hα.
Assumptions:

(i) A formal power series equation L =
∑∞

j=0 ajQ
j
h has been derived.77 Further-

more, |sc(Qh)| < ρ, where ρ is the radius of convergence of the series
∑
ajz

j, z ∈ C,

77To simplify the writing, the operator Rh is temporarily neglected. See one of the comments
below.
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and

sc(L) =

∞∑

j=0

aj(sc(Qh))
j . (3.3.18)

(ii) At α = 0 it holds that

L
∂n

∂αn
Fα(x) =

∂n

∂αn
(LFα)(x)

or equivalently,

L

∫

C

Fα(x) dα

αn+1
=

∫

C

(LFα)(x) dα

αn+1
. (3.3.19)

where C is any circle with the origin as center.

(iii) The domain of x is a bounded interval I1 in R.

Then it holds that

LFα =
( ∞∑

j=0

ajQ
j
h

)

Fα, if |sc(Qh)| < ρ, (3.3.20)

Lf(x) =

k−1∑

j=0

ajQ
j
hf(x), if f ∈ Pk, (3.3.21)

for any positive integer k.
A rigorous error bound for (3.3.21), if f /∈ Pk, is obtained in Peano’s Theo-

rem 3.3.8.
An asymptotic error estimate (as h → 0 for fixed k) is given by the first

neglected non-vanishing term arQ
r
hf(x) ∼ ar(hD)rf(x), r ≥ k, if f ∈ Cr[I], where

the interval I must contain all the points used in the evaluation of Qrhf(x).

Proof. By Assumption 1,

LFα = sc(L)Fα = lim
J→∞

J−1∑

j=0

ajsc(Q
j
h)Fα = lim

J→∞

J−1∑

j=0

ajQ
j
hFα = lim

J→∞

( J−1∑

j=0

ajQ
j
h

)

Fα,

hence LFα = (
∑∞

j=0Q
j
h)Fα. This proves the first part of the theorem.

By (3.3.17), Cauchy’s formula (3.2.8) and Assumption (ii),

2πi

n!
Lfn(x) = L

∫

C

Fα(x) dα

αn+1
=

∫

C

(LFα)(x) dα

αn+1

=

∫

C

J−1∑

j=0

ajQ
j
hFα(x) dα

αn+1
+

∫

C

∞∑

j=J

ajsc(Qh)
jFα(x) dα

αn+1
.

Let ǫ be any positive number. Choose J so that the modulus of the last term
becomes ǫθn2π/n!, where |θn| < 1. This is possible, since |sc(Qh)| < ρ; see As-
sumption (i). Hence, for every x ∈ I1,

Lfn(x) − ǫθn =
n!

2πi

J−1∑

j=0

ajQ
j
h

∫

C

Fα(x) dα

αn+1
=
J−1∑

j=0

ajQ
j
hfn(x) =

k−1∑

j=0

ajQ
j
hfn(x).



“dqbjV
2007/5/28
page 233

3.3. Difference Operators and Operator Expansions 233

The last step holds if J ≥ k > n, because, by (3.3.14), Qjhfn = 0 for j > n. It
follows that

∣
∣Lfn(x) −

k−1∑

j=0

ajQ
j
hfn(x)

∣
∣ < ǫ, ∀ǫ > 0,

and hence Lfn =
∑k−1

j=0 ajQ
j
hfn.

If f ∈ Pk, f is a linear combination of fn, n = 0 : k − 1. Hence Lf =
∑k−1

j=0 ajQ
j
hf if f ∈ Pk. This proves the second part of the theorem.

The error bound is derived in Sec. 3.3.1. Recall the important formula (3.3.4)
that expresses the kth difference as the value of the kth derivative in a point lo-
cated in an interval that contains all the points used in the computation of the kth
difference. i.e. the ratio of the error estimate ar(hD)rf(x) to the true truncation
error tends to 1, as h→ 0.

Remark 3.3.1. This theorem is concerned with series of powers of the four oper-
ators collectively denoted Qh. One may try to use operator techniques also to find
a formula involving, for example, an infinite expansion into powers of the operator
E. Then one should try afterwards to find sufficient conditions for the validity of
the result. This procedure will be illustrated in connection with Euler–Maclaurin’s
formula in Sec. 3.4.5.

Sometimes, operator techniques which are not covered by this theorem can,
after appropriate restrictions, be justified (or even replaced) by transform methods,
for example, z-transforms, Laplace or Fourier transforms.

The operator Rh that was introduced just before the theorem, was neglected in
the proof, in order to simplify the writing. We now have to multiply the operands
by Rh in the proof and in the results. This changes practically nothing for Fα,
since RhFα = sc(Rh)Fα. In (3.3.21) there is only a trivial change, because the
polynomials f and Rhf may not have the same degree. For example, if Rh = µδ
and f ∈ Pk then Rhf ∈ Pk−1. The verification of the assumptions typically offers
no difficulties.

It follows from the linearity of (3.3.20) that it is satisfied also if Fα is replaced
by a linear combination of exponential functions Fα with different α, provided that
|sc(Qh)| < ρ for all the occurring α. With some care, one can let the linear combi-
nation be an infinite series or an integral.

There are two things to note in connection with the asymptotic error estimates.
First, the step size should be small enough; this means in practice that, in the
beginning, the magnitude of the differences should decrease rapidly, as their order
increases. When the order of the differences becomes large, it often happens that
the moduli of the differences also become increasing. This can be due to two causes:
semi-convergence (see the next comment) and/or rounding errors.

The rounding errors of the data may have so large effects on the high order
differences78 that the error estimation does not make sense. One should then use a
smaller value of the order k, where the rounding errors have a smaller influence. An
advantage with the use of a difference scheme is that it is relatively easy to choose

78Recall Example 3.3.2
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the order k adaptively, and sometimes also the step size h.
This comment is of particular importance for numerical differentiation. Nu-

merical illustrations and further comments are given below in Example 3.3.6 and
Problem 3.3.7 (b), and in several other places.

The sequence of approximations to Lf may converge or diverge, depending on
f and h. It is also often semiconvergent, recall Sec. 3.2.6, but in practice the round-
ing errors mentioned in the previous comment, have often, though not always, taken
over already, when the truncation error passes its minimum; see Problem 3.3.7 (b).

Example 3.3.6. The Backwards Differentiation Formula.

By Theorem 3.3.6, e−hD = 1−∇. We look upon this as a formal power series;
the indeterminate is Qh = ∇. By Example 3.1.11,

L = hD = − ln(1 −∇) = ∇ +
1

2
∇2 +

1

3
∇3 + . . . (3.3.22)

Verification of the assumptions of Theorem 3.3.7: 79

(i) sc(∇) = 1 − e−hα; the radius of convergence is ρ = 1.

sc(L) = sc(hD) = hα;

∞∑

j=1

sc(∇)j/j = − ln(1 − (1 − e−hα)) = hα.

The convergence condition |sc(∇)| < 1 reads hα > − ln 2 = −0.69 if α is real,
|hω| < π/3 if α = iω.

(ii) For α = 0, D
∂n

∂αn
(eαx) = Dxn = nxn−1. By Leibniz’ rule:

∂n

∂αn
(αeαx) = 0xn + nxn−1.

By the theorem, we now obtain a formula for numerical differentiation that
is exact for all f ∈ Pk.

hf ′(x) =
(

∇ +
1

2
∇2 +

1

3
∇3 + . . .+

1

k − 1
∇k−1

)

f(x) (3.3.23)

By Theorem 3.3.4, this is the unique formula of this type that uses the values of f(x)
at the k points xn : −h : xn−k+1. The same approximation can be derived in many
other ways, perhaps with a different appearance; see Chapter 4. This derivation has
several advantages; the same expansion yields approximation formulas for every
k, and if f ∈ Ck, f /∈ Pk, the first neglected term, i.e. 1

k∇k
hf(xn), provides an

asymptotic error estimate, if f (k)(xn) 6= 0.

We now apply this formula to the table in Example 3.3.2, where f(x) = tanx,
h = 0.01, k = 6,

0.01f ′(1.35) ≈ 0.1996 +
0.0163

2
+

0.0019

3
+

0.0001

4
− 0.0004

5
,

79Recall the definition of the scalar sc(·), after (3.3.13).
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i.e. we obtain a sequence of approximate results,

f ′(1.35) ≈ 19.96, 20.78, 20.84, 20.84, 20.83.

The correct value to 3D is (cos 1.35)−2 = 20.849. Note that the last result is worse
than the next to last. Recall the last comments to the theorem. In this case this is
due to the rounding errors of the data. Upper bounds for their effect of the sequence
of approximate values of f ′(1.35) is, by Example 3.3.3, shown in the series

10−2
(

1 +
2

2
+

4

3
+

8

4
+

16

5
+ . . .

)

.

A larger version of this problem was run on a computer with the machine unit
2−53 ≈ 10−16; f(x) = tanx, x = 1.35 : −0.01 : 1.06. In the beginning the error
decreases rapidly, but after 18 terms the rounding errors take over, and the error
then grows almost exponentially (with constant sign). The eighteenth term and its
rounding error have almost the same modulus (but opposite sign). The smallest
error equals 5 ·10−10, and is obtained after 18 terms; after 29 terms the actual error
has grown to 2 · 10−6. Such a large number of terms is seldom used in practice,
unless a very high accuracy is demanded; see also Problem 3.3.7 (b), a computer
exercise that offers both similar and different experiences.

Equation (3.3.22)—or its variable step size variant in Chapter 4 is the basis of
the important BDF method for the numerical integration of ordinary differential
equations.

Coefficients for backwards differentiation formulas for higher derivatives, are
obtained from the equations

(hD/∇)k = (− ln(1 −∇)/∇)k.

The following formulas were computed by means of the matrix representation of a
truncated power series:








hD/∇
(hD/∇)2

(hD/∇)3

(hD/∇)4

(hD/∇)5








=









1 1/2 1/3 1/4 1/5
1 1 11/12 5/6 137/180
1 3/2 7/4 15/8 29/15
1 2 17/6 7/2 967/240
1 5/2 25/6 35/6 1069/144









·








1
∇
∇2

∇3

∇4







. (3.3.24)

The rows of the matrix are the first rows taken from the matrix representation of
each of the expansions (hD/∇)k, k = 1 : 5.

When the effect of the irregular errors of the data on a term becomes larger
in magnitude than the term itself, the term should, of course, be neglected; it does
more harm than good. This happens relatively early for the derivatives of high order;
see Problem 3.3.7. When these formulas are to be used inside a program (rather
than during an interactive post-processing of results of an automatic computation),
some rules for automatic truncation have to be designed; an interesting kind of
detail in scientific computing.
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The forwards differentiation formula, which is analogously based on the oper-
ator series,

hD = ln(1 + ∆) = ∆ − 1

2
∆2 +

1

3
∆3 ± . . . (3.3.25)

is sometimes useful too. We obtain the coefficients for derivatives of higher order
by inserting minus signs in the second and fourth columns of the matrix in (3.3.24).

A straightforward solution to this problem is to use the derivative of the
corresponding interpolation polynomial as the approximation to the derivative of
the function. This can also be done for higher order derivatives.

A grid (or a table) may be too sparse to be useful for numerical differentiation
and for the computation of other linear functionals. For example, we saw above that
the successive backward differences of eiωx increase exponentially if |ωh| > π/3.
In such a case the grid, where the values are given, gives insufficient information
about the function. One also says that “the grid does not resolve the function”.
This is often indicated by a strong variation in the higher differences. But even this
indication can sometimes be absent. An extreme example is, f(x) = sin(πx/h),
on the grid xj = jh, j = 0,±1,±2, . . .. All the higher differences, and thus the
estimates of f ′(x) at all grid points are zero, but the correct values of f ′(xj) are
certainly not zero. So, this is an example where the expansion (trivially) converges,
but it is not valid! (Recall the discussion of a Maclaurin expansion for a non-
analytic function at the end of Sec. 3.1.2. Now a similar trouble can occur also for
an analytic function.)

A less trivial example is given by the functions

f(x) =

20∑

n=1

an sin(2πnx), g(x) =

10∑

n=1

(an + a10+n) sin(2πnx).

f(x) = g(x) on the grid, hence they have the same difference scheme, but f ′(x) 6=
g′(x) on the grid, and typically f(x) 6= g(x) between the grid points.

3.3.3 The Peano Theorem

One can often, by a combination of theoretical and numerical evidence, rely on
asymptotic error estimates. Since there are exceptions, it is interesting that there
are two general methods for deriving strict error bounds. We call one of them the
norms and distance formula. This is not restricted to polynomial approxima-
tion, and it is typically easy to use, but it requires some advanced concepts and often
overestimates the error. We therefore postpone the presentation of that method to
Sec. 4.5.2.

We shall now give another method, due to Peano80. Consider a linear func-
tional

L̃f =

p
∑

j=1

bjf(xj),

80Giuseppe Peano (1858–1932) was an Italian mathematician and logician.
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for the approximate computation of another linear functional, for example,

Lf =

∫ 1

0

√
xf(x) dx.

Suppose that it is exact, when it is applied to any polynomial of degree less than
k: In other words, L̃f = Lf , for all f ∈ Pk. The remainder is then itself a linear
functional, R = L− L̃, with the special property that

Rf = 0 if f ∈ Pk.

The next theorem gives a representation for such functionals, which provides a
universal device for deriving error bounds for approximations of the type that we
are concerned with. Let f ∈ Cn[a, b]. In order to make the discussion less abstract
we confine it to functionals of the following form, 0 ≤ m < n,

Rf =

∫ b

a

φ(x)f(x) dx +

p
∑

j=1

(
bj,0f(xj) + bj,1f

′(xj) + . . .+ bj,mf
(m)(xj)

)
, (3.3.26)

where the function φ is integrable, and the points xj lie in the bounded real interval
[a, b], and bj,m 6= 0 for at least one value of j. Moreover, we assume that

Rp = 0 for all p ∈ Pk. (3.3.27)

We define the function81

t+ = max(t, 0); tj+ =
(
t+
)j

; t0+ =
1 + sign t

2
; (3.3.28)

The function t0+ is often denoted H(t) an is known as the Heaviside unit step
function.82 The function sign is defined as in Definition 3.1.3, i.e. sign x = 0, if
x = 0. Note that tj+ ∈ Cj−1, (j ≥ 1).

The Peano kernel K(u) of the functional R is defined by the equation,

K(u) =
1

(k − 1)!
Rx(x− u)k−1

+ , x ∈ [a, b], u ∈ (−∞,∞). (3.3.29)

The subscript in Rx indicates that R acts on the variable x (not u).
The function K(u) vanishes outside [a, b], because:

• if u > b then u > x, hence (x− u)k−1
+ = 0 and K(u) = 0,

• if u < a then x > u. It follows that (x− u)k−1
+ = (x− u)k−1 ∈ Pk,

hence K(u) = 0, by (3.3.29) and (3.3.27).

If φ(x) is a polynomial then K(u) becomes a piecewise polynomial; the points
xj are the joints of the pieces. In this caseK ∈ Ck−m−2; the order of differentiability
may be lower, if φ has singularities.

We are now in a position to prove an important theorem.

81We use the neutral notation t here for the variable, to avoid to tie up the function too closely
with the variables x and u which play a special role in the following.

82Oliver Heaviside (1850–1925), English physicist.
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Theorem 3.3.8 (Peano’s Remainder Theorem).

Suppose that Rp = 0 for all p ∈ Pk. Then 83 , for all f ∈ Ck[a, b],

Rf =

∫ ∞

−∞
f (k)(u)K(u)du. (3.3.30)

The definition and some basic properties of the Peano kernel K(u) were given above.

Proof. By Taylor’s formula,

f(x) =

k−1∑

j=1

f (j)(a)

j!
(x− a)j +

∫ x

a

f (k)(u)

(k − 1)!
(x− u)k−1du.

This follows from putting n = k, z = x − a, t = (u − a)/(x − u) into (3.1.5).
We rewrite the last term as

∫∞
a f (k)(u)(x − u)k−1

+ du. Then apply the functional
R = Rx to both sides. Since we can allow the interchange of the functional R with
the integral, for the class of functionals that we are working with, this yields

Rf = 0 +R

∫ ∞

a

f (k)(u)(x− u)k−1
+

(k − 1)!
du =

∫ ∞

a

f (k)(u)Rx(x− u)k−1
+

(k − 1)!
du,

The theorem then follows from (3.3.29).

Corollary 3.3.9.
Suppose that Rp = 0 for all p ∈ Pk. Then

Rx(x− a)k = k!

∫ ∞

−∞
K(u)du. (3.3.31)

For any f ∈ Ck[a, b], Rf = f(k)(ξ)
k! Rx((x − a)k), holds for some ξ ∈ (a, b), if and

only if K(u) does not change its sign.
If K(u) changes its sign, the best possible error bound reads

|Rf | ≤ sup
u∈[a,b]

|f (k)(u)|
∫ ∞

−∞
|K(u)|du;

a formula with f (k)(ξ) is not generally true in this case.

Proof. First suppose that K(u) does not change sign. Then, by (3.3.30) and the
mean value theorem of Integral Calculus, Rf = f (k)(ξ)

∫∞
−∞K(u)du, ξ ∈ [a, b]. For

f(x) = (x− a)k this yields (3.3.31). The “if” part of the corollary follows from the
combination of these formulas for Rf and R(x− a)k.

If K(u) changes its sign, the “best possible bound” is approached by a se-
quence of functions f chosen so that (the continuous functions) f (k)(u) approach
(the discontinuous function) sign K(u). The “only if” part follows.

83The definition of f(k)(u) for u /∈ [a, b] is arbitrary.



“dqbjV
2007/5/28
page 239

3.3. Difference Operators and Operator Expansions 239

Example 3.3.7.
The remainder of the trapezoidal rule (one step of length h) reads

Rf =

∫ h

0

f(x) dx− h

2
(f(h) + f(0)).

We know that Rp = 0 for all p ∈ P2. The Peano kernel is zero for u /∈ [0, h], while
for u ∈ [0, h],

K(u) =

∫ h

0

(x−u)+ dx−
h

2
((h−u)+ +0)) =

(h− u)2

2
− h(h− u)

2
=

−u(h− u)

2
< 0

We also compute

Rx2

2!
=

∫ h

0

x2

2
dx − h · h2

2 · 2 =
h3

6
− h3

4
= −h

3

12
.

Since the Peano kernel does not change sign, we conclude that

Rf = −h
3

12
f ′′(ξ), ξ ∈ (0, h).

Example 3.3.8 (Peano kernels for difference operators).

Let Rf = ∆3f(a), and set xi = a+ ih, i = 0 : 3. Note that Rp = 0 for p ∈ P3.
Then

Rf = f(x3) − 3f(x2) + 3f(x1) − f(x0),

2K(u) = (x3 − u)2+ − 3(x2 − u)2+ + 3(x1 − u)2+ − (x0 − u)2+,

i.e.

2K(u) =







0, if u > x3;
(x3 − u)2, if x2 ≤ u ≤ x3;
(x3 − u)2 − 3(x2 − u)2, if x1 ≤ u ≤ x2;
(x3 − u)2 − 3(x2 − u)2 + 3(x1 − u)2 ≡ (u− x0)

2, if x0 ≤ u ≤ x1;
(x3 − u)2 − 3(x2 − u)2 + 3(x1 − u)2 − (x0 − u)2 ≡ 0, if u < x0.

For the simplification of the last two lines we used that ∆3
u(x0 −u)2 ≡ 0. Note that

K(u) is a piecewise polynomial in P3 and that K ′′(u) is discontinuous at u = xi,
i = 0 : 3.

It can be shown (numerically or analytically) that K(u) > 0 in the interval
(u0, u3). This is no surprise, for, by (3.3.4), ∆nf(x) = hnf (n)(ξ) for any integer n,
and, by the above corollary, this could not be generally true if K(u) changes its sign.
These calculations can be generalized to ∆kf(a) for an arbitrary integer k. This
example will be generalized in Sec. 4.4.2 to divided differences of non-equidistant
data.

In general it is rather laborious to determine a Peano kernel. Sometimes one
can show that the kernel is a piecewise polynomial, that it has a symmetry, and
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that it has a simple form in the intervals near the boundaries. All this can simplify
the computation, and might have been used in these examples.

It is usually much easier to compute R((x − a)k), and an approximate error
estimate is often given by

Rf ∼ f (k)(a)

k!
R
(
(x− a)k

)
, f (k)(a) 6= 0. (3.3.32)

For example, suppose that x ∈ [a, b], where b− a is of the order of magnitude of a
step size parameter h, and that f is analytic in [a, b]. By Taylor’s formula,

f(x) = p(x) +
f (k)(a)

k!
(x− a)k +

f (k+1)(a)

(k + 1)!
(x− a)k+1 + . . . , f (k)(a) 6= 0,

where p ∈ Pk, hence Rp = 0. Most of the common functionals can be applied term
by term. Then

Rf = 0 +
f (k)(a)

n!
Rx(x − a)k +

f (k+1)(a)

(k + 1)!
Rx(x− a)k+1 + . . . .

Assume that, for some c, Rx(x − a)k = O(hk+c), for k = 1, 2, 3, . . .. (This is often
the case.) Then (3.3.32) becomes an asymptotic error estimate as h → 0. It
was mentioned above that for formulas derived by operator methods, an asymptotic
error estimate is directly available anyway, but if a formula is derived by other means
(see Chapter 4) this error estimate is important.

Asymptotic error estimates are frequently used in computing, because they
are often much easier to to derive and apply than strict error bounds. The question
is, however, how to know that “the computation is in the asymptotic regime”, where
an asymptotic estimate is practically reliable. Much can be said about this central
question of Applied Mathematics. Let us here just mention that a difference scheme
displays well the quantitative properties of a function needed for the judgment.

If Rp = 0 for p ∈ Pk, then a fortiori Rp = 0 for p ∈ Pk−i, i = 0 : k. We may
thus obtain a Peano kernel for each i, which is temporarily denoted by Kk−i(u).
They are obtained by integration by parts,

Rkf =

∫ ∞

−∞
Kk(u)f

(k)(u) du =

∫ ∞

−∞
Kk−1(u)f

(k−1)(u) du (3.3.33)

=

∫ ∞

−∞
Kk−2(u)f

(k−2)(u) du = . . . , (3.3.34)

where Kk−i = (−D)iKk, i = 1, 2, . . ., as long as Kk−i is integrable. The lower
order kernels are useful, e.g., if the actual function f is not as smooth as the usual
remainder formula requires.

For the trapezoidal rule we obtained in Example 3.3.7

K1(u) =
h

2
u0

+ +
h

2
− u+

h

2
(u− h)0+.
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A second integration by parts can only be performed within the framework of Dirac’s
delta functions (distributions); K0 is not integrable. A reader, who is familiar with
these generalized functions, may enjoy the following formula:

Rf =

∫ ∞

−∞
K0(u)f(u)du ≡

∫ ∞

−∞

(

−h
2
δ(u) + 1 − h

2
δ(u− h)

)

f(u)du.

This is for one step of the trapezoidal rule, but many functionals can be expressed
analogously.

3.3.4 Approximation Formulas by Operator Methods

We shall now demonstrate how operator methods are very useful for deriving ap-
proximation formulas. For example, in order to find interpolation formulas we
consider the operator expansion

f(b− γh) = E−γf(b) = (1 −∇)γf(b) =
∞∑

j=0

(
γ

j

)

(−∇)jf(b).

The verification of the assumptions of Theorem 3.3.7 offers no difficulties, and we
omit the details. Truncate the expansion before (−∇)k. By the theorem we obtain,
for every γ, an approximation formula for f(b − γh) that uses the function values
f(b − jh) for j = 0 : k − 1; it is exact if f ∈ Pk, and is unique in the sense of
Theorem 3.3.4; We also obtain an asymptotic error estimate if f /∈ Pk, namely the
first neglected term of the expansion, i.e.

(
γ

k

)

(−∇)kf(b) ∼
(
γ

k

)

(−h)kf (k)(b)

Note that the binomial coefficients are polynomials in the variable γ, and hence also
in the variable x = b− γh.

It follows that the approximation formula yields a unique polynomial PB ∈
Pk, that solves the interpolation problem: PB(b−hj) = f(b−hj), j = 0 : k− 1;
(B stands for Backward). If we set x = b− γh, we obtain

PB(x) = E−γf(b) = (1 −∇)γf(a) =

k−1∑

j=0

(
γ

j

)

(−∇)jf(b) (3.3.35)

= f(b− γh) +O(hkf (k)).

Similarly, the interpolation polynomial PF ∈ Pk that uses forward differences based
on the values of f at a, a+ h, . . . , a+ (k − 1)h, reads, if we set x = a+ θh,

PF (x) = Eθf(a) = (1 + ∆)θf(a)

k−1∑

j=0

(
θ

j

)

∆jf(a) (3.3.36)

= f(a+ θh) +O(hkf (k)).
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These formulas are known as Newton’s interpolation formulas for constant
step size, backwards and forwards. The generalization to variable step size will be
found in Sec. 4.2.1.

There exists a similar expansion for central differences. Set

φ0(θ) = 1, φ1(θ) = θ, φj(θ) =
θ

j

(
θ + 1

2j − 1

j − 1

)

, (j > 1). (3.3.37)

φj is an even function if j is even, and an odd function if j is odd. It can be shown
that δjφk(θ) = φk−j(θ), and δjφk(0) = δj,k, (Kronecker’s delta). The functions φk
have thus an analogous relation to the operator δ as, for example, the functions
θj/j! and

(
θ
j

)
have to the operators D and ∆, respectively. We obtain the follow-

ing expansion, analogous to Taylor’s formula and Newton’s forward interpolation
formula. The proof is left for Problem 3.3.5 (b). Then

Eθf(a) =
k−1∑

j=0

φj(θ)δ
jf(a) = f(a+ θh) +O(hkf (k)). (3.3.38)

The direct practical importance of this formula is small, since δjf(a) cannot be
expressed as a linear combination of the given data when j is odd. There are several
formulas, where this drawback has been eliminated by various transformations.
They were much in use before the computer age; each formula had its own group
of fans. We shall derive only one of them, by a short break-neck application of the
formal power series techniques.84 Note that

Eθ = eθhD = cosh θhD + sinh θhD,

δ2 = ehD − 2 + e−hD, ehD − e−hD = 2µδ,

cosh θhD = 1
2 (Eθ + E−θ) =

∞∑

j=0

φ2j(θ)δ
2j ,

sinh θhD =
1

θ

d(cosh θhD)

d(hD)
=

∞∑

j=0

φ2j(θ)
1

θ

dδ2j

dδ2
dδ2

d(hD)

=

∞∑

j=0

φ2j(θ)
jδ2(j−1)

θ
(ehD − e−hD) =

∞∑

j=0

φ2j(θ)
2j

θ
µδ2j−1.

Hence,

f(x0 + θh) = f0 + θµδf0 +
θ2

2!
δ2f0 +

∞∑

j=2

φ2j(θ)
(2j

θ
µδ2j−1f0 + δ2jf0

)

. (3.3.39)

This is known as Stirling’s interpolation formula.85 The first three terms have
been taken out from the sum, in order to show their simplicity and their resemblance

84Differentiation of a formal power series with respect to an indeterminate has a purely algebraic
definition. See the last part of Sec. 3.1.5.

85James Stirling (1692–1770), a British mathematician, perhaps most famous for his amazing
approximation to n!.
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to Taylor’s formula. They yield the most practical formula for quadratic interpola-
tion; it is easily remembered and worth to be remembered. An approximate error
bound for this quadratic interpolation reads |0.016δ3f | if |θ| < 1.

Note that

φ2j(θ) = θ2(θ2 − 1)(θ2 − 4) · · · (θ2 − (j − 1)2)/(2j)!.

The expansion yields a true interpolation formula if it is truncated after an even
power of δ. For k = 1 you see that f0+θµδf0 is not a formula for linear interpolation;
it uses three data points instead of two. It is similar for all odd values of k.

Strict error bounds can be found by means of Peano’s theorem, but the re-
mainder given Theorem 4.2.3 for Newton’s general interpolation formula (that does
not require equidistant data) typically give the answer easier. Both are typically
of the form ck+1f

(k+1)(ξ) and require a bound for a derivative of high order. The
assessment of such a bound typically costs much more work than performing inter-
polation in one point.

A more practical approach is to estimate a bound for this derivative by means
of a bound for the differences of the same order. (Recall the important formula in
(3.3.4).) This is not a rigorous bound, but it typically yields a quite reliable error
estimate, in particular if you put a moderate safety factor on the top of it. There
is much more to be said about the choice of step size and order; we shall return to
this kind of questions in later chapters.

You can make error estimates during the computations; it can happen sooner
or later that it does not decrease, when you increase the order. You may just as well
stop there, and accept the most recent value as the result. This event is most likely
due to the influence of irregular errors, but it can also indicate that the interpolation
process is semi-convergent only.

The attainable accuracy of polynomial interpolation applied to a table with
n equidistant values of an analytic function, depends strongly on θ; the results are
much poorer near the boundaries of the data set than near the center. This question
will be illuminated in Sec. 4.7 by means of complex analysis.

Example 3.3.9.
The continuation of the difference scheme of a polynomial is a classical ap-

plication of a difference scheme for obtaining a smooth extrapolation of a function
outside its original domain. Given the values yn−i = f(xn − ih) for i = 1 : k and
the backward differences, ∇jyn−1, j = 1 : k − 1. Recall that ∇k−1y is a constant
for y ∈ Pk. Consider the algorithm

∇k−1yn = ∇k−1yn−1;

for j = k − 1 : −1 : 1,

∇j−1yn = ∇j−1yn−1 + ∇jyn; (3.3.40)

end

yn = ∇0yn;

It is left for Problem 3.3.2 (g) to show that the result yn is the value at x = xn of
the interpolation polynomial which is determined by yn−i, i = 1 : k. This is a kind
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of inverse use of a difference scheme; there are additions from right to left along a
diagonal, instead of subtractions from left to right.

This algorithm, which needs additions only, was used long ago for the produc-
tion of mathematical tables, for example, for logarithms. Suppose that one knows,
by means of a series expansion, a relatively complicated polynomial approxima-
tion to (say) f(x) = lnx, that is accurate enough in (say) the interval [a, b], and
that this has been used for the computation of k very accurate values y0 = f(a),
y1 = f(a+ h), . . . yk−1, needed for starting the difference scheme. The algorithm is
then used for n = k, k + 1, k + 2, . . . , (b − a)/h. k − 1 additions only are needed
for each value yn. Some analysis must have been needed for the choice of the step
h to make the tables useful with (say) linear interpolation, and for the choice of
k to make the basic polynomial approximation accurate enough over a substantial
number of steps. The precision used was higher, when the table was produced than
when it was used. When x = b was reached, a new approximating polynomial was
needed for continuing the computation over an other interval; at least a new value
of ∇k−1yn.

86

The algorithm in (3.3.40) can be generalized to the case of non-equidistant
with the use of divided differences; see Sec. 4.2.1.

We now derive some central difference formulas for numerical differentiation.
From the definition and from Bickley’s table (Table 3.3.1)

δ ≡ E1/2 − E−1/2 = 2 sinh
(1

2
hD
)

. (3.3.41)

We may therefore put x = 1
2hD, sinhx = 1

2δ into the following expansion (see
Problem 3.1.7),

x = sinhx− 1

2

sinh3 x

3
+

1 · 3
2 · 4

sinh5 x

5
− 1 · 3 · 5

2 · 4 · 6
sinh7 x

7
± . . . ,

with the result

hD = 2arcsinh
δ

2
= δ − δ3

24
+

3δ5

640
− 5δ7

7, 168
+

35δ9

294, 912
− 63δ11

2, 883, 584
± . . . . (3.3.42)

The verification of the assumptions of Theorem 3.3.7 follows the pattern of Exam-
ple 3.3.6, and we omit the details. Since arcsinh z, z ∈ C has the same singularities
as its derivative (1 + z2)−1/2, namely z = ±i, it follows that the expansion in
(3.3.42), if sc(δ/2) is substituted for δ/2, converges if sc(δ/2) < 1, hence ρ = 2.

86This procedure was the basis of the unfinished Difference Engine project of the great 19th
century British computer pioneer Charles Babbage. He abandoned it after a while in order to spend
more time on his huge “Analytic Engine” project, which was also unfinished. He documented a lot
of ideas, where he was (say) 100 years ahead of his time. “Difference engines” based on Babbage’s
ideas were, however, constructed in Babbage’s own time, by the Swedish inventors Scheutz (father
and son) 1834 and by Wiberg 1876, and they were applied, among other things, to the automatic
calculation and printing of tables of logarithms: see Goldstine [147].
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By squaring the above relation, we obtain

(hD)2 = δ2 − δ4

12
+
δ6

90
− δ8

560
+

δ10

3, 150
− δ12

16, 632
± . . . ,

f ′′(x0) ≈
(

1 − δ2

12
+
δ4

90
− δ6

560
+

δ8

3, 150
− δ10

16, 632
± . . .

)
δ2f0
h2

. (3.3.43)

By Theorem 3.3.7 (3.3.43) holds for all polynomials. Since the first neglected non-
vanishing term of (3.3.43) when applied to f , is (asymptotically) cδ12f ′′(x0), the
formula for f ′′(x) is exact if f ′′ ∈ P12, i.e. if f ∈ P14, although only 13 values of
f(x) are used. We thus gain one degree and, in the application to other functions
than polynomials, one order of accuracy, compared to what we may have expected
by counting unknowns and equations only; see Theorem 3.3.4. This is typical for a
problem that has a symmetry with respect to the hull of the data points.

Suppose that the values f(x) are given on the grid x = x0 + nh, n integer.
Since (3.3.42) contains odd powers of δ, it cannot be used to compute f ′

n on the
same grid. as pointed out in the beginning of Sec. 3.3.2. This difficulty can be
overcome by means of another formula given in Bickley’s table, namely

µ =
√

1 + δ2/4. (3.3.44)

This is derived as follows. The formulas

µ = cosh
hD

2
,

δ

2
= sinh

hD

2

follow rather directly from the definitions; the details are left for Problem 3.3.6 (a).
The formula (coshhD)2 − (sinh hD)2 = 1 holds also for formal power series. Hence

µ2 − 1

4
δ2 = 1, or µ2 = 1 +

1

4
δ2,

from which the relation (3.3.44) follows.
If we now multiply the right-hand side of equation (3.3.42) by the expansion

1 = µ
(

1 +
1

4
δ2
)−1/2

= µ
(

1 − δ2

8
+

3δ4

128
− 5δ6

1, 024
+

35δ8

32, 768
+ . . .

)

. (3.3.45)

we obtain

hD =
(

1 − δ2

6
+
δ4

30
− δ6

140
+

δ8

630
∓ . . .

)

µδ. (3.3.46)

This leads to a useful central difference formula for the first derivative (where we
have used more terms than we displayed in the above derivation).

f ′(x0) =
(

1 − δ2

6
+
δ4

30
− δ6

140
+

δ8

630
− δ10

2772
± . . .

)f1 − f−1

2h
. (3.3.47)

If you truncate the operator expansion in (3.3.47) after the δ2k term, you obtain
exactly the derivative of the interpolation polynomial of degree 2k+1 for f(x) that
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is determined by the 2k + 2 values fi, i = ±1,±2, . . . ,±(k + 1). Note that all
the neglected terms in the expansion vanish when f(x) is any polynomial of degree
2k + 2, independent of the value of f0. (Check the statements first for k = 0; you
will recognize a familiar property of the parabola.) So, although we search for a
formula that is exact in P2k+2, we actually find a formula that is exact in P2k+3.

By the multiplication of the expansions in (3.3.43 ) and (3.3.46), we obtain
the following formulas, which have applications in other sections

(hD)3 =
(

1 − 1

4
δ2 +

7

120
δ4 + . . .

)

µδ3

(hD)5 =
(

1 − 1

3
δ2 + . . .

)

µδ5 (3.3.48)

(hD)7 = µδ7 + . . .

Another valuable feature typical for expansions in powers of δ2, is the rapid con-
vergence. It was mentioned earlier that ρ = 2, hence ρ2 = 4, (while ρ = 1 for
the backwards differentiation formula). The error constants of the differentiation
formulas obtained by (3.3.43) and (3.3.47) are thus relatively small.

All this is typical for the symmetric approximation formulas which are based
on central differences; see, for example, the above formula for f ′′(x0), or the next
example. In view of this, can we forget the forward and backward difference formulas
altogether? Well, this is not quite the case, since one must often deal with data that
are unsymmetric with respect to the point where the result is needed. For example,
given f−1, f0, f1, how would you compute f ′(x1)? Asymmetry is also typical for the
application to initial value problems for differential equations. In such applications
methods based on symmetric rules for differentiation or integration have sometimes
inferior properties of numerical stability.

We shall study the computation of f ′(x0) using the operator expansion (3.3.47).
Suppose that the function values have errors whose magnitude does not exceed 1

2U .
Then the error bound on µδf0 = 1

2 (f1 − f−1) is also equal to 1
2U . Similarly one

can show that the error bounds in µδ(2k+1)f0, for k = 1 : 3 are 1.5U , 5U , 417.5U ,
respectively. Thus one gets the upper bounds U/(2h), 3U/(4h), and 11U/(12h) for
the round-off error RXF with one, two, and three terms in (3.3.47).

The truncation error (called RT ) can be estimated by the first neglected term,
where

1

h
µδ2k+1f0 ≈ h2kf (2k+1)(x0).

It has been mentioned several times (see, e.g., Example 3.4.25in connection with the
use of Richardson extrapolation for numerical differentiation) that irregular errors
in the values of f(x) are of much greater importance in numerical differentiation
than in interpolation and integration.

Example 3.3.10.
Assume that k terms in the formula above are used to approximate f ′(x0),

where f(x) = lnx, x0 = 3, and U = 10−6. Then

f (2k+1)(3) = (2k)!/32k+1,
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and for the truncation and round-off errors we get:

k 1 2 3

RT 0.0123h2 0.00329h4 0.00235h6

RXF (1/2h)10−6 (3/4h)10−6 (11/12h)10−6

The plots of RT and RXF versus h in a log-log diagram in Figure 3.3.1 are straight
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Figure 3.3.1. Bounds for truncation error RT and roundoff error RXF in
numerical differentiation as functions of h (U = 0.5 · 10−6).

lines that well illustrate quantitatively the conflict between truncation and roundoff
errors. The truncation error increases, and the effect of the irregular error decreases
with h. One sees how the choice of h which minimizes the sum of the bounds for
the two types of error, depends on U and k, and tells us what accuracy can be
obtained. The optimal step-lengths for k = 1, 2, 3 are h = 0.0344, h = 0.1869, and
h = 0.3260, giving error bounds 2.91 · 10−5, 8.03 · 10−6, and 5.64 · 10−6. Note that
the optimal error bound with k = 3 is not much better than that for k = 2.

The effect of the pure rounding errors is important, though it should not be
exaggerated. Using IEEE double precision with u = 1.1 · 10−16, one can obtain the
first two derivatives very accurately by the optimal choice of h. The corresponding
figures are h = 2.08 · 10−5, h = 2.19 · 10−3, and h = 1.36 · 10−2, giving the optimal
errors bounds 1.07 · 10−11, 1.52 · 10−13, and 3.00 · 10−14, respectively.

It is left to the user (Problem 4.3.8) to check and modify the experiments and
conclusions indicated in this example.

When a problem has a symmetry around some point x0, you are advised to
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try to derive a δ2-expansion. The first step is to express the relevant operator in
the form Φ(δ2), where the function Φ is analytic at the origin.

To find a δ2-expansion for Φ(δ2) is algebraically the same thing as expanding
Φ(z) into powers of a complex variable z. So, the methods for the manipulation of
power series mentioned in Sec. 3.1.4 and Problem 3.1.8 are available, and so is the
Cauchy–FFT method For suitably chosen r,N you evaluate

Φ(re2πik/N ), k = 0 : N − 1,

and obtain the coefficients of the δ2-expansion by the FFT ! You can therefore derive
a long expansion, and later truncate it as needed. You also obtain error estimates
for all these truncated expansions for free. By the assumed symmetry there will
be even powers of δ only in the expansion. Some computation and storage can be
saved by working with F (

√
z) instead.

Suppose that you have found a truncated δ2-expansion, (say)

A(δ2) ≡ a1 + a2δ
2 + a3δ

4 + . . .+ ak+1δ
2k,

but you want instead an equivalent symmetric expression of the form

B(E) ≡ b1 + b2(E + E−1) + b3(E
2 + E−2) + . . .+ bk+1(E

k + E−k).

Note that δ2 = E − 2 +E−1. The transformation A(δ2) 7→ B(E) can be performed
in several ways. Since it is linear it can be expressed by a matrix multiplication of
the form b = Mk+1a, where a, b are column vectors for the coefficients, and Mk+1

is the (k + 1) × (k + 1) upper triangular submatrix in the northwest corner of a
matrix M that turns out to be

M =















1 −2 6 −20 70 −252 924 −3432
1 −4 15 −56 210 −792 3003

1 −6 28 −120 495 −2002
1 −8 45 −220 1001

1 −10 66 −364
1 −12 91

1 −14
1















. (3.3.49)

This 8 × 8 matrix is sufficient for a δ2-expansion up to the term a8δ
14. Note

that the matrix elements are binomial coefficients that can be generated recursively
(Sec. 3.1.2). It is easy to extend by the recurrence that is mentioned in the theorem
below. Also note that the matrix can be looked upon as the lower part of a thinned
Pascal triangle.

Theorem 3.3.10.
The elements of M are

Mij =

{

(−1)j−1
(
2j−2
j−1

)
, if 1 ≤ i ≤ j,

0 if i > j.
(3.3.50)
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We extend the definition by setting M0,j = M2,j. Then the columns of M are
obtained by the recurrence

Mi,j+1 = Mi+1,j − 2Mi,j +Mi−1,j . (3.3.51)

Proof. Recall that δ = (1 − E−1)E1/2. and put m− ν = µ. Hence

δ2m = (1 − E−1)2mEm =

2m∑

ν=0

(−1)ν
(

2m

ν

)

Em−ν

= (−1)m
(

2m

m

)

+
m∑

µ=1

(−1)m−µ
(

2m

m− µ

)

(Eµ + E−µ). (3.3.52)

Since
( 1 δ2 δ4 . . . ) = ( 1 (E − E−1) (E2 − E−2) . . . )M,

we have in the result of (3.3.52) an expression for column m+ 1 of M . By putting
j = m+ 1 and i = µ+ 1, we obtain (3.3.50). The proof of the recurrence is left to
the reader. (Think of Pascal’s triangle.)

The integration operator D−1 is defined by the relation

(D−1f)(x) =

∫ x

f(t) dt.

The lower limit is not fixed, so D−1f contains an arbitrary integration constant.
Note that DD−1f = f , while D−1Df = f+C, where C is the integration constant.
A difference expression like

D−1f(b) −D−1f(a) =

∫ b

a

f(t) dt

is uniquely defined. So is also δD−1f , but D−1δf has an integration constant.
A right-hand inverse can be defined also for the operators ∆, ∇, and δ. For ex-

ample, (∇−1u)n =
∑j=n

uj has an arbitrary summation constant but, for example,
∇∇−1 = 1, and ∆∇−1 = E∇∇−1 = E are uniquely defined.

One can make the inverses unique by restricting the class of sequences (or
functions). For example, if we require that

∑∞
j=0 uj is convergent, and make the

convention that (∆−1u)n → 0 as n→ ∞, then ∆−1un = −∑∞
j=n uj ; notice the mi-

nus sign. Also notice that this is consistent with the following formal computation:

(1 + E + E2 + . . .)un = (1 − E)−1un = −∆−1un.

We recommend, however, some extra care with infinite expansions into powers of
operators like E that is not covered by Theorem 3.3.7, but the finite expansion

1 + E + E2 + . . .+ En−1 = (En − 1)(E − 1)−1 (3.3.53)
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is valid.
In Chapter 5 we will use operator methods together with the Cauchy–FFT

method for finding the Newton–Cotes’ formulas for symmetric numerical integra-
tion. Operator techniques can also be extended to functions of several variables.
The basic relation is again the operator form of Taylor’s formula, which in the case
of two variables reads,

u(x0 + h, y0 + k) = exp

(

h
∂

∂x
+ k

∂

∂y

)

u(x0, y0)

= exp

(

h
∂

∂x

)

exp

(

k
∂

∂y

)

u(x0, y0). (3.3.54)

3.3.5 Single Linear Difference Equations

Historically, the term difference equation was probably first used in connection
with an equation of the form

b0∆
kyn + b1∆

k−1yn + . . . bk−1∆yn + bkyn = 0, n = 0, 1, 2, . . .

which resembles a linear homogeneous differential equation. It follows, however,
from the discussion after (3.3.1) and (3.3.3) that this equation can also be written
in the form

yn+k + a1yn+k−1 + . . .+ akyn = 0, (3.3.55)

and nowadays this is what one usually means by a single homogeneous linear differ-
ence equation of kth order with constant coefficients; a difference equation without
differences. More generally, if we let the coefficients ai depend on n; we have a linear
difference equation with variable coefficients. If we replace the zero on the right-
hand side with some known quantity rn, we have a inhomogeneous linear difference
equation.

These types of equations are the main topic of this section. The coefficients
and the unknown are real or complex numbers. We shall occasionally see examples
of more general types of difference equations, e.g., a nonlinear difference equation

F (yn+k, yn+k−1, . . . , yn) = 0,

and first order systems of difference equations, i.e.

yn+1 = Anyn + rn,

where rn and yn are vectors while An is a square matrix. Finally, partial difference
equations where you have two (or more) subscripts in the unknown, occur often
as numerical methods for partial differential equations, but they have many other
important applications too.

A difference equation can be viewed as a recurrence relation. With given values
of y0, y1, . . . , yk−1, called the initial values or the seed of the recurrence, we can
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successively compute yk, yk+1, yk+2, . . .; we see that the general solution of a kth
order difference equation contains k arbitrary constants, just like the general solution
of the kth order differential equation. There are other important similarities between
difference and differential equations, for example, the following superposition result.

Lemma 3.3.11.
The general solution of a nonhomogeneous linear difference equation (also with

variable coefficients) is the sum of one particular solution of it, and the general
solution of the corresponding homogeneous difference equation.

In practical computing, the recursive computation of the solution of a differ-
ence equations is most common. It was mentioned at the end of Sec. 3.2.3 that
many important functions, e.g., Bessel functions and orthogonal polynomials, sat-
isfy second order linear difference equations with variable coefficients, (although this
terminology was not used there). Other important applications are the multistep
methods for ordinary differential equations.

In such an application you are usually interested in the solution for one par-
ticular initial condition, but due to rounding errors in the initial values you obtain
another solution. It is therefore of interest to know the behaviour of the solutions
of the corresponding homogeneous difference equation. The questions are:

• Can we use a recurrence to find the desired solution accurately?

• How shall we use a recurrence, forward or backward?

Forward recurrence is the type we described above. In backward recurrence we
choose some large integer N , and give (almost) arbitrary values of yN+i, i = 0 : k−1
as seed, and compute yn for n = N − 1 : −1 : 0.

We have seen this already in Example 1.2.1 for an inhomogeneous first order
recurrence relation. There it was found that the forward recurrence was useless,
while backward recurrence, with a rather naturally chosen seed, gave satisfactory
results. It is often like this, though not always. In Problem 1.2.7 of it is the
other way around: the forward recurrence is useful, and the backward recurrence is
useless.

Sometimes boundary values are prescribed for a difference equation instead
of initial values, (say) p values at the beginning and q = k − p values at the end,
e.g., the values of y0, y1,. . . , yp−1, and yN−q, . . . ,N−1 , yN are given. Then the
difference equation can be treated as a linear system with N−k unknown. This also
holds for a difference equation with variable coefficients and for an inhomogeneous
difference equation. From the point of view of numerical stability, such a treatment
can be better than either recurrence. The amount of work is somewhat larger, not
very much though, for the matrix is a band matrix. For a fixed number of bands
the amount of work to solve such a linear system is proportional to the number of
unknowns. An important particular case is when k = 2, p = q = 1; the linear
system is then tridiagonal. An algorithm for tridiagonal linear systems is described
in Example 1.3.3.

Another similarity for differential and difference equations, is that the general
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solution of a linear equation with constant coefficients has a simple closed form.
Although, in most cases, the real world problems have variable coefficients (or are
nonlinear), one can often formulate a class of model problems with constant coeffi-
cients, with similar features. The analysis of such model problems can give hints,
e.g., whether forward or backward recurrence should be used, or other questions re-
lated to the design and the analysis of the numerical stability of a numerical method
for a more complicated problem.

We shall therefore now study how to solve a single homogeneous linear differ-
ence equation with constant coefficients (3.3.55), i.e.

yn+k + a1yn+k−1 + . . .+ akyn = 0.

It is satisfied by the sequence {yj}, where yj = cuj, (u 6= 0, c 6= 0), if and only if
un+k + a1u

n+k−1 + . . .+ aku
n = 0, i.e., when

φ(u) ≡ uk + a1u
k−1 + . . .+ ak = 0. (3.3.56)

Equation (3.3.56) is called the characteristic equation of (3.3.55); φ(u) is called
the characteristic polynomial.

Theorem 3.3.12.
If the characteristic equation has k different roots, u1, . . . , uk, then the general

solution of equation (3.3.55) is given by the sequences {yn}, where

yn = c1u
n
1 + c2u

n
2 + · · · + cku

n
k , (3.3.57)

where c1, c2, . . . , ck are arbitrary constants.

Proof. That {yn} satisfies equation (3.3.55) follows from the previous comments
and from the fact that the equation is linear. The parameters c1, c2, . . . , ck can
be adjusted to arbitrary initial conditions y0, y1, . . . , yk−1 by solving the system of
equations







1 1 · · · 1
u1 u2 · · · uk
...

...
...

uk−1
1 uk−1

2 · · · uk−1
k













c1
c2
...
ck







=







y0
y1
...

yk−1






.

The matrix is a Vandermonde matrix and its determinant is thus equal to the
product of all differences (ui− uj), i ≥ j, 1 < i ≤ k, which is nonzero; see the proof
of Theorem 3.3.4.

Example 3.3.11.
Consider the difference equation yn+2−5yn+1+6yn = 0 with initial conditions

y0 = 0, y1 = 1. Forward recurrence yields y2 = 5, y3 = 19, y4 = 65, . . . .
The characteristic equation u2 − 5u+ 6 = 0 has roots u1 = 3, u2 = 2. Hence,

the general solution is yn = c13
n + c22

n. The initial conditions give the system of
equations

c1 + c2 = 0, 3c1 + 2c2 = 1,
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with solution c1 = 1, c2 = −1, hence yn = 3n − 2n.
As a check we find y2 = 5, y3 = 19 in agreement with the results found by

using forward recurrence.

Example 3.3.12.
Consider the difference equation

Tn+1(x) − 2xTn(x) + Tn−1(x) = 0, n ≥ 1, −1 < x < 1,

with initial conditions T0(x) = 1, T1(x) = x. We obtain T2(x) = 2x2 − 1, T3(x) =
4x3−3x, T4(x) = 8x4−8x2+1, . . . . By induction, Tn(x) is an nth degree polynomial
in x.

We can obtain a simple formula for Tn(x) by solving the difference equation.
The characteristic equation is u2 − 2xu + 1 = 0, with roots u = x ± i

√
1 − x2. Set

x = cosφ, 0 < x < π. Then u = cosφ ± i sinφ, and thus u1 = eiφ, u2 = e−iφ,
u1 6= u2. The general solution is Tn(x) = c1e

inφ+c2e
−inφ, and the initial conditions

give
c1 + c2 = 1, c1e

iφ + c2e
−iφ = cosφ,

with solution c1 = c2 = 1/2. Hence, Tn(x) = cos(nφ), x = cosφ. These polynomials
are thus identical with the important Chebyshev polynomials that were introduced
in (3.2.20), and were there in fact denoted by Tn(x).

We excluded the cases x = 1 and x = −1, i.e. φ = 0 and φ = π, respectively.
For the particular initial values of this example, there are no difficulties; the solution
Tn(x) = cosnφ depends continuously on φ, and as φ→ 0 or φ→ π, Tn(x) = cosnφ
converges to 1 ∀n or (−1)n ∀n, respectively.

When we ask for the general solution of the difference equation the matters
are a little more complicated, because the characteristic equation has in these cases
a double root; u = 1 for x = 1, u = −1 for x = −1. Although they are thus covered
by the next theorem, we shall look at them directly, because they are easy to solve,
and they give a good preparation for the general case.

If x = 1, the difference equation reads Tn+1 − 2Tn + Tn−1 = 0, i.e. ∆2Tn = 0.
We know from before (see, e.g., Theorem 3.3.4) that this is satisfied if and only if
Tn = an + b. The solution is no longer built up by exponentials; a linear term is
there too.

If x = −1, the difference equation reads Tn+1 + 2Tn + Tn−1 = 0. Set Tn =
(−1)nVn. The difference equation becomes, after division by (−1)n+1, Vn+1−2Vn+
Vn−1 = 0, with the general solution, Vn = an+ b, hence Tn = (−1)n(an+ b).

Theorem 3.3.13.
When ui is an mi-fold root of the characteristic equation, then the difference

equation (12.3.3) is satisfied by the sequence {yn}, where

yn = Pi(n)uni ,

and Pi is an arbitrary polynomial in Pmi
. The general solution of the difference
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equation is a linear combination of solutions of this form using all the distinct roots
of the characteristic equation.

Proof. We can write the polynomial P ∈ Pmi
in the form

Pi(n) = b1 + b2n+ b3n(n− 1) + · · · + bmi
n(n− 1) · · · (n−mi + 2).

Thus it is sufficient to show that equation (3.3.55) is satisfied when

yn = n(n− 1) · · · (n− p+ 1)uni = (up∂p(un)/∂up)u=ui
, p = 1 : mi − 1. (3.3.58)

Substitute this in the left-hand side of equation (3.3.55):

up
∂p

∂up

(

un+k + a1u
n+k−1 + · · · + aku

n
)

= up
∂p

∂up
(
φ(u)un

)

= up
(

φ(p)(u)un +

(
p

1

)

φ(p−1)(u)nun−1 + · · · +
(
p

p

)

φ(u)
∂p

∂up
(un)

)

.

The last manipulation was made using Leibniz’s rule.
Now φ and all the derivatives of φ which occur in the above expression are 0

for u = ui, since ui is an mi-fold root. Thus the sequences {yn} in equation (3.3.58)
satisfy the difference equation. We obtain a solution with

∑
mi = k parameters

by the linear combination of such solutions derived from the different roots of the
characteristic equation.

It can be shown (see Henrici [174, p. 214]) that these solutions are linearly
independent. (This also follows from a different proof, where a difference equa-
tion of higher order is transformed to a system of first order difference equations.
This transformation also leads to other ways of handling inhomogeneous difference
equations than those which are presented in this section.)

Note that the double root cases discussed in the previous example are com-
pletely in accordance with this theorem. We take one more example.

Example 3.3.13.
Consider the difference equation yn+3 − 3yn+2 + 4yn = 0. The characteristic

equation is u3 − 3u2 + 4 = 0 with roots u1 = −1, u2 = u3 = 2. Hence, the general
solution reads

yn = c1(−1)n + (c2 + c3n)2n.

For a nonhomogeneous linear difference equation of order k, one can often
find a particular solution by the use of an “Ansatz”87 with undetermined coefficients;
thereafter, by Lemma 3.3.11 one can get the general solution by adding the general
solution of the homogeneous difference equation.

87An Ansatz (German term) is an assumed form for a mathematical statement that is not based
on any underlying theory or principle.
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Example 3.3.14.
Consider the difference equation yn+1−2yn = an, with initial condition y0 = 1.

Try the “Ansatz” yn = can. One gets

can+1 − 2can = an, c = 1/(a− 2), a 6= 2.

Thus the general solution is yn = an/(a − 2) + c12
n. By the initial condition,

c1 = 1 − 1/(a− 2), hence

yn =
an − 2n

a− 2
+ 2n. (3.3.59)

When a → 2, l’Hospital’s rule gives yn = 2n + n2n−1. Notice how the “Ansatz”
must be modified when a is a root of the characteristic equation.

The general rule when the right-hand side is of the form P (n)an (or a sum
of such terms), where P is a polynomial, is that the contribution of this term to
yn is Q(n)an, where Q is a polynomial. If a does not satisfy the characteristic
equation then degQ = degP ; if a is a single or a double root of the characteristic
equation, then degQ = degP +1 or degQ = degP +2, respectively, and so on. The
coefficients of Q are determined by the insertion of yn = Q(n)an on the left-hand
side of the equation and matching the coefficients with the right-hand side.

Another way to find a particular solution is based on the calculus of operators.
Let an inhomogeneous difference equation be given in the form ψ(Q)yn = bn, where
Q is one of the operators ∆, δ and ∇, or an operator easily derived from these,
for example, 1

6δ
2 (see Problem 3.3.26 (d)). In Sec. 3.1.5 ψ(Q)−1 was defined by

the formal power series with the same coefficients as the Maclaurin series for the
function 1/ψ(z), z ∈ C, ψ(0) 6= 0. In simple cases, e.g., if ψ(Q) = a0 + a1Q, these
coefficients are usually easily found. Then ψ(Q)−1bn is a particular solution of the
difference equation ψ(Q)yn = bn; the truncated expansions approximate this. Note
that if Q = δ or ∇, the infinite expansion demands that bn is defined also if n < 0.

Note that a similar technique, with the operator D, can also be applied to lin-
ear differential equations. Today this technique has to a large extent been replaced
by the Laplace transform,88 that yields essentially the same algebraic calculations
as operator calculus.

In some branches of applied mathematics it is popular to treat nonhomoge-
neous difference equations by means of a generating function, also called the
z-transform, since both the definition and the practical computations are anal-
ogous to the Laplace transform. The z-transform of the sequence y = {yn}∞0 is

Y (z) =
∞∑

n=0

ynz
−n. (3.3.60)

Note that the sequence {Ey} = {yn+1} has the z-transform zY (z) − y0, {E2y} =
{yn+2} has the z-transform z2Y (z) − y0z − y1, etc.

88The Laplace transform is traditionally used for similar problems for linear differential equa-
tions, For example, in electrical engineering.
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If Y (z) is available in analytic form, it can often be brought to a sum of func-
tions, whose inverse z-transforms are known, by means of various analytic tech-
niques, notably expansion into partial fractions if Y (z) is a rational function. On
the other hand, if numerical values of Y (z) have been computed for complex values
of z on some circle in C by means of an algorithm, then yn can be determined
by an obvious modification of the Cauchy–FFT method described in Sec. 3.2.2 (for
expansions into negative powers of z). More information about the z-transform can
be found in Strang [303, Sec. 6.3].

We are now in a position to exemplify in more detail the use of linear difference
equations to studies of numerical stability, of the type mentioned above.

Theorem 3.3.14 (Root Condition).

Necessary and sufficient for boundedness (stability) of all solutions of the dif-
ference equation (3.3.55) for all positive n is the following root condition: (We
shall say either that a difference equation or that a characteristic polynomial satisfies
the root condition; the meaning is the same.)

i. All roots of characteristic equation (3.3.56) are located inside or on the unit
circle |z| ≤ 1;

ii. The roots on the unit circle are simple.

Proof. Follows directly from Theorem 3.3.13.

This root condition corresponds to cases, where it is the absolute error that
matters. It is basic in the theory of linear multistep methods for ordinary differential
equations. Computer Graphics and an algebraic criterion due to Schur are useful
for investigations of the root condition in particular if the recurrence relation under
investigation contains parameters.

There are important applications of single linear difference equations to the
study of the stability of numerical methods. When a recurrence is used one is
usually interested in the solution for one particular initial condition, but a rounding
error in an initial value produces a different solution, and it is therefore of interest to
know the behaviour of other solutions of the corresponding homogeneous difference
equation. We have seen this already in Example 1.2.1 for an inhomogeneous first
order recurrence relation, but it is even more important for recurrence relations of
higher order.

The following example is based on a study by Todd89 in 1950 (see [313]).

Example 3.3.15.
Consider the initial-value problem

y′′(x) = −y, y(0) = 0, y′(0) = 1, (3.3.61)

89John Todd born 1911, an Irish–American numerical analyst, was one of the first to study the
numerical stability of algorithms for the approximate solution of ordinary differential equations.
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with the exact solution y(x) = sinx. To compute an approximate solution yk =
y(xk) at equidistant points xk = kh, where h is a step-length, we approximate the
second derivative according to (3.3.43),

h2y′′k = δ2yk +
δ4yk
12

+
δ6yk
90

+ . . . . (3.3.62)

We first use the first term only; the second term shows that the truncation error of
this approximation of y′′k is asymptotically h2y(4)/12. We then obtain the difference
equation h−2δ2yk = −yk or, in other words,

yk+2 = (2 − h2)yk+1 − yk, y0 = 0, (3.3.63)

where a suitable value of y1 is to be assigned. In the third column of Table 3.3.2 we
show the results obtained using this recursion formula with h = 0.1 and y1 = sin 0.1.
All computations in this example were carried out using IEEE double precision
arithmetic. We obtain about 3 digits accuracy at the end of the interval x = 1.2.

Table 3.3.2. Integrating y′′ = −y, y(0) = 0, y′(0) = 1; the letters U and
S in the headlines of the last two columns refer to “Unstable” and “Stable’.

xk sinxk 2nd order 4th order U 4th order S

0.1 0.0998334166 0.0998334 0.0998334166 0.0998334166

0.2 0.1986693308 0.1986685 0.1986693307 0.1986693303

0.3 0.2955202067 0.2955169 0.2955202067 0.2955202050

0.4 0.3894183423 0.3894101 0.3894183688 0.3894183382

0.5 0.4794255386 0.4794093 0.4794126947 0.4794255305

0.6 0.5646424734 0.5646143 0.5643841035 0.5646424593

0.7 0.6442176872 0.6441732 0.6403394433 0.6442176650

0.8 0.7173560909 0.7172903 0.6627719932 0.7173560580

0.9 0.7833269096 0.7832346 0.0254286676 0.7833268635

1.0 0.8414709848 0.8413465 −9.654611899 0.8414709226

1.1 0.8912073601 0.8910450 −144.4011267 0.8912072789

1.2 0.9320390860 0.9318329 −2010.123761 0.9320389830

Since the algorithm was based on a second order accurate approximation of
y′′ one may expect that the solution of the differential equation is also second order
accurate. This turns out to be correct in this case; for example, if we divide the
step size by 2, the errors will approximately be divided by 4. We shall, however;
see that we cannot always draw conclusions of this kind; we also have to take the
numerical stability into account.

In the hope to obtain a more accurate solution, we shall now use one more
term in the expansion (3.3.62); the third term then shows that the truncation error
of this approximation is asymptotically h4y(6)/90. The difference equation now
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reads

δ2yk −
1

12
δ4yk = −h2yk (3.3.64)

or,

yk+2 = 16yk+1 − (30 − 12h2)yk + 16yk−1 − yk−2, k ≥ 2, y0 = 0, (3.3.65)

where starting values for y1, y2, and y3 need to be assigned. We choose the correct
values of the solution rounded to double precision. The results from this recursion
are shown in the fourth column of Table 3.3.2. We see that disaster has struck—the
recursion is severely unstable! Already for x = 0.6 the results are less accurate than
the second order scheme. For x ≥ 0.9 the errors completely dominate the unstable
method.

We shall now look at these difference equations from the point of view of the
root condition. The characteristic equation for (3.3.63) reads u2−(2−h2)u+1 = 0,
and since |2 − h2| < 2, direct computation shows that it has simple roots of unit
modulus. The root condition is satisfied. By Example 3.3.12, the solution of (3.3.63)
is yn = Tn(1 − h2/2). For the second order method the absolute error at x = 1.2
is approximately 2.1 · 10−4, whereas for the stable fourth order method the error is
1.0 · 10−7.

For (3.3.65) the characteristic equation reads u4−16u3+(30−12h2)u2−16u+
1 = 0. We see immediately that the root condition cannot be satisfied. Since the
sum of the roots equals 16, it is impossible that all roots are inside or on the unit
circle. In fact, the largest root equals 13.94. So, a tiny error at x = 0.1 has been
multiplied by 13.9414 ≈ 1016 at the end.

A stable fourth order accurate method can easily be constructed. Using the
differential equation we replace the term δ4yk in (3.3.64) by h2δ2y′′k = −h2δ2yk.
This leads to the recursion formula90

yk+1 =

(

2 − h2

1 + h2/12

)

yk − yk−1, y0 = 0. (3.3.66)

This difference equation satisfies the root condition if h2 < 6 (see Problem 3.3.25 (a)).
It requires y0, y1 ≈ y(h) as seed. The results using this recursion formula with
h = 0.1 and y1 = sin 0.1, are shown in the fifth column of Table 3.3.2. The error
at the end is about 2·10−7, which is much better than 3.7·10−4, obtained with the
2nd-order method.

Remark 3.3.2. If the solution of the original problem is itself strongly decreasing
or strongly increasing, one should consider the location of the characteristic roots
with respect to a circle in the complex plane that corresponds to the interesting
solution. For example, if the interesting root is 0.8 then a root equal to −0.9 causes
oscillations that may eventually become disturbing, if one is interested in relative
accuracy also in a long run, even if the oscillating solution is small in the beginning.

90This is a special case of Numerov’s method (cf. Problem 3.4.27). It can be traced back at
least to B. Numerov 1924.
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Many problems contain homogeneous or nonhomogeneous linear difference
equations with variable coefficients, for which the solutions are not known in a
simple closed form.

We now confine the discussion to the cases where the original problems are
to compute a particular solution of a second order difference equation with variable
coefficients; several interesting problems of this type were mentioned above, and
we formulated the questions: can we use a recurrence to find the desired solution
accurately, and how shall we use a recurrence, forwards or backwards. Typically the
original problem contains some parameter, and one usually wants to make a study
for an interval of parameter values.

Such questions are sometimes studied with frozen coefficients, i.e. the model
problems are in the class of difference equations with constant coefficients in the
range of the actual coefficients of the original problem; if one of the types of re-
currence is satisfactory (i.e. numerically stable in some sense) for all model prob-
lems, one would like to conclude that they are satisfactory also for the original
problem, but the conclusion is not always valid without further restrictions on the
coefficients—see a counterexample in Problem 3.3.25 (c).

The technique with frozen coefficients provides just a hint that should always
be checked by numerical experiments on the original problem. It is beyond the scope
of this text to discuss what restrictions are needed. If the coefficients of the original
problem are slowly varying, however, there is a good chance that the numerical tests
will confirm the hint—but again: how slowly is “slowly”? A warning against the use
of one of the types of recurrence may also be a valuable result of a study, although
it is negative.

The following lemma exemplifies a type of tool that may be useful in such
cases. The proof is left for Problem 3.3.24 (a). Another useful tool is presented in
Problem 3.3.26 (a) and applied in Problem 3.3.26 (b).

Lemma 3.3.15.
Suppose that the wanted sequence y∗n satisfies a difference equation (with con-

stant coefficients),

αyn+1 + βyn − γyn−1 = 0, (α > γ > 0, β > 0),

and that y∗n is known to be positive for all sufficiently large n. Then the characteristic
roots can be written 0 < u1 < 1, u2 < 0 and |u2| > u1. Then y∗n is unique apart
from a positive factor c; y∗n = cun1 , c > 0.

A solution ȳn, called the trial solution that is approximately of this form can
be computed for n = N : −1 : 0 by backward recurrence starting with the “seed”
yN+1 = 0, yN = 1. If an accurate value of y∗0 is given, the desired solution is

y∗n = ȳny
∗
0/ȳ0,

with a relative error approximately proportional to (u2/u1)
n−N . (neglecting a pos-

sible error in y∗0). (If y∗n is defined by some other condition, one can proceed anal-
ogously.)
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The forward recurrence is not recommended for finding y∗n in this case, since
the positive term c1u

n
1 will eventually be drowned by the oscillating term c2u

n
2 that

will be introduced by the rounding errors. The proof is left for Problem 3.3.26 (c).
Even if y0 (in the use of the forward recurrence) has no rounding errors. Such errors
committed at later stages will yield similar contributions to the numerical results.

Example 3.3.16.
The ”original problem” is to compute the parabolic cylinder function U(a, x)

which satisfies the difference equation

(a+ 1
2 )U(a+ 1, x) + xU(a, x) − U(a− 1, x) = 0,

see Handbook [1, Ch. 19]; in particular Example 19.28.1.
To be more precise, we consider the case x = 5. Given U(3, 5) = 5.2847 · 10−6

(obtained from a table in [1, p. 710]), we want to determine U(a, 5) for integer values
of a, a > 3, as long as |U(a, 5)| > 10−15. We guess (a priori) that the discussion
can be restricted to the interval (say) a = [3, 15]. The above lemma then gives the
hint of a backward recurrence, for a = a′ − 1 : −1 : 3 for some appropriate a′ (see
below), in order to obtain a trial solution Ūa with the seed Ūa′ = 1, Ūa′+1 = 0.
Then the wanted solution becomes, by the Lemma, (with changed notation),

U(a, 5) = ŪaU(3, 5)/Ū3.

The positive characteristic root of the frozen difference equation varies from 0.174
to 0.14 for a = 5 : 15; while the modulus of the negative root is between 6.4 and
3.3 times as large. This motivates a choice of a′ ≈ 4 + (−9− log 5.3)/ ln 0.174 ≈ 17
for the backward recursion; it seems advisable to choose a′ (say) 4 units larger than
the value where U becomes negligible.

Forward recurrence with correctly rounded starting values U(3, 5) = 5.2847 ·
10−6, U(4, 5) = 9.172 · 10−7, gives oscillating (absolute) errors of relatively slowly
decreasing amplitude, approximately 10−11, that gradually drowns the exponen-
tially decreasing true solution; the estimate of U(a, 5) itself became negative for
a = 10, and then the results oscillated with approximate amplitude 10−11, while
the correct results decrease from the order of 10−11 to 10−15 as a = 10 : 15. The
details are left for Problem 3.3.25 (b).

It is conceivable that this procedure can be used for all x in some interval
around 5, but we refrain from presenting the properties of the parabolic cylinder
function needed for determining the interval.

If the problem is nonlinear, one can instead solve the original problem with
two seeds, (say) y′N , y

′′
N , and study how the results deviate. The seeds should be so

close that a linearization like f(y′n)−f(y′′n) ≈ rn(y′n−y′′n) is acceptable, but y′n−y′′n
should be well above the rounding error level. A more recent and general treatment
of these matters is found in [86, Chapter 6].
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Review Questions

3.1. Give expressions for the shift operator Ek in terms of ∆,∇, and hD, and
expressions for the central difference operator δ2 in terms of E and hD.

3.2. Derive the best upper bound for the error of ∆ny0, if we only know that the
absolute value of the error of yi, i = 0, . . . , n does not exceed ǫ.

3.3. There is a theorem (and a corollary) about existence and uniqueness of approx-
imation formulas of a certain type that are exact for polynomials of certain
class. Formulate these results, and sketch the proofs.

3.4. What bound can be given for the kth difference of a function in terms of a
bound for the kth derivative of the same function?

3.5. Formulate the basic theorem concerning the use of operator expansions for
deriving approximation formulas for linear operators.

3.6. Discuss how various sources of error influence the choice of step length in
numerical differentiation.

3.7. Formulate Peano’s Remainder Theorem, and compute the Peano kernel for a
given symmetric functional (with at most four subintervals).

3.8. Express polynomial interpolation formulas in terms of forward and backward
difference operators.

3.9. Give Stirling’s interpolation formula for quadratic interpolation with approx-
imate bounds for truncation error and irregular error.

3.10. Derive central difference formulas for f ′(x0) and f ′′(x0) that are exact for
f ∈ P4. They should only use function values at xj , j = 0,±1,±2, . . . , as
many as needed. Give asymptotic error estimates.

3.11. Derive the formula for the general solution of the difference equation yn+k +
a1yn+k−1 + . . .+ akyn = 0, when the characteristic equation has simple roots
only. What is the general solution, when the characteristic equation has mul-
tiple roots?

3.12. What is the general solution of the difference equation ∆kyn = an+ b?

Problems and Computer Exercises

3.1. Prove the formula (3.3.12) for the determinant of the Vandermonde matrix
V = V (x1, . . . , xk). Definition and properties of a determinant, are given in
Appendix A.1.5.

Hint: Considered as a function of x1, detV is a polynomial of degree k − 1.
Since the determinant is zero if two columns are identical, this polynomial has
the roots x1 = xj , j = 2 : k. Hence

detV = c(x2, . . . , xk)(x1 − x2) · · · (x1 − xk),



“dqbjV
2007/5/28
page 262

262 Chapter 3. Series, Operators and Continued Fractions

where c does not depend on x1. Similarly, viewed as a polynomial of x2 the
determinant must contain the factor (x2 − x1)(x2 − x3) · · · (x2 − xk), etc.

3.2. (a) Show that (1 + ∆)(1 −∇) = 1, ∆ −∇ = ∆∇ = δ2 = E − 2 + E−1, and
that δ2yn = yn+1 − 2yn + yn−1.

(b) Let ∆pyn,∇pym, δ
pyk all denote the same quantity. How are n,m, k con-

nected? Along which lines in the difference scheme are the subscripts constant?

(c) Given the values of yn, ∇yn, . . . , ∇kyn, for a particular value of n. Find
a recurrence relation for computing yn, yn−1, . . . , yn−k, by simple additions
only. On the way you obtain the full difference scheme of this sequence.

(d) Repeated summation by parts. Show that if u1 = uN = v1 = vN = 0, then

N−1∑

n=1

un∆
2vn−1 = −

N−1∑

n=1

∆un∆vn =
N−1∑

n=1

vn∆2un−1.

(e) Show that if ∆kvn → 0, as n→ ∞, then
∑∞
n=m ∆kvn = −∆k−1vm.

(f) Show that (µδ3 + 2µδ)f0 = f2 − f−2

(g) Show the validity of the algorithm in (3.3.40). Babbage’s favorite example
was f(x) = x2 + x + 41. Given f(x) for x = 0, 1, 2 compute the backward
differences for x = 2 and use the algorithm to obtain f(3). Then compute
f(x) for (say) x = 4 : 10, by repeated use of the algorithm. (This is simple
enough for paper and pencil, since the algorithm contains only additions.)

3.3. (a) Prove by induction, the following two formulas:

∆j
x

(
x

k

)

=

(
x

k − j

)

, j ≤ k,

where ∆x means differencing with respect to x, with h = 1.

∆jx−1 =
(−h)jj!

x(x+ h) · · · (x+ jh)
.

Find the analogous expression for ∇jx−1.

(b) What formulas with derivatives instead of differences are these formulas
analogous to?

(c) Show the following formulas, if x, a are integers:

x−1∑

n=a

(
n

k − 1

)

=

(
x

k

)

−
(
a

k

)

,

∞∑

n=x

1

n(n+ 1) · · · (n+ j)
=

1

j
· 1

x(x+ 1) · · · (x+ j − 1)
.

Modify these results for non-integer x; x− a is still an integer.
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(d) Suppose that b 6= 0,−1,−2, . . ., and set

c0(a, b) = 1, cn(a, b) =
a(a+ 1) . . . (a+ n− 1)

b(b+ 1) . . . (b + n− 1)
, n = 1, 2, 3, . . .

Show by induction that

(−∆)kcn(a, b) = ck(b− a, b)cn(a, b+ k),

hence (−∆)nc0(a, b) = cn(b − a, b).

(e) Compute for a = e, b = π (say), cn(a, b), n = 1 : 100. How do you avoid
overflow? Compute ∆nc0(a, b), both numerically by the difference scheme,
and according to the formula in (d). Compare the results and formulate your
experiences. Do the same with a = e, b = π2.
Do the same with ∆jx−1 for various values of x, j and h.

3.4. Set

Yord = (yn−k, yn−k+1, . . . , yn−1, yn),

Ydif = (∇kyn, ∇k−1yn, . . . ,∇yn, yn).

Note that the results of this problem also hold if the yj are column vectors.

(a) Find a matrix P , such that Ydif = YordP . Show that

Yord = YdifP hence P−1 = P.

How do you generate this matrix by means of a simple recurrence relation?

Hint: P is related to the Pascal matrix, but do not forget the minus signs in
this triangular matrix. Compare Problem 1.2.4.

(b) Suppose that
∑k

j=0 αjE
−j and

∑k
j=0 aj∇j represent the same operator.

Set α = (αk, αk−1, . . . , α0)
T , and a = (ak, ak−1, . . . , a0)

T , i.e. Yord · α ≡
Ydif · a. Show that Pa = α, Pα = a.

(c) The matrix P depends on the integer k. Is it true that the matrix which
is obtained for a certain k is a submatrix of the matrix you obtain for a larger
value of k?

(d) Compare this method of performing the mapping Yord 7→ Ydif with the or-
dinary construction of a difference scheme. Consider the number of arithmetic
operations, the kind of arithmetic operations, rounding errors, convenience of
programming in a language with matrix operations as primary operations,
etc. Compare in the same way this method of performing the inverse mapping
with the algorithm in Problem 3.3.2 (c).

3.5. (a) Set f(x) = tanx. Compute by the use of the table of tanx (in Ex-
ample 3.3.2), and the interpolation and differentiation formulas given in the
above examples (almost) as accurately as possible the quantities

f ′(1.35), f(1.322), f ′(1.325), f ′′(1.32).



“dqbjV
2007/5/28
page 264

264 Chapter 3. Series, Operators and Continued Fractions

Estimate the influence of rounding errors of the function values and estimate
the truncation errors.

(b) Write a program for computing a difference scheme. Use it for computing
the difference scheme for more accurate values of tanx, x = 1.30 : 0.01 : 1.35,
and calculate improved values of the functionals in (a). Compare the error
estimates with the true errors.

(c) Verify the assumptions of Theorem 3.3.7 for one of the three interpolation
formulas in Sec. 3.3.4.

(d) It is rather easy to find the values at θ = 0 of the first two derivatives
of Stirling’s interpolation formula. You find thus explicit expressions for the
coefficients in the formulas for f ′(x0) and f ′′(x0) in (3.3.47) and (3.3.43),
respectively. Check numerically a few coefficients in these equations, and
explain why they are reciprocals of integers. Also note that each coefficient in
(3.3.47) has a simple relation to the corresponding coefficient in (3.3.43).

3.6. (a) Study Bickley’s table (Table 3.3.1), and derive some of the formulas, in
particular the expressions for δ and µ in terms of hD, and vice versa.

(b) Show that h−kδk −Dk has an expansion into even powers of h, when k is
even. Find an analogous result for h−kµδk −Dk when k is odd.

3.7. (a) Compute
f ′(10)/12, f (3)(10)/720, f5(10)/30240,

by means of (3.3.24), given values of f(x) for integer values of x. (This is
asked for in applications of Euler–Maclaurin’s formula, Sec. 3.4.5.) Do this for
f(x) = x−3/2. Compare with the correct derivatives. Then do the same also
for f(x) = (x3 + 1)−1/2.

(b) Study the backwards differentiation formula, see Example 3.3.6, on a com-
puter. Compute f ′(1) for f(x) = 1/x, for h = 0.02 and h = 0.03, and compare
with the exact result. Make a semi-logarithmic plot of the total error after n
terms, n = 1 : 29. Study also the sign of the error. For each case, try to find
out whether the achievable accuracy is set by the rounding errors or by the
semi-convergence of the series.

Hint: A formula mentioned in Problem 3.3.3 (a) can be helpful. Also note
that this problem is both similar and very different from the function tanx
that was studied in Example 3.3.6.

(c) Set xi = x0 + ih, t = (x− x2)/h. Show that

y(x) = y2 + t∆y2 +
t(t− 1)

2
∆2y2 +

t(t− 1)(t− 2)

6
∆3y1

equals the interpolation polynomial in P4 determined by the values (xi, yi),
i = 1 : 4. (Note that ∆3y1 is used instead of ∆3y2 which is located outside
the scheme. Is this fine?)

3.8. A well known formula reads

P (D)(eαtu(t)) = eαtP (D + α)u(t),
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where P is an arbitrary polynomial. Prove this, as well as the following
analogous formulas:

P (E)(anun) = anP (aE)un,

P (∆/h)
(
(1 + αh)nun

)
= (1 + αh)nP ((1 + αh)∆/h+ α)un.

Can you find a more beautiful or more practical variant?

3.9. Find the Peano kernel K(u) for the functional ∆2f(x0). Compute
∫

R
K(u) du

both by direct integration of K(u), and by computing ∆2f(x0) for a suitably
chosen function f .

3.10. Set yj = y(tj), y
′
j = y′(tj). The following relations, due to John Adams,91

are of great interest in the numerical integration of the differential equations
y′ = f(y):

(a) Adams–Moulton’s implicit formula:

yn+1 − yn = h
(
a0y

′
n+1 + a1∇y′n+1 + a2∇2y′n+1 + · · ·

)
.

Show that ∇ = − ln(1 − ∇)
∑
ai∇i, and find a recurrence relation for the

coefficients. The coefficients ai, i = 0 : 6, read as follows (check a few of
them):

ai = 1, −1

2
, − 1

12
, − 1

24
, − 19

720
, − 3

160
, − 863

60480
.

Alternatively, derive the coefficients by means of the matrix representation, of
a truncated power series.

(b) Adams–Bashforth’s explicit formula:

yn+1 − yn = h
(
b0y

′
n + b1∇y′n + b2∇2y′n + · · ·

)
.

Show that
∑
bi∇iE−1 =

∑
ai∇i, and that bn − bn−1 = an, (n ≥ 1). The

coefficients bi, i = 0 : 6, read as follows (check a few of them):

bi = 1,
1

2
,

5

12
,

3

8
,

251

720
,

95

288
,

19087

60480
.

(c) Apply the second order explicit Adams’ formula

yn+1 − yn = h
(
y′n + 1

2∇y′n
)
,

to the differential equation y′ = −y2, with initial condition y(0) = 1 and step
size h = 0.1. Two initial values are needed for the recurrence; y0 = y(0) = 1,
of course, and we choose92 y1 = 0.9090. Then compute y′0 = −y2

0, y
′
1 = −y2

1 .
The explicit Adams formula then yields yk, k ≥ 2. Compute a few steps, and
compare with the exact solution.93

91John Couch Adams (1819–1892) was an English mathematician. While still an undergrad-
uate he calculated the irregularities of the motion of the planet Uranus, showing the existence
of Neptune. He held the position as Professor of Astronomy and Geometry at Cambridge for 32
years.

92There are several ways of obtaining y1 ≈ y(h), for example, by one step of Runge’s 2nd order
method, see Sec. 1.4.3, or by a series expansion, like in Sec. 1.2.4.

93For an implicit Adams’ formula it is necessary, in this example, to solve a quadratic equation
in each step.
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3.11. Let yj = y0 + jh. Find the asymptotic behavior as h→ 0 of

(5(y1 − y0) + (y2 − y1))/(2h) − y′0 − 2y′1.

Comment: This is of interest in the analysis of cubic spline interpolation in
Sec. 4.4.2.

3.12. It sometimes happens that the values of some function f(x) can be computed
by some very time-consuming algorithm only, and that one therefore com-
putes it much sparser than is needed for the application of the results. It was
common in the pre-computer age to compute sparse tables that needed inter-
polation by polynomials of a high degree; then one needed a simple procedure
for subtabulation, i.e. to obtain a denser table for some section of the table.
Today a similar situation may occur in connection with the graphical output
of the results of (say) a numerical solution of a differential equation.
Define the operators ∇ and ∇k by the equations

∇f(x) = f(x) − f(x− h), ∇kf(x) = f(x) − f(x− kh), (k < 1),

and set

∇r
k =

∞∑

s=r

crs(k)∇s.

(a) In order to compute the coefficients crs, r ≤ s ≤ m, you are advised to
use a subroutine for finding the coefficients in the product of two polynomials,
truncate the result, and apply the subroutine m− 1 times.

(b) Given

fn ∇fn ∇2fn ∇3fn ∇4fn

1 0.181269 0.032858 0.005956 0.001080

Compute for k = 1
2 , fn = f(xn), ∇j

kfn for j = 1 : 4. Compute f(xn − h) and

f(xn − 2h), by means of both {∇jfn} and {∇j
kfn} and compare the results.

How big difference of the results did you expect, and how big difference do
you obtain?

3.13. (a) Check Example 3.3.10 and the conclusions about the optimal step length
in the text. Investigate how the attainable accuracy varies with u.

for these three values of k, if u = 1.1 ·10−16? (b) Study the analogous question
for f ′′(x0) using the formula

f ′′(x0) ≈
(

1 − δ2

12
+
δ4

90
− δ6

560
+

δ8

3, 150
− . . .

)
δ2f0
h2

.

3.14. Solve the following difference equations. A solution in complex form should
be transformed to real form. As a check, compute (say) y2 both by recurrence
and by your closed form expression.

(a) yn+2 − 2yn+1 − 3yn = 0, y0 = 0, y1 = 1;

(b) yn+2 − 4yn+1 + 5yn = 0, y0 = 0, y1 = 2;
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(c) There exist problems with two-point boundary conditions for difference
equations, as for differential equations:
yn+2 − 2yn+1 − 3yn = 0, y0 = 0, y10 = 1;

(d) yn+2 + 2yn+1 + yn = 0, y0 = 1, y1 = 0;

(e) yn+1 − yn = 2n, y0 = 0;

(f) yn+2 − 2yn+1 − 3yn = 1 + cos πn3 , y0 = y1 = 0;

Hint: The right-hand side is ℜ(1 + an), where a = eπi/3.

(g) yn+1 − yn = n, y0 = 0;

(h) yn+1 − 2yn = n2n, y0 = 0;

3.15. (a) Prove Lemma 3.3.11.

(b) Consider the difference equation yn+2 − 5yn+1 + 6yn = 2n + 3(−1)n.
Determine a particular solution of the form yn = an+ b+ c(−1)n.

(c) Solve also the difference equation yn+2 − 6yn+1 + 5yn = 2n+ 3(−1)n.
Why and how must you change the form of the particular solution?

3.16. (a) Show that the difference equation
∑k

i=0 bi∆
iyn = 0 has the characteristic

equation:
∑k
i=0 bi(u− 1)i = 0.

(b) Solve the difference equation ∆2yn−3∆yn+2yn = 0, with initial condition
∆y0 = 1.

(c) Find the characteristic equation for the equation
∑k

i=0 bi∇iyn = 0?

3.17. The influence of wrong boundary slopes for cubic spline interpolation (with
equidistant data)—see Sec. 4.4.2—is governed by the difference equation

en+1 + 4en + en−1 = 0, 0 < n < m,

e0, em given. Show that en ≈ une0 + um−nem, u =
√

3 − 2 ≈ −0.27. More
precisely

∣
∣en − (une0 + um−nem)

∣
∣ ≤ 2|u3m/2|

1 − |u|m max(|e0|, |em|).

Generalize the simpler of these results to other difference and differential equa-
tions.

3.18. The Fibonacci sequence is defined by the recurrence relation

yn = yn−1 + yn−2, y0 = 0, y1 = 1.

(a) Calculate limn→∞ yn+1/yn.

(b) The error of the secant method (see Sec. 6.2.2) satisfies approximately the
difference equation ǫn = Cǫn−1ǫn−2. Solve this difference equation. Determine
p, such that ǫn+1/ǫ

p
n tends to a finite nonzero limit as n→ ∞. Calculate this

limit.

3.19. For several algorithms using the “divide and conquer strategy”, such as the
Fast Fourier Transform and some sorting methods, one can find that the work
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W (n) for the application of them to data of size n satisfies a recurrence relation
of the form:

W (n) = 2W (n/2) + kn,

where k is a constant. Find W (n).

3.20. When the recursion

xn+2 = (32xn+1 − 20xn)/3, x0 = 3, x1 = 2,

was solved numerically in low precision (23 bits mantissa), one obtained for
xi, i = 2 : 12 the (rounded) values

1.33, 0.89, 0.59, 0.40, 0.26, 0.18, 0.11, 0.03, −0.46, −5.05, −50.80.

Explain the difference from the exact values xn = 3(2/3)n.

3.21. (a) k,N are given integers 0 ≤ k <≤ N . A ”discrete Green’s function”
Gn,k, 0 ≤ n ≤ N for the central difference operator −∆∇ together with the
boundary conditions given below, is defined as the solution un = Gn,k of the
difference equation with boundary conditions,

−∆∇un = δn,k, u0 = uN = 0;

(δn,k is Kronecker’s delta). Derive a fairly simple expression for Gn,k.

(b) Find (by computer) the inverse of the tridiagonal Toeplitz matrix94

A =









2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2









.

What is the relation between Problems 3.3.19 (a) and (b)? Find a formula for
the elements of A−1. Express the solution of the inhomogeneous difference
equation −∆∇un = bn, u0 = uN = 0, both in terms of the Green function
Gn,k and in terms of A−1 (for general N).

(c) Try to find an analogous formula95 for the solution of an inhomogeneous
boundary value problem for the differential equation −u′′ = f(x), u(0) =
u(1) = 0.

3.22. (a) Demonstrate the formula

∞∑

n=0

(−x)ncn
n!

= e−x
∞∑

n=0

xn(−∆)nc0
n!

. (3.3.67)

94The inverse is a so-called semiseparable matrix.
95In a differential equation, analogous to Problem 3.3.23 (a), the Kronecker delta is to be replaced

by the Dirac delta function. Also note that the inverse of the differential operator here can be
described as an integral operator with the Green’s function as the “kernel”.
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Hint: Use the relation e−xE = e−x(1+∆) = e−xe−x∆.

(b) For completely monotonic sequences {cn} and {(−∆)nc0} are typically
positive and decreasing sequences. For such sequences, the left-hand side be-
comes extremely ill-conditioned for large x, (say) x = 100, while the graph of
the terms on the right-hand side (if exactly computed) are bell-shaped, almost
like the normal probability density with mean x and standard deviation

√
x.

We have called such a sum a bell sum. Such positive sums can be computed
with little effort and no trouble with rounding errors, if their coefficients are
accurate.

Compute the left-hand side of (3.3.67), for cn = 1/(n+ 1), x = 10 : 10 : 100,
and compute the right-hand side, both with numerically computed differences
and with exact differences; the latter are found in Problem 3.3.3 (a). (In this
particular case you can also find the exact sum.)

Suppose that the higher differences {(−∆)nc0} have been computed recur-
sively from rounded values of cn. Explain why one may fear that the right-
hand side of (3.3.67) does not provide much better results than the left-hand
side.

(c) Use (3.3.67) to derive the second expansion for erf(x) in Problem 3.2.8
from the first expansion.

Hint: Use one of the results of Problem 3.3.3 (a).

(d) If cn = cn(a, b) is defined as in Problem 3.3.3 (d), then the left-hand side
becomes the Maclaurin expansion of the Kummer function M(a, b,−x); see
the Handbook [1, Ch. 13]; Show that

M(a, b,−x) = e−xM(b− a, b, x)

by means of the results of Problems 3.3.23 (a) and 3.3.2 (d).96

3.23. (a) The difference equation yn+5yn−1 = n−1 was discussed in Example 1.2.1.
It can also be written thus: (6+∆)yn−1 = n−1. The expansion of (6+∆)−1n−1

into powers of ∆/6 provides a particular solution of the difference equation.
Compute this numerically for a few values of n. Try to prove the convergence,
with or without the expression in Problem 3.3.3 (b). Is this the same as the

particular solution In =
∫ 1

0
xn(x+5)−1 dx that was studied in Example 1.2.1?

Hint: What happens as n→ ∞? Can more than one solution of this difference
equation be bounded as n→ ∞?

(b) Make a similar study to the difference equation related to the integral in
Problem 1.2.7. Why does the argument suggested by the hint of (a) not work
in this case? Try another proof.

3.24. (a) Prove Lemma 3.3.15. How is the conclusion to be changed, if we do not
suppose that γ < α, though the coefficients are still positive? Show that a
backward recurrence is still to be recommended.

(b) Work out on a computer the numerical details of Example 3.3.16, and

96This formula is well known in the theory of the confluent hypergeometric functions, where it
is usually proved in other ways.
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compare with the Handbook [1, Example 19.28.1]. (Some deviations are to be
expected, since Miller used other rounding rules.) Try to detect the oscillating
component by computing the difference scheme of the computed U(a, 5), and
estimate roughly the error of the computed values.

3.25. (a) For which constant real a does the difference equation

yn+1 − 2ayn + yn−1 = 0

satisfy the root condition? For which values of the real constant a does there
exist a solution, such that limn→∞ yn = 0? For these values of a, how do you
construct a solution yn = y∗n by a recurrence and normalization, so that this
condition as well as the condition y∗0 + 2

∑∞
m=1 y

∗
2m = 1 are satisfied? Is y∗n

unique? Give also an explicit expression for y∗n.

(b) For the other real values of a, show that y∗n does not exist, but that for any
given y0, y1 a solution can be accurately constructed by forward recurrence.
Give an explicit expression for this solution in terms of Chebyshev polynomials
(of the first and the second kind). Is it true that backward recurrence is also
stable, though more complicated than forward recurrence?

3.26. (a) The Bessel function Jk(z) satisfies the difference equation,

Jk+1(z) − (2k/z)Jk(z) + Jk−1(z) = 0, k = 1, 2, 3, . . . ,

and the identities,

J0(z) + 2J2(z) + 2J4(z) + 2J6(z) + . . . = 1;

J0(z) − 2J2(z) + 2J4(z) − 2J6(z) + . . . = cos z;

see the Handbook [1], Sections 9.1.27, 9.1.46 and 9.1.47. Show how one
of the identities can be used for normalizing the trial sequence obtained by
a backwards recurrence. Under what condition does Lemma 3.3.15 give the
hint to use the backwards recurrence for this difference equation?

(b) Study the section on Bessel functions of integer order in Numerical Recipes
[263]. Apply this technique for z = 10, 1, 0.1 (say). The asymptotic formula
(see [1, 9.3.1])

Jk(z) ∼
1√
2πk

( ez

2k

)k

, k ≫ 1, z fixed.

may be useful for your decision where to start the backward recurrence. Use
at least two starting points, and subtract the results (after normalization).

Comment: The above difference equation for Jk(z) is also satisfied by a func-
tion denoted Yk(z),

Yk(z) ∼
−2√
2πk

( ez

2k

)−k
, (k ≫ 1).

How do these two solutions interfere with each other, when forward or back-
ward recurrence is used?
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(c) A counterexample to the technique with frozen coefficients. Consider the
difference equation yn+1 − (−1)nyn + yn−1 = 0. The technique with frozen
coefficients leads to the consideration of the difference equations

zn+1 − 2azn + zn−1 = 0, a ∈ [−0.5, 0.5];

all of them have only bounded solutions. Find by numerical experiment that,
nevertheless, there seems to exist unbounded solutions yn of the first difference
equation.

Comment: A proof of this is found by noting that the mapping (y2n, y2n+1) 7→
(y2n+2, y2n+3) is represented by a matrix that is independent of n and has an
eigenvalue that is less than −1.

3.27. Let {bn}∞−∞ be a given sequence, and consider the difference equation,

yn−1 + 4yn + yn+1 = bn,

which can also be written in the form (6 + δ2)yn = bn.

(a) Show that the difference equation has at most one solution that is bounded
for −∞ < n < +∞. Find a particular solution in the form of an expansion
into powers of the operator δ2/6. (This is hopefully bounded.)

(b) Apply it numerically to the sequence bn = (1+n2h2)−1, for a few values of
the step size h, e.g., h = 0.1, 0.2, 0.5, 1. Study for n = 0 the rate of decrease (?)
of the terms in the expansion. Terminate when you estimate that the error is
(say) 10−6. Check how well the difference equation is satisfied by the result.

(c) Study theoretically bounds for the terms when bn = exp(iωhn), ω ∈ R.
Does the expansion converge? Compare your conclusions with numerical ex-
periments. Extend to the case when bn = B(nh), where B(t) can be repre-
sented by an absolutely convergent Fourier integral,

B(t) =

∫ ∞

−∞
eiωtβ(ω)dω.

Note that B(t) = (1+ t2)−1 if β(ω) = 1
2e

−|ω|. Compare the theoretical results
with the experimental results in (b).

(d) Put Q = δ2/6. Show that ỹn ≡ (1 − Q + Q2 + . . . ± Qk−1)bn/6 satisfies
the difference equation (1 +Q)(ỹn − yn) = Qkbn/6.

Comment: This procedure is worthwhile if the sequence bn is so smooth that
(say) 2 or 3 terms give satisfactory accuracy.

3.4 Acceleration of Convergence

3.4.1 Introduction

We have seen that in Applied Mathematics the solution to many problems can be
obtained from a series expansion or a sequence converging to the exact solution.
But sometimes the convergence of the series is so slow that the effective use of it is
limited.
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If a sequence {sn}∞0 converges slowly towards a limit s, but has a sort of regular
behavior when n is large, it can under certain conditions be transformed into another
infinite sequence {s′n}, which converges much faster to the same limit. Here s′n
usually depends on the first n elements of the original sequence only. This is called
convergence acceleration. Such a sequence transformation may be iterated, to
yield a sequence of infinite sequences, {s′′n}, {s′′′n }, and so forth, hopefully with
improved convergence towards the same limit s. For an infinite series convergence
acceleration means the convergence acceleration of its sequence of partial sums,
because

lim
n→∞

sn = a ⇐⇒ a = sj +
∞∑

p=1

(sp+j − sp+j−1).

Some algorithms are most easily discussed in terms of sequences, others in terms of
series.

Several transformations, linear as well as nonlinear, have been suggested and
are successful, under various conditions. Some of them, such as Aitken transforma-
tion, repeated averages, and Euler’s transformation, are most successful on oscil-
lating sequences (alternating series or series in a complex variable). Others, such as
variants of Aitken acceleration, Euler–Maclaurin and Richardson, work primarily on
monotonic sequences (series with positive terms). Some techniques for convergence
acceleration such as continued fractions, Padé approximation, and the ǫ-algorithm,
transform a power series into a sequence of rational functions.

Some of these techniques may even sometimes be successfully applied to semi-
convergent sequences. Several of them can also use a limited number of coefficients
of a power series for the computation of values of an analytic continuation of a
function, outside the circle of convergence of the series that defined it.

Convergence acceleration cannot be applied to “arbitrary sequences”; some
sort of conditions are necessary that restrict the variation of the future elements of
the sequence, i.e. the elements which are not computed numerically. In this section,
these conditions are of a rather general type, in terms of monotonicity, analyticity
or asymptotic behavior of simple and usual types.

In addition to the “general purpose” techniques to be discussed in this chapter,
there are other techniques of convergence acceleration based on the use of more
specific knowledge about a problem. For example, the Poisson summation formula

∞∑

n=−∞
f(n) =

∞∑

j=−∞
f̂(j), f̂(ω) =

∫ ∞

−∞
f(ω)e−2πiωx dx; (3.4.1)

(f̂ is the Fourier transform of f) can be amazingly successful for a certain class
of series

∑
a(n), namely if a(x) has a rapidly decreasing Fourier Transform. The

Poisson formula is also an invaluable tool for the design and analysis of numerical
methods for several problems; see Theorem 3.4.10.

Irregular errors are very disturbing when these techniques are used. They
sometimes set the limit for the reachable accuracy. For the sake of simplicity we
therefore use IEEE double precision arithmetic in most examples.
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3.4.2 Comparison Series and Aitken Acceleration

Suppose that the terms in the series
∑∞

j=1 aj behave, for large j, like the terms of

a series
∑∞
j=1 bj , i.e. limj→∞ aj/bj = 1. Then if the sum s =

∑∞
j=1 bj is known one

can write

S =

∞∑

j=1

aj = s+

∞∑

j=1

(aj − bj),

where the series on the right-hand side converges more quickly than the given series.
We call this making use of a simple comparison problem. The same idea is used
in many other contexts—for example, in the computation of integrals where the
integrand has a singularity. Usual comparison series are

∞∑

j=1

n−2 = π2/6,

∞∑

j=1

n−4 = π4/90, etc.

A general expression for
∑∞

j=1 n
−2r, is given in (3.4.32). No simple closed form is

known for
∑∞

j=1 n
−3.

Example 3.4.1.
The term aj = (j4 + 1)−1/2 behaves, for large j, like bj = j−2, whose sum is

π2/6. Thus

∞∑

j=1

aj = π2/6 +
∞∑

j=1

(
(j4 + 1)−1/2 − j−2)

)
= 1.64493− 0.30119 = 1.3437.

Five terms on the right-hand side are sufficient for four-place accuracy in the final
result. Using the series on the left-hand side, one would not get four-place accuracy
until after 20,000 terms.

This technique is unusually successful in this example. The reader is advised
to find out that and why it is less successful for aj = (j4 + j3 + 1)−1/2.

An important comparison sequence is a geometric sequence

yn = s+ bkn,

for which ∇yn = yn − yn−1 = bkn−1(k − 1). If this is fitted to the three most
recently computed terms of a given sequence, yn = sn for (say) n = j, j − 1, j − 2,
then ∇yj = ∇sj , ∇yj−1 = ∇sj−1, and

k = ∇sj/∇sj−1, ∇sj = bkj−1(k − 1).

Hence

bkj =
∇sj

1 − 1/k
=

∇sj
1 −∇sj−1/∇sj

=
(∇sj)2
∇2sj

.

This yields a comparison sequence for each j. Suppose that |k| < 1. Then the
comparison sequence has the limit limn→∞ yn = s = yj − bkj , i.e.

s ≈ s′j = sj −
(∇sj)2
∇2sj

. (3.4.2)
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This nonlinear acceleration method is called Aitken acceleration97 .
Notice that the denominator equals sj−2sj−1+sj−2, but to minimize rounding

errors it should be computed as

∇sj −∇sj−1 = (sj − sj−1) − (sj−1 + sj−2),

(cf. Theorem 2.3.2). If {sn} is exactly a geometric sequence, i.e. if sn − s =
k(sn−1 − s) ∀ n, then s′j = s ∀j. Otherwise it can be shown (Henrici [175, ])
that under the assumptions

lim
j→∞

sj = s, and lim
sj+1 − sj
sj − sj−1

= k∗, |k∗| < 1, (3.4.3)

the sequence {s′j} converges faster than the sequence {sj}. The above assumptions
can often be verified for sequences arising from iterative processes and for many
other applications. Note also that Aitken extrapolation is exact for sequences {sn}
such that

α(sn − s) + β(sn+1 − s) = 0, ∀ n,
with αβ 6= 0, α+ β 6= 0. This leads to a generalization to be discussed in Sec. 3.5.4.

If you want the sum of slowly convergent series, then it may seem strange to
compute the sequence of partial sums, and compute the first and second differences
of rounded values of this sequence in order to apply Aitken acceleration. The a-
version of Aitken acceleration works on the terms aj of an infinite series instead of
on its partial sums sj .

Clearly we have aj = ∇sj , j = 1 : N . The a-version of Aitken acceleration
thus reads

s′j = sj − a2
j/∇aj , j = 1 : N. (3.4.4)

We want to determine a′j so that

j
∑

k=1

a′k = s′j , j = 1 : N.

Then
a′1 = 0, a′j = aj −∇(a2

j/∇aj), j = 2 : N,

and s′N = sN − a2
N/∇aN (show this). We may expect that this a-version of Aitken

acceleration handles rounding errors better.
The condition |k∗| < 1 is a sufficient condition only. In practice, Aitken

acceleration seems most efficient if k∗ = −1. Indeed, it often converges even if
k∗ < −1; see Problem 3.4.7. It is much less successful if k∗ ≈ 1, for example, for
slowly convergent series with positive terms.

The Aitken acceleration process can often be iterated, to yield sequences,
{s′′n}∞0 , {s′′′n }∞0 , etc., defined by the formulas

s′′j = s′j −
(∇s′j)2
∇2s′j

, s
′′′

j = s′′j −
(∇s′′j )2
∇2s′′j

. . . (3.4.5)

97Named after Alexander Craig Aitken (1895–1967), a Scotch mathematician, born in New
Zealand.
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j sj ej e′j e′′j e′′′j
6 0.820935 3.5536e−2

7 0.754268 −3.1130e−2 −1.7783e−4

8 0.813092 2.7693e−2 1.1979e−4

9 0.760460 −2.4938e−2 −8.4457e−5 −1.3332e−6

10 0.808079 2.2681e−2 6.1741e−5 7.5041e−7

11 0.764601 −2.0797e−2 −4.6484e−5 −4.4772e−7 −1.0289e−8

Example 3.4.2.
By (3.1.13), it follows for x = 1 that

1 − 1/3 + 1/5 − 1/7 + 1/9 − . . . = arctan 1 = π/4 ≈ 0.7853981634.

This series converges very slowly. Even after 500 terms there still occur changes
in the third decimal. Consider the partial sums sj =

∑j
n0

(−1)j(2n + 1)−1, with
n0 = 5, and compute the iterated Aitken sequences as indicated above.

The (sufficient) theoretical condition mentioned above is not satisfied, since
∇sn/∇sn−1 → −1 as n → ∞. Nevertheless, we shall see that the Aitken acceler-
ation works well, and that the iterated accelerations converge rapidly. One gains
two digits for every pair of terms, in spite of the slow convergence of the original
series. The results in the table above were obtained using IEEE double precision
arithmetic. The errors of s′j , s

′′
j ,. . . , are denoted by e′j , e

′′
j , . . ..

Example 3.4.3.
Set an = e−

√
n+1, n ≥ 0. As before, we denote by sn the partial sums of

∑
an, s = lim sn = 1.67040681796634, and use the same notations as above. Note

that
∇sn/∇sn−1 = an/an−1 ≈ 1 − 1

2n
−1/2, (n≫ 1],

so this series is slowly convergent. Computations with plain and iterated Aitken in
IEEE double precision arithmetic gave the results below:

j e2j e
(j)
2j

1 −0.882 −4.10e−1

2 −0.640 −1.08e−1

3 −0.483 −3.32e−2

2 −0.374 −4.41e−3

5 −0.295 −7.97e−4

6 −0.237 −1.29e−4

7 −0.192 −1.06e−5

The sequence {e(j)2j } is monotonic until j = 8. After this |e(j)2j | is mildly
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fluctuating around 10−5 (at least until j = 24), and the differences ∇s(j)2j = ∇e(j)2j

are sometimes several powers of 10 smaller than the actual errors and are misleading
as error estimates. The rounding errors have taken over, and it is almost no use to
compute more terms.

It is possible to use more terms for obtaining higher accuracy, by applying
iterated Aitken acceleration to a thinned sequence for example, s4, s8, s12, . . .;
cf. Problem 3.4.4. Note the thinning is performed on a sequence that converges
to the limit to be computed, for example, the partial sums of a series. Only in
so-called bell sums (see Problem 3.4.29) we shall do a completely different kind of
thinning, namely a thinning of the terms of a series.

The convergence ratio of the thinned sequence are much smaller; for the series
of the previous example they become approximately

(

1 − 1
2n

−1/2
)4

≈ 1 − 2n−1/2, n≫ 1.

The most important point is, though, that the rounding errors become more slowly
amplified, so that terms far beyond the eighth one of the un-thinned sequence can
be used in the acceleration, resulting in a much improved final accuracy.

How to realize the thinning depends on the sequence; a different thinning will
be used in the next example.

Example 3.4.4.
We shall compute, using IEEE double precision arithmetic,

s =

∞∑

n=1

n−3/2 = 2.612375348685488.

If all partial sums are used in Aitken acceleration, it turns out that the error |e(j)2j |
is decreasing until j = 5, when it is 0.07, and it remains on approximately this level
for a long time.

j 0 1 2 3 4 5

E2j+1 −1.61 −0.94 −4.92e−1 −2.49e−1 −1.25e−1 −6.25e−2

E
(j)
2j+1 −1.61 −1.85 −5.06e−2 −2.37e−4 −2.25e−7 2.25e−10

A much better result is obtained by means of thinning, but since the conver-
gence is much slower here than in the previous case, we shall try “geometric” thin-
ning rather than the “arithmetic” thinning used above, i.e. we now set Sm = s2m .
Then

∇Sm =

2m

∑

1+2m−1

an, Sj = S0 +

j
∑

m=1

∇Sm, Ej = Sj − s.

(If maximal accuracy is wanted, it may be advisable to use the ”divide and con-
quer technique” for computing these sums; see Problem 2.3.5, but it has not been
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used here.) By the approximation of the sums by integrals one can show that
∇Sm/∇Sm−1 ≈ 2−1/2, m ≫ 1. The table above shows the errors of the first
thinned sequence and the results after iterated Aitken acceleration. The last result
has used 1024 terms of the original series, but since

sn − s = −
∞∑

j=n

j−3/2 ≈ −
∫ ∞

n

t−3/2 dt = −2

3
n−1/2, (3.4.6)

1020 terms would have been needed for obtaining this accuracy without convergence
acceleration.

For sequences such that

sn − s = c0n
−p + c1n

−p−1 +O(n−p−2), p > 0,

where s, c0, c1 are unknown, the following variant of Aitken acceleration, (Bjørstad
et al. [29]) is more successful:

s′n = sn − p+ 1

p

∆sn∇sn
∆sn −∇sn

. (3.4.7)

It turns out that s′n is two powers of n more accurate than sn, s
′
n − s = O(n−p−2);

see Problem 3.4.12. More generally, suppose that there exists a longer (unknown)
asymptotic expansion of the form

sn = s+ n−p(c0 + c1n
−1 + c2n

−2 + . . .), n→ ∞. (3.4.8)

This is a rather common case. Then we can extend this to an to an iterative variant,
where p is to be increased by 2 in each iteration; i = 0, 1, 2, . . . is a superscript, i.e.

si+1
n = sin − p+ 2i+ 1

p+ 2i

∆sin∇sin
∆sin −∇sin

. (3.4.9)

If p is also unknown, it can be estimated by means of the equation,

1

p+ 1
= −∆

∆sn
∆sn −∇sn

+O(n−2). (3.4.10)

Example 3.4.5.
We consider the same series as in the previous example, i.e. s =

∑
n−3/2. We

use (3.4.9) without thinning. Here p = −1/2, see Problem 3.4.13. As usual, the
errors are denoted ej = sj−s, ei2j = si2j−s. In the right column of the table below,
we show the errors from a computation with 12 terms of the original series,

From this point the errors were around 10−10 or a little below. The rounding
errors have taken over, and the differences are misleading for error estimation. If
needed, higher accuracy can be obtained by “arithmetic thinning” with more terms.

In this computation only 12 terms were used. In the previous example a less
accurate result was obtained by means of 1024 terms of the same series, but we must



“dqbjV
2007/5/28
page 278

278 Chapter 3. Series, Operators and Continued Fractions

j e2j ej2j

0 −1.612 −1.612

1 −1.066 −8.217e−3

2 −0.852 −4.617e−5

3 −0.730 +2.528e−7

4 −0.649 −1.122e−9

5 −0.590 −0.634e−11

appreciate that the technique of Example 3.4.4 did not require the existence of an
asymptotic expansion for sn and may therefore have a wider range of application.

There are not yet so many theoretical results that give justice to the practically
observed efficiency of iterated Aitken accelerations for oscillating sequences. One
reason for this can be that the transformation (3.4.2), which the algorithm is based
on, is nonlinear. For methods of convergence acceleration that are based on linear
transformations, theoretical estimates of rates of convergence and errors are closer
to the practical performance of the methods.

3.4.3 Euler’s Transformation

In 1755 Euler gave the first version of what is now called Euler’s transformation.
Euler showed that for an alternating series (uj ≥ 0), it holds that

S =

∞∑

j=0

(−1)juj =

∞∑

k=0

1

2k
∆kuk. (3.4.11)

Often it is better to apply Euler’s transformation to the tail of a series.
We shall now apply another method of acceleration based on repeated av-

eraging of the partial sums. Consider again the same series as in Example 3.4.2,
i.e.. ∞∑

j=0

(−1)j(2j + 1)−1 = 1 − 1

3
+

1

5
− 1

7
+

1

9
− . . . =

π

4
. (3.4.12)

Let SN be the sum of the first N terms. The columns to the right of the SN -column
in the scheme given in Table 3.4.1 are formed by building averages.

Each number in a column is the mean of the two numbers which stand to the
left and upper left of the number itself. In other words, each number is the mean
of its “west” and “northwest” neighbor. The row index of M equals the number
of terms used from the original series, while the column index minus one is the
number of repeated averaging. Only the digits which are different from those in the
previous column are written out.

Notice that the values in each column oscillate. In general, for an alternating
series, it follows from the next theorem together with (3.2.4) that if the absolute
value of the jth term, considered as a function of j, has a kth derivative which
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Table 3.4.1. Summation by repeated averaging.

N SN M2 M3 M4 M5 M6 M7

6 0.744012

7 0.820935 782474

8 0.754268 787602 5038

9 0.813092 783680 5641 340

10 0.760460 786776 5228 434 387

11 0.808079 784270 5523 376 405 396

12 0.764601 786340 5305 414 395 400 398

approaches zero monotonically for j > N0, then every other value in column Mk+1

is larger than the sum, and every other is smaller. The above premise is satisfied
here, since if f(j) = (2j + 1)−1 then f (k)(j) = ck(2j + 1)−1−k, which approaches
zero monotonically.

If round-off is ignored, it follows from column M6 that 0.785396 ≤ π/4 ≤
0.785400. To take account of round-off error, we set π/4 = 0.785398 ± 3 · 10−6.
The actual error is only 1.6 · 10−7. In Example 3.4.2 iterated Aitken accelerations
gave about one decimal digit more with the same data. It is evident how the
above method can be applied to any alternating series. The diagonal elements are
equivalent to the results from using Euler’s transformation.

Euler’s transformation and the averaging method can be generalized for the
convergence acceleration of a general complex power series

S(z) =

∞∑

j=1

ujz
j−1. (3.4.13)

For z = −1 an alternating series is obtained. Other applications include Fourier
series. They can be brought to this form, with z = eiφ, −π ≤ φ ≤ π; see Sec. 4.7.2
and Problem 4.7.7.

The irregular errors of the coefficients play a big role if |φ| ≪ π, and it is
important to reduce their effects by means of a variant of the thinning technique,
described (for Aitken acceleration) in the previous section. Another interesting
application is the analytic continuation of the power series outside its circle of
convergence; see Example 3.4.7.

Theorem 3.4.1.
The tail of the power series in (3.4.13) can formally be transformed into the

expansion (z 6= 1)

S(z) −
n∑

j=1

ujz
j−1 =

∞∑

j=n+1

ujz
j−1 =

zn

1 − z

∞∑

s=0

P sun+1, P =
z

1 − z
∆. (3.4.14)
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Set N = n+ k − 1, and set

Mn,1 =

n∑

j=1

ujz
j−1; MN,k = Mn,1 +

zn

1 − z

k−2∑

s=0

P sun+1; n = N −k+1. (3.4.15)

These quantities can be computed by the following recurrence formula that yields
several estimates based on N terms from the original series.98 This is called the
generalized Euler transformation.

MN,k =
MN,k−1 − zMN−1,k−1

1 − z
, k = 2 : N. (3.4.16)

For z = −1, this is the repeated average algorithm described above, and P = − 1
2∆.

Assume that |z| ≤ 1, that
∑
ujz

j−1 converges, and that ∆suN → 0, s = 0 : k
as N → ∞. Then MN,k → S(z), as N → ∞. If, moreover, ∆k−1uj has a constant
sign for j ≥ N − k + 2, then the following strict error bounds are obtained:

|MN,k − S(z)| ≤ |z(MN,k −MN−1,k−1)| = |MN,k −MN,k−1|, (k ≥ 2). (3.4.17)

Proof. We first note that, as N → ∞, P suN → 0, s = 0 : k, and hence, by
(3.4.15), limMN,k = limMN,0 = S(z).

Euler’s transformation can be formally derived by operators as follows:

S(z) −Mn,1 = zn
∞∑

i=0

(zE)iun+1 =
zn

1 − zE
un+1

=
zn

1 − z − z∆
un+1 =

zn

1 − z

∞∑

s=0

P sun+1.

In order to derive (3.4.16), note that this relation can equivalently be written thus,

MN,k −MN,k−1 = z(MN,k −MN−1,k−1), (3.4.18)

MN,k−1 −MN−1,k−1 = (1 − z)(MN,k −MN−1,k−1). (3.4.19)

Remembering that n = N − k + 1, we obtain, by (3.4.15),

MN,k −MN−1,k−1 =
zN−k+1

1 − z
P k−2uN−k+2, (3.4.20)

and it can be shown (Problem 3.4.16) that

MN,k−1 −MN−1,k−1 = znP k−2un+1 = zN−k+1P k−2uN−k+2. (3.4.21)

By (3.4.20) and (3.4.21), we now obtain (3.4.19) and hence also the equivalent
equations (3.4.18) and (3.4.16).

98See Algorithm 3.4.1 for an adaptive choice of a kind of optimal output.
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Now substitute j for N into (3.4.21), and add the p equations obtained for
j = N + 1, . . ., N + p. We obtain:

MN+p,k−1 −MN,k−1 =

N+p
∑

j=N+1

zj−k+1P k−2uj−k+2.

Then substitute k + 1 for k, and N + 1 + i for j. Let p → ∞, while k is fixed. It
follows that

S(z) −MN,k =

∞∑

j=N+1

zj−kP k−1uj−k+1

=
zN−k+1 · zk−1

(1 − z)k−1

∞∑

i=0

zi∆k−1uN−k+2+i, (3.4.22)

hence

|S(z) −MN,k| ≤
∣
∣(z/(1 − z))k−1zN−k+1

∣
∣

∞∑

i=0

∣
∣∆k−1uN−k+2+i

∣
∣ .

We now use the assumption that ∆k−1uj has constant sign for j ≥ N − k + 2.

Since
∑∞
i=0 ∆k−1uN−k+2+i = −∆k−2uN−k+2, it follows that

|S(z) −MN,k| ≤
∣
∣
∣
∣
zN−k+1 z

k−1∆k−2uN−k+2

(1 − z)k−1

∣
∣
∣
∣

=

∣
∣
∣
∣

z · zN−k+1

1 − z
P k−2uN−k+2

∣
∣
∣
∣
.

Now, by (3.4.20),

|S(z) −MN,k| ≤ |z| · |MN,k −MN−1,k−1|.

This is the first part of (3.4.17). The second part then follows from (3.4.18).

Remark 3.4.1. Note that the elements MN,k become rational functions of z for
fixed N , k. If the term un, as a function of n, belongs to Pk, then the classical
Euler transformation (for n = 0) yields the exact value of S(z) after k terms, if
|z| < 1. This follows from (3.4.14), because

∑
ujz

j is convergent, and P sun+1 = 0
for s ≥ k. In this particular case, S(z) = Q(z)(1 − z)−k, where Q is a polynomial;
in fact the Euler transformation gives S(z) correctly for all z 6= 1.

The advantage of using the recurrence formula (3.4.16), instead of a more
direct use of (3.4.14), is that it provides a whole lower triangular matrix of estimates,
so that one can, by means of a simple test, decide when to stop. This yields a result
with strict error bound, if ∆k−1uj has a constant sign (for all j with a given k),
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and if the effect of rounding errors is evidently smaller than Tol. If these conditions
are not satisfied, there is a small risk that the algorithm may terminate if the error
estimate is accidentally small, for example, near a sign change of ∆k−1uj.

The irregular errors of the initial data are propagated to the results. In the
long run, they are multiplied by approximately |z/(1 − z)| from a column to the
next—this is less than one if ℜz < 1/2—but in the beginning this growth factor can
be as large as (1+ |z|)/|1− z|. It plays no role for alternating series; its importance
when |1 − z| is smaller will be commented in Sec. 4.7.2.

The following algorithm is mainly based on on Theorem 3.4.1 with a termina-
tion criterion based on (3.4.17). The possibility for the irregular errors to become
dominant has been taken into account (somewhat) in the third alternative of the
termination criterion.

The classical Euler transformation would only consider the diagonal elements
MNN , N = 1, 2, . . . and the termination would have been based on |MNN −
MN−1,N−1|. The strategy used in this algorithm is superior for an important class
of series.

Algorithm 3.1. Generalized Euler Transformation.

function [sum,errest,N,kk] = euler(z,u,Tol)

% EULER applies the generalized Euler transform to a power

% series with terms u(j)z^j. The elements of M are inspected

% in a certain order, until a pair of neighboring elements

% are found that satisfies a termination criterion.

%

Nmax = length(u);

errest = Inf; olderrest = errest;

N = 1; kk = 2; M(1,1) = u(1);

while (errest > Tol) & (N < Nmax) & (errest <= olderrest)

N = N+1;

M(N,1) = M(N-1,1)+ u(N)*z^(N-1); % New partial sum

for k = 2:N,

M(N,k) = (M(N,k-1) - z*M(N-1,k-1))/(1-z);

temp = abs(M(N,k) - M(N,k-1))/2;

if temp < errest,

kk = k; errest = temp;

end

end

end

sum = (M(N,kk) + M(N,kk-1))/2;

An oscillatory behavior of the values |MN,k −MN,k−1| in the same row, indi-
cates that the irregular errors have become dominant. The smallest error estimates
may then become unreliable.

Remark 3.4.2. If the purpose of the computation is the study of the convergence
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properties of the method rather than getting a numerical result of desired accuracy
as quickly as possible, you had better replace the while statement by (say) for

N=1:Nmax, change a few lines in the program, and produce graphical output such
as Figure 3.4.1.
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Figure 3.4.1. Logarithms of the actual errors and the error estimates for
MN,k in a more extensive computation for the alternating series in (3.4.12) with
completely monotonic terms. The tolerance is here set above the level, where the
irregular errors become important; for a smaller tolerance parts of the lowest curves
may become less smooth in some parts.

The above algorithm gives a strict error bound if, in the notation used in the
theorem, ∆k−1ui has a constant sign for i ≥ N − k + 2 (in addition to the other
conditions of the theorem). We recall that a sequence, for which this condition is
satisfied for every k, is called completely monotonic; see Definition 3.4.2.

It may seem difficult to check if this condition is satisfied. It turns out that
many sequences that can be formed from sequences such as {n−α}, {e−αn} by
simple operations and combinations, belong to this class. The generalized Euler
transformation yields a sequence that converges at least as fast as a geometric
series. The convergence ratio depends on z; it is less than one in absolute value
for any complex z, except for z > 1 on the real axis. So, the generalized Euler
transformation often provides an analytic continuation of a power series outside its
circle of convergence.

For alternating series, with completely monotonic terms, i.e. for z = −1, the
convergence ratio typically becomes 1

3 . This is in good agreement with Figure 3.4.1.
Note that the minimum points for the errors lie almost on a straight line and that
the optimal value of k/N is approximately 2

3 , if N ≫ 1, and if there are no irregular
errors.

Example 3.4.6.
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A program, essentially the same as Algorithm 3.4.1, is applied to the series

∞∑

j=1

(−1)jj−1 = 1 − 1

2
+

1

3
− 1

4
+

1

5
− . . . = ln 2 = 0.69314 71805 599453.

with Tol = 10−6, It stops when N = 12, kk = 9. The errors ek = MN,k − ln 2 and
the differences 1

2∇kMN,k along the last row of M read:

k 1 2 3 . . . 10 11 12

ek −3.99·10−2 1.73·10−3 −1.64·10−4 . . . 5.35·10−7 −9.44·10−7 2.75·10−6

∇/2 2.03·10−2 −9.47·10−4 . . . 4.93·10−7 −7.40·10−7 1.85·10−6

Note that |errest| = 4.93 · 10−7 and sum − ln 2 = 1
2 (e9 + e8) = 4.2 · 10−8.

Almost full accuracy is obtained for Tol = 10−16, Nmax = 40. The results are
N = 32, kk = 22, errest = 10−16, |error| = 2 · 10−16. Note that errest < |error|;
this can happen when we ask for such a high accuracy that the rounding errors are
not negligible.
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Example 3.4.7.
We consider the application to a divergent power series (analytic continuation)

S(z) =

∞∑

n=1

unz
n−1, |z| > 1.

As in the previous example we study in detail the case of un = 1/n. It was mentioned
above that in exact arithmetic the generalized Euler transformation converges in the
z-plane, cut along the interval [1,∞]. The limit is −z−1 ln(1 − z), a single-valued
function in this region. For various z outside the unit circle, we shall see that
rounding causes bigger problems here than for Fourier series. The error estimate
of Algorithm 3.3.1, usually underestimated the error, sometimes by a factor of ten.
The table below reports some results from experiments without thinning.

z −2 −4 −10 −100 2i 8i 1 + i 2 + i

|error| 2·10−12 2·10−8 4·10−5 3·10−3 8·10−11 10−3 10−7 2·10−2

N 38 41 43 50 40 39 38 39

kk 32 34 39 50 28 34 22 24

Thinning can be applied also in this application, but here not only the ar-
gument φ is increased (this is good), but also |z| (this is bad). Nevertheless, for
z = 1 + i, the error becomes 10−7, 3 ·10−9, 10−9, 4· 10−8, for τ = 1, 2, 3, 4, respec-
tively. For z = 2 + i, however, thinning improved the error only from 0.02 to 0.01.
All this is for IEEE double precision arithmetic.

3.4.4 ∗Complete Monotonicity and Related Concepts

For the class of completely monotonic sequences and some related classes of analytic
functions the techniques of convergence acceleration can be put on a relatively solid
theoretical basis

Definition 3.4.2.
A sequence {un} is completely monotonic, (c.m) for n ≥ a if and only if

un ≥ 0, (−∆)jun ≥ 0, ∀j ≥ 0, n ≥ a, (integers).

Such sequences are also called totally monotonic. The abbreviation c.m.will
be used, both as an adjective and as a noun, and both in singular and in plural. The
abbreviation d.c.m. will similarly be used for the difference between two completely
monotonic sequences. (These abbreviations are not generally established.)

A completely monotonic sequence {un}∞0 is minimal if and only if it ceases
to be a completely monotonic if u0 is decreased, while all the other elements are
unchanged. This distinction is of little importance to us, since we usually deal with
a tail of some given completely monotonic sequence, and it can be shown that if
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{un}∞0 is completely monotonic then {un}∞1 is a minimal completely monotonic
sequence. Note that, e.g., the sequence {1, 0, 0, 0, . . .} is a non-minimal completely
monotonic, while {0, 0, 0, 0, . . .} is a minimal completely monotonic. Unless it is
stated otherwise we shall only deal with minimal completely monotonic without
stating this explicitly all the time.

Definition 3.4.3.
A function u(s) is completely monotonic (c.m.) for s ≥ a, s ∈ R, if and only

if

u(s) ≥ 0, (−1)(j)u(j)(s) ≥ 0, s ≥ a ∀ j ≥ 0 (integer), ∀ s ≥ a, (real).

u(s) is d.c.m. if it is difference of two c.m. on the same interval.

We also need variants with an open interval. For example, the function u(s) =
1/s is c.m. in the interval [a,∞) for any positive a, but it is not c.m. in the interval
[0,∞].

The simplest relation of c.m.functions and c.m.sequences reads: if the function
u(s) is c.m. for s ≥ s0 then the sequence defined by un = u(s0 + hn), (h > 0), n =
0, 1, 2, . . . is also completely monotonic since, by (3.3.4), (−∆)jun = (−hD)ju(ξ) ≥
0 for some ξ ≥ s0.

A function is absolutely monotonic in an (open or closed) interval, if the
function and all its derivatives are non-negative there.

The main reason why the analysis of a numerical method is convenient for
c.m. and d.c.m. sequences is that they are “linear combinations of exponentials”,
according to the theorem below. The more precise meaning of this requires the
important concept of a Stieltjes integral99.

Definition 3.4.4.
The Stieltjes integral

∫ b

a f(x) dα(x), is defined as the limit of sums of the form

∑

i

f(ξi)
(
α(xi+1) − α(xi)

)
, ξi ∈ [xi, xi+1] (3.4.23)

where

a = x0 < x1 < x2 < . . . < xN = b

is a partition of [a, b]. Here f(x) is bounded and continuous, and α(x) is of
bounded variation in [a, b], i.e. the difference between two non-decreasing and
non-negative functions.

The extension to improper integrals where, for example, b = ∞, α(b) = ∞, is
made in a similar way as for Riemann or Lebesgue integrals. The Stieltjes integral

99Thomas Jan Stieltjes (1856–1894), was born in the Netherlands. After working with astronom-
ical calculations at the Observatory in Leiden, he got a university position in Toulouse, France. He
did important work on continued fractions and the moment problem and invented a new concept
of integral.
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is much used also in Probability and Mechanics, since it unifies the treatment of
continuous and discrete (and mixed) distributions of probability or mass. If α(x) is
piecewise differentiable, then dα(x) = α′(x) dx, and the Stieltjes integral is simply
∫ b

a
f(x)α′(x) dx. If α(x) is a step function, with jumps (also called point masses)

mi at x = xi, i = 1 : n, then dα(xi) = limǫ↓0 α(xi + ǫ) − α(xi − ǫ) = mi,

∫ b

a

f(x) dα(x) =

n∑

i=1

mif(xi).

(It has been assumed that f(x) is continuous at xi, i = 1 : n.
Integration by parts is as usual; the following example is of interest to us.

Suppose that α(0) = 0, α(x) = o(ecx) as x→ ∞, and that ℜs ≥ c. Then

∫ ∞

0

e−sxdα(x) = s

∫ ∞

0

α(x)e−sx dx, (3.4.24)

The integral on the left side is called a Laplace–Stieltjes transform, while the
integral on the right side is an ordinary Laplace transform. Many properties of
power series, though not all, can be generalized to Laplace–Stieltjes integrals—set
z = e−s. Instead of a disk of convergence, the Laplace–Stieltjes integral has a
(right) half-plane of convergence. A difference is that the half-plane of absolute
convergence may be different from the half-plane of convergence.

We shall be rather brief and concentrate on the applicability to the study of
numerical methods. We refer to Widder [330, 331], for proofs and more precise
information concerning both Stieltjes integrals, Laplace transforms and complete
monotonicity. Dahlquist [79] gives more details about applications to numerical
methods.

The sequence defined by

un =

∫ 1

0

tn dβ(t), n = 0, 1, 2, . . . , (3.4.25)

is called a moment sequence if β(t) is non-decreasing. We make the convention
that t0 = 1 also for t = 0, since the continuity of f is required in the definition of
the Stieltjes integral.

Consider the special example, where β(0) = 0, β(t) = 1 if t > 0. This means
a unit point mass at t = 0, and no more mass for t > 0. Then u0 = 1, un = 0
for n > 0. It is then conceivable that making a sequence minimal just means to
remove a point mass from the origin; thus minimality means to require that β(t) is
continuous at t = 0. (For a proof, see [330, § 4.14].)

The following theorem combines parts of several theorems in the books of
Widder. It is important that the functions called α(x), and β(t) in this theorem
need not to be explicitly known for an individual series, for applications of an error
estimate or a convergence rate of a method of convergence acceleration. Some
criteria will be given below that can be used for simple proofs that a particular
series is (or is not) c.m. or d.c.m.
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Theorem 3.4.5.

1. The sequence {un}∞0 is c.m., if and only if it is a moment sequence; it is minimal
if in addition β(t) is continuous at t = 0, i.e. if there is no point mass at the origin.
It is a d.c.m., if and only if (3.4.25) holds for some β(t) of bounded variation.

2. The function u(s) is c.m. for s ≥ 0, if and only if it can be represented as a
Laplace–Stieltjes transform,

u(s) =

∫ ∞

0

e−sx dα(x), s ≥ 0, (3.4.26)

with a non-decreasing and bounded function α(x). For the open interval, s > 0 we
have the same, except for the boundedness of α(x). For a d.c.m. the same is true
with α(x) of bounded variation, (not necessarily bounded as x → ∞). The integral
representation provides an analytic continuation of u(s) from a real interval to a
half-plane.

3. The sequence {un}∞0 is a minimal completely monotonic, if and only if there
exists a c.m. function u(s), such that un = u(n), n = 0, 1, 2, . . ..

4. Suppose that u(s) is c.m. in the interval s > a. Then the Laplace–Stieltjes
integral converges absolutely and uniformly if ℜs ≥ a′, for any a′ > a, and defines
an analytic continuation of u(s) that is bounded for ℜs ≥ a′ and analytic for ℜs > a.
This is true also if u(s) is a d.c.m.

Proof. The “only if” parts of these statements are deep results mainly due
to Hausdorff100 and Bernštein101, and we omit the rather technical proofs. The
relatively simple proofs of the “if” parts of the first three statements will be sketched,
since they provide some useful insight.

1. Assume that un is a moment sequence, β(0) = 0, β is continuous at t = 0
and non-decreasing for t > 0. Note that multiplication by E or ∆ outside the
integral sign in (3.4.25) corresponds to multiplication by t or t− 1 inside. Then, for
j, n = 0, 1, 2, . . .,

(−1)j∆jun = (−1)j
∫ 1

0

(t− 1)jtn dβ(t) =

∫ 1

0

(1 − t)jtn dβ(t) ≥ 0,

hence un is c.m.

2. Assume that u(s) satisfies (3.4.26). It is rather easy to legitimate the differenti-
ation under the integral sign in this equation. Differentiation j times with respect
to s yields, for j = 1, 2, 3, . . .

(−1)ju(j)(s) = (−1)j
∫ ∞

0

(−x)je−sx dα(x) =

∫ ∞

0

xje−sx dα(x) ≥ 0,

hence u(s) is c.m.

100Felix Hausdorff (1868–1942), a German mathematician, is mainly known for having created a
modern theory of topological and metric spaces.
101Sergei Natanovič Bernštein (1880–1968), Russian mathematician. As his countryman Cheby-

shev, he made major contributions to polynomial approximation.
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3. Assume that un = u(n) =
∫∞
0
e−nx dα(x). Define t = e−x, β(0) = 0, β(t) ≡

β(e−x) = u(0) − α(x), and note that

t = 1 ⇔ x = 0, t = 0 ⇔ x = ∞,

and that u(0) = limx→∞ α(x). It follows that β(t) is non-negative and non-
decreasing, since x decreases as t increases. Note that β(t) ↓ β(0), as t ↓ 0. Then

un = −
∫ 0

1

tn dβ(t) =

∫ 1

0

tn dβ(t),

hence {un} is a minimal c.m.

4. The distinction is illustrated for α′(x) = eax, u(s) = (s− a)−1, for a real a. u(s)
is analytic for ℜs > a and bounded only for ℜs ≥ a′ for any a′ > a.

The basic formula for the application of complete monotonicity to the sum-
mation of power series reads

S(z) ≡
∞∑

i=0

uiz
i =

∞∑

0

∫ 1

0

ziti dβ(t) =

∫ 1

0

∞∑

0

ziti dβ(t) =

∫ 1

0

(1 − zt)−1 dβ(t).

(3.4.27)
The inversion of the summation and integration is legitimate when |z| < 1. Note
that the last integral exists for more general z; a classical principle of Complex
Analysis then yields the following interesting result.

Lemma 3.4.6.
If the sequence {ui} is d.c.m., then the last integral of formula (3.4.27) provides

the unique single-valued analytic continuation of S(z) to the whole complex plane,
save for a cut along the real axis from 1 to ∞.

Remark 3.4.3. When z is located in the cut, (1 − zt)−1 has a non-integrable
singularity at t = 1/z ∈ [0, 1] unless, e.g., β(t) is constant in the neighborhood of
this point. If we remove the cut, S(z) will not be single-valued. Check that this
makes sense for β(t) = t.

Next we shall apply the above results to find interesting properties of the
(generalized) Euler Transformation. For example, we shall see that, for any z outside
the cut, there is an optimal strategy for the generalized Euler Transformation that
provides the unique value of the analytic continuation of S(z). The classical Euler
Transformation, however, reaches only the half-plane ℜz < 1

2 .
After that we shall see that there are a number of simple criteria for finding

out whether a given sequence is c.m., d.c.m., or neither. Many interesting sequences
are c.m., for example, un = e−kn, un = (n + c)−k, (k ≥ 0, c ≥ 0), all products
of these and all linear combinations (i.e. sums or integrals) of such sequences with
positive coefficients.

The convergence of a c.m. towards zero can be arbitrarily slow, but an alter-
nating series with c.m. terms will after Euler’s transformation converge as rapidly
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as a geometric series. More precisely, the following result on the optimal use of a
generalized Euler Transformation will be shown.

Theorem 3.4.7.
We use the notation of Theorem 3.4.1 and (3.4.22). Suppose that the sequence

{uj} is either c.m. or d.c.m. Consider

S(z) =

∞∑

j=0

ujz
j, z ∈ C,

and its analytic continuation (according to the above lemma). Then for the classical
Euler transformation it holds:
If z = −1, a sequence along a descending diagonal of the scheme M or (equivalently)
the matrix M̄ , i.e.{Mn0,k}∞k=0 for a fixed n0, converges at least as fast as 2−k. More
generally: the error behaves like (z/(1 − z))k, (k ≫ 1). Note that |z/(1 − z)| < 1
if and only if ℜz < 1

2 . The classical Euler transformation diverges outside this
half-plane. If z = e±it, π

3 < t ≤ π, it converges as fast as (2 sin t
2 )−k.

For the generalized Euler transformation we have the following: If z = −1 the
smallest error in the ith row of M̄ , is O(3−i), as i→ ∞. More generally: this error
is O

(
(|z|/(1 + |1 − z|))i

)
, hence the smallest error converges exponentially, unless

z − 1 is real and positive, i.e. the optimal application of the generalized Euler’s
transformation provides the analytic continuation, whenever it exists according to
Lemma 3.4.6. If N ≫ 1, the optimal value102 of k/N is |1 − z|/(1 + |1 − z|). If
z = e±it, 0 < t ≤ π, the error is O

(
(1 + 2 sin t

2 )−i
)
.

Proof. Sketch: The results of the generalized Euler transformation is in Sec. 3.4.3
denoted by Mn,k(z). The computation uses N = n + k terms (or partial sums)
of the power series for S(z); n terms of the original series—the head—are added,
and Euler’s transformation is applied to the next k terms—the tail. Set n/N = µ,
i.e. n = µN , k = (1 − µ)N , and denote the error of Mn,k by RN,µ(z). Euler’s
transformation is based on the operator P = P (z) = z

1−z∆. A multiplication by
the operator P corresponds to a multiplication by z

1−z (t − 1) inside the integral
sign.

First suppose that |z| < 1. By the definitions of S(z) and Mn,k(z) in Theo-
rem 3.4.1,

RN,µ(z) ≡ S −Mn,k =
zn

1 − z

∞∑

s=k

P sun =
zn

1 − z

∫ 1

0

∞∑

s=k

(z(t− 1)

(1 − z)

)s

tn dβ(t),

=
zn

1 − z

∫ 1

0

(z(t− 1)

(1 − z)

)k tn dβ(t)

1 − z(t− 1)/(1 − z)
(3.4.28)

= (−1)k
zN

(1 − z)k

∫ 1

0

(1 − t)ktn
dβ(t)

1 − zt
.

102In practice this is approximately found by the termination criterion of the algorithm in
Sec3.4.3.
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We see that the error oscillates as stated in Sec. 3.4.3. Again, by analytic continu-
ation, this holds for all z except for the real interval [1,∞]. Then

|RN,µ(z)|1/N ≤ |z/(1 − z)1−µ| max
t∈[0,1]

((1 − t)1−µtµ
)
c1/N , c =

∫ 1

0

|dβ(t)|
|1 − zt| .

The first part of the theorem has n = 0, hence µ = 0. We obtain

lim
N→∞

|RN,0|1/N ≤ |z/(1 − z)|

as stated. This is less than unity if |z| < |1 − z|, i.e. if ℜ(z) < 1
2 .

Now we consider the second part of the theorem. The maximum occurring in
the above expression for |RN,µ(z)|1/N (with N,µ fixed) takes place at t = µ. Hence

|RN,µ(z)|1/N ≤ |z/(1 − z)1−µ|c1/N (1 − µ)1−µµµ.

An elementary optimization shows that the value of µ that minimizes this bound
for |RN,µ(z)|1/N is µ = 1/(|1 − z| + 1), i.e.

k = (1 − µ)N =
N |1 − z|
|1 − z|+ 1

,

and the minimum equals |z|/(|1 − z| + 1). The details of these two optimizations
are left for Problem 3.4.34. This proves the second part of the theorem.

This minimum turns out to be a rather realistic estimate of the convergence
ratio of the optimal generalized Euler-transformation for power series with d.c.m.
coefficients, unless β(t) is practically constant in some interval around t = µ; the
exception happens, e.g., if un = an, 0 < a < 1, a 6= µ, see Problem 3.4.33.

We shall here list a few criteria for higher monotonicity, by which one can often
answer the question whether a function is c.m. or d.c.m. or neither. When several
c.m. or d.c.m. are involved, the intervals should be reduced to the intersection of
the intervals involved. By Theorem 3.4.5, the question is then settled also for the
corresponding sequence. In simple cases the question can be answered directly by
means of the definition or the above theorem, e.g., for u(s) = e−ks, s−k, (k ≥ 0),
for ℜs ≥ 0 in the first case, for ℜs > 0 in the second case.

(A) If u(s) is c.m., and a, b ≥ 0, then g(s) = u(as + b) and (−1)ju(j)(s), are
c.m., j = 1, 2, 3, . . .. The integral

∫∞
s
u(t) dt is also completely monotonic, if it is

convergent. (The interval of complete monotonicity may not be the same for g as
for f). Analogous statements hold for sequences.

(B) The product of two c.m. is completely monotonic. Similarly, the product of two
d.c.m. is d.c.m. This can evidently be extended to products of any number of factors,
and hence to every positive integral power of a c.m. or d.c.m. The proof is left for
Problem 3.4.36.

(C) A uniformly convergent positive linear combination of c.m. is itself c.m. The
same criterion holds for d.c.m., without the requirement of positivity. The term
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”positive linear combination” includes sums with positive coefficients and, more
generally, Stieltjes integrals

∫
u(s; p) dγ(p), where γ(p) is non-decreasing.

(D) Suppose that u(s) is a d.c.m. for s ≥ a. F (u(s)) is then a d.c.m. for s > a, if the
radius of convergence of the Taylor expansion for F (z) is greater than max |u(s)|.
Suppose that u(s) is c.m. for s ≥ a. We must then add the assumption that the
coefficients of the Taylor expansion of F (z) are non-negative, in order to make sure
that F (u(s)) is c.m. for s ≥ a.

These statements are important particular cases of (C). We also used (B),
according to which each term u(s)k is c.m. (or a d.c.m. in the first statement). Two
illustrations: g(s) = (1 − e−s)−1 is c.m. for s > 0;
h(s) = (s2 + 1)−1 a d.c.m. at least for s > 1 (choose z = s−2). The expansion into
powers of s−2 also provides an explicit decomposition

h(s) = (s−2 + s−6 + . . .) − (s−4 + s−8 + . . .) = s2/(s4 − 1) − 1/(s4 − 1)

where the two components are c.m. for s > 1. See also Example 3.4.8.

(E) If g′(s) is c.m. for s > a, and if u(z) is c.m. in the range of g(s) for s > a, then
F (s) = u(g(s)) is c.m. for s > a. (Note that g(s) itself is not c.m.)
For example, we shall show that 1/ ln s is c.m.for s > 1. Set g(s) = ln s, u(z) = z−1,
a = 1. Then u(z) is completely monotonic for z > 0, and g′(s) = s−1 is c.m. for
s > 0, a fortiori for s > 1 where ln s > 0. Then the result follows from (E).

The problems of Sec. 3.4 contain many interesting examples that can be treated
by means of these criteria. One of the most important is that every rational function
that is analytic and bounded in a half-plane is d.c.m.there; see Problem 3.4.35:Some-
times a table of Laplace transforms (see, e.g., the Handbook [1, Chap. 29]) can be
useful in combination with the criteria below.

Another set of criteria is related to the analytic properties of c.m. and d.c.m.
functions. Let u(s) be d.c.m. for s > a. According to statement 4 of Theorem 3.4.5,
u(s) is analytic and bounded for s ≥ a′ for any a′ > a. The converse of this is not
unconditionally true. If, however, we add the conditions that

∫ ∞

−∞
|u(σ + iω)| dω <∞, u(s) → 0, as |s| → ∞, σ ≥ a′, (3.4.29)

then it can be shown that u(s) is a d.c.m. for s > a. This condition is rather
restrictive; there are many d.c.m. that do not satisfy it, for example, functions of
the form e−ks or k + b(s− c)−γ , (k ≥ 0, b ≥ 0, c > a, 0 < γ ≤ 1). The following is
a reasonably powerful criterion: u(s) is a d.c.m. for s > a, e.g., if we can make a
decomposition of the form

u(s) = f1(s) + f2(s) or u(s) = f1(s)f2(s),

where f1(s) is known to be d.c.m. for s > a, and f2(s) satisfies the conditions in
(3.4.29).
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Theorem 3.4.8.
Suppose that u(s) is c.m. for some s though not for all s. Then a singularity

on the real axis, at (say) s = a, must be among the rightmost singularities; u(s) is
c.m. for s > a, hence analytic for ℜs > a.

The statement in the theorem is not generally true if u(s) is only d.c.m.
Suppose that u(s) is d.c.m. for s > a, though not for any s < a. Then we cannot
even be sure that there exists a singularity s∗ such that ℜs∗ = a.

Example 3.4.8.
This theorem can be used for establishing that a given function is not a c.m.

For example. u(s) = 1/(1 + s2) is not c.m. since the rightmost singularities are
s = ±i, while s = 0 is no singularity. u(s) is a d.c.m, for s > 0, however, since it
is analytic and bounded, and satisfies (3.4.29), for any positive a′. This result also
comes from the general statement about rational functions bounded in a half-plane;
see Problem 3.4.35.

Another approach: in any text about Laplace transforms you find that, for
s > 0,

1

s2 + 1
=

∫ ∞

0

e−sx sinxdx =

∫ ∞

0

e−sx(1 + sinx) dx −
∫ ∞

0

e−sx dx.

Now α′(x) ≥ 0 in both terms. Hence the formula (1/s+ 1/(s2 + 1))− 1/s expresses
1/(s2 + 1) as the difference of two c.m. sequences for s > 0.

The easy application of criterion (D) above gave a smaller interval (s > 1),
but a faster decrease of the c.m. terms as s→ ∞.

Another useful criterion for this kind of negative conclusion is that a c.m.
sequence cannot decrease faster than every exponential as s → +∞, for s ∈ R,
unless it is identically zero. For there exists a number ξ such that α(ξ) > 0, hence

u(s) =

∫ ∞

0

e−sxdα(x) ≥
∫ ξ

0

e−sxdα(x) ≥ e−sξα(ξ).

For example, e−s
2

and 1/Γ(s) are not c.m. Why does this not contradict the fact
that s−1e−s is c.m.?

These ideas can be generalized. Suppose that {ci}∞i=0 is a given sequence, such
that the sum C(t) ≡∑∞

i=0 cit
i is known, and that ui is c.m. or d.c.m. (ci and C(t)

may depend on a complex parameter z too). Then

Sc =

∞∑

i=0

ciui =

∞∑

i=0

ci

∫ 1

0

ti dβ(t)

∫ 1

0

C(t) dβ(t).

It is natural to ask how well Sc is determined if ui has been computed for
i < N , if {un}∞0 is constrained to be c.m. A systematic way to obtain very good
bounds is to find a polynomial Q ∈ PN , such that |C(t) − Q(t)| ≤ ǫN , ∀t ∈ [0, 1].
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Then

|Sc −Q(E)u0| =

∣
∣
∣
∣

∫ 1

0

(
C(t) −Q(t)

)
dβ(t)

∣
∣
∣
∣
≤ ǫN

∫ 1

0

|dβ(t)|.

Note that Q(E)u0 is a linear combination of the computed values ui, i < N , with
coefficients independent of {un}. For C(t; z) = (1 − tz)−1 the generalized Euler-
transformation (implicitly) works with a particular array of polynomial approxima-
tions, based on Taylor expansion, first at t = 0, then at t = 1.

Can we find better polynomial approximations? For C(t; z) = (1 − tz)−1,
Gustafson’s Chebyshev acceleration (GCA) [162]. is, in most respects, supe-
rior to Euler-transformation. Like Euler’s Transformation this is based on linear
transformations of sequences and has the same range of application as the optimal
Euler Transformation. For GCA

ǫ
1/N
N → 1/(3 +

√
8)

if z = −1. The number of terms needed for achieving a certain accuracy is thus
for GCA about ln(3 +

√
8)/ ln 3 ≈ 1.6 times as large as for the optimal Euler-

transformation.

3.4.5 Euler–Maclaurin’s Formula

In the summation of series with essentially positive terms the tail of the sum can
be approximated by an integral by means of the trapezoidal rule.

As an example, consider the sum S =
∑∞
j=1 j

−2. The sum of the first nine
terms is, to four decimal places, 1.5398. This suggests to compare the tail of the
series with the integral of x−2 from 10 to ∞. We approximate the integral according
to the trapezoidal rule (see Sec. 1.1.4)

∫ ∞

10

x−2 dx =
1

2
(10−2 + 11−2) +

1

2
(11−2 + 12−2) + . . . =

∞∑

j=10

j−2 − 1

2
10−2.

Hence it follows that

∞∑

j=1

j−2 ≈ 1.53977 + [−x−1]∞10 + 0.0050 = 1.53977 + 0.1050 = 1.64477.

The correct answer is π2/6 = 1.64493 40668 4823. We would have needed about
10,000 terms to get the same accuracy by direct addition of the terms!

The above procedure is not a coincidental trick, but a very useful method. A
further systematic development of the idea leads to the important Euler–Maclaurin
summation formula. We first derive this heuristically by operator techniques and
exemplify its use, including a somewhat paradoxical example that shows that a
strict treatment with the consideration of the remainder term is necessary for very
practical reasons. Since this formula has several other applications, for example, in
numerical integration, (see Sec. 5.2) we formulate it more generally than needed for
the summation of infinite series.
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Consider to begin with a rectangle sum on the finite interval [a, b], with n steps
of equal length h, a+ nh = b; with the operator notation introduced in Sec. 3.3.2.

h

n−1∑

i=0

f(a+ ih) = h

n−1∑

i=0

Eif(a) = h
En − 1

E − 1
f(a) =

(En − 1)

D

hD

ehD − 1
f(a).

We apply, to the second factor, the expansion derived in Example 3.1.5, with the
Bernoulli numbers Bν . (Recall that a+ nh = b, Enf(a) = f(b).)

h

n−1∑

i=0

f(a+ ih) =
(En − 1)

D

(

1 +

∞∑

ν=1

Bν(hD)ν

ν!

)

f(a) (3.4.30)

=

∫ b

a

f(x) dx +

k∑

ν=1

hνBν
ν!

(
f (ν−1)(b) − f (ν−1)(a)

)
+Rk+1.

Here Rk+1 is a remainder term that will be discussed thoroughly in Theorem 3.4.10.
Set h = 1, and assume that f(b), f ′(b), . . . tend to zero as b → ∞. Recall that
B1 = − 1

2 , B2j+1 = 0 for j > 0, and set k = 2r+1. This yields Euler–Maclaurin’s
summation formula103

∞∑

i=0

f(a+ i) =

∫ ∞

a

f(x) dx +
f(a)

2
−

r∑

j=1

B2jf
(2j−1)(a)

(2j)!
+ R2r+2 (3.4.31)

=

∫ ∞

a

f(x) dx +
f(a)

2
− f ′(a)

12
+
f (3)(a)

720
− . . .

in a form suitable for the convergence acceleration of series of essentially positive
terms. We give in Table 3.4.2 a few coefficients related to the Bernoulli and the
Euler numbers.

Table 3.4.2. Bernoulli and Euler numbers; B1 = −1/2, E1 = 1.

2j 0 2 4 6 8 10 12

B2j 1
1

6
− 1

30

1

42
− 1

30

5

66
− 691

2730
B2j

(2j)!
1

1

12
− 1

720

1

30240
− 1

1209600

1

47900160
B2j

2j(2j − 1)
1

1

12
− 1

360

1

1260
− 1

1680

1

1188
− 691

360360

E2j 1 −1 5 −61 1385 −50521 2702765

There are some obscure points in this operator derivation, but we shall consider
it as a heuristic calculation only and shall not try to legitimate the various steps of

103Leonhard Euler and the British mathematician Colin Maclaurin apparently discovered the
summation formula independently; see Goldstine [147, p. 84]. Euler’s publication came 1738.
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it. With an appropriate interpretation, a more general version of this formula will
be proved by other means in Theorem 3.4.10. A general remainder term is obtained
there, if you let b→ ∞ in (3.4.37). You do not need it often, because the following
much simpler error bound is usually applicable—but there are exceptions.

The Euler–Maclaurin expansion (on the right-hand side) is typically semi-
convergent only. Nevertheless a few terms of the expansion often gives suprisingly
high accuracy with simple calculations. For example, if f(x) is c.m., i.e. if

(−1)jf (j)(x) ≥ 0, x ≥ a, j ≥ 0,

then the partial sums oscillate strictly around the true result; the first neglected
term is then a strict error bound. (This statement also follows from the theorem
below.)

Before we prove the theorem we shall exemplify how the summation formula
is used in practice.

Example 3.4.9.
We return to the case of computing S =

∑∞
j=1 j

−2. and treat it with more

precision and accuracy. With f(x) = x−2, a = 10, we find
∫∞
a
f(x) dx = a−1,

f ′(a) = −2a−3, f ′′′(a) = −24a−5, . . .. By (3.4.31), (r = 2),

∞∑

x=1

x−2 =

9∑

x=1

x−2 +

∞∑

i=0

(10 + i)−2

= 1.53976 7731+ 0.1 + 0.005 + 0.00016 6667− 0.00000 0333+R6

= 1.64493 4065+R6.

Since f(x) = x−2 is c.m. (see Definition 3.4.2), the first neglected term is a strict
error bound; it is less than 720 · 10−7/30240 < 3·10−9. (The actual error is approx-
imately 2·10−9.)

Although the Euler–Maclaurin expansion, in this example; seems to converge
rapidly, it is in fact, only semi-convergent for any a > 0, and this is rather typical.
We have namely f (2r−1)(a) = −(2r)!a−2r−1, and, by Example 3.1.5, B2r/(2r)! ≈
(−1)r+12(2π)−2r.The ratio of two successive terms is thus −(2r + 2)(2r + 1)/(2πa)2,
hence the modulus of terms increase when 2r + 1 > 2πa.

The “rule” that one should terminate a semi-convergent expansion at the term
of smallest magnitude, is in general no good for Euler–Maclaurin applications, since
the high order derivatives (on the right-hand side) are typically much more difficult
to obtain than a few more terms in the expansion on the left-hand side. Typically,
you first choose r, r ≤ 3, depending on how tedious the differentiations are, and
then you choose a in order to meet the accuracy requirements.

In this example we were lucky to have access to simple closed expressions for
the derivatives and the integral of f . In other cases, one may use the possibilities
for the numerical integration on an infinite interval mentioned in Chapter 5. In
Problem 3.4.19 (a) you find two formulas that result from the substitution of the
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formulas (3.3.48) that express higher derivatives in terms of central differences into
the Euler–Maclaurin expansion.

An expansion of f(x) into negative powers of x is often useful both for the
integral and for the derivatives.

Example 3.4.10.
We consider f(x) = (x3 + 1)−1/2, for which the expansion

f(x) = x−3/2(1 + x−3)−1/2 = x−1.5 − 1

2
x−4.5 +

3

8
x−7.5 − . . .

was derived and applied in Example 3.1.6. It was found that

∫∞
10 f(x) dx = 0.632410375,

correctly rounded, and that f ′′′(10) = −4.13 ·10−4 with less than 1% error. The
f ′′′(10) term in the Euler–Maclaurin expansion is thus −5.73 10−7, with absolute
error less than 6 ·10−9. Inserting this into Euler–Maclaurin’s summation formula,
together with the numerical values of

∑9
n=0 f(n) and 1

2f(10)− 1
12f

′(10), we obtain
∑∞

n=0 f(n) = 3.7941 1570± 10−8. The reader is advised to work out the details as
an exercise.

Example 3.4.11.
Let f(x) = e−x

2

, a = 0. Since all derivatives of odd order vanish at a = 0,

then the expansion (3.4.31) may give the impression that
∑∞

j=0 e
−j2 =

∫∞
0 e−x

2

dx+
0.5 = 1.386 2269, but the sum (that is easily computed without any convergence
acceleration) is actually 1.386 3186, hence the remainder R2r+2 cannot tend to zero
as r → ∞. The infinite Euler–Maclaurin expansion, where all terms but two are
zero, is convergent but is not valid. Recall the distinction between the convergence
and the validity of an infinite expansion made in Sec. 3.1.2.

In this case f(x) is not c.m.; for example, f ′′(x) changes sign at x = 1. With
appropriate choice of r, the general error bound (3.4.37) will tell us that the error
is very small, but it cannot be used for proving that it is zero—because this is not
true.

The mysteries of these examples have hopefully raised the appetite for a more
substantial theory, including an error bound for the Euler–Maclaurin formula. We
first need some tools that are interesting in their own right.

The Bernoulli polynomial Bn(t) is an nth degree polynomial defined by the
symbolic relation Bn(t) = (B + t)n, where the exponents of B become subscripts
after the expansion according to the binomial theorem. The Bernoulli numbers Bj
were defined in Example 3.1.5. Their recurrence relation (3.1.19) can be written in
the form

n−1∑

j=0

(
n

j

)

Bj = 0, n ≥ 2,

or “symbolically” (B + 1)n = Bn = Bn, (for the computation of Bn−1), n 6= 1,



“dqbjV
2007/5/28
page 298

298 Chapter 3. Series, Operators and Continued Fractions

hence B0(t) = 1, B1(t) = t+B1 = t− 1/2 and

Bn(1) = Bn(0) = Bn, n ≥ 2,

The Bernoulli function B̂n(t) is a piecewise polynomial defined for t ∈ R by the
equation B̂n(t) = Bn(t− ⌊t⌋).104 (Note that B̂n(t) = Bn(t) if 0 ≤ t < 1.)

Lemma 3.4.9.

(a) B̂′
n+1(t)/(n+ 1)! = B̂n(t)/n!, (n > 0),

B̂n(0) = Bn. (For n = 1 this is the limit from the right.)

∫ 1

0

Bn(t)

n!
dt =

{
1, if n = 0;
0, otherwise.

(b) The piecewise polynomials B̂p(t) are periodic; B̂p(t + 1) = B̂p(t). B̂1(t) is

continuous, except when t is an integer. For n ≥ 2, B̂n ∈ Cn−2(−∞,∞).

(c) The Bernoulli functions have the following (modified) Fourier expansions,
(r ≥ 1),

B̂2r−1(t)

(2r − 1)!
= (−1)r2

∞∑

n=1

sin 2nπt

(2nπ)2r−1
,

B̂2r(t)

(2r)!
= (−1)r−12

∞∑

n=1

cos 2nπt

(2nπ)2r
.

Note that B̂n(t) is an even (odd) function, when n is (even odd).

(d) |B̂2r(t)| ≤ |B2r|.

Proof. Statement (a) follows directly from the symbolic binomial expansion of the
Bernoulli polynomials.

The demonstration of statement (b) is left for a problem. The reader is advised
to draw the graphs of a few low order Bernoulli functions.

The Fourier expansion for B̂1(t) follows from the Fourier coefficient formulas
(3.2.6), (modified for the period 1 instead of 2π). The expansions for B̂p(t), are then
obtained by repeated integrations, term by term, with the use of (a). Statement
(d) then follows from the Fourier expansion, because B̂2r(0) = B2r.

Remark 3.4.4. For t = 0 we obtain an interesting classical formula, together with
a useful asymptotic approximation that was obtained in a different way in Sec. 3.1.2.

∞∑

n=1

1

n2r
=

|B2r|(2π)2r

2(2r)!
;

|B2r|
(2r)!

∼ 2

(2π)2r
. (3.4.32)

104The function ⌊t⌋ is the floor function defined as the largest integer ≤ t, i.e. the integer part
of t. In many older and current works the symbol [t] is used instead, but this should be avoided.
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Also note, how the rate of decrease of the Fourier coefficients is related to the type
of singularity of the Bernoulli function at the integer points. (It does not help that
the functions are smooth in the interval [0, 1].)

The Bernoulli polynomials have a generating function that is elegantly ob-
tained by means of the following “symbolic” calculation.

∞∑

0

Bn(y)x
n

n!
=

∞∑

0

(B + y)nxn

n!
= e(B+y)x = eBxeyx =

xeyx

ex − 1
. (3.4.33)

If the series is interpreted as a power series in the complex variable x, the radius of
convergence is 2π.

Theorem 3.4.10. [The Euler–Maclaurin Formula]
Set xi = a+ ih, xn = b, suppose that f ∈ C2r+2(a, b), and let T̂ (a : h : b)f be

the trapezoidal sum

T̂ (a : h : b)f =
n∑

i=1

h

2

(
f(xi−1)+ f(xi)

)
= h

( n−1∑

i=0

f(xi)+ 1
2 (f(b)− f(a))

)

. (3.4.34)

Then

T̂ (a : h : b)f −
∫ b

a

f(x) dx =
h2

12

(
f ′(b) − f ′(a)

)
− h4

720

(
f ′′′(b) − f ′′′(a)

)
(3.4.35)

+ . . . +
B2rh

2r

(2r)!

(
f (2r−1)(b) − f (2r−1)(a)

)
+R2r+2(a, h, b)f.

The remainder R2r+2(a, h, b)f is O(h2r+2). It is represented by an integral with
a kernel of constant sign in (3.4.36). An upper bound for the remainder is given
in (3.4.37). The estimation of the remainder is very simple in certain important
particular cases:

• If f (2r+2)(x) does not change sign in the interval [a, b] then R2r+2(a, h, b)f
has the same sign as the first neglected term.105

• If f (2r+2)(x) and f (2r)(x) have the same constant sign in [a, b], then the value
of the left-hand side of (3.4.35) lies between the values of the partial sum of
the expansion displayed in (3.4.35) and the partial sum with one term less.106

In the limit, as b → ∞, these statements still hold—also for the summation
formula (3.4.31)—provided that the left hand side of (3.4.35) and the derivatives
f (ν)(b) (ν = 1 : 2r + 1) tend to zero, if it is also assumed that

∫ ∞

a

|f (2r+2)(x)| dx <∞.

105If r = 0 all terms of the expansion are “neglected”.
106Formally this makes sense for r ≥ 2 only, but if we interpret f(−1) as “the empty symbol”, it

makes sense also for r = 1. If f is c.m. the statement holds for every r ≥ 1. This is easy to apply,
because simple criteria for complete monotonicity are given in Sec. 3.4.4.
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Proof. To begin with we consider a single term of the trapezoidal sum, and set
x = xi−1 + ht, t ∈ [0, 1], f(x) = F (t). Suppose that F ∈ Cp[0, 1], where p is an
even number.

We shall apply repeated integration by parts, Lemma 3.2.6, to the integral
∫ 1

0
F (t) dt =

∫ 1

0
F (t)B0(t) dt. Use statement (a) of Lemma 3.4.9 in the equivalent

form,
∫
Bj(t)/j! dt = (Bj+1(t)/(j + 1)!

Consider the first line of the expansion in the next equation. Recall that
Bν = 0 if ν is odd and ν > 1. Since Bj+1(1) = Bj+1(0) = Bj+1, j will thus be odd
in all non-zero terms, except for j = 0. Then, with no loss of generality, we assume
that p is even.

∫ 1

0

F (t) dt =

p−1
∑

j=0

(−1)jF (j)(t)
Bj+1(t)

(j + 1)!

∣
∣
∣
∣

1

t=0

+ (−1)p
∫ 1

0

F (p)(t)
Bp(t)

p!
dt

=
F (1) + F (0)

2
+

p−1
∑

j=1

−Bj+1

(j + 1)!

(
F (j)(1) − F (j)(0)

)
+

∫ 1

0

F (p)(t)
Bp(t)

p!
dt

=
F (1) + F (0)

2
−
p−3
∑

j=1

Bj+1

(j + 1)!

(
F (j)(1) − F (j)(0)

)
−
∫ 1

0

F (p)(t)
Bp −Bp(t)

p!
dt.

The upper limit of the sum is reduced to p− 3, since the last term (with j = p− 1)
has been moved under the integral sign, and all values of j are odd. Set j + 1 = 2k
and p = 2r + 2. Then k is an integer that runs from 1 to r. Hence

p−3
∑

j=1

Bj+1

(j + 1)!
(F (j)(1) − F (j)(0)) =

r∑

k=1

B2k

(2k)!
(F (2k−1)(1) − F (2k−1)(0)).

Now set F (t) = f(xi−1 +ht), t ∈ [0, 1]. Then F (2k−1)(t) = h2k−1f (2k−1)(xi−1 +ht),

and make abbreviations such as fi = f(xi), f
(j)
i = f (j)(xi).

∫ xi

xi−1

f(x) dx = h

∫ 1

0

F (t) dt =
h(fi−1 + fi)

2
−

r∑

k=1

B2kh
2k

(2k)!
(f

(2k−1)
i − f

(2k−1)
i−1 ) −R,

where R is the local remainder that is now an integral over [xi−1, xi]. Adding these
equations, for i = 1 : n, yields a result equivalent to (3.4.35), namely

∫ b

a

f(x) dx = T̂ (a : h : b)f −
r∑

k=1

B2kh
2k

(2k)!
f (2k−1)(x)

∣
∣
∣
∣

b

x=a

−R2r+2(a, h, b)f,

R2r+2(a, h, b)f = h2r+2

∫ b

a

(

B2r+2 − B̂2r+2((x − a)/h))
)f (2r+2)(x)

(2r + 2)!
dx. (3.4.36)

By Lemma 3.4.9, |B̂2r+2(t)| ≤ |B2r+2|, hence the kernel B2r+2 − B̂2r+2((x − a)/h)
has the same sign as B2r+2. Suppose that f (2r+2)(x) does not change sign on (a, b).
Then

sign f (2r+2)(x) = sign
(
f (2r+1)(b) − f (2r+1)(a)

)
,
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hence R2r+2(a, h, b)f has the same sign as the first neglected term. The second
statement about “simple estimation of the remainder” then follows from Theo-
rem 3.1.4, since the Bernoulli numbers (with even subscripts) have alternating signs.

If sign f (2r+2)(x) is not constant, then we note instead that

|B2r+2 − B̂2r+2((x− a)/h)| ≤ |2B2r+2|,

and hence

|R2r+2(a, h, b)f | ≤ h2r+2 |2B2r+2|
(2r + 2)!

∫ b

a

|f (2r+2)(x)| dx

≈ 2
( h

2π

)2r+2
∫ b

a

|f (2r+2)(x)| dx. (3.4.37)

If
∫∞
a |f (2r+2)(x)| dx <∞ this holds also in the limit as b→ ∞.

Note that there are (at least) three parameters here that can be involved in
different natural limit processes: For example, one of the parameters can tend to its
limit, while the two others are kept fixed. The remainder formula (3.4.37) contains
all you need for settling various questions about convergence.

• b → ∞; natural when Euler–Maclaurin’s formula is used as a summation
formula, or for deriving an approximation formula valid when b is large.

• h → 0; natural when Euler–Maclaurin’s formula is used in connection with
numerical integration. You see how the values of derivatives of f at the
endpoints a, b can highly improve the estimate of the integral of f , obtained by
the trapezoidal rule with constant step size. Euler–Maclaurin’s formula is also
useful for the design and analysis of other methods for numerical integration;
see Romberg’s method Sec. 5.2.2.

• r → ∞; limr→∞R2r+2(a, h, b)f = 0 can be satisfied only if f(z) is an entire
function, such that |fn)(a)| = o((2π/h)n) as n→ ∞. Fortunately, this type of
convergence is rarely needed in practice. With appropriate choice of b and h,
the expansion is typically rapidly semi-convergent. Since the derivatives of f
are typically more expensive to compute than the values of f , one frequently
reduces h (in integration) or increases b (in summation or integration over
an infinite interval), and truncates the expansion several terms before one
has reached the smallest term that is otherwise the standard procedure with
alternating semi-convergent expansion.

Variations of the Euler–Maclaurin summation formula, with finite differences
instead of derivatives in the expansion, are given in Problem 3.4.19, where you also
find a more general form of the formula, and two more variations of it.

Euler–Maclaurin’s formula can also be used for finding an algebraic expression
for a finite sum; see Problem 3.4.31 or, as in the following example, for finding an
expansion that determines the asymptotic behavior of a sequence or a function.
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Example 3.4.12.
To derive an expansion that generalizes Stirling’s formula (3.2.34). we shall

use Euler–Maclaurin formula for f(x) = lnx, a = m > 0, h = 1, b = n ≥ m. We
obtain

T̂ (m : 1 : n)f =

n∑

i=m+1

ln i− 1
2 lnn+ 1

2 lnm = ln(n!) − 1
2 lnn− ln(m!) + 1

2 lnm,

f (2k−1)(x) = (2k − 2)!x1−2k,

∫ n

m

f(x) dx = n lnn− n−m lnm+m.

Note that T̂ (m : 1 : n)f and
∫ n

m
f(x) dx are unbounded as n → ∞, but their

difference is bounded. Putting these expressions into (3.4.35), and separating the
terms containing n from the terms containing m gives

ln(n!) − (n+ 1
2 ) lnn+ n−

r∑

k=1

B2k

2k(2k − 1)n2k−1
(3.4.38)

= ln(m!) − (m+ 1
2 ) lnm+m−

r∑

k=1

B2k

2k(2k − 1)m2k−1
−R2r+2(m : 1 : n).

By (3.4.37),

|R2r+2(m : 1 : n)| ≤
∫ n

m

|2B2r+2|
(2r + 2)x2r+2

dx

≤ |2B2r+2|
(2r + 2)(2r + 1)|m2r+1| ≈

(2r)!

π|2πm|2r+1
. (3.4.39)

Now let n→ ∞ with fixed r, m. First, note that the integral in the error bound con-
verges. Next, in most texts of calculus Stirling’s formula is derived in the following
form:

n! ∼
√

2πnn+
1
2 e−n (n→ ∞). (3.4.40)

If you take the natural logarithm of this, it follows that the left-hand side of (3.4.38)
tends to 1

2 ln(2π), and hence

ln(m!) = (m+ 1
2 ) lnm−m+ 1

2 ln(2π) +

r∑

k=1

B2k

2k(2k − 1)m2k−1
+R, (3.4.41)

where a bound for R is given by (3.4.39). The numerical values of the coefficients
are found in Table 3.4.2.

Remark 3.4.5.
You may ask why we refer to (3.4.40). Why not? Well, it is not necessary,

because it is easy to prove that the left-hand side of (3.4.38) increases with n and is
bounded; it thus tends to some limit C (say). The proof that C = ln

√
2π exactly is

harder, without the Wallis product idea (from 1655) or something equally ingenious
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or exotic. But if you compute the right-hand side of (3.4.38) form = 17, r = 5 (say),
and estimate the remainder, you will obtain C to a fabulous guaranteed accuracy,
in negligible computer time after a rather short programming time. And you may
then replace 1

2 ln 2π by your own C in (3.4.41), if you like.

Remark 3.4.6.
Almost the same derivation works also for f(x) = ln(x + z), m = 0, where z

is a complex number, not on the negative real axis. A few basic facts about the
gamma function are needed; see details in Henrici [178, Sec. 11.11, Example 3].

The result is that you just replace the integer m by the complex number z in the
expansion (3.4.41). According to the Handbook [1, 6.1.42] R is to be multiplied
by K(z) = supu≥0 |z2/(u2 + z2)|. For z real and positive, K(z) = 1, and since
f ′(x) = (z + x)−1 is c.m., it follows from Theorem 3.4.10 that, in this case, R is
less in absolute value than the first term neglected and has the same sign.

It is customary to write ln Γ(z + 1) instead of ln(z!). The gamma function
is one of the most important transcendental functions; see, e.g., the Handbook [1,
6.5] and Lebedev [214].

This formula (with m = z) is useful for the practical computation of ln Γ(z+1).
Its semi-convergence is best if ℜz is large and positive. If this condition is not
satisfied, the situation can easily be improved by means of logarithmic forms of the

• reflection formula: Γ(z)Γ(1 − z) = π/ sinπz,

• recurrence formula: Γ(z + 1) = zΓ(z).

By simple applications of these formulas the computation of ln Γ(z + 1) for
an arbitrary z ∈ C is reduced to the computation of the function for a number z′,
such that |z′| ≥ 17, ℜz′ > 1

2 , for which the total error, if r = 5, becomes typically
less than 10−14. See Problem 3.4.23.

Remark 3.4.7. As you may have noted, we write “the Euler–Maclaurin formula”
mainly for (3.4.35) that is used in general theoretical discussions, or if other applica-
tions than the summation of an infinite series are the primary issue. The term “the
Euler–Maclaurin summation formula” is mainly used in connection with (3.4.31),
i.e. when the summation of an infinite series is the issue. “The Euler–Maclaurin
expansion” denotes both the right-hand side of (3.4.35), except for the remainder,
and for the corresponding terms of (3.4.31). These distinctions are convenient for
us, but they are neither important nor in general use.

Although, in this section, the main emphasis is on the application of the Euler–
Maclaurin formula to the computation of sums and limits, we shall comment a little
on its possibilities for other applications.

• It shows that the global truncation error of the trapezoidal rule for
∫ b

a
f(x) dx

with step size h, has an expansion into powers of h2. Note that although the
expansion contains derivatives at the boundary points only, the remainder
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requires that |f (2r+2)| is integrable in the interval [a, b]. The Euler–Maclaurin
formula is thus the theoretical basis for the application of repeated Richard-
son extrapolation to the results of the trapezoidal rule, known as Romberg’s
method; see Sec. 5.2.2. Note that the validity depends on the differentiability
properties of f .

• The Euler–Maclaurin formula can be used for highly accurate numerical in-
tegration when the values of some derivatives of f are known at x = a and
x = b. More about this in Sec. 5.2.1.

• Theorem 3.4.10 shows that the trapezoidal rule is second order accurate, unless
f ′(a) = f ′(b), but there exist interesting exceptions. Suppose that the function
f is infinitely differentiable for x ∈ R, and that f has [a, b] as an interval of
periodicity, that is f(x + b − a) = f(x), ∀x ∈ R. Then f (k)(b) = f (k)(a), for
k = 0, 1, 2, . . ., hence every term in the Euler–Maclaurin expansion is zero for
the integral over the whole period [a, b]. One could be led to believe that the
trapezoidal rule gives the exact value of the integral, but this is usually not
the case; for most periodic functions f , limr→∞R2r+2f 6= 0; the expansion
converges, of course, though not necessarily to the correct result.

We shall illuminate these amazing properties of the trapezoidal rule from
different points of view in several places in this book, for example, in Sec. 5.2.3. See
also applications to the so-called bell sums in Problem 3.4.29.

3.4.6 Repeated Richardson Extrapolation

Let F (h) denote the value of a certain quantity obtained with step-length h. In
many calculations one wants to know the limiting value of F (h) as the step-length
approaches zero. But the work to compute F (h) often increases sharply as h → 0.
In addition, the effects of round-off errors often set a practical bound for how small
h can be chosen.

Often, one has some knowledge of how the truncation error F (h) − F (0) be-
haves when h→ 0. If

F (h) = a0 + a1h
p +O(hr), h→ 0, r > p,

where a0 = F (0) is the quantity we are trying to compute and a1 is unknown, then
a0 and a1 can be estimated if we compute F for two step lengths, h and qh, q > 1:

F (h) = a0 + a1h
p +O(hr),

F (qh) = a0 + a1(qh)
p +O(hr),

from which eliminating a1 we get

F (0) = a0 = F (h) +
F (h) − F (qh)

qp − 1
+O(hr). (3.4.42)
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This formula is called Richardson extrapolation, or the deferred approach to
the limit.107 Examples of this were mentioned in Chapter 1—the application of the
above process to the trapezoidal rule for numerical integration (where p = 2, q = 2),
and for differential equations p = 1, q = 2 for Euler’s method, p = 2, q = 2 for
Runge’s 2nd order method.

We call the term (F (h)−F (qh))/(qp − 1) the Richardson correction. It is
used in in (3.4.42) for improving the result. Sometimes it is used only for estimating
the error. This can make sense, for example, if the values of F are afflicted by other
errors, usually irregular, suspected to be comparable in size to the correction. If the
irregular errors are negligible, this error estimate is asymptotically correct. More
often, the Richardson correction is used as error estimate for the improved (or
extrapolated) value F (h) + (F (h) − F (qh))/(qp − 1). This is typically a strong
overestimate; the error estimate is O(hp), while the error is O(hr), (r > p).

Suppose that a more complete expansion of F (h) in powers of h, is known to
exist,

F (h) = a0 + a1h
p1 + a2h

p2 + a3h
p3 + . . . , 0 < p1 < p2 < p3 < . . . , (3.4.43)

where the exponents are known, while the coefficients are unknown. Then one can
repeat the use of Richardson extrapolation in a way described below. This process is,
in many numerical problems—especially in the numerical treatment of integral and
differential equations—one of the simplest ways to get results which have tolerable
truncation errors. The application of this process becomes especially simple when
the step lengths form a geometric sequence H,H/q,H/q2, . . ., where q > 1 and H
is the basic step-length.

Theorem 3.4.11.
Suppose that there holds an expansion of the form of (3.4.43), for F (h), and

set F1(h) = F (h),

Fk+1(h) =
qpkFk(h) − Fk(qh)

qpk − 1
= Fk(h) +

Fk(h) − Fk(qh)

qpk − 1
, (3.4.44)

for k = 1 : (n− 1), where q > 1. Then Fn(h) has an expansion of the form

Fn(h) = a0 + a(n)
n hpn + a

(n)
n+1h

pn+1 + . . . ; a(n)
ν =

n−1∏

k=1

qpk − qpν

qpk − 1
aν . (3.4.45)

Note that a
(n)
ν = 0 for all ν < n.

Proof. Set temporarily Fk(h) = a0 + a
(k)
1 hp1 + a

(k)
2 hp2 + . . . + a

(k)
ν hpν + . . .. Put

this expansion into the first expression on the right-hand side of (3.4.44), and,

107The idea of a deferred approach to the limit is sometimes used also in the experimental
sciences—for example, when some quantity is to be measured in complete vacuum (difficult or
expensive to produce). It can then be more practical to measure the quantity for several different
values of the pressure. Expansions analogous to equation (3.4.43) can sometimes be motivated by
the kinetic theory of gases.
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substituting k+ 1 for k, put it into the left-hand side. By matching the coefficients
for hpν we obtain

a(k+1)
ν = a(k)

ν (qpk − qpν )/(q(pk) − 1).

By (3.4.43), the expansion holds for k = 1, with a
(1)
ν = aν . The recursion formula

then yields the product formula for a
(n)
ν . Note that a

(ν+1)
ν = 0, hence a

(n)
ν = 0, for

all ν < n.

The product formula is for theoretical purpose. The recurrence formula is for
practical use. If an expansion of the form of (3.4.43) is known to exist, the above
theorem gives a way to compute increasingly better estimates of a0. The leading

term of Fn(h) − a0 is a
(n)
n hpn , the exponent of h increases with n. A moment’s

reflection on equation (3.4.44) will convince the reader that (using the notation of
the theorem) Fk+1(h) is determined by the k + 1 values

F1(H), F1(H/q), . . . , F1(H/q
k).

With some changes in notation we obtain the following algorithm.

Algorithm 3.2. Repeated Richardson Extrapolation.

Set

Tm,1 = F (H/qm−1), m = 1 : N, (3.4.46)

and for m = 2 : N , k = 1 : m− 1, compute

Tm,k+1 =
qpkTm,k − Tm−1,k

qpk − 1
= Tm,k +

Tm,k − Tm−1,k

qpk − 1
, (3.4.47)

where the second expression usually is preferred,

The computations for repeated Richardson extrapolation can be set up in the
following scheme,

T11

T21 T22

T31 T32 T33

T41 T42 T43 T44

where an extrapolated value in the scheme is obtained by using the quantity to
its left and the correction diagonally above. (In a computer the results are simply
stored in a lower triangular matrix.)

According to the argument above, one continues the process, until two values
in the same row agree to the desired accuracy, i.e.

|Tm,k − Tm,k−1| < Tol− CU,

where Tol is the permissible error, and CU is an upper bound of the irregular error,
(see below). (Tol should, of course, be chosen larger than CU .) If no other error
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estimate is available, mink |Tm,k−Tm,k−1|+CU is usually chosen as error estimate,
even though it is typically a strong overestimate.

Typically k = m, and Tmm is accepted as the numerical result, but this is not
always the case. For instance, if H has been chosen so large that the use of the basic
asymptotic expansion is doubtful, then the uppermost diagonal of the extrapolation
scheme contains nonsense and should be ignored, except for its element in the first
column. Such a case is detected by inspection of the difference quotients in a
column. If for some k, where Tk+2,k has been computed and the modulus of the
relative irregular error of Tk+2,k−Tk+1,k is less than (say) 20%, and, most important,
the difference quotient (Tk+1,k − Tk,k)/(Tk+2,k − Tk+1,k) is very different from its
theoretical value qpk , then the uppermost diagonal is to be ignored (except for its
first element). In such a case, one says that H is outside the asymptotic regime.

In this discussion a bound for the inherited irregular error is needed. We shall
now derive such a bound. Fortunately, it turns out that the numerical stability of
the Richardson scheme is typically very satisfactory, (although the total error bound
for Tmk will never be smaller than the largest irregular error in the first column).

Denote by ǫ1 the column vector with the irregular errors of the initial data.
We neglect the rounding errors committed during the computations.108 Then the
inherited errors satisfy the same linear recursion formula as the Tm,k, i.e.

ǫm,k+1 =
qpkǫm,k − ǫm−1,k

qpk − 1
.

Denote the kth column of errors by ǫk, and set ‖ǫk‖∞ = maxm |ǫm,k|. Then

‖ǫk+1‖∞ ≤ qpk + 1

qpk − 1
‖ǫk‖∞.

Hence, for every k, ‖ǫk+1‖∞ ≤ CU , where ‖ǫ1‖∞ = U and C is the infinite product

C =
∞∏

k=1

qpk + 1

qpk − 1
=

∞∏

k=1

1 + q−pk

1 − q−pk

that converges as fast as
∑
q−pk ; the multiplication of ten factors are thus more

than enough for obtaining a sufficiently accurate value of C.
The most common special case is an expansion where pk = 2k,

F (h) = a0 + a1h
2 + a2h

4 + a3h
6 + . . . . (3.4.48)

This expansion holds for the error in composite trapezoidal rule and is the basis
for Romberg’s method for numerical integration. The Richardson corrections then
become ∆/3,∆/15, ∆/63, . . . . In this case we find that C = 5

3 · 7
15 · · · < 2 (after less

than 10 factors).
For (systems of) ordinary differential equations there exist some general the-

orems, according to which the form of the asymptotic expansion (3.4.43) of the
global error can be found.

108They are usually for various reasons of less importance. One can also make them smaller by
subtracting a suitable constant from all initial data. This is applicable to all linear methods of
convergence acceleration.
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• For Numerov’s method for ordinary differential equations, discussed in Exam-
ple 3.3.15 and Problem 3.4.27, one can show that we have the same exponents
in the expansion for the global error, but a1 = 0. (and the first heading disap-
pears). We thus have the same product as above, except that the first factor
disappears, hence C < 2 · 3

5 = 1.2.

• For Euler’s method for ordinary differential equations, presented in Sec. 1.4.1,
pk = k; the Richardson corrections are ∆/1,∆/3,∆/7,∆/15, . . .. Hence C =
3 · 5

3 · 9
7 · · · = 8.25.

• For Runge’s 2nd order method, presented in Sec. 1.4.3, the exponents are the
same, but a1 = 0. We thus have the same product as for Euler’s method,
except that the first factor disappears, and C = 8.25/3 = 2.75.

In the special case that pj = j ·p, j = 1, 2, 3, . . . in (3.4.43), i.e. for expansions
of the form

F (h) = a0 + a1h
p + a2h

2p + a3h
3p + . . . , (3.4.49)

it is not necessary that the step sizes form a geometric progression. We can choose
any increasing sequence of integers q1 = 1, q2, . . . , qk, set hi = H/qi, and use an
algorithm that looks very similar to repeated Richardson extrapolation. Alternative
sequences, that may be suitable in the common case that the cost of evaluating F (h)
for small h is high, are the harmonic sequence 1, 2, 3, 4, 5, 6, 7, . . . and the sequence
1, 2, 3, 4, 8, 12, 16, 24, . . ., suggested by Bulirsch.

Note that the expansion (3.4.49) is a usual power series in the variable x = hp,
which can be approximated by a polynomial in x. Suppose that k + 1 values
F (H), F (H/q2), . . ., F (H/qk) are known. Then by the corollary to Theorem 4.2.1
is uniquely determined by the interpolation conditions

Q(xi) = F (H/qi), xi = (H/qi)
p, i = 1 : k.

Our problem is to find Q(0). Neville’s algorithm for iterative linear interpolation,
which will be derived in Sec. 4.2.3, is particularly convenient in this situation. After
a change of notation, Neville’s algorithm yields the following recursion: For m =
1 : N , set Tm,1 = F (H/qm), where 1 = q1 < q2 < q3 . . ., is any increasing sequence
of integers, and compute, for m = 2 : N , k = 1 : m− 1,

Tm,k+1 = Tm,k +
Tm,k − Tm−1,k

(qm/qm−k)p − 1
. (3.4.50)

The computations can be set up in a triangle matrix as for repeated Richardson
extrapolations.

We remark that Richardson extrapolation does not require an expansion of
the form (3.4.43). Let Tn,0 = Sn be a sequence converging to S and xn a sequence
of parameters converging to zero when n→ ∞. Then Richardson extrapolation can
be written as

Tn,k+1 = Tn,k −
Tn+1,k − Tn,k
xn+k+1 − xn

.
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There are conditions (obtained by P. J. Laurent) so that the columns and the
diagonals converge to the same limit S, and conditions for the convergence to be
accelerated; see Brezinski [43, Sec. II.3].

Example 3.4.13.
The ancient Greeks computed approximate values of the circumference of

the unit circle, 2π, by inscribing a regular polygon and computing its perimeter.
Archimedes considered the inscribed 96-sided regular polygon, whose perimeter is
6.28206 . . . = 2 · 3.14103 . . ..

In general, a regular n-sided polygon inscribed (circumscribed) in a circle with
radius 1 has perimeter 2an (2bn), where

an = n sin(π/n), bn = n sin(tan /n).

Clearly an < π < bn, giving lower and upper bound for π. Setting h = 1/n, we
have

an =
1

h
sinπh = π − π3

3!
h2 +

π5

5!
h4 − π7

7!
h6 + . . . ,

bn =
1

h
tanπh = π +

π3

3
h2 +

2π5

15
h4 − 17π7

315
h6 + . . . .

We first derive a recursion formula that leads from an and bn to a2n and b2n. Setting
nm = n1 · 2m−1 and

sm = 1/ sin(π/nm), tm = 1/ tan(π/nm),

we have anm
= nm/sm, bnm

= nm/tm. Using the trigonometric formula tan(x/2) =
sinx/(1 + cosx), we obtain the recursion

tm = sm−1 + tm−1, sm =
√

t2m + 1, m = 1, 2, . . . . (3.4.51)

Note that no trigonometric functions are used, only the square root, which can be
computed by Newton’s method.

Taking n1 = 6, gives a6 = 6/2 = 3, and b6 = 6/
√

3 = 3.4641 . . .. The
following table gives anm

for n1 = 6, m = 1 : 5, computed using IEEE double
precision arithmetic.

m nm anm
bnm

1 6 3.00000000000000 3.00000000000000

2 12 3.10582854123025 3.21539030917347

3 24 3.13262861328124 3.15965994209750

4 48 3.13935020304687 3.14608621513143

5 96 3.14103195089051 3.14271459964537

From this we can deduce that 3.1410 < π < 3.1427, or the famous, slightly weaker
rational lower and upper bounds of Archimedes 3 10

71 < π < 3 1
7 .
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The sequences a(h) and b(h) satisfy the assumptions for repeated Richardson
extrapolation with pk = 2k. Since the coefficients in the Taylor expansion for a(h)
decay faster we use the Richardson scheme with this sequence, giving the results
shown in the next table. A correctly rounded value of π to twenty digits reads

π = 3.14159 26535 89793 23846

and correct digits are shown in boldface.

3.14110472164033

3.14156197063157 3.14159245389765

3.14159073296874 3.14159265045789 3.14159265357789

3.14159253350506 3.14159265354081 3.14159265358975 3.14159265358979

The errors in successive columns decay as 4−2k, 4−3k, 4−4k, and the final num-
ber is correct to all 14 decimals shown. Hence the accuracy used in computing
values in the previous table, which could be thought excessive, has been put to
good use!109

Example 3.4.14 (Application to numerical differentiation).

From Bickley’s table (Table 3.3.1) for difference operators in Sec. 3.3.2, we
know that

δ

h
=

2 sinh(hD/2)

h
= D + a2h

2D3 + a4h
4D5 + . . . ,

µ = cosh(hD/2) = 1 + b2h
2D2 + b4h

4D4 + . . . ,

where the values of the coefficients are now unimportant to us. Hence

f ′(x) − f(x+ h) − f(x− h)

2h
= Df(x) − µδf(x)

h
and f ′′(x) − δ2f(x)

h2

have expansions into even powers of h. Repeated Richardson extrapolation can thus
be used with step sizes H , H/2, H/4, . . . and headings ∆/3, ∆/15, ∆/63, . . .. For
numerical examples, see problems of this section.

Richardson extrapolation can be applied in the same way to the computation
of higher derivatives. Because of the division by hk in the difference approxima-
tion of f (k), irregular errors in the values of f(x) are of much greater importance
in numerical differentiation than in interpolation and integration. It is therefore
important to use high order approximations in numerical differentiation, so that
larger values of h can be used.

109An extension of this example was used as a test problem for Mulprec, a package for (in princi-
ple) arbitrarily high precision floating-point arithmetic in Matlab. For instance, π was obtained to
203 decimal places with 22 polygons and 21 Richardson extrapolations in less than half a minute.
The extrapolations took a small fraction of this time. Nevertheless they increased the number of
correct decimals from approximately 15 to 203.
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Suppose that the irregular errors of the values of f are bounded in magnitude
by erb, these errors are propagated to µδf(x), δ2f(x),. . . with bounds equal to
erb/h, 4erb/h2, . . .. As mentioned earlier, the Richardson scheme (in the version
used here) is benevolent; it multiplies the latter bounds by a factor less than 2.

Review Questions

4.1. (a) Aitken acceleration is based on fitting three successive terms of a given
sequence {sn} to a certain comparison series. Which?

(b) Give sufficient conditions for the accelerated sequence {s′j} to converge
faster than {sn}.
(c) Aitken acceleration is sometimes applied to a thinned sequence. Why can
this give a higher accuracy in the computed limit?

4.2. (a) State the original version of Euler’s transformation for summation of an
alternating series S =

∑∞
j=0(−1)juj , uj ≥ 0.

(b) State the modified Euler’s transformation for this case and discuss suitable
termination criteria. What is the main advantage of the modified algorithm
over the classical version?

4.3. (a) What pieces of information appear in the Euler–Maclaurin formula? Give
the generating function for the coefficients. What do you know about the
remainder term?

(b) Give at least three important uses of the Euler–Maclaurin formula.

4.4. The Bernoulli polynomial Bn(t) have a key role in the proof of the Euler–
Maclaurin formula. They are defined by the symbolic relation

Bn(t) = (B + t)n.

How is this relation to interpreted?

4.5. (a) Suppose that an expansion of F (h)

F (h) = a0 + a1h
p1 + a2h

p2 + a3h
p3 + . . . 0 < p1 < p2 < p3 < . . . ,

is known to exist. Describe how F (0) = a0 can be computed by repeated
Richardson extrapolation from known values of F (h), h = H,H/q,H/q2, . . . ,
for some q > 1.

(b) Discuss the choice of q in the procedure in (a). What is the most common
case? Give some applications of repeated Richardson extrapolation.
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Problems and Computer Exercises

4.1. (a) Compute
∑∞

n=1
1

(n+1)3 to eight decimal places by using

∞∑

n=N

1

n(n+ 1)(n+ 2)
,

for a suitable N , as a comparison series. Estimate roughly how many terms
you would have to add without and with the comparison series.

Hint: You find the exact sum of this comparison series in Problem 3.3.3.

(b) Compute the sum also by Euler–Maclaurin’s formula or one of its variants
in Problem 3.4.19.

4.2. Study, or write yourself, programs for some of the following methods: 110

• iterated Aitken acceleration

• modified iterated Aitken, according to (3.4.9) or an a-version.

• generalized Euler transformation

• one of the central difference variants of Euler–Maclaurin’s formula, given
in Problem 3.4.19 (a)

The programs are needed in two slightly different versions.

Version i: For studies of the convergence rate, for a series (sequence) where
one knows a sufficiently accurate value exa of the sum (the limit). The risk
of drowning in figures becomes smaller, if you make graphical output, for ex-
ample, like Figure 3.4.1.

Version ii: For a run controlled by a tolerance, like in Algorithm 3.3.1, appro-
priately modified for the various algorithms. Print also i and, if appropriate,
jj. If exa is known, it should be subtracted from the result, because it is of
interest to compare errest with the actual error.

Comment: If you do not know exa, find a sufficiently good exa by a couple of
runs with very small tolerances, before you study the convergence rates (for
larger tolerances).

4.3. The formula for Aitken acceleration is sometimes given in the forms

sn − (∆sn)2

∆2sn
or sn − ∆sn∇sn

∆sn −∇sn
.

Show that these are equivalent to s′n+2 or s′n+1, respectively, in the notations
of (3.4.2). Also note that the second formula is limp→∞ s′n (not s′n+1) in the
notation of (3.4.7).

110We have Matlab in mind, or some other language with complex arithmetic and graphical
output.
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4.4. (a) Try iterated Aitken with thinning for
∑∞

1 e−
√
n, according to the sugges-

tions after Example 3.4.3.

(b) Study the effect of small random perturbations to the terms.

4.5. Oscillatory series the form
∑∞
n=1 cnz

n. Suggested examples:

cn = e−
√
n, 1/(1 + n2), 1/n, 1/(2n− 1),

n/(n2 + n+ 1) , 1/
√
n, 1/ ln(n+ 1),

where z = −1, −0.9, ei3π/4, i, eiπ/4, eiπ/16, for the appropriate algorithms
mentioned in Problem 3.4.2 above. Apply thinning. Try also classical Euler
transformation on some of the cases.

Study how the convergence ratio depends on z, and compare with theoretical
results. Compare the various methods with each others.

4.6. Essentially positive series of the form
∑∞

n=1 cnz
n, where

cn = e−
√
n, 1/(1 + n2), 1/(5 + 2n+ n2)), (n · ln(n+ 1))−2,

1/
√

n3 + n, n−4/3, 1/((n+ 1)(ln(n+ 1))2);

z = 1, 0.99, 0.9, 0.7, eiπ/16, eiπ/4, i. Use appropriate algorithms from Prob-
lem 3.4.2.
Try also Euler–Maclaurin’s summation formula, or one of its variants, if you
can handle the integral with good accuracy. Also try to find a good compari-
son series; it is not always possible.

Study the convergence rate. Try also thinning to the first two methods.

4.7. Divergent series. Apply, if possible, Aitken acceleration and the generalized
Euler transformation to the following divergent series

∑∞
1 cnz

n. Compare the
numerical results with the results obtained by analytic continuation, using the
analytic expression for the sum as a function of z.

(a) cn = 1, z = −1; (b) cn = n, z = −1;

(c) cn is an arbitrary polynomial in n; (d) cn = 1, z = i;

(e) cn = 1, z = 2; (f) cn = 1, z = −2.

4.8. Let yn be the Fibonacci sequence defined, in Problem 3.3.18 by the recurrence
relation,

yn = yn−1 + yn−2, y0 = 0, y1 = 1.

Show that the sequence {yn+1/yn}∞0 satisfies the sufficient condition for Aitken
acceleration, given in the text. Compute a few terms, compute the limit by
Aitken acceleration(s), and compare with the exact result.

4.9. When the current through a galvanometer changes suddenly, its indicator
begins to oscillate with an exponentially damped simple harmonic motion
toward a new stationary value s. The relation between the successive turning
points v0, v1, v2, . . . is vn − s ≈ A · (−k)n, 0 < k < 1. Determine from the
following series of measurements, Aitken extrapolated values v′2, v

′
3, v

′
4 which
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are all approximations to s:111

v0 = 659, v1 = 236, v2 = 463, v3 = 340, v4 = 406.

4.10. (a) Show that the a-version of Aitken acceleration can be iterated, for i = 0 :
N − 2,

a
(i+1)
i+1 = 0, a

(i+1)
j = a

(i)
j −∇

(

(a
(i)
j )2/∇a(i)

j

)

, j = i+ 2 : N,

s
(i+1)
N = s

(i)
N − (a

(i)
N )2/∇a(i)

N .

(Note that a
(0)
j = aj , s

(0)
j = sj.) We thus obtain N estimates of the sum s. We

cannot be sure that the last estimate s
(N−1)
N is the best, due to irregular errors

in the terms and during the computations. Therefore accept the average of a
few estimates that are close to each other, or do you have a better suggestion?
This also gives you a (not quite reliable) error estimate.

(b) Although we may expect that the a-version of Aitken acceleration handles
rounding errors better than the s-version, the rounding errors may set a limit
for the accuracy of the result. It is easy to combine thinning with this version.
How?

(c) Study or write yourself a program for the a-version, and apply it on one
or two problems, where you have used the s-version earlier. Also use thinning
on a problem, where it is needed. We have here considered N as given. Can
you suggest a better termination criterion, or a process for continuing the
computation, if the accuracy obtained is disappointing?

4.11. A function g(t) has the form

g(t) = c− kt+

∞∑

n=1

ane
−λnt,

where c, k, an and 0 < λ1 < λ2 < . . . < λn are unknown constants and g(t) is
known numerically for tν = νh, ν = 0, 1, 2, 3, 4.

Find out how to eliminate c, in such a way that a sufficient condition for
estimating kh by Aitken acceleration is satisfied. Apply this to the following
data, where h = 0.1, gν = g(tν).

g0 = 2.14789, g1 = 1.82207, g2 = 1.59763, g3 = 1.40680, g4 = 1.22784.

Then, estimate also c.

4.12. Suppose that the sequence {sn} satisfies the condition sn − s = c0n
−p +

c1n
−p−1 +O(n−p−2), p > 0, n→ ∞, and set

s′n = sn − p+ 1

p

∆sn∇sn
∆sn −∇sn

,

111James Clark Maxwell used Aitken acceleration for this purpose already in 1892 in his “Treatise
on Electricity and Magnetism”.
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It was stated without proof in Sec. 3.4.2 that s′n − s = O(n−p−2).

(a) Design an a-version of this modified Aitken acceleration, or look up in [29].

(b) Since the difference expressions are symmetrical about n one can conjec-
ture that this result would follow from a continuous analogue with deriva-
tives instead of differences. It has been shown [29] that this conjecture is
true, but we shall not prove that. Our (easier) problem is just the continu-
ous analogue: suppose that a function s(t) satisfies the condition s(t) − s =
c0t

−p + c1t
−p−1 +O(t−p−2), p > 0, t→ ∞, and set

y(t) = s(t) − p+ 1

p

s′(t)2

s′′(t)
.

Show that y(t)−s = O(t−p−2). Formulate and prove the continuous analogue
to (3.4.10).

4.13. (a) Consider as in Example 3.4.5, the sum
∑
n−3/2. Show that the partial

sum sn has an asymptotic expansion of the form needed in that example, with
p = −1/2.

Hint: Apply Euler–Maclaurin’s formula (theoretically).

(b) Suppose that
∑
an is convergent, and that an = a(n). a(z) is analytic

function at z = ∞ (for example a rational function), multiplied by some power
of z− c. Show that such a function has an expansion such as (3.4.8), and that
the same holds for a product of such functions.

4.14. Compute and plot

F (x) =
∞∑

n=0

Tn(x)/(1 + n2), x ∈ [−1, 1].

Find out experimentally or theoretically how F ′(x) behaves near x = 1 and
x = −1.

4.15. Compute to (say) 6 decimal places the double sum

S =

∞∑

m=1

∞∑

n=1

(−1)m+n

(m2 + n2)
=

∞∑

n=1

(−1)mf(m),

where

f(m) =

∞∑

n=1

(−1)n(m2 + n2)−1.

Compute, to begin with, f(m) for m = 1 : 10, by the generalized Euler
transformation. Do you need more values of f(m)?

Comment: There exists an explicit formula for f(m) in this case, but you can
solve this problem easily without using that.

4.16. We use the notation of Sec. 3.4.3 (the generalized Euler transformation). As-
sume that N ≥ k ≥ 1, and set n = N − k + 1. A sum is equal to zero, if the
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upper index is smaller than the lower index.

(a) Prove (3.4.21) that was given without proof in the text, i.e.

MN,k−1 −MN−1,k−1 = znP k−2un+1, (k ≥ 2).

Hint: By subscript transformations in the definition of MN,k, prove that

MN,k−1 −MN−1,k−1 = un+1z
n +

zn

1 − z

k−3∑

s=0

(zE − 1)P sun+1.

Next, show that zE−1 = (1−z)(P−1), and use this to simplify the expression.

(b) Derive the formulas

Mk−1,k =
1

1 − z

k−2∑

s=0

P su1; MN,k = Mk−1,k +

n−1∑

j=0

zjP k−1uj+1.

Comment: The first formula gives the partial sums of the classical Euler trans-
formation. The second formula relates the kth column to the partial sums of
the power series with the coefficients P k−1uj+1.

4.17. (a) If uj = aj , z = eiφ, φ ∈ [0, π], for which real values of a ∈ [0, 1] does the
series on the right of (3.4.14) converge faster than the series on the left?

(b) Find how the classical Euler transformation works if applied to the series

∑

zn, |z| = 1, z 6= 1.

Compare how it works on
∑
unz

n, for un = an, z = z1, and for un = 1,
z = az1.

Consider similar questions for other convergence acceleration methods, that
are primarily invented for oscillating sequences.

4.18. Compute
∑∞

k=1 k
1/2/(k2 + 1) with an error of less than 10−6. Sum the first

ten terms directly. Then expand the summand in negative powers of k and
use Euler–Maclaurin’s summation formula. Or try a central difference variant
of Euler–Maclaurin’s summation formula given in the next problem; then you
do not have to compute derivatives.

4.19. Variations on the Euler–Maclaurin Theme

Set xi = a+ ih, also for non-integer subscripts, and xn = b.

Two variants with central differences instead of derivatives are interesting
alternatives, if the derivatives needed in the Euler–Maclaurin Formula are
hard to compute. Check a few of the coefficients on the right-hand side of the
formula

∞∑

j=1

B2j(hD)2j−1

(2j)!
≈ µδ

12
− 11µδ3

720
+

191µδ5

60480
− 2497µδ7

3628800
+ . . . . (3.4.52)
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Use the expansion for computing the sum given in the previous problem. This
formula is given by Fröberg [118, p. 220], who attributes it to Gauss.
Compare the size of its coefficients with the corresponding coefficients of the
Euler–Maclaurin Formula.

Suppose that h = 1, and that the terms of the given series can be evaluated
also for non-integer arguments. Then another variant is to compute the central
differences for (say) h = 1/2 in order to approximate each derivative needed
more accurately by means of (3.3.48). This leads to the formula112

∞∑

j=1

B2jD
2j−1

(2j)!
∼ µδ

6
− 7µδ3

180
+

71µδ5

7560
− 521µδ7

226800
+ · · · . (3.4.53)

(h = 1/2 for the central differences; h = 1 in the series.) Convince yourself
of the reliability of the formula, either by deriving it or by testing it for (say)
f(x) = e0.1x.
Show that the rounding errors of the function values cause almost no trouble
in the numerical evaluation of these difference corrections.

4.20. (a) Derive formally in a similar way the following formula for an alternating
series. Set xi, h = 1, b = ∞, and assume that limx→∞ f(x) = 0.

∞∑

i=0

(−1)if(a+ i) = 1
2f(a) − 1

4
f ′(a) +

1

48
f ′′′(a) − · · ·

− (22r − 1)B2r

(2r)!
f (2r−1)(a) − . . . . (3.4.54)

Of course, the integral of f is not needed in this case113 Compare it with some
of the other methods for alternating series on an example of your own choice.

(b) Derive by using operators (without the remainder R), the following more
general form of the Euler–Maclaurin Formula (Handbook [1, 23.1.32]):

m−1∑

k=0

hf(a+ kh+ ωh) =

∫ b

a

f(t)d t+

p
∑

j=1

hj

j!
Bj(ω)(f (j−1)(b) − f (j−1)(a))

− hp

p!

∫ 1

0

B̂p(ω − t)

m−1∑

k=0

f (p)(a+ kh+ th) dt.

If you use this formula for deriving the midpoint variant in (a) you will find
a quite different expression for the coefficients; nevertheless it is the same
formula. See how this is explained in the Handbook [1, 23.1.10], that is by

112The formula is probably very old, but we have not found it in the literature.
113Note that the right-hand side yields a finite value if f is a constant or, more generally, if f

is a polynomial, although the series on the left-hand side diverges. The same happens to other
summation methods.
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the “Multiplication Theorem”.114

Bn(mx) = mn−1
m−1∑

k=0

Bn(x+ k/m), n = 0, 1, 2, . . . , m = 1, 2, 3, . . .

4.21. Prove statement (b) of the Lemma 3.4.9. (concerning the periodicity and the
regularity of the Bernoulli functions).

4.22. Euler’s constant is defined by γ = limN→∞F (N), where

F (N) = 1 +
1

2
+

1

3
+ . . .+

1

N − 1
+

1

N
− lnN.

(a) Use the Euler–Maclaurin formula with f(x) = x−1, h = 1, to show that,
for any integer N

γ = F (N) +
1

12
N−2 − 6

720
N−4 +

120

30240
N−6 − · · · ,

where every other partial sum is larger than γ, and every other is smaller.

(b) Compute γ to seven decimal places, usingN = 10,
∑10

n=1 n
−1 = 2.92896825,

ln 10 = 2.30258509.

(c) Show how repeated Richardson extrapolation can be used to compute γ
from the following values:

N 1 2 4 8

F (N) 0.5 0.55685 0.57204 0.57592

(d) Extend (c) to a computation, where a larger number of values of F (N)
have been computed as accurately as possible, and so that the final accuracy
of γ is limited by the effects of rounding errors. Check the result by looking up
in an accurate table of mathematical constants, for example, in Handbook [1].

4.23. A digression about the gamma function.

(a) The Handbook [1, 6.1.40] gives an expansion for ln Γ(z) that agrees with
formula (3.4.41) for ln z! (if we substitute z for m), except that the Handbook
writes (z − 1

2 ) ln z, where we have (m + 1
2 ) lnm. Explain concisely and com-

pletely that there is no contradiction here.

(b) An asymptotic expansion for computing ln Γ(z+1), z ∈ C is derived in Ex-
ample 3.4.12. If r terms are used in the asymptotic expansion, the remainder
reads:

R(z) = K(z)
(2r)!

π|2πz|2r+1
, K(z) = sup

u≥0

|z2|
|u2 + z2| .

(see also Remark 3.4.6). Set z = x+iy. Show the following more useful bound
for K(z), valid for x > 0,

K(z) ≤
{

1, if x ≥ |y|;
1
2 (x/|y| + |y|/x), otherwise.

114That formula and the remainder R are derived in Nörlund [247], p. 21 and p. 30, respectively.
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Find a uniform upper bound for the remainder if r = 5, x ≥ 1
2 , |z| ≥ 17.

(c) Write a Matlab program for the computation of ln Γ(z + 1). Use the
reflection and recurrence formulas to transform the input value z, to another
z = x + iy that satisfies x ≥ half , |z| ≥ 17, for which this asymptotic
expansion is to be used with r = 5.
Test the program by computing the following quantities, and compare with
their exact values:

n!, Γ(n+ 1/2)/
√
π, n = 0, 1, 2, 3, 10, 20;

∣
∣Γ(1

2 + iy)
∣
∣
2

=
π

cosh(πy)
, y = ±10,±20.

If the original input value has a small modulus, there is some cancellation
when the output from the asymptotic expansion is transformed to
ln(1 + zinput), resulting in a loss of (say) 1 or 2 decimal digits.

Comment: It is often much better to work with ln Γ(z) than with Γ(z). For
example, one can avoid exponent overflow in the calculation of a binomial
coefficient or a value of the beta function, B(z, w) = Γ(z)Γ(w)/Γ(z + w),
where (say) the denominator can become too big, even if the final result is of
a normal order of magnitude.

4.24. (a) Show that
(

2n

n

)

∼ 22n

√
πn

, n→ ∞,

and give an asymptotic estimate of the relative error of this approximation.
Check the approximation as well as the error estimate for n = 5 and n = 10.

(b) Random errors in a difference scheme. We know from Example 3.3.3 that
if the items yj of a difference scheme are afflicted with errors less than ǫ in
absolute value, then the inherited error of ∆nyj is at most 2nǫ in absolute
value. If we consider the errors as independent random variables, uniformly
distributed in the interval [−ǫ, ǫ], show that the error of ∆nyj has the variance
(
2n
n

)
1
3 ǫ

2, hence the standard deviation is approximately

2nǫ(9πn)−1/4, n≫ 1.

Check the result on a particular case by a Monte Carlo study.

Hint: It is known from Probability theory that the variance of
∑n

j=0 ajǫj is

equal to σ2
∑n

j=0 a
2
j , and that a random variable, uniformly distributed in

the interval [−ǫ, ǫ], has the variance σ2 = ǫ2/3. Finally use (3.1.23) with
p = q = n.

4.25. The following table of values of a function f(x) is given:

x 0.6 0.8 0.9 1.0 1.1 1.2 1.4

f(x) 1.820365 1.501258 1.327313 1.143957 0.951849 0.752084 0.335920

Compute using repeated Richardson extrapolation f ′(1.0) and f ′′(1.0).
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4.26. Compute an approximation to π using Richardson extrapolation with Neville’s
algorithm, based on three simple polygons, with n = 2, 3 and 6 sides, not in
geometric progression. A 2-sided polygon can be interpreted as a diameter
described up and down. Its “ perimeter” is thus equal to 4. Show that this
gives even a little better value than the result (3.14103) obtained for the 96-
sided polygon without extrapolations.

4.27. Numerov’s method with Richardson extrapolations115

(a) Show that the formula

h−2(yn+1 − 2yn + yn−1) = y′′n + a(y′′n+1 − 2y′′n + y′′n−1)

is exact for polynomials of as high degree as possible, if a = 1/12. Show
that the error has an expansion into even powers of h, and determine the first
(typically non-vanishing) term of this expansion.

(b) This formula can be applied to the differential equation, y′′ = p(x)y, with
given initial values y(0), y′(0). Show that this yields the recurrence relation

yn+1 =
(2 + 10

12pnh
2)yn − (1 − 1

12pn−1h
2)yn−1

1 − 1
12pn+1h2

.

Comment: If h is small, information about p(t) is lost by outshifting in the
factors 1− 1

12pn−1h
2. (It is possible to rewrite the formulas in order to reduce

the loss of information.)

4.28. (a) Determine the Bernoulli polynomials B2(x) and B3(x), and find the values
and the derivatives at 0 and 1. Factorize the polynomial B3(x). Draw the
graphs of a few periods of B̂i(x), i = 1, 2, 3..

(b) In an old “Cours d’Analyse”, we found a “symbolic” formula, essentially

h

n−1∑

j=0

g′(a+ jh) = g(b+ hB) − g(a+ hB). (3.4.55)

The expansion of the right-hand side into powers of hB, has been followed
by the replacement of the powers of B by Bernoulli numbers, the resulting
expansion is not necessarily convergent, even if the first power series converges
for any complex value of hB.
Show that the second expansion is equivalent to the Euler–Maclaurin formula,
and that it is to be interpreted according to Theorem 3.4.10.

(c) If g is a polynomial, the expansion is finite. Show the following important
formulas, and check them with known results for k = 1 : 3.

n−1∑

j=0

jk−1 =
(B + n)k −Bk

k
=
Bk(n) −Bk

k
. (3.4.56)

Also find that (3.4.55) makes sense for g(x) = eαx, with the “symbolic” in-
terpretation of the power series for eBx, if you accept the formula e(B+α)x =
eBxeαx.

115See also Example 3.3.15.
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4.29. We have called
∑
an a bell sum if an as a function of n has a bell-shaped

graph, and you must add many terms to get the desired accuracy. Under
certain conditions you can get an accurate result by adding (say) every tenth
term, and multiply this sum by 10, because both sums can be interpreted
as trapezoidal approximations to the same integral, with different step size.
Inspired by Euler–Maclaurin’s formula, we may hope to be able to obtain high
accuracy using an integer stepsize h, i.e (say) one quarter of the half-width of
“the bell”. In other words, we do not have to compute and add more than
every hth term. We shall study a class of series

S(t) =

∞∑

n=0

cnt
n/n!, t≫ 1, (3.4.57)

where cn > 0, log cn is rather slowly varying for n large; (say that) ∆p log cn =
O(n−p). Let c(·) be a smooth function such that c(n) = cn. We consider S(t)
as an approximation to the integral

∫ ∞

0

c(n)tn/Γ(n+ 1)dn,

with a smooth and bell-shaped integrand, almost like the normal frequency
function, with standard deviation σ ≈ k

√
t. .

(a) For p = 1 : 5, t = 4p, plot y =
√

2πte−ttn/n! versus x = n/t, 0 ≤ x ≤ 3;
all 5 curves on the same picture.

(b) For p = 1 : 5, t = 4p, plot y = ln(e−ttn/n!) versus x = (n − t)/
√
t,

max(0, t− 8
√
t) ≤ n ≤ t+ 8

√
t; all 5 curves on the same picture. Give bounds

for the error committed if you neglect the terms of the series e−t
∑∞

0 tn/n!,
which are cut out in your picture.

(c) With the same notation as in (b), use Stirling’s asymptotic expansion to
show theoretically that, for t→ ∞,

e−ttn

n!
=
e−x

2/2
(
1 +O(1/

√
t)
)

√
2πt

, (3.4.58)

where the O(1/
√
t)-term depends on x. Compare this with the plots.

(d) Test these ideas by making numerical experiments with the series

e−t
∑

n∈N
tn/n!, N = {round(t− 8

√
t) : h : round(t+ 8

√
t)},

for some integers h in the neighborhood of suitable fractions of
√
t, inspired

by the outcome of the experiments. Do this for t =1000, 500, 200, 100, 50, 30.
Compare with the exact result, and see how the trapezoidal error depends on
h, and try to formulate an error estimate that can be reasonably reliable, in
cases where the answer is not known. How large must t be, in order that it
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should be permissible to choose h > 1 if you want (say) 6 correct decimals?

(e) Compute, with an error estimate, e−t
∑∞

n=1 t
n/(n · n!), with 6 correct

decimals for the values of t mentioned in (d). You can also check your result
with tables and formulas in the Handbook [1, Ch. 5].

4.30. If you have a good program for generating primes, denote the nth prime by
pn, and try convergence acceleration to series such as

∑

(−1)n/pn,
∑

1/p2
n.

Due to the irregularity of the sequence of primes, you cannot expect the spec-
tacular accuracy of the previous examples. It can be fun to see how these meth-
ods work in combination with some comparison series derived from asymptotic
results about primes. The simplest one reads pn ∼ n lnn, (n → ∞), which is
equivalent to the classical prime number theorem.

4.31. A summation formula based on the Euler numbers

(a) The Euler numbers En were introduced by (3.1.22). The first values read

E0 = 1, E2 = −1, E4 = 5, E6 = −61.

They are all integers (Problem 3.1.7c). En = 0 for odd n, and the sign is
alternating for even n. Their generating function reads

1

cosh z
=

∞∑

j=0

Ejz
j

j!
.

(a) Show by means of operators the following expansion

∞∑

k=m

(−1)k−mf(k) ≈
q
∑

p=0

E2pf
(2p)(m− 1

2 )

22p+1(2p)!
(3.4.59)

No discussion of convergence is needed; the expansion behaves much like the
Euler–Maclaurin expansion, and so does the error estimation; see [79].
The coefficient of f (2p)(m − 1

2 ) is approximately 2(−1)p/π2p+1 when p ≫
1, e.g., for p = 3 the approximation yields −6.622 · 10−4, while the exact
coefficient is 61/92160 ≈ 6.619 · 10−4.

(b) Apply (3.4.59) for explaining the following curious observation, reported
by Borwein et al. [37].

50∑

k=1

4(−1)k

2k − 1
= 3.12159465259 . . .

(π = 3.14159265359 . . .).

Note that only three digits disagree. There are several variations on this
theme. Borwein et al. actually displayed the case with 40 decimal places
based on 50,000 terms. Make “an educated guess” concerning how few digits
disagreed.
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4.32. What is β(t) (in the notation of
(
3.4.25)

)
, if un = an, 0 < a < 1?

4.33. Work out the details of the two optimizations in the proof of Theorem 3.4.7.

4.34. (a) Show that every rational function f(s) that is analytic and bounded for
ℜs ≥ a is d.c.m. for s ≥ a.

(b) Show criterion (B) for higher monotonicity (concerning products).

(c) Which of the coefficient sequences {cn} mentioned in Problems 3.4.5 and
4.6 are c.m.? Which are d.c.m.?

(d) Show criterion (E) for higher monotonicity.

4.35. Suppose that un =
∫ 1

0
tn dβ(t), where β(t) is of bounded variation in [0, 1].

Show that limun = 0, if β(t) is continuous at t = 1, but that it is not true, if
β(t) has a jump at t = 1.

3.5 Continued Fractions and Padé Approximants

3.5.1 Algebraic Continued Fractions

Some functions cannot be well approximated by a power series, but can well be
approximated by a quotient of power series. In order to study such approximations
we first introduce continued fractions, i.e. expressions of the form

r = b0 +
a1

b1 +
a2

b2 +
a3

b3 + . . .

= b0 +
a1

b1+

a2

b2+

a3

b3+
. . . . (3.5.1)

The second expression is a convenient compact notation. If the number of terms is
infinite, r is called an infinite continued fraction.

Continued fractions were applied in the 17th century to the rational approx-
imation of various algebraic numbers. In such algebraic continued fractions r and
the entries ai, bi are numbers. Beginning with work by Euler, analytic continued
fraction expansions

r(z) = b0 +
a1z

b1+

a2z

b2+

a3z

b3+
. . . . (3.5.2)

involving functions of a complex variable r(z) became an important tool in the
approximation of special classes of analytic functions of a complex variable.

We first study some algebraic properties of continued fractions. The partial
fraction

rn =
pn
qn

= b0 +
a1

b1+

a2

b2+
· · · an

bn
, (3.5.3)

is called the nth approximant of the continued fraction. There are several essentially
different algorithms for evaluating a partial fraction. It can be evaluated backwards
in n divisions using the recurrence

yn = bn, yi−1 = bi−1 + ai/yi, i = n : −1 : 1, (3.5.4)



“dqbjV
2007/5/28
page 324

324 Chapter 3. Series, Operators and Continued Fractions

for which r = y0. It can happen that in an intermediate step the denominator yi
becomes zero and yi−1 = ∞. This does no harm if in the next step when you divide
by yi−1 the result is set equal to 0. If it happens in the last step, the result is ∞.116

A drawback of evaluating an infinite continued fraction expansion by the back-
wards recursion (3.5.4) is that you have decide where to stop in advance. The
following theorem shows how forwards (or top down) evaluation can be achieved.

Theorem 3.5.1.
For the nth convergent rn = pn/qn of the continued fraction (3.5.1) pn and

qn, n ≥ 1, satisfy the recursion formulas

pn = bnpn−1 + anpn−2, p−1 = 1, p0 = b0, (3.5.5)

qn = bnqn−1 + anqn−2, q−1 = 0, q0 = 1. (3.5.6)

Another useful formula reads

pnqn−1 − pn−1qn = (−1)n−1a1a2 · · · an. (3.5.7)

If we substitute anx for an in (3.5.5)−−(3.5.6) then pn(x) and qn(x) become poly-
nomials in x of degree n and n− 1, respectively.

Proof. We prove the recursion formulas by induction. First, for n = 1, we obtain

p1

q1
=
b1p0 + a1p−1

b1q0 + a1q−1
=
b1b0 + a1

b1 + 0
= b0 +

a1

b1
= r1.

Next, assume that the formulas are valid up to pn−1, qn−1, for every continued
fraction. Note that pn/qn can be obtained from pn−1/qn−1, by the substitution of
bn−1 + an/bn for bn−1. Hence

pn
qn

=
(bn−1 + an/bn)pn−2 + an−1pn−3

(bn−1 + an/bn)qn−2 + an−1qn−3
=
bn(bn−1pn−2 + an−1pn−3) + anpn−2

bn(bn−1qn−2 + an−1qn−3) + anqn−2

=
bnpn−1 + anpn−2

bnqn−1 + anqn−2
.

This shows that the formulas are valid also for pn, qn. The proof of equation (3.5.7)
is left for Problem 3.5.2.

The evaluation of a continued fraction by forward recursion requires 4n mul-
tiplications and one division. It is sometimes convenient to write the recursion
formulas in matrix form; see Problem 3.5.2. One must also be careful about the
numerical stability of these recurrence relations.

In practice the forward recursion for evaluating a continued fraction often
generates very large or very small values for the numerators and denominators.
There is a risk of overflow or underflow with these formulas. Since we are usually

116Note that this works automatically in IEEE arithmetic, because of the rules of infinite arith-
metic; see Sec. 2.2.3!
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not interested in the pn, qn themselves, but in the ratios only, we can normalize pn
and qn by multiplying them by the same factor after they have been computed. If
we shall go on and compute pn+1, qn+1, however, we have to multiply pn−1, qn−1 by
the same factor also! The formula

a1

b1+

a2

b2+

a3

b3+
· · · =

k1a1

k1b1+

k1k2a2

k2b2+

k2k3a3

k3b3+
· · · , (3.5.8)

where the ki are any non-zero numbers, is known as an equivalence transforma-
tion. The proof of (3.5.8) is left for Problem 3.5.6. .

Suppose we are given a rational function R(z) = R0(z)/R1(z), where R0(z)
and R1(z) are polynomials. Then by the following division algorithm R(z) can be
expressed as a continued fraction that can be evaluated by backward recursion in
fewer arithmetic operations; see Cheney [59, p. ]. The degree of a polynomial
Rj(z) is denoted by dj . By successive divisions (of Rj−1(z) by Rj(z)) we obtain
quotients Qjf(z) and remainders Rj+1(z) as follows:

For j = 1, 2, . . . , until dj+1 = 0, set

Rj−1(z) = Rj(z)Qj(z) +Rj+1(z) (dj+1 < dj). (3.5.9)

Then

R(z) =
R0(z)

R1(z)
= Q1(z) +

1

R1(z)/R2(z)
= . . . (3.5.10)

= Q1(z) +
1

Q2(z)+

1

Q3(z)+
. . .

1

Qk(z)
. (3.5.11)

By means of an equivalence transformation; see (3.5.8), this fraction can be trans-
formed into a slightly more economic form, where the polynomials in the denomi-
nators have leading coefficient unity, while the numerators are in general different
from 1.

Example 3.5.1.
In the rational form

r(z) =
7z4 − 101z3 + 540z2 − 1204z + 958

z4 − 14z3 + 72z2 − 151z + 112
.

the numerator and denominator can be evaluated by Horner’s rule. Alternatively,
the above algorithm can be used to convert the rational form to the finite continued
fraction

r(z) = 7 − 3

z − 2−
1

z − 7+

10

z − 2−
2

z − 3
.

To evaluate this by backwards recursion requires fewer operations than of the ra-
tional form, but a division by zero occurs at the four points z = 1, 2, 3, 4. In IEEE
arithmetic the continued fraction evaluates correctly also at these points because of
the rules of infinite arithmetic! Indeed the continued fraction form can be shown to
have smaller errors for z ∈ [0, 4] and to be immune to overflow; see Higham [180,
§ 27.1].
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Every positive number x can be expanded into a regular continued fraction
with integer coefficients of the form,

x = b0 +
1

b1+

1

b2+

1

b3+
· · · . (3.5.12)

Set x0 = x, p−1 = 1, q−1 = 0. For n = 0, 1, 2, . . . we construct a sequence of
numbers,

xn = bn +
1

bn+1+

1

bn+2+

1

bn+3+
· · · .

Evidently bn = ⌊xn⌋, the integer part of xn, and xn+1 = 1/(xn− bn). Compute pn,
qn, according to the recursion formulas of Theorem 3.5.1, which can be written in
vector form,

(pn, qn) = (pn−2, qn−2) + bn(pn−1, qn−1),

(since an = 1). Stop when |x − pn/qn| < Tol or n > nmax. If the number x is
rational this expansion is finite. The details are left for Problem 3.5.1. Note that
the algorithm is related to the Euclidean algorithm; see Problem 1.2.6.

The above algorithm has been used several times in the previous sections,
where some coefficients, known to be rational, has been computed in floating-point.
It is also useful for finding near commensurabilities between events with different
periods;117 see Problem 3.5.1 (c).
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Figure 3.5.1. Best rational approximations {(p, q)} to the “golden ratio”.

117One of the convergents for log 2/ log 3 reads 12/19. This is in a way basic for Western Music,
where 13 quints make 7 octaves, i.e. (3/2)12 ≈ 27.
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The German mathematician Felix Klein [202]118 gave the following illuminat-
ing description of the sequence {(pn, qn)} obtained by this algorithm (adapted to
our notation):

“Imagine pegs or needles affixed at all the integral points (pn, qn), and
wrap a tightly drawn string about the sets of pegs to the right and to
the left of the ray, p = xq. Then the vertices of the two convex string-
polygons which bound our two point sets will be precisely the points
(pn, qn) . . ., the left polygon having the even convergents, the right one
the odd.”

Klein also points out that “such a ray makes a cut in the set of integral points”
and thus makes Dedekind’s definition of irrational numbers very concrete. This
construction; see Figure 3.5.1, illustrates in a concrete way that the successive
convergents are closer to x than any numbers with smaller denominators, and that
the errors alternate in sign. We omit the details of the proof that this description
is correct.

Note that, since aj = 1, ∀j, equation (3.5.7) reads

pnqn−1 − pn−1qn = (−1)n−1.

This implies that the triangle with vertices at the points (0, 0), (qn, pn), (qn−1, pn−1)
has the smallest possible area, among triangles with integer coordinates, and hence
there can be no integer points inside or on the sides of this triangle.

Comment: If we know or guess that a result x of a computation is a rational
number with a reasonably sized denominator, although it was practical to compute
it in floating-point arithmetic (afflicted by errors of various types), we have a good
chance to reconstruct the exact result by applying the above algorithm as a post-
processing.

If we just know that the exact x is rational, without any bounds for the number
of digits in the denominator and numerator, we must be conservative in claiming
that the last fraction that came out of the above algorithm is the exact value of
x, even if |x − pn/qn| is very small. In fact, the fraction may depend on Tol that
is to be chosen with respect to the expected order of magnitude of the error of
x. If Tol has been chosen smaller than the error of x, it may happen that the
last fraction obtained at the termination is wrong, while the correct fraction (with
smaller numerator and denominator) may have appeared earlier in the sequence (or
it may not be there at all).

So a certain judgment is needed at the application of this algorithm. The
smaller the denominator and numerator are, the more likely it is that the fraction
is correct. In a serious context, it is advisable to check the result(s) by using exact
arithmetic. If x is the root of an equation (or a component of the solution of a system
of equations), it is typically much easier to check afterwards that a suggested result
is correct than to perform the whole solution process in exact arithmetic.

118Felix Christian Klein (1849–1925), a German mathematician, was born 25/4 1849. He de-
lighted in pointing out that each of the day 52, month 22, and year 432 was the square of a
prime.
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The following theorem due to Seidel119 gives a necessary and sufficient condi-
tion for convergence of a continued fraction of the form (3.5.12).

Theorem 3.5.2.
Let all bn be positive in the continued fraction

b0 +
1

b1+

1

b2+

1

b3+
· · · .

Then this converges if and only if the series
∑
bn diverges.

Proof. See Cheney [59, p. 184].

Example 3.5.2.
The following are continued fraction expansions of some important irrational

numbers:

π = 3 +
1

7+

1

15+

1

1+

1

292+

1

1+

1

1+

1

1+
. . . ,

e = 2 +
1

1+

1

2+

1

1+

1

1+

1

4+

1

1+

1

1+

1

6+
. . . ,

For e there is a regular pattern in the expansion, but for π a general formula for the
expansion is not known. The partial fractions for π converge rapidly. For example,
the error in the third convergent π ≈ 355/113 is 0.266 · 10−6.

Figure 3.5.1 corresponds to the expansion

√
5 + 1

2
= 1 +

1

1+

1

1+

1

1+

1

1+

1

1+

1

1+
. . . .) (3.5.13)

Then, note that x = 1+1/x, x > 0, hence x = (
√

5+1)/2, which is “golden section
ratio” (see also Problem 3.5.3). Note also that, by (3.5.7) with aj = 1,

∣
∣
∣
∣
x− pn

qn

∣
∣
∣
∣
≤
∣
∣
∣
∣

pn+1

qn+1
− pn
qn

∣
∣
∣
∣
=

|pn+1qn − pnqn+1|
qn+1qn

=
1

qn+1qn
<

1

q2n
. (3.5.14)

3.5.2 Analytic Continued Fractions

Continued fractions have also important applications in Analysis. A large number
of analytic functions are known to have continued fraction representations. Indeed,
some of the best algorithms for the numerical computation of important analytic
functions are based on continued fractions. We shall not give complete proofs but
refer to classical books of Perron [259], Wall [326] and Henrici [177, 178].

119Philipp Ludwig von Seidel (1821–1896) a German mathematician and astronomer. In 1846 he
submitted his habilitation dissertation entitled “Untersuchungen über die Konvergenz and Diver-
genz der Kettenbrüche”.
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A continued fraction is said to be equivalent to a given series, if and only if the
sequence of convergents is equal to the sequence of partial sums. There is typically
an infinite number of such equivalent fractions. The construction of the continued
fraction is particularly simple if we require that the denominators qn = 1, ∀n ≥ 1.
For a power series we shall thus have

pn = c0 + c1z + c2z
2 + . . . cnz

n, n ≥ 1.

We must assume that cj 6= 0, ∀j ≥ 1.
We shall determine the elements an, bn by means of the recursion formulas of

Theorem 3.5.1 (for n ≥ 2) with initial conditions. We thus obtain the following
equations,

pn = bnpn−1 + anpn−2; p0 = b0, p1 = b0b1 + a1,

1 = bn + an; b1 = 1.

The solution reads b0 = p0 = c0, b1 = 1, a1 = p1 − p0 = c1z, and for n ≥ 2,

an = (pn − pn−1)/(pn−2 − pn−1) = −zcn/cn−1;

bn = 1 − an = 1 + zcn/cn−1;

c0 + c1z + . . .+ cnz
n . . . = c0 +

zc1
1−

zc2/c1
1 + zc2/c1−

. . .
zcn/cn−1

1 + zcn/cn−1−
. . .

Of course, an equivalent continued fraction gives by itself no convergence ac-
celeration, just because it is equivalent. We shall therefore leave the subject of con-
tinued fractions equivalent to a series, after showing two instances of the numerous
pretty formulas that can be obtained by this construction. For

f(z) = ez = 1 + z + z2/2! + z3/3! + . . .

and

f(z) =
arctan

√
z√

z
= 1 − z/3 + z2/5 − z3/7 + . . . ,

we obtain for z = −1 and z = 1, respectively, after simple equivalence transforma-
tions,

e−1 = 1 − 1

1+

1

1 + y
=

1

2 + y
⇒ e = 2 + y, where y =

2

2+

3

3+

4

4+

5

5+
. . . ;

π

4
=

1

1+

1

2+

9

2+

25

2+

49

2+
. . . .

There exist, however, other methods to make a correspondence between a
power series and a continued fraction. Some of them lead to a considerable con-
vergence acceleration that often makes continued fractions very efficient for the
numerical computation of functions. We shall return to such methods in Sec. 3.5.3.
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Gauss developed a continued fraction for the ratio of two hypergeometric func-
tions (see (3.1.16))

F (a, b+ 1, c+ 1; z)

F (a, b, c; z)
=

1

1+

a1z

1+

a2z

1+

a3z

1+
. . . , (3.5.15)

where

a2n+1 =
(a+ n)(c− b+ n)

(c+ 2n)(c+ 2n+ 1)
, a2n =

(b+ n)(c− a+ n)

(c+ 2n− 1)(c+ 2n)
. (3.5.16)

Although the power series converge only in the disc |z| < 1, the continued fraction
of Gauss converges throughout the complex z-plane cut along the real axis from 1
to +∞. It provides an analytic continuation in the cut plane.

If we set b = 0 in (3.5.15), we obtain a continued fraction for F (a, 1, c+ 1; z).
From this many continued fractions for elementary functions can be derived. For
example,

arctan z =
z

1+

z2

3+

22z2

5+

32z2

7+

42z2

9+
. . . (3.5.17)

tan z =
z

1−
z2

3−
z2

5−
z2

7− . . . (3.5.18)

The expansion for tan z is valid everywhere, except in the poles. For arctan z the
continued fraction represents a single-valued branch of the analytic function in a
plane with cuts along the imaginary axis extending from +i to +i∞ and from −i to
−i∞. A continued fraction expansion for arctanhz is obtained by using the relation
arctanhz = −i arctan iz. In all these cases the region of convergence as well as the
speed of convergence is considerably larger than for the power series expansions.
For example, the 6’th convergent for tanπ/4 is almost correct to 11 decimal places.

For the natural logarithm we have

log(1 + z) =
z

1+

z

2+

z

3+

22z

4+

22z

5+

32z

6+
. . . . (3.5.19)

1

2
log

(
1 + z

1 − z

)

= z +
z3

3
+
z5

5
+
z7

7
+ · · · (3.5.20)

=
z

1−
z2

3−
22z2

5−
32z2

7−
42z2

9− · · · (3.5.21)

The fraction for the logarithm can be used in the whole complex plane except for
the cuts (−∞,−1] and [1,∞). The convergence is slow, when z is near a cut.
For elementary functions such as these, properties of the functions can be used for
moving z to a domain, where the continued fraction converges rapidly.

Example 3.5.3.
Consider the continued fraction for ln(1 + z) and set z = 1. The successive

approximations to ln 2 = 0.69314 71806 are:
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1/1 2/3 7/10 36/52 208/300 1572/2268 12876/18576

1.000000 0.66667 0.700000 0.692308 0.69333 0.693122 0.693152

Note that the fraction give alternatively upper and lower bounds for ln 2. It can be
shown that this is the case when the elements of the continued fraction are positive.
To get the accuracy of the last approximation above would require as many as
50,000 terms of the series ln 2 = ln(1 + 1) = 1 − 1/2 + 1/3 − 1/4 + · · ·.

Continued fraction expansions for the gamma function and the incomplete
gamma function are found in the Handbook [1, 6.5]. For the sake of simplicity we
assume that x > 0, although the formulas can be used also in an appropriately cut
complex plane. The parameter a may be complex in Γ(a, x).120

Γ(a, x) =

∫ ∞

x

ta−1e−t dt, Γ(a, 0) = Γ(a),

γ(a, x) = Γ(a) − Γ(a, x) =

∫ x

0

ta−1e−t dt, ℜa > 0,

Γ(a, x) = e−xxa
( 1

x+

1 − a

1+

1

x+

2 − a

1+

2

x+
· · ·
)

, (3.5.22)

γ(a, x) = e−xxaΓ(a)
∞∑

n=0

xn

Γ(a+ 1 + n)
.

We mention these functions, because they have many applications. Several
other important functions can, by simple transformations, be brought to particular
cases of this function, for example, the normal probability function, the chi-square
probability function, the exponential integral, and the Poisson distribution.

The convergence behavior of continued fraction expansions is much more com-
plicated than for power series. Gautschi [131] exhibits a phenomenon of apparent
convergence to the wrong limit for a continued fraction of Perron for ratios of Kum-
mer functions. The sequence of terms initially decreases rapidly, then increases,
and finally again decreases to zero at a supergeometric rate.

Continued fractions such as these can often be derived by a theorem of Stieltjes
which relates continued fractions to orthogonal polynomials that satisfy a recurrence
relation of the same type as the one given above. Another method of derivation is
the Padé approximation, studied in the next section, that yields a rational function.
Both techniques can be looked upon as a convergence acceleration of an expansion
into powers of z or z−1.

3.5.3 The Padé Table.

Towards the end of the the 19th century Frobenius and Padé developed a more
general scheme for expanding a formal power series into rational functions, which

120There are plenty of other notations for this function.
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we now describe. Let f(z) be an formal power series

f(z) = c0 + c1z + c2z
2 + · · · =

∞∑

i=0

ciz
i. (3.5.23)

Consider a complex rational form with numerator of degree at most m and de-
nominator of degree at most n such that its power series expansion agrees with
that of f(z) as far as possible. Such a rational form is called an (m,n) Padé121

approximation of f(z).

Definition 3.5.3.
The (m,n) Padé approximation of the formal power series f(z) is, if it exists,

defined to be a rational function

[m,n]f (z) =
Pm,n(z)

Qm,n(z)
≡
∑m

j=0 pjz
j

∑n
j=0 qjz

j
, (3.5.24)

that satisfies

f(z) − [m,n]f (z) = Rzm+n+1 +O(zm+n+2), z → 0. (3.5.25)

The rational fractions [m,n]f , m,n ≥ 0 for f(z) can be arranged in a doubly
infinite array, called Padé table

m\n 0 1 2 3 · · ·
0 [0, 0]f [0, 1]f [0, 2]f [0, 3]f · · ·
1 [1, 0]f [1, 1]f [1, 2]f [1, 3]f · · ·
2 [2, 0]f [2, 1]f [2, 2]f [2, 3]f · · ·
3 [3, 0]f [3, 1]f [3, 2]f [3, 3]f · · ·
...

...
...

...
...

The first column in the table contains the partial sums
∑m

j=0 cjz
j of f(z).

Example 3.5.4.
The Padé approximants to the exponential function ez are important because

of their relation to methods for solving differential equations. The Padé approxi-

121Henri Eugène Padé (1863–1953), a French mathematician, was a student of Charles Hermite.
Padé gave a systematic study of Padé forms in his thesis in 1892.
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mants for m,n = 0 : 2 for the exponential function f(z) = ez are:

m\n 0 1 2

0 1
1

1 − z

1

1 − z + 1
2z

2

1 1 + z
1 + 1

2z

1 − 1
2z

1 + 1
3z

1 − 2
3z + 1

6z
2

2 1 + z +
1

2
z2 1 + 2

3z + 1
6z

2

1 − 1
3z

1 + 1
2z + 1

12z
2

1 − 1
2z + 1

12z
2

There may not exist a rational function that satisfies (3.5.25) for all (m,n).
We may have to be content with k < 1. However, the closely related problem to
find Qm,n and Pm,n(z) such that

Qm,nf(z) − Pm,n(z) = O(zm+n+1) z → 0, (3.5.26)

always has a solution. The corresponding rational expression is called a Padé form
of type (m,n).

Using (3.5.23) and (3.5.24) this gives

∞∑

k=0

ckz
k

n∑

j=0

qjz
j =

m∑

i=0

piz
i +O(zm+n+1).

Matching the coefficients of zi, i = 0 : m+ n, gives

n∑

j=0

ci−jqj =

{
pi, if i = 0 : m;
0, if i = m+ 1 : m+ n;

. (3.5.27)

where ci = 0 for i < 0. This is m+n+1 linear equations for the m+n+2 unknowns
p0, p1, . . . , pm, q0, q1, . . . , qn.

Theorem 3.5.4 (Frobenius).
There always exists Padé forms of type (m,n) for f(z). Each such form is

a representation of the same rational function [m,n]f . A reduced representation is
possible with Pm,n(z) and Qm,n(z) relatively prime, q0 = 1, and p0 = c0.

We now consider how to determine Padé approximants. With q0 = 1 the last
n linear equations in (3.5.27) are

n∑

j=1

ci−jqj + ci = 0, i = m+ 1 : m+ n, (3.5.28)
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where ci = 0, i < 0. The system matrix of this linear system is

Cm,n =









cm cm−1 · · · cm−n+1

cm+1 cm · · · cm−n+2

...
... · · ·

...

cm+n−1 cm+n−2 · · · cm









. (3.5.29)

If cm,n = det(Cm,n) 6= 0, then the linear system (3.5.28) has a solution
q1, . . . , qn. The coefficients p0, . . . , pn of the numerator are then obtained from

pi =

min(i,n)
∑

j=0

ci−jqj , i = 0 : m. (3.5.30)

In the regular case k = 1 the error constant R in (3.5.25) is given by

R = pi =

n∑

j=0

ci−jqj , i = m+ n+ 1.

Note that [m,n]f uses cl for l = 0 : m + n only; R uses cm+n+1 also. So, if cl is
given for l = 0 : r then [m,n]f is defined for m+ n ≤ r, m ≥ 0, n ≥ 0.

If n is large, the heavy part of the computation of a Padé approximant

[m,n]f(z) = Pm,n(z)/Qm,n(z)

of f(z) in (3.5.23) is the solution of the linear system (3.5.28). We see that if m or
n is decreased by 1, most of the equations of the system will be the same. There are
therefore recursive relations between the polynomials Qm,n(z) for adjacent values
of m,n, which can be used for computing any sequence of adjacent Padé approx-
imants. These relations have been subject to intensive research that has resulted
in several interesting algorithms; see the next section on the epsilon algorithm, the
monographs of Brezinski [44, 45] and the literature cited there.

There are situations, where the linear system (3.5.28) is singular, i.e.

cm,n = det(Cm,n) = 0.

We shall indicate, how such singular situations can occur. These matters are dis-
cussed more thoroughly in Cheney [59, Chap. 5].

Example 3.5.5.
Let f(z) = cos z = 1 − 1

2z
2 + · · ·, set m = n = 1 and try to find

[1, 1]f(z) = (p0 + p1z)/(q0 + q1z), q0 = 1.

The coefficient matching according to (3.5.27), yields the equations,

p0 = q0, p1 = q1, 0 · q1 = −1

2
q0.
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The last equation contradicts the condition that q0 = 1. This single contradictory
equation is in this case the “system” (3.5.28).

If this equation is ignored, we obtain

[1, 1]f(z) = (1 + q1z)/(1 + q1z) = 1,

with error ≈ 1
2z

2, in spite of the fact that we asked for an error that is O(zm+n+1) =
O(z3). If we instead allow that q0 = 0, then p0 = 0, and we obtain a solution

[1, 1]f(z) = z/z

which does satisfy (3.5.26) but not (3.5.25). After dividing out the common factor
z we get the same result [1, 1]f(z) = 1 as before.

In a sense, this singular case here results from a rather stupid request: we ask
to approximate the even function cos z by a rational function where the numerator
and the denominator end with odd powers of z. One should, of course, ask for the
approximation by a rational function of z2. What would you do, if f(z) is an odd
function?

It can be shown that these singular cases occur in square blocks of the Padé
table, where all the approximants are equal. For example, in Example 3.5.5 we will
have [0, 0]f = [0, 1]f = [1, 0]f = [1, 1]f = 1. This property, investigated by Padé, is
known as the block structure of the Padé table. For a proof of the following theorem,
see Gragg [158].

Theorem 3.5.5.
Suppose that a rational function

r(z) =
P (z)

Q(z)
,

where P (z) and Q(z) are relatively prime polynomials, occurs in ’ the Padé table.
Further suppose that the degrees of P (z) and Q(z) are m and n, respectively. Then
the set of all places in the Padé table that r(z) occurs is a square block. If

Q(z)f(z)− P (z) = O(zm+n+r+1), (3.5.31)

then r ≥ 0 and the square block consists of (r + 1)2 places

(m+ r1, n+ r2), r1, r2 = 0, 1, . . . , r.

An (m,n) Padé approximant is said to be normal if the degrees of Pm,n and
Qm,n are exactly m and n, respectively and (3.5.31) holds with r = 0. The Padé
table is called normal if every entry in the table is normal. In this case that all the
Padé approximants are different.
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Theorem 3.5.6.
An (m,n) Padé approximant [m,n]f(z) is normal if and only if the determi-

nants
cm,n cm1,n+1

cm+1,n cm+1,n+1
,

are nonzero.
A Padé table is normal if and only if

cm,n 6= 0, m, n = 0, 1, 2, . . . .

In particular each Taylor coefficent cm, 1 = cm must be nonzero.

Proof. See Gragg [158].

Imagine a case where [m − 1, n − 1]f (z) happens to be a more accurate ap-
proximation to f(z) than usual, say that

[m− 1, n− 1]f (z) − f(z) = O(zm+n+1).

(For instance, let f(z) be the ratio of two polynomials of degree m − 1 and n− 1,
respectively.) Let b be an arbitrary number, and choose

Qm,n(z) = (z + b)Qm−1,n−1(z), Pm,n(z) = (z + b)Pm−1,n−1(z). (3.5.32)

Then

[m,n]f (z) = Pm,n(z)/Qm,n(z)

= Pm−1,n−1(z)/Qm−1,n−1(z) = [m− 1, n− 1]f(z),

which is an O(zm+n+1) accurate approximation to f(z). Hence our request for this
accuracy is satisfied by more than one pair of polynomials, Pm,n(z), Qm,n(z), since
b is arbitrary. This is impossible, unless the system (3.5.28) (that determines Qm,n)
is singular.

Numerically singular cases can occur in a natural way. Suppose that one wants
to approximate f(z) by [m,n]f (z), although already [m − 1, n− 1]f (z) would rep-
resent f(z) as well as possible with the limited precision of the computer. In this
case we must expect the system (3.5.28) to be very close to a singular system. A
reasonable procedure for handling this is to compute the Padé forms for a sequence
of increasing values of m, n, to estimate the condition numbers and to stop when it
approaches the reciprocal of the machine unit. This illustrates a fact of some gen-
erality. Unnecessary numerical trouble can be avoided by means of a well designed
termination criterion.

For f(z) = − ln(1 − z), we have ci = 1/i, i > 0. When m = n the matrix of
the system (3.5.28) turns out to be the notorious Hilbert matrix (with permuted
columns), for which the condition number grows exponentially like 0.014 ·101.5n; see
Example 2.4.7. (The elements of the usual Hilbert matrix are aij = 1/(i+ j − 1).)

There is a close connection between continued fractions and Padé approxi-
mants. Suppose that in a Padé table the staircase seuence

[0, 0]f , [1, 0]f , [1, 1]f , [2, 1]f , [2, 2]f , [3, 2]f , . . .
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are all normal. Then there exists a regular continued fraction

1 +
a1z

1+

a2z

1+

a3z

1+
. . . , an 6= 0,

with nth approximant fn satisfying

f2m = [m,m]f , f2m+1 = [m+ 1,m]f , m = 0, 1, 2, . . . .

For a proof see [192, Theorem 5.19].

Example 3.5.6.
The successive convergents of the continued fraction expansion in (3.5.3)

1

2z
log

(
1 + z

1 − z

)

=
1

1−
z2

3−
22z2

5−
32z2

7− .

are even functions and staircase Padé approximants. The first few are

s01 =
3

3 − z2
, s11 =

15 + 4z2

3(5 − 3z2)
,

s12 =
105 − 55z2

3(35 − 30z2 + 3z4)
, s22 =

945 − 735z2 + 64z4

15(63 − 70z2 + 15z4)
.

These Padé approximants can be used to evaluate ln(1+x) by setting z = x/(2+x);
The diagonal approximants smm are of most interest. For example, the approxima-
tion s22 matches the Taylor series up to the term z8 and the error is approximately
equal to the term z10/11.

Chebyshev proved that the denominators in the above Padé approximants are
the Legendre polynomials in 1/z. These polynomials are orthogonal on [−1, 1] with
respect to the uniform weight distribution w(x) = 1; see Sec. 4.5.5. Historically
the theory of orthogonal originated from certain types of continued fractions; see
Brezinski [45, Sec. 5.2.3].

Explicit expressions for the Padé approximants for ez were given by Padé
(1892) in his thesis. They are

Pm,n(z) =
m∑

j=0

(m+ n− j)!m!

(m+ n)! (m− j)!

zj

j!
, (3.5.33)

Qm,n(z) =

n∑

j=0

(m+ n− j)!n!

(m+ n)! (n− j)!

(−z)j
j!

, (3.5.34)

with the error

ez − Pm,n(z)

Qm,n(z)
= (−1)n

m!n!

(m+ n)!(m+ n+ 1)!
zm+n+1 +O(zm+n+2). (3.5.35)
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Note that Pm,n(z) = Qn,m(−z), which reflects the property that e−z = 1/ez. In-
deed, the nominator and denominator polynomials can be shown to approximate
(less accurately) ez/2 and e−z/2, respectively.

There are several reasons for preferring the diagonal Padé approximants (m =
n), for which

pj =
(2m− j)!m!

(2m)! (m− j)!j!
, qj = (−1)jpj, j = 0 : m. (3.5.36)

These coefficients satisfy the recursion

p0 = 1, pj+1 =
(m− j)pj

(2m− j)(j + 1)
, j = 0 : m− 1. (3.5.37)

For the diagonal Padé approximants the error Rm,n(z) satisfy |Rm,n(z)| < 1,
for ℜz < 0. This is an important property in applications to solving differential
equations.122 To evaluate a diagonal Padé approximant of even degree we write

P2m,2m(z) = p2mz
2m + · · · + p2z

2 + p0

+ z(p2m−1z
2m−2 + · · · + p3z

2 + p1) = u(z) + v(z).

and evaluate u(z) and v(z) separately. Then Q2m(z) = u(z) − v(z). A similar
splitting can be used for an odd degree.

Recall that in order to compute the exponential function a range reduction
should first be performed. If an integer k is determined such that

z∗ = z − k ln 2, |z∗| ∈ [0, ln 2] (3.5.38)

then exp(z) = exp(z∗) · 2k. Hence only an approximation of exp(z) for |z| ∈ [0, ln 2]
is needed; see Problem 3.5.6.

The problem of convergence of a sequence of Padé approximants when at least
one of the degrees tends to infinity is a difficult problem and outside the scoop of
this book. Padé proved that for the exponential function the poles of the Padé
approximants [mi, ni]f tend to infinity when mi + ni tends to infinity and

lim
i→∞

[mi, ni]f (z) = ez

uniformly on any compact set of C. For a survey of other results, see [48].

3.5.4 The Epsilon Algorithm.

One extension of the Aitken acceleration uses a comparison series with terms of the
form

cj =

p
∑

ν=1

α′
νk
j
ν , j ≥ 0, kν 6= 0. (3.5.39)

122Diagonal Padé approximants are used also for the evaluation of the matrix exponential eA,
A ∈ Rn×n; see Chapter 9.
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Here α′
ν and kν are 2p parameters, to be determined, in principle, by means of cj ,

j = 0 : 2p− 1. The parameters may be complex. The power series becomes

S(z) =
∞∑

j=0

cjz
j =

p
∑

ν=1

α′
ν

∞∑

j=0

kjνz
j =

p
∑

ν=1

α′
ν

1 − kνz
,

which is a rational function of z, and thus related to Padé approximation. Note,
however, that the poles at k−1

ν should be simple and that m < n for S(z), because
S(z) → 0, as z → ∞. Recall that the calculations for the Padé approximation
determines the coefficients of S(z) without calculating the 2n parameters α′

ν and
kν . It can happen that m becomes larger than n, and if α′

ν and kν are afterwards
determined, by the expansion of S(z) into partial fractions, it can turn out that
some of the kν are multiple poles. This suggest a generalization of this approach,
but how?

If we consider the coefficients qj , j = 1 : n, occurring in (3.5.28) as known
quantities then (3.5.28) can be interpreted as a linear difference equation.123 The
general solution of this is given by (3.5.39) if the zeros of the polynomial

Q(x) := 1 +

n∑

j=1

qjx
j

are simple. If multiple roots are allowed, the general solution is, by Theorem 3.3.13
(after some change of notation),

cl =
∑

ν

pν(l)k
n
ν ,

where kν runs through the different zeros of Q(x), and pν is an arbitrary polynomial,
the degree of which equals the multiplicity −1 of the zero kν . Essentially the
same mathematical relations occur in several areas of numerical analysis, such as
interpolation and approximation by a sum of exponentials (Prony’s method), and
in the design of quadrature rules with free nodes (see Sec. 5.3.1).

Shanks [287] considered the sequence transformation

ek(sn) =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

sn sn+1 · · · sn+k

sn+1 sn+2 · · · sn+k+1

...
... · · ·

...

sn+k sn+k+1 · · · sn+2k

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣
∣
∣

∆2sn · · · ∆2sn+k−1

... · · ·
...

∆2sn+k−1 · · · ∆2sn+2k−2

∣
∣
∣
∣
∣
∣
∣
∣

, k = 1, 2, 3, . . . (3.5.40)

123This can also be expressed in terms of the z-transform; see Sec. 3.3.5.
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and proved that it is exact if and only if the values sn+i satisfies a linear difference
equation

a0(sn − a) + · · · + ak(sn+k − a) = 0, ∀ n, (3.5.41)

with a0ak 6= 0, a0 + · · · aka1 6= 0. For k = 1, Shanks’ transformation reduces
to Aitken’s ∆2 process (the proof is left as Problem 3.5.7). The Hankel deter-
minants124 in the definition of ek(sn) satisfy a five-term recurrence relationship,
which can be used for implementing the transformation.

Here we are primarily interested in the use of Padé approximants as a conver-
gence accelerator in the numerical computation of values of f(z) for (say) z = eiφ.
A natural question is then whether it is possible to omit the calculation of the
coefficients pj , qj and find a recurrence relation that gives the function values di-
rectly. A very elegant solution to this problem, called the epsilon algorithm, was
found in 1956 by P. Wynn [340], after complicated calculations. We shall present
the algorithm, but refer to the survey paper by P. Wynn [342] for proof and more
details.

A two-dimensional array of numbers ǫ
(n)
k is computed by the nonlinear recur-

rence relation,

ǫ
(p)
k+1 = ǫ

(p+1)
k−1 +

1

ǫ
(p+1)
k − ǫ

(p)
k

, p, k = 0, 1, . . . , (3.5.42)

which involves four quantities in a rhombus

ǫ
(p)
k

ǫ
(p+1)
k−1 ǫ

(p)
k+1,

ǫ
(p+1)
k

The sequence transformation of Shanks can be computed by using the boundary

conditions ǫ
(p)
−1 = 0, ǫ

(p)
0 = sp, in the epsilon algorithm. Then

ǫ
(p)
2k = ek(sp), ǫ

(p)
2k+1 = 1/ek(∆sp), p = 0, 1, . . . ,

i.e., the ǫ’s with even lower index give the sequence transformation (3.5.40) of
Shanks. The ǫ’s with odd lower index are auxiliary quantities only.

The epsilon algorithm transforms the partial sums of a series into its Padé
quotients or equivalently, a process by means of which a series may be transformed
into the convergents of its associated and corresponding continued fractions. It is
a quite powerful all-purposes acceleration process for slowly converging sequences
and usually fully exploits the numerical precision of the data. For an application
to numerical quadrature, see Example 5.2.3.

If the boundary conditions

ǫ
(p)
−1 = 0, ǫ

(p)
0 = rp,0(z) =

p
∑

j=0

cjz
j, (3.5.43)

124A matrix with constant elements in the antidiagonals is called a Hankel matrix. Hermann
Hankel (1839–1873) a German mathematician. In his thesis [168] he studied determinants of the
class of matrices named after him.
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are used in the epsilon algorithm, this yields for even subscripts

ǫ
(p)
2n = rp+n,n(z), (3.5.44)

Thus the epsilon algorithm can be used to compute recursively the lower half of the
Padé table. The upper half can be computed by using as boundary conditions

ǫ
(−n)
2n = r0,n(z) =

1
∑n
j=0 djz

j
,

The polynomials r0,n(z) are obtained from the Taylor expansion of 1/f(z). Several
procedures for obtaining this were given in Sec. 3.1.

It seems easier to program this application of the ǫ-algorithm after a slight

change of notation. We introduce an r × 2r matrix A = [aij ], aij = ǫ
(p)
k , where

k = j − 2, p = i − j + 1. Conversely, i = k + p + 1, j = k + 2. The ǫ-algorithm,
together with the boundary conditions now takes the form:

for i = 1 : r

ai,1 = 0; ai,2 = ri−1,0(z); ai,2i = r0,i−1(z);

for j = 2 : 2(i− 1)

ai,j+1 = ai−1,j−1 + 1/(aij − ai−1,j).
end

end

Results:

[m,n]f (z) = am+n+1,2n+2, (m,n ≥ 0, m+ n+ 1 ≤ r).

The above program sketch must be improved for practical use. For example, some-
thing should be done about the risk for a division by zero.

3.5.5 The QD Algorithm.

Let {cn} be a sequence of real or complex numbers and

C(z) = c0 + c1z + c2z
2 + · · · , (3.5.45)

the formal power series formed with these coefficients. The qd algorithm125 forms
from this sequence a two-dimensional array, similar to a difference scheme, by al-
ternately taking difference and quotients as follows. We take as initial conditions

e
(n)
0 = 0, n = 1, 2, . . . , q

(n)
1 =

cn+1

cn
, n = 0, 1, . . . . (3.5.46)

125The qd algorithm was developed by the Swiss mathematician Heinz Rutishauser [275], but,
was already contained is some earlier work by Stieltjes.
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and form the quotient-difference scheme, or qd scheme

q
(0)
1

0 e
(0)
1

q
(1)
1 q

(0)
2

0 e
(1)
1 e

(0)
2

q
(2)
1 q

(1)
2 q

(0)
3

0 e
(2)
1 e

(1)
2

... q
(2)
2

...
...

...

,

where the quantities are connected by the two rhombus rules.

e(n)
m = q(n+1)

m − q(n)
m + e

(n+1)
m−1 ; (3.5.47)

q
(n)
m+1 =

e
(n+1)
m

e
(n)
m

q(n+1)
m ; m = 1, 2, . . . , n = 0, 1, . . . , (3.5.48)

Each of the rules connects four adjacent elements of the qd scheme. The first rule
states that in any rhombus like configuration of four elements centered in a q-column
the sum of the two NE and the two SW elements are equal. Similarly, the second
rule states that in any rhombus like configuration in an e-column the product of
the two NE and the two SW elements are equal.

The initial conditions (3.5.46) give the first two columns in the qd scheme. The
remaining elements in the qd scheme, if it exists, can then be generated column by
column using the rhombus rules. Note the computations breaks down if one of the
denominators in (3.5.48) is zero. If one of the coefficients cn is zero even the very
first q-column fails to exist.

The rhombus rules are based on certain indentities between Hankel determi-
nants, which we now describe. These also give conditions for the existence of the qd
scheme. The Hankel determinants associated with the formal power series (3.5.45)

are, for arbitrary integers n and k ≥ 0, defined by H
(n)
0 = 1,

H
(n)
k =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

cn cn+1 · · · cn+k−1

cn+1 cn+2 · · · cn+k

... · · · · · ·
...

cn+k−1 cn+k−2 · · · cn+2k−2

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

, k > 1, (3.5.49)

where ck = 0 for k < 0. This definition is valid also for negative values of n. Note,

however, that if n+ k ≤ 0, then the entire first row of H
(n)
k is zero, i.e.

H
(n)
k = 0, k ≤ −n. (3.5.50)
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Definition 3.5.7.
A formal power series is called normal if its associated Hankel determinants

H
(n)
m 6= 0 for all m,n ≥ 0; it is called k-normal if H

(n)
m 6= 0 for m = 0 : k and for

all n ≥ 0.

In the following theorem (see Henrici [177, Theorem7.6a]) the elements in the
qd scheme are expressed in terms of Hankel determinants:

Theorem 3.5.8.
Let H

(n)
k be the Hankel determinants associated with a formal power series

C = c0 + c1z + c2z
2 + · · ·. If there exists a positive integer k such that the series is

k-normal the columns q
(n)
m of the qd scheme associated with C exist for m = 1 : k,

and

q(n)
m =

H
(n+1)
m H

(n)
m−1

H
(n)
m H

(n+1)
m−1

, e(n)
m =

H
(n)
m+1H

(n+1)
m−1

H
(n)
m H

(n+1)
m

. (3.5.51)

for m = 1 : k and all n ≥ 0.

The proof of the above theorem is related to Jacobi’s identity for Hankel
matrices: For all integers n and k ≥ 1

(H
(n)
k )2 −H

(n−1)
k H

(n+1)
k +H

(n−1)
k+1 H

(n+1)
k−1 = 0; (3.5.52)

see Henrici [177, Sec. 7.5]. (This recurrence relation can also be derived form
Sylvester’s determinant identity.)

If the determinants H
(n)
k are arranged in a triangular array

1

1 H
(0)
1 = c0

1 H
(1)
1 = c1 H

(0)
2

1 H
(2)
1 = c2 H

(1)
2 H

(0)
3

1 H
(3)
1 = c3 H

(2)
2 H

(1)
3 H

(0)
4

then Jacobi’s identity links together the entries in a star-like configuration. Since
the two first columns are trivial (3.5.52) may be used to calculate the Hankel deter-
minants recursively from left to right. Further properties of Hankel determinants
are given in Henrici [177, § 7.5].

We state without proof an important analytical property of the Hankel deter-
minants that shows how the poles of a meromorphic126 function can be determined
from the coefficients of its Taylor expansion at z = 0.

126A function which is analytic in a region Ω, except for poles, is said to be meromorphic in Ω.
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Theorem 3.5.9.
Let f(z) = c0+c1z+c2z

2+· · · , be the Taylor series of a function meromorphic
in the disk D : |z| < σ and let the poles zi = u−1

i of f in D be numbered such that

0 < |z1| ≤ |z2| ≤ · · · < σ,

Then for each m such that |zm| < |zm+1|, if n is sufficiently large, H
(n)
m 6= 0, and

lim
n→∞

H(n+1)
m /H(n)

m = u1u2 · · ·um. (3.5.53)

In the special case that f is a rational function with a pole of order p at infinity
and the sum of orders of all its finite poles be k. Then

H
(n)
k = Ck(u1u2 · · ·uk)n, n > p. (3.5.54)

where Ck 6= 0; furthermore Hm(n) = 0, n > p, m > k.

Proof. The result is a corollary of Theorem7.5b in Henrici [177].

The above results are related to the qd scheme as follows; see Henrici [177,
Theorem 7.6b].

Theorem 3.5.10.
Under the hypothesis of Theorem 3.5.9 and assuming that the Taylor series at

z = 0 is ultimately k-normal for some integer k > 0, the qd scheme for f has the
following properties:

(a) For each m such that 0 < m ≤ k and |zm−1| < |zm| < |zm+1|

lim
n→∞

q(n)
m = um;

(b) For each m such that 0 < m ≤ k and |zm| < |zm+1|

lim
n→∞

e(n)
m = 0.

From the above results it seems that, under certain restrictions, an algorithm
for simultaneously computing all the poles of a meromorphic function f directly
from its Taylor series at the origin, could be constructed, where the qd scheme
is computed from left to right. Any q-column corresponding to a simple pole of
isolated modulus would tend to the reciprocal value of that pole. The e-columns
on both sides would tend to zero. If f is rational, the last e-column would be zero,
which could serve as a test on accuracy.

Unfortunately, as outlined, this algorithm is unstable, i.e. over-sensitive to
rounding errors, and useless numerically. This fact is related to the occurrence in
(3.5.48) of a division of two small quantities, which can have large relative errors,
is performed. (Recall that e-columns tends to zero.)



“dqbjV
2007/5/28
page 345

3.5. Continued Fractions and Padé Approximants 345

A more stable way of constructing the qd scheme is obtained by writing the
rhombus rules as

q(n+1)
m = [e(n)

m − e
(n+1)
m−1 ] + q(n)

m , (3.5.55)

e(n+1)
m =

q
(n)
m+1

q
(n+1)
m

e(n)
m (3.5.56)

Written in this form, the rules can be used to construct the qd scheme row by row.
The problem now is how to start the algorithm. As seen from the scheme below, to
do this it suffices to know the first two rows of q’s and e’s. This, together with the
first column of zeros, allows us to proceed diagonals slanted SW, see scheme below.

q
(0)
1 q

(−1)
2 q

(−2)
3 · · ·

0 e
(0)
1 e

(−1)
2 e

(−2)
3 · · ·

× × ×
0 × ×

× ×
0 ×

×
0

This is called the progressive form of the qd algorithm. The starting values

involves values q
(n)
m and e

(n)
m for negative values of n can be computed from the

relations (3.5.51). In this form the qd algorithm can be used to simultaneously
determine the zeros of a polynomial; see Sec. 6.5.4.

The qd algorithm is related to Padé approximants. Consider a continued
fraction of the form

c(z) =
a1

1+

a2z

1+

a3z

1+
. . . , (3.5.57)

The nth approximant

wn(z) = Pn(z)/Qn(z), n = 1, 2, . . . . (3.5.58)

is the finite continued fraction obtained by setting an+1 = 0. In the special case
that all ai > 0, the continued fraction is called a Stieltjes fraction.127 The sequence
of numerators {Pn(z)} and denominators {Qn(z)} in (3.5.58) satisfy the recurrence
relations:

P0 = 0, P1 = 1, Pn = zanPn−2 + Pn−1,

Q0 = Q1 = 1, Qn = zanQn−2 +Qn−1, n ≥ 2,

Hence both Pn and Qn are polynomials in z of degree ⌊(n − 1)/2⌋ and ⌊n/2⌋,
respectively. It can be shown that the polynomials Pn and Qn have no common
zero for n = 1, 2, . . ..

127The theory of such fractions was first expounded by Stieltjes in a famous memoir, which
appeared in 1894, the year of his death.
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From the initial conditions and recurrence relations it follows that Qn(0) = 1,
n = 0, 1, 2, . . . . Hence the rational function wn(z) = Pn(z)/Qn(z is analytic at
z = 0. Hence it can be expanded in a Taylor series

Pn(z)

Qn(z)
= c

(n)
0 + c

(n)
1 z + c

(n)
2 z2 + · · · (3.5.59)

that converges for z sufficiently small. The coefficients c
(n)
k in (3.5.59) can be shown

to be independent of n for k < n. We denote by ck := c
(n+1)
k the ultimate value of

c
(n)
k for increasing values n and let

C(z) = c0 + c1z + c2z
2 + · · · , (3.5.60)

be the formal power series formed with these coefficients. Then the power series
C(z) and the fraction c(z) are said to correspond to each other. Note that the
formal power series C(z) corresponding to a given fraction c(z) converges for any
z 6= 0.

The qd algorithm can be used to solve the following problem: Given a (formal)
power series C(z) = c0 + c1z+ c2z

2 + · · ·, find a continued fraction c(z) of the form
(3.5.57) corresponding to it. Note that we do not require that the formal power series
corresponding to the continued fraction converges, merely that the nth approximant
wn of the continued fraction satisfies

C(z) − wn(z) = O(zn).

Theorem 3.5.11. Henrici [178, Theorem12.4c]

Given a formal power series C(z) = c0 + c1z+ c2z
2 + · · ·, there exists at most

one corresponding continued fraction of the form

a0

1−
a1z

1−
a2z

1−
a3z

1−
4z

1− · · · ,

It exists precisely one such fraction if and and only if the Hankel determinants

satisfy Hk
(n) 6= 0 for n = 0, 1 and k = 1, 2, . . . . If q

(n)
k and e

(n)
k are the elements of

the qd scheme associated with C, then

c0
1−

q
(0)
1 z

1−
e
(0)
1 z

1−
q
(0)
2 z

1−
e
(0)
2 z

1− · · · , (3.5.61)

Conversely, this shows that knowing the coefficients of the continued fraction
corresponding to f allows us to compute the qd scheme starting from the first diag-
onal and proceeding in SW direction. This is called the progressive qd algorithm.
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Example 3.5.7.
For the power series

c(z) = 0! + 1!z + 2!z2 + 3!z3 + · · · ,

we obtain using the rhombus rules (3.5.47)–(3.5.48) the qd scheme

1

0 1

2 2

0 1 2

3 3 3

0 1 2
. . .

4 4
. . .

0 1
. . .

5
. . .

Hence the corresponding continued fraction is

c(z) =
1

1+

z

1+

z

1+

2z

1+

2z

1+

3z

1+

3z

1+
· · · .

Review Questions

5.1. Define a continued fraction. Show how the convergents can be evaluated either
backwards or forwards.

5.2. Show how any positive number can be expanded into a continued fraction with
integer elements. In what sense are the convergents the best approximations?
How accurate are they?

5.3. What is the Padé table? Describe how the Padé approximants can be com-
puted, if they exist. Tell something about singular and almost singular situa-
tions that can be encountered, and how to avoid them.

5.4. Describe the ǫ-algorithm, and tell something about its background.

5.5. What are the rhombus rules for the qd algorithm? What is the difference
between the standard and the progressive qd algorithm?

5.6. Sketch how the qd algorithm, under some restrictions, can be used to compute
the zeros of a polynomial. Give necessary conditions for this to work. What
governs the rate of convergence?



“dqbjV
2007/5/28
page 348

348 Chapter 3. Series, Operators and Continued Fractions

Problems and Computer Exercises

5.1. (a) Write a program for the algorithm of best rational approximations to a
real number in Sec. 3.5.1.
Apply it to find a few coefficients of the continued fractions for

1
2 (
√

5 + 1),
√

2, e, π, log 2/ log 3, 2j/12

for a few integers j, 1 ≤ j ≤ 11.

(b) Check the accuracy of the convergents. What happens when you apply
your program to a rational number, e.g., 729/768 ?

(c) The metonic cycle used for calendrical purposes by the Greeks consists of
235 lunar months, which nearly equal 19 solar years. Show, using the algo-
rithm in Sec. 3.5.1, that 235/19 is the sixth convergent of the ratio 365.2495/29.53059
of solar period and the lunar phase (synodic) period.

5.2. A matrix formalism for continued fractions.

(a) We use the same notations as in Sec. 3.5.1, but we set, with no loss of
generality, b0 = 0. Set

P (n) =

(
pn−1 pn
qn−1 qn

)

, A(n) =

(
0 an
1 bn

)

.

Show that P (0) = I,

P (n) = P (n− 1)A(n), P (n) = A(1)A(2) · · ·A(n− 1)A(n), n ≥ 1.

Comment: This does not minimize the number of arithmetic operations but, in
a matrix-oriented programming language, it often gives very simple programs.

(b) Write a program for this with some termination criterion, and test it on a
few cases, such as,

1 +
1

1+

1

1+

1

1+
. . . ; 2 +

1

3+

1

2+

1

3+

1

2+

1

3+
. . . ; 2 +

2

2+

3

3+

4

4+
. . . .

As a post-processing, apply Aitken acceleration in the first two cases in order
to obtain a very high accuracy. Does the result look familiar in the last case?
See Problem 3.5.3 concerning the exact results in the two other cases.

(c) Write a version of the program with some strategy for scaling P (n) in
order to eliminate the risk of overflow and underflow.

Hint: Note that the convergents xn = pn/qn are unchanged if you multiply
the P (n) by arbitrary scalars.

(d) Use this matrix form for working out a short proof of (3.5.7).

Hint: What is the determinant of a matrix product?
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5.3. (a) Explain that x = 1 + 1/x for the continued fraction in (3.5.13)?

(b) Compute the periodic continued fraction

2 +
1

3+

1

2+

1

3+

1

2+

1

3+
. . .

exactly (by paper and pencil). (The convergence is assured by Seidel’s Theo-
rem 3.5.2.)

(c) Suggest a generalization of (a) and (b), where you can always obtain a
quadratic equation with a positive root.

(d) Show that

1√
x2 − 1

=
1

x−
1
2

x− y
where y =

1
4

x−
1
4

x−
1
4

x− · · · .

5.4. (a) Prove the equivalence transformation (3.5.8). Show that the errors of the
convergents have alternating signs, if the elements of the continued fraction
are positive.

(b) Show how to bring a general continued fraction to the special form of
equation (3.5.12).

5.5. Show that the (1, 1) Padé approximant of
√

1 + x equals (4 + 3x)/(4 + x).
What is the (2, 2) Padé approximant?

5.6. Let Pm,m(z)/Qm,m(z) be the diagonal Padé approximants of the exponential
function. Show that the coefficients for Pm,m(z) satisfy the recursion

p0 = 1, pj+1 =
m− j

(2m− j)(j + 1)
pj, j = 0 : m− 1. (3.5.62)

(b) Show that for m = 6 we have

P6,6(z) = 1 +
1

2
z +

5

44
z2 +

1

66
z3 +

1

792
z4 +

1

15840
z5 +

1

665280
z6.

and Q6,6(z) = P6,6(−z). How many operations are needed to evaluate this
approximation for a given z?

(c) Use the error estimate in (3.5.35), neglecting higher order terms, to com-
pute a bound for the relative error of the approximation in (b) when |z| ∈
[0, ln 2]. What degree of the diagonal Padé approximant is needed for the rel-
ative error to be of the order of the unit roundoff 2−53 = 1.11 · 10−16 in IEEE
double precision arithmetic?

5.7. For k = 1, Shanks’ sequence transformation (3.5.40) becomes

e1(sn) =

∣
∣
∣
∣

sn sn+1

sn+1 sn+2

∣
∣
∣
∣

/

∆2sn.

Show that this is mathematically equivalent to the result s′n+2 from Aitken
extrapolation. Why is the direct use of the above expression not safe numeri-
cally?
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5.8. (a) Write a program for computing a Padé approximant and its error term.
Apply it (perhaps after a transformation), for various values of m, n to, e.g.,
ez, arctan z, tan z. (Note that two of these examples are odd functions.) Use
the algorithm of Sec. 3.5.1 for expressing the coefficients as rational numbers.
For how large m and n can you use your program (in these examples) without
severe trouble with rounding errors.

(b) Let m be an odd number. Try to transform the (m,m+1) Padé approxi-
mants of arctan z and tan z to continued fractions of the form given given in
Sec. 3.5.1.

(c) Try to determine for which other functions the Padé table has a similar
symmetry as shown in the text for the exponential function ez.

5.9. (a) Show that there is at most one rational function R(z), where the degrees
of the numerator and denominator do not exceed, respectively, m and n, such
that

f(z) −R(z) = O(zm+n+1), as z → 0,

even if the system (3.5.28) is singular. (Note, however, that Pm and Qn are
not uniquely determined, if the system is singular; they have common factors.)

(b) Is it true that if f(z) is a rational function of degrees m′, n′, then

[m,n]f (z) = f(z), ∀ m ≥ m′, n ≥ n′?

5.10. Write a program for evaluation the incomplete gamma function. Use the
continued fraction (3.5.22) for x greater than about a + 1. For x less than
about a+ 1 use the power series for γ(a, x).

5.11. Compute the infinite sum 1− 1
3 + 1

5 − 1
7 + 1

9 − . . . with the epsilon algorithm,
and estimate (empirically) the speed of convergence.

5.12. Write a program for determining the zeros of a polynomial p(z) of degree n
with simple positive zeros. Test it by computing the zeros of some orthogonal
polynomials. Discuss how you can shift the zeros so that convergence to a
particular zero is enhanced?

Notes and References

A fine exposition of the theory of infinite series is given in the classic monograph
by Knopp [203].

The basic properties of the Gauss hypergeometric function are derived in Lebe-
dev’s monograph on Special Functions [214]. Lebedev’s compact book provides a
good background to many of the applications of advanced Analysis, that lacks com-
plete proofs in our book. For example, the chapter on the gamma function contains
numerous instances of the use of series expansions and analytic continuation that
are efficient as well as instructive, important and beautiful. Codes and other inter-
esting information concerning the evaluation of special functions are also found in
Numerical Recipes [263, Chapter 5–6].
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Much work on approximations to special functions, for example, the Gauss’
hypergeometric function and the Kummer function, was done around the end of
World War II. A most comprehensive source of information on useful mathematical
functions and formulas is the “Handbook of Mathematical Functions with Formu-
las, Graphs, and Mathematical Tables”, by Milton Abramowitz and Irene Stegun [1,
], which was first published in 1964 by the National Bureau of Standards (re-
named National Institute of Standards and Technology (NIST) in 1988) of which
more than 150 000 copies have been sold. Tables and formulas in this handbook can
be useful in preliminary surveys before turning to computer programs.

Although still available and among one of the most cited references, it is in-
creasingly becoming out of date. A replacement more suited to the needs of today is
being developed at NIST. This is planned to be made available in 2007 both in print
and as a free electronic publication on the World Wide Web; see dlmf.nist.gov.
An outline of the features of new NIST Digital Library of Mathematical functions
is given by D. W. Lozier [223]. The internet version will come with hyperlinks,
interactive graphics, and tools for downloading and searching. The part of the old
Handbook devoted to massive tables of values will be superseded. To summarize,
data-intensive and operation-preserving methods are replaced by data-conserving
and operation-intensive techniques. A good overview of software for mathematical
special functions is given by Lozier and Olver [222]

A thorough treatment of polynomial interpolation of equidistant data is found
in Steffensen [295]; see in particular § 18 about “the calculus of symbols”. The
history of this topic is presented in Goldstine [147].

An exposition of the long and interesting historical development of convergence
accelerating methods is given by Brezinski [47]. The use of extrapolation methods in
numerical analysis up to 1970 is surveyed Joyce [193], which contains an extensive
bibliography. This book by Brezinski and Redivo-Zaglia [49] covers more recent
developments. It also surveys properties of completely monotonic sequences, and
the way for constructing such sequences. Some convergence acceleration methods
(due to Lindelöf, Plana and others) transform an infinite series to an integral in the
complex plane. With appropriate numerical procedures for computing the integral,
these methods can compete with the methods treated in Sec. 3.4. In particular,
they are applicable to some difficult ill-conditioned series; see Dahlquist [79].

The theory of continued fractions started to develop already in the 17th cen-
tury. The main contributors were Euler, Lambert and Lagrange; see Brezinski [45].
The basic algorithmic aspects of what we today call Padé approximants were estab-
lished by Frobenius [117]. Padé [252] gave a systematic study of these approximants
and introduced the table named after him. The analytic theory of continued frac-
tions has earlier origins and contributors include Chebyshev, A. A. Markov and
Stieltjes. Hermite was able to prove the transcendence of e in 1873 using a kind of
Padé approximants. His proof was extended in 1892 by Lindemann, who showed
that π is a transcendental number, answering a question that had been an open prob-
lem for 2000 years. An important survey of theory and applications of continued
fractions is given by Jones and Thron [192], see also Lorenzen and Waadeland [221].

The most complete reference on Padé approximation is Baker and Graves-
Morris [14]. A more easy to read introduction is Baker [13]. The numerical evalua-
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tion of continued fractions is surveyed in Blanche [30]. Gragg [158] surveys the use
of the Padé table in numerical analysis.

Continued fraction expansions of many special functions are found in Abramowitz
and Stegun [1]. Codes and further references are given in Numerical Recipes, Press
et al. [263, Chapters 5 and 6]. Algebraic continued fractions and applications to
number theory are discussed in Riesel [269].

A general extrapolation algorithm that includes the almost all known con-
vergence acceleration methods has been given by H̊avie [171]. For acceleration
of vector sequences several generalizations of scalar sequence transformations have
been suggested; see [159]. Used for solving linear equations these are related to
the biconjugate gradient algorithm and projection methods; see the monographs by
Brezinski [46].

The theory of the qd algorithm is treated in depth by Henrici [177, Chap. 7].
Rutishauser got the idea for his LR-algorithm [276] for computing the eigenvalues
of a matrix from the qd-algorithm. For recent developments and applications to the
matrix eigenvalue problem see Parlett [255].
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Chapter 4

Interpolation and

Approximation

Far better an approximate answer to the right question,
which is often vague,
than an exact answer to the wrong question,
which can always be made more precise,
—John W. Tukey

4.1 The Interpolation Problem

4.1.1 Introduction

Polynomials are used as the basic means of approximation in nearly all areas of
numerical analysis. We have encountered in Sec. 3.3.4 the problem of interpolating
the values of a function f(x) in n equidistant points by a polynomial p(x) ∈ Pn. 128

We have also studied application of polynomial approximations to numerical differ-
entiation and integration. It is de facto so, although the polynomials are invisible
in the derivations of formulas by operator methods. In the following sections we
shall go deeper into the non-equidistant polynomial interpolation problem:

Let a = x1 < x2 < · · ·xn = b be a grid of distinct points xi. Find a polynomial
p ∈ Pn, such that

p(xi) = f(xi), i = 1 : n. (4.1.1)

By Theorem 3.3.4, the interpolation polynomial p is uniquely determined. This
theorem is general, although the rest of Sec. 3.3 dealt with interpolation polynomials
in the equidistant case only and their application to numerical differentiation. Note
that the formulation and the solution of this problem are independent of the ordering
of the points xi.

128Recall the definition of Pn as the space of polynomials in one variable of degree less than n;
the dimension of the linear space Pn is n.
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4.1.2 Bases for Polynomial Interpolation

A set of polynomials p = {p1(x), p2(x), . . . , pn(x)}, such that any polynomial p ∈ Pn
can be expressed as a linear combination

p(x) =

n∑

j=1

cjpj(x),

is called a basis in Pn. The column vector c = (c1, c2, . . . cn)T can be viewed as a
coordinate vector of p in the space Pn, with respect to this basis. The interpolation
problem (4.1.1) leads to a linear system of equations

c1p1(xi) + c2p2(xi) + . . .+ cmpn(xi) = f(xi), i = 1 : n. (4.1.2)

If we introduce the matrix

Mn(p) = [pj(xi)]
n
i,j=1, (4.1.3)

and the column vector f =
(
f(x1), f(x2), . . . , f(xn)

)T
, then the linear system be-

comes
Mn(p)c = f. (4.1.4)

Mathematically, the choice of basis (for a finite-dimensional space) makes no
difference. Computationally, working with rounded values of the coefficients, the
choice of basis can make a great difference. If the purpose is to compute derivatives
or integrals of the interpolation polynomial, the power basis or the shifted power
basis, where pj(x) = (x− c)j−1, i.e.

p(x) =

n∑

j=1

cj(x− c)j−1,

is convenient although not always the best. If a shifted power basis is to be used for
polynomial approximation on an interval [a, b], it is often best to choose c = (a+b)/2,
i.e. equal to the midpoint of the interval.

For the power basis pj(x) = xj−1, the coefficients of the interpolation poly-
nomial is given by the solution of the linear system V Tn c = f , where Vn is the
Vandermonde matrix

Vn = [xj−1
i ]ni,j=1 =







1 1 · · · 1
x1 x2 · · · xn
...

... · · ·
...

xn−1
1 xn−1

2 · · · xn−1
n






. (4.1.5)

By Theorem 3.3.4 this matrix is non-singular, since the Vandermonde determinant
equals

det(Vn) =
∏

1≤i<j≤n
(xi − xj);
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see (3.3.12).
Let p = {p1(x), p2(x), . . . , pn(x)} and q = {q1(x), q2(x), . . . , qn(x)} be two

bases for Pn. Then the qj must be linear combinations of the pk, k = 1 : n. This
can be expressed in vector-matrix form

(
q1(x), q2(x), . . . , qn(x)

)
=
(
p1(x), p2(x), . . . , pn(x)

)
S, (4.1.6)

where S is a constant matrix. S must be non-singular; for, if S were singular then
there would exist a non-trivial vector v such that Sv = 0, hence

(q1(x), q2(x), . . . , qn(x))v = (p1(x), p2(x), . . . , pn(x))Sv = 0 ∀x,
and (q1(x), q2(x), . . . , qn(x)) would thus not be a basis.

Let Mn(p) = [pj(xi)]
n
i,j=1 and Mn(q) = [qj(xi)]

n
i,j=1. By putting x = xi,

i = 1 : m into (4.1.6), we see that Mn(q) = Mn(p)S, and Mn(q) is non-singular for
every basis. If we set p(x) =

∑
djqj(x), the system (4.1.2) becomes for this basis

Mn(q)d = f , and then

Mn(p)c = f = Mn(q)d = Mn(p)Sd, c = Mn(p)−1f = Sd. (4.1.7)

The matrix S for the transformation between representations is thus like a coordi-
nate transformation in Geometry. Various common bases transformations are given
by Gander [120].

The power basis has a bad reputation which is related the ill-conditioning of
the corresponding Vandermonde matrix. There are other basis in Pn which are
often more advantageous to use. By a triangle family of polynomials we mean a
sequence of polynomials

q1(x) = s11

q2(x) = s12 + s22x

q3(x) = s13 + s23x+ s33x
2 (4.1.8)

. . .

qn(x) = s1n + s2nx+ s3nx
2 + . . .+ snnx

n−1

where sjj 6= 0 for all j. Note that the coefficients form a lower triangular matrix S,
Conversely, for any j, pj(x) = xj−1 can be expressed recursively and uniquely

as linear combinations of q1(x), . . . , qj(x), We obtain a triangular scheme also for
the inverse transformation

1 = t11q1(x)

x = t12q1 + t22q2

x2 = s13q1 + t23q2 + t33q3 (4.1.9)

. . .

xn = t1nq1 + t2nq2 + t3nq3 + . . .+ tnnqn

where tjj 6= 0 for all j, and the coefficients form a lower triangular matrix T = S−1.
So every triangle family is a basis for Pm. (Recall the well known fact that the in-
verse of a triangular matrix with nonzero diagonal exists and is triangular.) Among
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interesting triangle families are the shifted power basis (x − c)j , the Chebyshev
polynomials Tj(x), and many other families of orthogonal polynomials.

A triangle family which is often very convenient for solving the interpolation
problem is the family of Newton polynomials

p1(x) = 1, pj(x) = (x− x1)(x− x2) . . . (x− xj−1), j = 2 : n, (4.1.10)

which has unit leading coefficients. Since pj(xk) = 0, if k < j, we obtain using the
representation

p(x) = c1p1 + c2p2(x) + c3p3(x) + · · · + cnpn(x), (4.1.11)

lower triangular system Lc = f for the coefficients, where

L =









1
1 (x2 − x1)
1 (x3 − x1) (x3 − x1)(x3 − x2)
...

...
...

. . .

1 (xn − x1) (xn − x1)(xn − x2) · · · ∏n−1
j=1 (xn − xj)









. (4.1.12)

Hence the coefficients can be computed by forward substitution. In the next section
we shall see how this basis leads to Newton’s interpolation formula. This is one of
the best interpolation formulas, with respect to flexibility, computational economy
and numerical stability.

If a polynomial p(x) is given in the form (4.1.11) then it can be evaluated
using only n multiplications and 2n additions, for a given numerical value x using
the nested form

p(x) = (· · · (cn(x− xn−1) + cn−1)(x− xn−2) +

· · · + c3)(x− x2) + c2)(x− x1) + c1.

This can be evaluated by a recursion formula similar to Horner’s rule (see Sec. 1.2.2).
Other bases of Pn are sometimes more advantageous. Let xi, i = 1 : n,

be distinct interpolation points. The Lagrange polynomials ℓj(x) used in are the
polynomials of degree n− 1

ℓj(x) =

n∏

i=1
i6=j

(x− xi)

(xj − xi)
, j = 1 : n. (4.1.13)

where xi, i = 1 : n, are n distinct real numbers, which satisfy

ℓj(xi) = δij =

{
1 if i = j;
0 if i 6= j.

(4.1.14)

From this property follows Lagrange’s interpolation formula129:

129Lagrange published his interpolation formula in 1794.
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Theorem 4.1.1.
The unique interpolation polynomial p ∈ Pn interpolating the function f at

the distinct points xi, i = 1 : n, can be written

p(x) =

n∑

j=1

f(xj)

n∏

i=1
i6=j

(x− xi)

(xj − xi)
. (4.1.15)

It is an easy exercise to show that by L’Hospital’s rule the Lagrange polyno-
mials can be written

ℓj(x) =
Φn(x)

(x− xj)Φ′
n(xj)

, Φn(x) =

n∏

i=1

(x− xi). (4.1.16)

This property characterizes what, in a more general context, is known as a cardinal
basis. Such a basis directly displays the solution of the interpolation problem for
n distinct points.

Lagrange’s interpolation formula has been widely regarded as being of mainly
theoretical interest. In Sec. 4.2.2 two modified forms of Lagrange’s interpolation
formula will be given, which are very attractive also computationally.

A natural extension of the interpolation problem is to determine a polynomial

p(x) =

n∑

j=1

cjpj(x) ∈ Pn,

that, in some sense, best fits to the data (xi, f(xi)), i = 1 : m, where m > n. Since
the number of equations is larger than the number of parameters, the corresponding
linear system Mc = f is overdetermined. and can typically be satisfied only
approximately, see Sec. 1.3.3. Overdetermination can be used to attain two different
types of smoothing:

(a) to reduce the effect of random or other irregular errors in the values of the
function;

(b) to give the polynomial a smoother behaviour between the grid points.

In discrete least squares approximation one determines the coefficient
vector c that minimizes the sum of squared residuals

S(c) =

m∑

i=1

(p(xi) − f(xi))
2. (4.1.17)

This can in many applications be motivated by statistical arguments; see Sec. 4.5.6.
It also leads to rather simple computations. The conditions for the minimization
are

∂S(c)

∂ck
= 2

m∑

i=1

pk(xi)
(
p(xi) − f(xi)

)
= 0, k = 1 : n.
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A stable method for discrete least squares polynomial approximation, based on
using a basis of orthogonal polynomials, will be given in Sec. 4.5.5.

We mention here that a large part of the theory of polynomial interpolation
and approximation is valid also for generalized polynomials

u(x) =

n∑

k=1

akuk(x),

where u1, u2, . . . , un are continuous real-valued functions that form a Chebyshev
system on a closed finite interval [a, b]. The functions u1, u2, . . . , un are said form
a Chebyshev system on [a, b] if

U(x1, . . . , xn) =









u1(x1) u2(x1) · · · un(x1)

u1(x2) u2(x2) · · · un(x2)
...

...
...

u1(xn) u2(xn) · · · un(xn)









(4.1.18)

is nonsingular whenever a ≤ x1 < x2 < · · · < xn ≤ b. The functions are referred
to as a complete Chebyshev system if u1, . . . , uk is a Chebyshev system for each
k = 1 : n. An alternative condition to the nonsingularity of (4.1.18) is that every
nontrivial linear combination

∑n
k=1 akuk(x) has at most n−1 distinct zeros in [a, b].

Clearly the power basis 1, x, . . . , xn are a complete Chebyshev system.

4.1.3 Conditioning of Polynomial Bases

Let fj = f(xj), j = 1 : n, be given values of a function at n distinct points xj .
Consider the interpolation problem of finding a polynomial pn(x; f) ∈ Pn that
interpolates these values. With the terminology of Sec. 2.4.3 the input data of this
problem is fj , j = 1 : n, and the output data is the value of the polynomial pf
evaluated at some fixed point x̃. The componentwise relative condition number of
this problem with respect to the data vector f = (f1, f2, . . . , fn) is defined as

cond (x̄, f) = lim
ǫ→0

sup

{ |pf+∆f(x̄) − pf (x̄)|
ǫ|pf (x̄)|

: |∆f | ≤ ǫ |f |
}

, (4.1.19)

where ∆f denotes a perturbation of the data vector f . From the definition it
trivially follows that

|pf+∆f(x) − pf (x)| ≤ ǫ cond (x, f).

Usually the interpolation problem is solved in two steps. First a suitable basis
pj(x), j = 1 : n, for the space Pn is and the coefficients cj in the expansion

p(x; f) =
n∑

j=1

cjpj(x), (4.1.20)
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are determined. Second the right hand side of (4.1.20) is evaluated at the point x̄.
In the first step it is important to consider how sensitive the coefficients cj are

to small perturbations in the data f . By (4.1.4) we have Mnc = f . We are thus
interested in the condition number of the matrix Mn,

κ(Mn) = ‖Mn‖/‖M−1
n ‖.

The conditioning of different polynomial bases and in particular how fast κ(Mn)
grows as a function of n is discussed by Gautschi [133] and de Boor [33].

Many bounds and asymptotic estimates for the condition number of κ(Vn) are
known; see [136, Sec. 1.3], [180, Sec. 22.1]. For equidistant points xi = −1 + 2(i−
1)/(n− 1) on [−1, 1], it holds that

κ∞(Vn) = ‖V −1
n ‖∞‖Vn‖∞ ∼ π−1eπ/4(3.1)n; (4.1.21)

for example, κ∞(V20) ≈ 1.05 · 109. Other point distributions are even worse. For
the harmonic points xi = 1/i, i = 1 : n, we have κ∞(Vn) > nn+1, which is faster
than exponential growth! Surprisingly some Vandermonde systems, which are so ill-
conditioned that Gaussian elimination with pivoting fails to produce single correct
digit, can be solved to full relative accuracy by a fast algorithm given in Sec. 4.2.3.

For the Chebyshev points on [−1, 1]

xi = cos
(2i− 1

n

π

2

)

, i = 1 : n, (4.1.22)

i.e. the zeros of Tn−1(x), the Vandermonde matrix is much better conditioned

κ∞(V ) ∼ 0.2533/4(1 +
√

2)n. (4.1.23)

In contrast to the power basis the condition of bases of orthogonal polynomials
exhibits only polynomial growth in n. For Chebyshev polynomials pj = Tj on [−1, 1]
it holds that

κ(Mn) ≤
√

2n,

which is a big improvement on the power basis.
We now consider the Lagrange basis (4.1.13). By Lagrange’s interpolation

formula

p(x) =

n∑

j=1

f(xj)ℓj(x).

For interpolation points in [a, b] one therefore finds that ‖M−1
n ‖∞ = 1 and ‖Mn‖∞ =

Ln, where

Ln = max
a≤x≤b

n∑

j=1

|ℓj(x)|. (4.1.24)

is the so called Lebesgue constant for the nodes. For equally spaced points Λn
grows at a rate proportional to 2n/(n logn); see Cheney and Light [60, Chap. 3].
For the Chebyshev points in [−1, 1] on the other hand

Ln ≤ 2

π
log(n) + 1.
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The basis consisting of the Lagrange polynomials for Chebyshev nodes is optimally
conditioned among all Lagrangian bases. It is indeed optimal among all polynomial
bases in the sense of attaining the optimal growth rate O(logn).

It should be stressed that κ(Mn) measures only the sensitivity of the coeffi-
cients ci in the polynomial p(x) =

∑n
j=1 cjx

j−1 to perturbations in the given data
fi. It is possible, that even when these coefficients are inaccurately determined, the
interpolation polynomial p(x) does still reproduces the true interpolation polyno-
mial well. For further discussion of these points, see Sec. 4.2.4 and [161].

Review Questions

1.1. The interpolation problem in Pn leads to a linear system V T c = f , where V
is a Vandermonde matrix. Write down the expression for the element vij .

1.2. What is meant by the method of undetermined coefficients? Give an example!

1.3. What is meant by a triangle family q1(x), q2(x), . . . , qn(x) of polynomials? Are
all such families a basis for Pn?

1.4. What property characterizes a cardinal basis for Pn?
1.5. What good effects can be achieved by using overdetermination in polynomial

interpolation?

1.5. How is the Lebesgue constant defined and what is its significance for the
conditioning of the polynomial interpolation problem?

Problems and Computer Exercises

1.1 (a) Study experimentally interpolation in Pn, n = 2 : 2 : 16 for f(x) =
(3 + x)−1, x ∈ [−1, 1]. Use the linear system V T c = f and the power basis.
Study both equidistant points and Chebyshev points

xi = −1 + 2
i− 1

n− 1
, xi = cos

(2i− 1

n

π

2

)

, i = 1 : n,

respectively. Plot the error curve, y = |f(x)− p(x)| in semi-logarithmic scale.
For the larger values of m, make also experiments to illuminate the effects
from random perturbations of the function values to the values of p(x).

(b) Make also a few experiments with a random vector f , for n = 16 and
n = 8, in order to compare the grid data and the order of magnitude of p(x)
between the grid points.

1.2 A warning for polynomial extrapolation of empirical functions, or . . . ?

(a) Write a program c = polyapp(x, y, n) that finds the coefficient vector c
for a polynomial in p ∈ Pn, in a shifted power basis, such that yi ≈ p(xi),
i = 1 : m, m ≥ n, in the least squares sense, or study a program that does
almost this.
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(b) The following data shows the development of the Swedish GDP, quoted
(with permission) from a table made by a group associated with the Swedish
Employer’s Confederation. (The data are expressed in prices of 1985 and
scaled so that the value for 1950 is 100.)

1950 1955 1960 1965 1970 1975 1980 1985 1990

100.0 117.7 139.3 179.3 219.3 249.1 267.5 291.5 326.4

1952 1957 1962 1967 1972 1977 1982 1987 1992

104.5 124.6 153.5 189.2 226.4 247.7 270.2 307.6 316.6

(a) For the upper pairs of data, compute and plot p(x), x ∈ [1950, 2000] (say).
Mark the given data points. Do this for m = 9, and for (say) n = 9, and
then for n = 8 : −2 : 2. Store the results, so that comparisons can be made
afterwards.

(b) Do the same for the lower pairs of data. Organize the plots, so that
interesting comparisons become convenient. How well are the data points of
one of the sets interpolated by the results from the other set?

(c) Make forecasts for 1995 and 2000 with both data sets. Then, use a reduced
data set, e.g., for the years 1982 and earlier (so that m = 7), and and compare
the forecasts for 1987 and 1992 with the given data. (Isn’t it a reasonable test
for every suggested forecast model to study its ability to predict the present
from the past?)

(d) See if you obtain better results with the logarithms of the GDP values.

1.3 The Lebesgue constant for polynomial interpolation at distinct points xi ∈
[a, b], i = 1 : n, equals

Ln = max
a≤x≤b

n∑

j=1

|ℓj(x)|.

Let p(x) be the polynomial of degree less than n interpolating f(x). Show
that in the inequality maxa≤x≤b |p(x)| ≤ Lnmaxa≤x≤b |f(x)| equality can be
obtained for some f(x) ∈ C[a, b].

Hint: Take f(x) piecewise linear and such that f(xi) = sign ℓi(xi).

4.2 Interpolation Formulas and Algorithms

4.2.1 Newton’s Interpolation Formula

Newton’s interpolation formula uses the triangle family of Newton polynomials
(4.1.10). Let p ∈ Pn be the unique polynomial interpolating a given function f(x)
at n distinct real or complex points x1, x2, . . . , xn.

Suppose that an expansion

f(x) = c1 + c2(x − x1) + . . .+ cn(x− x1)(x− x2) · · · (x− xn−1)

+An(x)(x − x1)(x− x2) · · · (x− xn), (4.2.1)
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holds, where An(x) is the coefficient of the remainder term. If f ∈ Pn, we know
from Sec. 4.1.2 that such a formula holds with An(x) ≡ 0. We shall see that it is
correct in general.

For x = x1 we get c1 = f(x1). Further

[x1, x]f = c2 + c3(x− x2) + . . .+ cn(x− x2) · · · (x− xn−1)
+An(x)(x − x2) · · · (x− xn),

where we have set

[x1, x]f =
f(x) − f(x1)

x− x1
.

This shows that c2 = [x1, x2]f .
We now define divided differences130 for k > 1, by the recursion

[x1, . . . , xk−1xk, x]f =
[x1, . . . , xk−1, x]f − [x1, . . . , xk−1, xk]f

x− xk
. (4.2.2)

We obtain, for k = 2,

[x1, x2, x]f = c3 + c4(x− x3) + . . .+ cn(x− x3) · · · (x − xn−1)
+An(x)(x − x3) · · · (x− xn),

and c3 = [x1, x2, x3]f . By induction it follows that

ck = [x1, . . . , xk−1, xk]f, k = 1 : n. (4.2.3)

i.e., ck in (4.2.1) equals the (k − 1)th divided difference of f . Further,

An(x) = [x1, x2, . . . , xn, x]f

for the coefficient of the remainder term.
We are now ready to state Newton’s interpolation formula with exact

remainder:

Theorem 4.2.1.
The unique interpolation polynomial p ∈ Pn, such that p(xi) = f(xi), i = 1 :

n, where the xi are distinct points, can be written

p(x) =

n∑

k=1

ckΦk−1(x). (4.2.4)

where ck = [x1, x2, . . . , xk]f is the divided difference and

Φ0 = 1, Φk(x) = Φk−1(x)(x − xk), k = 1 : n. (4.2.5)

130We prefer the modern notation [. . .]f to the older notations f [. . .] or f(. . .), since it emphasizes
that [. . .] is an operator. Note that the interpretation [x]f = f(x) is consistent with this.
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The formula

f(x) =

n∑

k=1

[x1, x2, . . . , xk]f Φk−1(x) + [x1, x2, . . . xn, x]f Φn(x) (4.2.6)

is an identity, i.e. the exact remainder equals

f(x) − p(x) = [x1, x2, . . . xn, x]f Φn(x). (4.2.7)

These formulas are valid also for complex xi and x.

Proof. For f ∈ Pn we know that (4.2.1) is correct, hence we can trust the coeffi-
cients ck = [x1, . . . , xk]f . Moreover, since p(xk) = f(xk), k = 1 : n, it follows that
[x1, x2, . . . xk]p = [x1, x2, . . . xk]f , and hence (4.2.4) holds.

We prove the identity (4.2.6) by induction. For n = 1, it is true, because the
right hand side becomes f(x1)+[x1, x]f ·(x−x1) = f(x), which equals the left-hand
side. Next suppose that it is true for n = m. The difference between the right hand
side for n = m+ 1 and n = m is
(
[x1, . . . , xm+1]f − [x1, . . . xm, x]f

)
Φm(x) + [x1, . . . xm+1, x]f Φm+1(x)

=
(
[x1, . . . , xm+1]f − [x1 . . . xm, x]f + [x1, . . . xm+1, x]f (x− xm+1)

)
Φm(x)

=
(
[x1, . . . , xm+1, x]f (xm+1 − x) + [x1, . . . xm+1, x]f (x − xm+1)

)
Φm(x) = 0.

Hence the conjecture is true for n = m+ 1.

Note that to obtain the interpolation polynomial of the next higher degree
with Newton’s formula, we need only add a term similar to the last term, but
involving a new divided difference of one higher order.

In particular, if f ∈ Pn then it follows from (4.2.7) that

[x1, x2, . . . , xn, x]f = 0, ∀x.
For x = xn+1, this equation is, by Theorem 3.3.4 the only non-trivial relation of
the form

∑n+1
j=1 ajf(xj) = 0 that holds for all f ∈ Pn,.

Theorem 4.2.2.
Let xi, i = 1 : n, be pairwise distinct interpolation points. For every n, the

divided difference [x1, x2, . . . , xn]f is the unique coefficient of xn−1 in the interpo-
lation polynomial p ∈ Pn.131 Further we have

[x1, x2, . . . , xn]f =

m∑

j=1

f(xj)

n∏

i=1
i6=j

1

(xj − xi)
. (4.2.8)

Proof. The first statement follows from (4.2.3). The right hand side of (4.2.8) is
the coefficients of xn−1 obtained by using Lagrange’s interpolation formula Theo-
rem 4.1.1.
131Some authors take this as the definition of the divided difference.
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It follows from (4.2.8) that the divided differences are symmetric functions of
its arguments and continuous functions of its arguments, as long as the points xi
are distinct and f(x) is continuous.

Assume k > i. By the definition of divided differences,

[xi+1, . . . , xk−1, xk, x]f =
[xi+1, . . . , xk−1, x]f − [xi+1, . . . , xk−1, xk]f

x− xk
.

Now set x = xi and use the symmetry property (Theorem 4.2.2). We obtain the
formula

[xi, xi+1, . . . , xk−1, xk]f =
[xi, xi+1, . . . , xk−1]f − [xi+1, . . . , xk−1, xk]f

xi − xk
. (4.2.9)

This formula can be used recursively to compute the divided differences. The com-
putation is conveniently arranged in a table shown below for n = 5 (recall that
[xi]f = f(xi)).

x1 [x1]f
[x1, x2]f

x2 [x2]f [x1, x2, x3]f
[x2, x3]f [x1, x2, x3, x4]f

x3 [x3]f [x2, x3, x4]f [x1, x2, x3, x4, x5]f
[x3, x4]f [x2, x3, x4, x5]f

x4 [x4]f [x3, x4, x5]f
[x4, x5]f

x5 [x5]f

This table is called a divided-difference table. Each entry in the table is com-
puted from the two entries above and below in the previous column. Hence the
complete table can be constructed, for example, column by column or diagonal by
diagonal.

The exact remainder term in Theorem 4.2.1 is not directly useful since un-
known value f(x) occurs in the divided difference [x1, . . . xn, x]f . We now derive
another expression for the remainder term. In the following int (x, x1, . . . , xn) de-
notes the smallest interval that contains the points x and x1, . . . , xn.

Theorem 4.2.3 (The Remainder Term for Interpolation).

Let f be a given real function, with f (n) continuous in int (x, x1, x2, . . . , xn).
Denote by p the polynomial of degree n− 1 for which p(xi) = f(xi), i = 1 : n. Then

f(x) − p(x) = [x1, x2, . . . xn, x]f Φn(x) =
f (n)(ξx)

n!
Φn(x), (4.2.10)

Φn(x) =
∏n
i=1(x− xi), for some point ξx ∈ int (x, x1, x2, . . . , xn), and

[x1, x2, . . . xn, xn+1]f =
f (n)(ξ)

n!
, ξ ∈ int (x1, . . . , xn+1). (4.2.11)
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Proof. Following a proof due to Cauchy, we introduce a new variable z, and set

G(z) = f(z) − p(z) − [x1, x2, . . . xn, x]f Φn(z).

We know by Theorem 4.2.1 that

f(x) − p(x) = [x1, x2, . . . xn, x]f Φn(x). (4.2.12)

hence G(x) = 0. Then G(z) = 0 for z = x, x1, x2 . . . , xn. From repeated use
of Rolle’s theorem it follows that there exists a point ξx ∈ int (x, x1, x2, . . . , xn),

such that G(n)(ξx) = 0. Since p(n)(z) = 0 and Φ
(n)
n (z) = n! for all z, G(n)(z) =

f (n)(z) − [x1, x2, . . . xn, x]f n!. If we now put z = ξx, we obtain

[x1, x2, . . . xn, x]f =
f (n)(ξx)

n!
. (4.2.13)

Put this into the definition of G(z), and set z = x. Since G(x) = 0, the first
statement follows. The second statement follows from (4.2.13) for x = xn+1.

In the proof of this theorem we have assumed that xi, x, and f(x), are real.
However, Newton’s interpolation formula with the exact remainder term, is valid
also in the complex plane. A result similar to (4.2.13) will be shown for complex
interpolation points xi will be shown in Sec. sec4.3.1.

Notice the similarity to the remainder term in Taylor’s formula. In Sec. 4.3.1
we shall derive a remainder term for the general case that xi are complex interpo-
lation points and also consider the case when the points are allowed to coincide.

Theorem 4.2.4.
For equidistant points xi = x1 + (i− 1)h, fi = f(xi), it holds that

[xi, xi+1, . . . , xi+k]f =
∆kfi
hkk!

. (4.2.14)

Proof. By induction, with the use of equation (4.2.9). The details are left to the
reader.

We have noted above that, in the notation for the equidistant case, ∇kfn ≈
hkf (k), while in the divided difference notation f [xn, xn−1, . . . , xn−k] ≈ f (k)/k!.
For the basis functions of the interpolation formulas, we have, respectively,

(
x

k

)

= O(1), (x − xn)(x − xn−1) · · · (x− xn−k+1) = O(hk),

provided that x− xn−j = O(h), j = 0 : k − 1.
We are now in a position to give a short proof of the important formula (3.3.4)

that we now formulate as a theorem.
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Theorem 4.2.5.
Assume that f ∈ Ck. Then

∆kf(x) = hkf (k)(ζ), ζ ∈ [x, x+ kh]. (4.2.15)

If f ∈ Pk then ∆kf(x) = 0. Analogous results hold, mutatis mutandis, for backward
and central differences.

Proof. Combine the result in Theorem 4.2.4 with (4.2.11), after appropriate sub-
stitutions.

Example 4.2.1.
Suppose we want to compute by linear interpolation the value f(x) at a point

x = x0 + θh, h = x1 − x0. Since θ(1 − θ) takes on its maximum value 1/4 for
θ = 1/2, it follows from (4.2.10) that for 0 ≤ θ ≤ 1, the remainder satisfies

|f(x) − p(x)| ≤ h2M2/8, M2 = max
x∈int [x0,x1]

|f ′′(x)|. (4.2.16)

If the values f0 and f1 are given to t correct decimal digits, then the round-off error
in evaluating p(x) = (1− θ)f0 + θf1, for 0 ≤ θ ≤ 1 is bounded by 1

210−t. Further if
h2M2/8 ≤ 1

2 · 10−t, then the total error in p(x) is bounded by 10−t.
This analysis motivates the rule of thumb that linear interpolation suffices if

|∆2fn|/8 is a tolerable truncation error.

To form the Newton interpolation polynomial we only need one diagonal of the
divided-difference table. It is not necessary to store the entire table. The following
algorithm replaces (overwrites) the given function values

fi = f(xi) = [x1]f, i = 1 : n,

by the downward diagonal of divided differences of the divided difference table,

[x1]f, [x1, x2]f, . . . , [x1, x2, . . . , xn]f.

At step j the jth column of the table is computed:

for j = 1 : n− 1

for i = n : −1 : j + 1

fi := (fi − fi−1)/(xi − xi−j);
end

end

Note that to avoid overwriting data needed later it is necessary to proceed from
the bottom of each column! The algorithm uses n(n− 1)/2 divisions and n(n− 1)
subtractions.

Newton’s interpolation formula has the advantage that, if it is not known in
advance how many interpolation points are needed to achieve the required accuracy,
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then one interpolation point can be added at a time. The following progressive
algorithm computes the divided difference table one diagonal at a time. In the ith
step the entries

[xi]f, [xi−1, xi]f, . . . , [x1, x2, . . . , xi]f

on the upward diagonal of the divided-difference table overwrites the function values
fi, fi−1, . . . , f1.

for i = 2 : n

for j = i : −1 : 2

fj := (fj − fj−1)/(xi − xj−1);

end

end

By Theorem 4.2.1 the Newton polynomial has the form

p(x) = c1 +

n∑

j=2

cj

j−1
∏

i=1

(x− xi), cj = [x1, . . . , xj ]f. (4.2.17)

Substituting z for x we have, by a simple generalization of Horner’s rule, that
p(z) = b1(z), where

bn = cn, bi(z) = bi+1(z)(z − xi) + ci, i = n− 1 : −1 : 1. (4.2.18)

This recursion can be used algebraically, or to evaluate p(x) for a given numerical
value x = z. It is straightforward to show that in the latter case the computed
result is the exact value corresponding to slightly perturbed divided differences; cf.
Problem 2.3.6.

The auxiliary quantities bn(z), . . . , b2(z) are of independent interest, since

p(x) = b1 + (x− z)

(

b2 +

n−1∑

j=2

bj+1φj−1(x)

)

. (4.2.19)

Hence they give the coefficients of the quotient polynomial in synthetic division
of p(x) with (x − z). The proof of this result is left as an exercise. Derivatives
of a Newton polynomial can be evaluated by repeated applications of the Horner
scheme.

Example 4.2.2.
Compute the interpolation polynomial for the following table:

x1 = 1 0
2

x2 = 2 2 1
5 0

x3 = 4 12 1
8

x4 = 5 20
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(The entries appearing in the Newton forward interpolation formula are boldface.)
We get

p(x) = 0 + 2(x− 1) + 1(x− 1)(x− 2) + 0(x− 1)(x− 2)(x− 4)

= x2 − x.

Note that for these particular data the unique interpolation polynomial in P4 actu-
ally belongs to the subspace P3.

Example 4.2.3.
Set f(x; z) = 1/(z − x); x is the variable, z is a parameter; both may be

complex. The following elementary, though remarkable, expansion can be proved
directly by induction.

1

z − x
=

1

z − x1
+

x− x1

(z − x1)(z − x2)
+ . . .+

(x− x1)(x − x2) · · · (x− xn−1)

(z − x1)(z − x2) · · · (z − xn)

+
(x− x1) · · · (x− xn)

(z − x1) · · · (z − xn)(z − x)

=

n∑

j=1

Φj−1(x)

Φj(z)
+

Φn(x)

Φn(z)(z − x)
. (4.2.20)

When we match this with Newton’s interpolation formula we find that

[x1, x2, . . . , xj ]f(x; z) =
1

Φj(z)
, (4.2.21)

[x1, x2, . . . , xj , x]f(x; z) =
1

Φj(z)(z − x)
. (4.2.22)

These formulas can also be proved by induction, by working algebraically with
1/(z−x) in the divided difference table (Problem 4.2.4). See also Problem 3.2.2 (a)
for the equidistant case.

This is more than a particular example. Since 1/(z − x) is the kernel of
Cauchy’s integral (and several other integral representations), this expansion is
easily generalized to arbitrary analytic functions; see Sec. 4.3.2.

An interesting feature is that these formulas do not require that the points
xi are distinct. (They are consistent with the extension to non-distinct points that
will be made in Sec. 4.3.1.) Everything is continuous except if z = xi, i = 1 : n,
or, of course if z = x, If all the xi coincide, we obtain a geometric series with a
remainder.

For given interpolation points the divided differences in Newton’s interpolation
formula depends on the ordering in which the points xi are introduced. Mathemati-
cally all orderings give the same unique interpolation polynomial. But the condition
number for the coefficients c in the Newton polynomial can depend strongly on the
ordering of the interpolation points. For simple everyday interpolation problems the
increasing order x1 < x2 < · · · < xn will give satisfactory results.
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If the point x̄ where the polynomial is to be evaluated is known, then an
ordering such that

|x̄− x1| ≤ |x̄− x2| ≤ · · · ≤ |x̄− xn|
can be recommended. In the equidistant case this corresponds to using Stirling’s
interpolation formula (3.3.39). In case convergence is slow and an interpolation
polynomial of high order has to be used, another suitable choice is the Leja order-
ing defined by

x1 = max
1≤i≤n

|xi|,
j−1
∏

k=1

|xj − xk| = max
i≥j

j−1
∏

k=1

|xi − xk|, j = 2 : n− 1. (4.2.23)

Let K be a compact set in the complex plane with a connected complement. Any
sequence of points ξ1, ξ2, . . . which satisfies the conditions

|ξ1| = max
ξ∈K

|ξ|,
j−1
∏

k=1

|ξj − ξk| = max
ξ∈K

j−1
∏

k=1

|ξ − ξk|, j = 2, 3, . . . . (4.2.24)

are Leja points for K. The points may not be uniquely defined by (4.2.24). For a
real interval [a, b] the Leja points are distributed similarly to the Chebyshev points.
The main advantage of the Leja points is that it is easy to add new Leja points
successively to an already computed sequence of Leja points.

4.2.2 Barycentric Lagrange Interpolation

Let xi, i = 1 : n, are n distinct real numbers. InSec. 4.1.2 we introduced Lagrange’s
interpolation formula, which uses the cardinal basis of Pn consisting of the Lagrange
polynomials of degree n− 1

ℓj(x) =

n∏

i=1
i6=j

(x− xi)

(xj − xi)
, j = 1 : n. (4.2.25)

with the property that

ℓj(xi) = δij =

{
1 if i = j;
0 if i 6= j,

Quite often it is asserted that the Lagrange form is a bad choice for practical
computations132, since for each new value of x the functions ℓi(x) have to be recom-
puted at a cost O(n2). Further, adding a new data point xn+1, fn+1 will require a
new computation from scratch. It is concluded that the expression (4.1.15) is not
as efficient as the Newton formula.

The above assertions are, however, not well-founded. The Lagrange represen-
tation can easily be rewritten in two more attractive forms which both are eminently

132Steffensen [295, p. 25] “For actual numerical interpolation Lagrange’s formula is, however, as
a rule not very suitable.
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suitable for computation; see Rutishauser [277] and Berrut and Trefethen [22]. Tak-
ing out the common factor Φn(x) in (4.1.15) and introducing the support coeffi-
cients

wj =
1

∏

i=1
i6=j

(xj − xi)
, j = 1 : n, (4.2.26)

The Lagrange polynomials can then be written as

ℓj(x) = Φn(x)
wj

x− xj
.

Taking out the common factor gives the modified form of Lagrange’s interpolation
formula

p(x) = Φn(x)
n∑

j=1

wj
x− xj

f(xj), (4.2.27)

Here wj depend only on the given points xj , j = 1 : n, and can be computed
in n(n − 1) operations. This is twice the work required to compute the divided
differences for Newton’s interpolation formula. Then, to evaluate p(x) from (4.2.27)
for a new value of x we only need to compute Φn(x) and wj/(x − xj), j = 1 : n,
which requires O(n) operations.

The product factor Φn(x) in (4.2.27) can be eliminated as follows. Since the
interpolation formula is exact for f(x) ≡ 1, we have

1 = Φn(x)

n∑

j=1

wj
x− xj

.

Substituting this in (4.2.27)

p(x) =

n∑

j=1

wj
x− xj

f(xj)

n∑

j=1

wj
x− xj

, if x 6= xj , j = 1 : n, (4.2.28)

which is the barycentric form of Lagrange’s interpolation formula. This expresses
the value p(x) as a weighted mean of the values fi. (Note that the coefficients
wj/(x−xj) need not be positive, so the term “barycentric” is not quite appropriate.)

The barycentric formula (4.2.28) has a beautiful symmetric form and is “em-
inently suitable for machine computation” (Henrici [176, p. 237]) Unlike Newton’s
interpolation formula, it does not depend on the order in which the nodes are or-
dered. The numerical stability of the two modified Lagrange interpolation formulas
is, contrary to what is often stated, very good. Note that the interpolation property
of p(x) is preserved even if the coefficients wi are perturbed, but then p(x) is usually
no longer a polynomial but a rational function.

There seems to be a stability problem for the formula (4.2.28) when x is very
close to one of the interpolation points xi. In this case wi/(x − xi) will be very
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large and not accurately computed because of the cancellation in the denominator.
But this is in fact no problem, since there will be exactly the same error in the
denominator. Further, in case ∆i = fl (x − xi) is exactly zero, we simply put
∆i = u, where u is the unit roundoff; see Theorem 2.2.2.

The barycentric form of Lagrange’s interpolation formula can be as efficiently

updated as Newton’s formula. Suppose the support coefficients w
(k−1)
i , i = 1 : k−1

for the points x1, . . . , xk−1 are known. Adding the point xk the first k − 1 new
support coefficients can be calculated from

w
(k)
i = w

(k−1)
i /(xi − xk), i = 1 : k − 1,

using (k− 1) divisions and subtractions. Finally we have w
(k)
k = 1

/∏k−1
i=1 (xk − xi).

The computation of the support coefficients is summarized in the following program:

w1 = 1;

for k = 2 : n,

wk = 1;

for i = 1 : k − 1,

wi := wi/(xi − xk);

wk = wk/(xk − xi);

end

end

Note that the support coefficients wi do not depend on the function to be interpolated.
Once they are known interpolating a new function f only requires O(n) operations.
This contrasts with Newton’s interpolation formula which requires the calculation
of a new table of divided differences for each new function.

Suppose that we use interpolation points in an interval [a, b] of length 2C.
Then as n → ∞ the scale of the weights will grow or decay exponentially at the
rate C−n. If n is large or C is far from 1, the result may underflow or overflow even
in IEEE double precision. In such cases there may be a need to re-scale the support
coefficients.

The computation of the support coefficients can be done in only 1
2n(n− 1) by

using the relation (see Problem 4.2.6 and [283, Sec. 3.2.1])

n∑

i=1

wi = 0, n > 1;

to compute wn =
∑n−1
i=1 wi. But using this identity destroys the symmetry and can

lead to stability problems for large n. Serious cancellation in the sum will occur
whenever maxi |wi| is much larger than |wn|. Hence the use of this identity is not
recommended in general.

Theorem 4.2.6 (N. Higham [181]).

Assume that xi, fi and x are floating-point numbers. Then the computed value
p̄(x) of the interpolation polynomial using the modified Lagrange formula (4.2.27)
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satisfies

p̄(x) = Φn(x)
n∑

i=1

wi
x− xi

f(xi)

5(n+1)
∏

j=1

(1 + δij)
±1, (4.2.29)

where |δij | ≤ u.
Thus the formula (4.2.27) computes the exact value of an interpolating polyno-

mial corresponding to slightly perturbed function values f(xi). Hence this formula
is backward stable in the sense of Definition 2.4.9. It also holds the forward error
bound

|pn(x̄) − p̄n(x̄)|
|pn(x̄)|

≤ γ5n+5cond (x̄, f). (4.2.30)

where γn = nu/(1 − nu), can be obtained.

The barycentric formula is not backward stable. A forward error bound similar
to (4.2.30) but containing an extra term proportional to cond (x̄, 1) =

∑n
j=1 |ℓj(x)|

can be shown. Hence the barycentric formula can be significantly less accurate
than the modified Lagrange formula (4.2.27) only for a poor choice of interpolation
points.

For various important distributions of interpolating points, it is possible to
compute the support coefficients wi analytically.

Example 4.2.4.
For interpolation at the equidistant points x1, xi = x1 + (i − 1)h, i = 2 : n,

the support coefficients are

wi = 1
/

((xi − x1) · · · (xi − xi−1)(xi − xi+1) · · · (xi − xn))

= (−1)n−i
/ (
hn−1(i− 1)! (n− i)!

)
=

(−1)n−i

hn−1(n− 1)!

(
n− 1

i

)

In the barycentric formula (4.2.28) a common factor in the coefficients wi cancels
and we may use instead the modified support coefficients

w∗
i = (−1)i+1

(
n− 1

i

)

. (4.2.31)

For a given n these can be evaluated in only 2n operations using the recursion

w∗
1 = n− 1, w∗

i = w∗
i−1

n− i

i
, i = 2 : n.

Example 4.2.5.
Explicit support coefficients are also known for the Chebyshev points of the

first and second kind on [−1, 1]. For the Chebyshev points

xi = cos
(2i− 1)

n

π

2
, i = 1 : n,
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they are

wi = (−1)i sin
(2i− 1)

n

π

2
. (4.2.32)

For the Chebyshev points of the second kind,

xi = cos
(i− 1)

(n− 1)
π, i = 1 : n

they are

wi = (−1)iδj , δj =

{
1/2 if i = 1 or i = n,
1, otherwise

. (4.2.33)

Note that all but two weights are equal! This will be considered from another point
of view in Sec. 4.6.

For an interval [a, b] the Chebyshev points can be generated by a linear trans-
formation. The corresponding weights wi then gets multiplied by 2n(b − a)n. But
this factor cancels out in the barycentric formula, and there is no need to include
it. Indeed, by not doing so the risk of overflow or underflow, when |b−a| is far from
1 and n is large, is avoided.

The two examples above show that with equidistant or Chebyshev points only
O(n) operations are needed to get the weights wi. For these cases the barycentric
formula seems superior to all other interpolation formulas.

Lagrange’s interpolation formula can be used to compute the inverse of the
Vandermonde matrix V in (4.1.5) in O(n2) operations. If we set V −1 = W =
(wij)

n
i,j=1, then WV = I, the ith row of which can be written

n∑

j=1

wijx
j
k = δik, k = 1 : n.

This is an interpolation problem that is solved by the Lagrange basis polynomial

ℓi(x) =

n∏

k=1
k 6=i

(x− xk)

(xi − xk)
=

n∑

j=1

wijx
j , j = 1 : n. (4.2.34)

Clearly V is nonsingular if and only if the points xi are distinct.
The elements wij in inverse Vandermonde matrix W = V −1 can be computed

as follows: First compute the coefficients of the polynomial

Φn(x) = (x− x1)(x− x2) · · · (x− xn) =

n+1∑

j=1

ajx
j−1.

This can be done by the recursion:

a1 = −x1;

a2 = 1;
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for k = 2 : n

ak+1 = 1;

for j = k : −1 : 2

aj = aj−1 − xkaj ;

end

a1 = −xka1;

end

Then compute the coefficients of the polynomials

qi(x) = Φn(x)/(x − xi), i = 1 : n.

by synthetic division (see Sec. 1.2.2). By (4.2.34) the n2 elements in W equal the
coefficients of the Lagrange polynomials

ℓi(x) = qi(x)/qi(xi), i = 1 : n.

Here the scalars qi(xi) are computed by Horner’s rule. The cost of computing the
n2 elements in W by this algorithm is only 6n2 operations.

4.2.3 Iterative Linear Interpolation

There are other recursive algorithms for interpolation. Of interest are those based
on successive linear interpolations. The basic formula is given in the following
theorem.

Theorem 4.2.7.
Assume that the two polynomials pn−1(x) and qn−1(x), both in Pn−1 inter-

polate f(x) at the points x1, . . . , xn−1, and x2, . . . , xn, respectively. If the n points
x1, x2, . . . , xn−1, xn are distinct then

pn(x) =
(x − x1)qn−1(x) − (x − xn)pn−1(x)

xn − x1
.

is the unique polynomial in Pn that interpolates f(x) at the m points x1, x2, . . . ,
xn−1, xn.

Proof. Since qn−1(x) and pn−1(x) both interpolate f(x) at the points x2, . . . , xn−1

and
(x− x1) − (x− xn)

xn − x1
= 1,

it follows that also pn(x) interpolates f(x) at these points. Further, pn(x1) =
pn−1(x1) and hence interpolates f(x) at x1. A similar argument shows that, pn(x)
interpolates f(x) at x = xn. Hence pn(x) is the unique polynomial interpolating
f(x) at the distinct points x1, x2, . . . , xn.
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A variety of schemes use Theorem 4.2.7 to construct successively higher order
interpolation polynomials. Denote by Pj,j+1,...,k(x), k > j, the polynomial interpo-
lating f(x) at the points xj , xj+1, . . . , xk. The calculations in Neville’s algorithm
can be arranged in a triangular table:

x1 f(x1)

x2 f(x2) P1,2(x)

x3 f(x3) P2,3(x) P1,2,3(x)

x4 f(x4) P3,4(x) P2,3,4(x) P1,2,3,4(x)
...

...
...

...
...

xk f(xk) Pk−1,k(x) Pk−2,k−1,k(x) Pk−3,k−2,k−1,k(x) . . . P1,2,3,...,k

Any entry in this table is obtained as a linear combination of the entries to the left
and diagonally above in the preceding column.

Note that it is easy to add a new interpolation point in this scheme. To
proceed only the last row to be retained. This is convenient in applications where
the function values are generated sequentially and it is not known in advance how
many values are to be generated.

Neville’s algorithm is used, for example, in repeated Richardson extrapolation
(see Sec. 3.4.6), where polynomial extrapolation to x = 0 is to be carried out.
Another use of Neville’s algorithm is in iterative inverse interpolation; see Isaacson
and Keller [187, Chapter 6.2].

If it is known in advance that a fixed number k of points are to be used, then
one can instead generate the table column by column. When one column has been
evaluated then the preceding may be discarded.

Aitken’s algorithm uses another sequence of interpolants as indicated in the
table below:

x1 f(x1)

x2 f(x2) P1,2(x)

x3 f(x3) P1,3(x) P1,2,3(x)

x4 f(x4) P1,4(x) P1,2,4(x) P1,2,3,4(x)
...

...
...

...

xk f(xk) P1,k(x) P1,2,k(x) P1,2,3,k(x) . . . P1,2,3,...,k

For a fixed number k of points this table can be generated column by column. To
add a new point the upper diagonal f(x1), P1,2(x), P1,2,3(x), . . . , P1,2,...,k(x) need
to be saved. The basic difference between these two procedures is that in Aitken’s
the interpolants in any row use points with subscripts near 1, whereas Neville’s
algorithm use row with subscripts nearest n.

Neville’s and Aitken’s algorithms can easily be used also in the case of multiple
interpolation points. The modification is similar to that in Newton’s interpolation
method.
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4.2.4 Solving Vandermonde Systems

Given distinct scalars x1, x2, . . . , xn, the coefficients for the interpolating polynomial
in the power basis p =

∑n
i=1 aix

i−1 are given by the solution to the linear system

V Ta = f (4.2.35)

where V is the Vandermonde matrix

V = V (x1, x2, . . . , xn) =







1 1 · · · 1
x1 x2 · · · xn
...

... · · ·
...

xn−1
1 xn−1

2 · · · xn−1
n






. (4.2.36)

Whether solving Vandermonde systems are appropriate for polynomial depends on
in which basis the result is expressed. Often the Newton basis is a better choice.
As we shall see, even when we want to solve the Vandermonde system (4.2.35) an
algorithm based on Newton’s interpolation formula is a much better choice than
Gaussian elimination.

Newton’s interpolation formula gives the interpolation polynomial in the form

p(x) = c1 + c2p2(x) + · · · + cnpn(x).

where the basis polynomials are

p1(x) = 1, pk(x) = (x− x1) · · · (x − xk−1), k = 2 : n.

Here cj = [x1, . . . , xj−1]f the divided differences can be recursively computed as
described in Sec. 4.2.1. Then the coefficient vector a of p(x) in the power basis

p(x) = a1 + a2x+ · · · + anx
n−1,

can be computed by Horner’s rule. Note that the matrix V T is never formed and
only storage for a few vectors is needed. It is easily verified that the operation count
is 5

2n(n+ 1) flops.
The related primal Vandermonde system

V y = b (4.2.37)

arises in problems of determining approximation of linear functionals

Example 4.2.6.

We shall find a formula for integrals of the form I(f) =
∫ 1

0 x
−1/2f(x) dx that

is exact for f ∈ Pn and uses values f(xi), i = 1 : n. Such integrals need a

special treatment because of the singularity at x = 0. Set µj =
∫ 1

0
x−1/2xj−1 dx

and introduce the row vector µT = (µ1, µ2, . . . , µn). We have that f(x) ≈ p(x) =
∑n
i=1 cjx

j−1, where V T c = f , and

I(f) ≈
∫ 1

0

x−1/2p(x) dx =

n∑

i=1

cjµj = µTV −T
n f, (4.2.38)
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where Vn is the Vandermonde basis. This can be written I(f) = aT f , where the
coefficient vector is a = V −1

n µ, i.e. a is the solution to the primal Vandermonde
system V a = µ.

Clearly the approach in Example 4.2.6 can be used for any linear functional.
We would like to have a stable and efficient method also for solving the primal
system. One possibility would be to use the algorithm given in Sec. 4.2.2 which
computes the inverse V −1 in about 6n2 operations and then form the product
V −1b = y.

We shall now derive a more efficient and accurate algorithm for solving primal
Vandermonde systems. We start by expressing the solution of the dual problem
in terms of a matrix factorization. Using the power basis the unique polynomial
satisfying the interpolation conditions p(xi) = fi, i = 1 : n, is

p(x) = (1, x, . . . , xn−1)a,

where the coefficient vector a satisfies the linear system V T a = f ,
To derive a corresponding algorithm for solving primal Vandermonde systems

the above algorithm can be interpreted as a factorization of the matrix (V T )−1 into
a product of diagonal and lower bidiagonal matrices. Let

Dk = diag (1, . . . , 1, (xk+1 − x1), . . . , (xn − xn−k)).

and define the matrices

Lk(x) =

(
Ik−1 0

0 Bn−k+1(x)

)

, k = 1 : n− 1, (4.2.39)

where

Bp(x) =







1
−x 1

. . .
. . .

−x 1







∈ Rp×p. (4.2.40)

Then the dual Vandermonde algorithm can be written in matrix terms as c = UT f ,
a = LT c, where

UT = D−1
n−1Ln−1(1) · · ·D−1

1 L1(1), (4.2.41)

LT = LT1 (x1)L
T
2 (x2) · · ·LTn−1(xn−1). (4.2.42)

Since a = V −T f = LTUT f , we have V −T = LTUT .
We can now obtain a fast algorithm for solving a primal Vandermonde system

V y = b as follows. Transposing the matrix factorization of V −T gives V −1 = UL.
Hence y = V −1b = U(Lb) and the solution to the primal system can be computed
from d = Lb, y = Ud. Transposing (4.2.41)–(4.2.42) this gives

L = Ln−1(xn−1) · · ·L2(x2)L1(x1)

U = LT1 (1)D−1
1 · · ·LTn−1(1)D−1

n−1.
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This leads to an algorithm for solving primal Vandermonde systems. The operation
count and storage requirement of this are the same as for dual system algorithm.

The given algorithms can be generalized to confluent Vandermonde matrices
(see Example 4.3.1).

The above two algorithms are not only fast. Also they give almost full relative
accuracy in the solution of some Vandermonde systems which are so ill-conditioned
that Gaussian elimination with complete pivoting fails to produce a single correct
digit. This was first observed by Björck and Pereyra [27], from which the following
example is taken.

Example 4.2.7.
Consider a primal Vandermonde system Vny = b, with

xi = 1/(i+ 2), bi = 1/2i−1, i = 1 : n.

The exact solution can be shown to be

yi = (−1)i−1

(
n

i

)

(1 + i/2)n−1.

Let ȳi be the solution computed by the primal Vandermonde algorithm and take as
a measure of the relative error en = max1≤i≤n |yi − ȳi|/|yi|. Using a hexadecimal
floating-point arithmetic with u = 16−13 = 2.22 · 10−16 the following results were
obtained:

n 5 10 15 20 25

en/u 4 5 10 54 81

The computed solution has small componentwise relative error which is remarkable
since, for example, κ(V10) = 9 · 1013.

A forward error analysis given by Higham [179], explains the surprisingly
favorable results. If the points are positive and monotonically ordered

0 < x1 < x2 · · · < xn, (4.2.43)

then the error in the solution ā of a Vandermonde system V y = b computed by the
primal algorithm can be bounded as

|ā− a| ≤ 5u|V −1| |b| +O(u2). (4.2.44)

If the components of the right-hand side satisfy (−1)nbi ≥ 0, then |V −1| |b| =
|V −1b|, and this bound reduces to

|ā− a| ≤ 5u|a| +O(u2), (4.2.45)

i.e. the solution is computed with small relative error independent of the con-
ditioning of V . A similar result holds for the dual algorithm. These good re-
sults can be shown to be related to the fact that when (4.2.43) holds, the matrix
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V (x1, x2, . . . , xn) is totally positive, i.e. the determinant of every squares subma-
trix of V is positive; see [36, 124].

A Vandermonde-like matrix is a matrix of the form

P = (pi(αj))
n
i,j=1,

where pi(x), i = 1 : n are basis polynomials in Pn. Fast algorithms for solving
Vandermonde-like primal and dual systems can be developed by exploiting the
connection with interpolation provided the pi(x) satisfy a three-term recurrence
relation; see Higham [180, Se. 22.2].

4.2.5 The Runge Phenomenon

The remainder term in interpolation is according to Theorem 4.2.3 equal to

1

n!

n∏

i=1

(x− xi)f
(n)(ξx).

Here ξx depends on x, but one can say that the error curve behaves for the most part
like a polynomial curve y = c

∏n
i=1(x− xi). A similar curve is also typical for error

curves arising from least squares approximation. This contrasts sharply with the
error curve for Taylor approximation, whose behavior is described approximatively
by y = c(x− x0)

n.
It is natural to ask what the optimal placing of the interpolation points

x1, . . . , xn should be in order to minimize the maximum magnitude of Φn(x) =
∏n
i=1(x − xi) in the interval the formula is to be used. For the interval [−1, 1] the

answer is given directly by the minimax property (Lemma 3.2.4) of the Chebyshev
polynomials—choose

Φn(x) = Tn(x)/2
n−1.

Thus the interpolation points should be taken as the zeros of Tn(x). (In case of an
interval [a, b] one makes the linear substitution x = 1

2 (a+ b) + 1
2 (b − a)t.)

Example 4.2.8.
Use the same notations as before. For f(x) = xn the interpolation error

becomes f(x) − p(x) = Φn(x), because f (n)(x)/n! ≡ 1. Figure 4.2.1 shows the
interpolation error with n equidistant points on [−1, 1] and with n Chebyshev points
on the same interval, i.e.

xi = −1 + 2
i− 1

n− 1
, xi = cos

(2i− 1

n

π

2

)

,

respectively, for n = 6 and n = 12. The behaviour of the error curves as shown in
Figure 4.2.1 are rather typical for functions where f (n)(x) is slowly varying. Also
note that the error increases rapidly, when x leaves the interval int(x1, x2, . . . , xn).
In the equidistant case, the error is quite large also in the outer parts of the interval.

Equidistant interpolation can give rise to convergence difficulties when the
number of interpolation points becomes large. This difficulty is often referred to as
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−1

0
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x 10

−3

Figure 4.2.1. Error of interpolation in Pn for f(x) = xn, using n = 12
Chebyshev points (solid line) and equidistant points (dashed line).

Runge’s phenomenon133, and we illustrate it in the following example. A more
advanced discussion is given in Sec. 4.3.6, by means of complex analysis.

Example 4.2.9.
The graph of the function

f =
1

1 + 25x2
=
i

2

( 1

i+ 5x
+

1

i− 5x

)

,

where i =
√
−1, is the continuous curve shown in Figure 4.2.2, is approximated in

two different ways by a polynomial of degree 10 in [−1, 1]. The dashed curve has
been determined by interpolation on the equidistant grid with m = 11 points

xi = −1 + 2(i− 1)/(m− 1), i = 1 : m. (4.2.46)

The dash-dot curve has been determined by interpolation at the Chebyshev points

xi = cos
(2i− 1

m

π

2

)

, i = 1 : m, (4.2.47)

The graph of the polynomial obtained from the equidistant grid has—unlike the
graph of f—a disturbing course between the grid points. The agreement with f near
the ends of the interval is especially bad, while near the center of the interval [− 1

5 ,
1
5 ]

the agreement is fairly good. Such behavior is typical of equidistant interpolation
of fairly high degree, and can be explained theoretically.

133Carl Runge (1856–1927), a German mathematician, held a chair in Applied Mathematics in
Göttingen 1904–1925. Runge’s example is from 1901.
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1.5
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Figure 4.2.2. Polynomial interpolation of 1/(1 + 25x2) in two ways using
11 points: equidistant points (dashed curve), Chebyshev abscissae (dash-dot curve).

The polynomial obtained from interpolation at Chebyshev points agrees much
better with f , but still is not good. The function f is not at all suited for approx-
imation by one polynomial over the entire interval. One would get a much better
result using approximation with piecewise polynomials; see Sec. 4.4.

Notice that the difference between the values of the two polynomials is much
smaller at the grid points of the equidistant grid than in certain points between
the grid points, especially in the outer parts of the interval. This intimates that
the values which one gets by equidistant interpolation with a polynomial of high
degree can be very sensitive to disturbances in the given values of the function.
Put another way, equidistant interpolation using polynomials of high degree is in
some cases an ill-conditioned problem, especially in the outer parts of the interval
[x1, xm]. The effect is even worse if one extrapolates—i.e. if one computes values
of the polynomial outside the grid. But equidistant interpolation works well near
the center of the interval.

Even with equidistant data one can often get a more well-behaved curve by—
instead of interpolating—fitting a polynomial of lower degree using the method of
least squares. Generally, if one chooses n < 2

√
m, then the polynomial fit is quite

well conditioned, but higher values of n should be avoided.134

If one intends to approximate a function in [−1, 1] and one can choose the
points at which the function is computed or measured, then one should choose
the Chebyshev points. Using these points, interpolation is a fairly well-conditioned
problem in the entire interval. The risk of disturbing surprises between the grid
points is insignificant. One can also conveniently fit a polynomial of lower degree

134This fact is related to the shape of the, so called, Gram polynomials; see Sec. 4.5.5.
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than n− 1, if one wishes to smooth errors in measurement; see Sec. 4.5.5.
Example 4.2.9 shows how important it is to study the course of the approxi-

mating curve p∗(x) between the points which are used in the calculation before one
accepts the approximation. When one uses procedures for approximation for which
one does not have a complete theoretical analysis, one should make an experimental
perturbational calculation. In the above case such a calculation would very probably
reveal that the interpolation polynomial reacts quite strongly if the values of the
function are disturbed by small amounts, say ±10−3. This would give a basis for
rejecting the unpleasant dashed curve in the example, even if one knew nothing
more about the function than its values at the equidistant grid points.

Review Questions

2.1. Prove the theorem which says that the interpolation problem for polynomials
has a unique solution.

2.2. When is linear interpolation sufficient?

2.3. Derive Newton’s interpolation formula.

2.4. Derive Newton’s interpolation formula for the equidistant case, starting from
Newton’s general interpolation formula. How is this formula easily remem-
bered?

2.5. Derive the Lagrange interpolation formula. Show how it can be rewritten in
barycentric form. When is the latter form more efficient to use?

2.6. Neville’s and Aitken’s interpolation algorithms both perform successive linear
interpolation. What is the difference between these?

2.7. The fast algorithm in Sec. 4.2.4 for solving primal Vandermonde systems can
give surprisingly accurate results provided that the points x1, x2, . . . , xn satisfy
certain conditions. Which?

2.8. (a) Why is it important to study the course of the approximating curve p∗(x)
between the points which are used in the calculation before one accepts the
approximation?

(b) What is a good choice of interpolation points in the interval [a, b], if one
wants to get a small error.

Problems and Computer Exercises

2.1. (a) Compute f(3) by quadratic interpolation in the following table:

x 1 2 4 5

f(x) 0 2 12 21

Use the points 1, 2, and 4, and the points 2, 4, and 5, and compare the results.
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(b) Compute f(3) by cubic interpolation.

2.2. Compute f(0) using one of the interpolation formulas treated above on the
following table:

x 0.1 0.2 0.4 0.8

f(x) 0.64987 0.62055 0.56074 0.43609

The interpolation formula is here used for extrapolation. Use also Richardson
extrapolation and compare the results.

2.3. Work out the details of Example 4.2.3 (about divided differences for 1/(z−x)).
2.4. (a) Consider the two polynomials p(x) and q(x), both in Pn, which interpolate

f(x) at the points x1, . . . , xn, and x2, . . . , xn+1, respectively. Assume that
{xi}n+1

i=1 is an increasing sequence, and that f (n)(x) has constant sign in the
interval [x1, xn+1]. Show that f(x) is contained between p(x) and q(x) for all
x ∈ [x1, xn+1].

(b) Suppose that f(x) = f1(x)−f2(x), where both f
(n)
1 (x) and f

(n)
2 (x) have the

same constant sign in [x1, xn+1]. Formulate and prove a kind of generalization
of the result in (a).

2.5. Using the barycentric formula (4.2.27) the interpolation polynomial can be
written

p(x) =

n∑

i=1

wif(xi)

m∏

j=1
j 6=i

(x− xj).

Show by taking f(x) ≡ 1 and equating the coefficients for xn−1 on both sides
that the support coefficients satisfy

∑n
i=1 wi = 0.

4.3 Generalizations and Applications

4.3.1 Hermite Interpolation

Newton’s interpolation formula can also be used in generalized interpolation prob-
lems, where one or more derivatives are matched at the interpolation points. This
problem is known as Hermite interpolation.135

Theorem 4.3.1.
Let {zi}mi=1 be m distinct real or complex points. Let f(z) be a given real- or

complex-valued function that is defined and has derivatives up to order ri−1 (ri ≥ 1)
at zi. The Hermite interpolation problem, to find a polynomial p(z) of degree
≤ n−1, where n =

∑m
i=1 ri, such that p(z) and its first ri−1 derivatives agree with

those of f(z) at zi, i.e.

p(j)(zi) = f (j)(zi), j = 0 : ri − 1, i = 1 : m. (4.3.1)

135Charles Hermite (1822–1901), a French mathematician, made important contributions to num-
ber theory, orthogonal polynomials and elliptic functions.



“dqbjV
2007/5/28
page 384

384 Chapter 4. Interpolation and Approximation

is uniquely solvable. We use here the notation f (0)(z) for f(z).

Proof. Note that (4.3.1) are precisely n conditions on p(z). The conditions can
be expressed by a system of n linear equations for the coefficients p, with respect
to some basis. This has a unique solution for any right-hand side, unless the corre-
sponding homogeneous problem has a non-trivial solution. Suppose that a polyno-
mial p ∈ Pn comes from such a solution of the homogeneous problem, that is

p(j)(zi) = 0, i = 1 : m, j = 0 : ri − 1.

Then, zi must be a zero of multiplicity ri of p(x), hence p(z) must have at least
∑
ri = n zeros (counting the multiplicities). But this is impossible, because the

degree of p is less than n. This contradiction proves the theorem.

Hermite interpolation can be viewed as the result of passages to the limit in
interpolation at n points, where for i = 1 : m, ri interpolation points coalesce into
the point zi. We say that the point zi has multiplicity ri. For example, the
Taylor polynomial in Pn

p(z) =

n−1∑

j=0

f (j)(z1)

j!
(z − z1)

j (4.3.2)

interpolates f(z) at the point z1 with multiplicity n (or z1 is repeated n times).

Example 4.3.1.
Consider the problem of finding a polynomial p(x) ∈ P4 that interpolates the

function f and its first derivative f ′ at the two points z1 and z2, and also its second
derivative at z1. In the notations of Sec. 4.1.1 the linear system for the coefficient
vector c becomes V T c = f , where f = (f(z1), f

′(z1), f ′′(z1), f(z2), f
′(z2))T , and

V =








1 0 0 1 0
z1 1 0 z2 1
z2
1 2z1 2 z2

2 2z2
z3
1 3z2

1 6z1 z3
2 3z2

2

z4
1 4z3

1 12z2
1 z4

2 4z3
2








(4.3.3)

is a confluent Vandermonde matrix. Note that the second, third, and fifth col-
umn of V is obtained by “differentiating” the previous column. From Theorem 4.3.1
we conclude that such confluent Vandermonde matrices are nonsingular.

For the determinant of the general confluent Vandermonde matrix one can
show that expression

det(V ) =

m∏

j=1

rj−1
∏

n=0

n!
∏

i<j

(zi − zj)
rirj . (4.3.4)
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Example 4.3.2.
When there are gaps in the sequence of derivatives that are known at a point

the interpolation problem is called Birkhoff interpolation or lacunary interpo-
lation. Such a problem may not have a solution as is illustrated by the following
example.

Find a polynomial p ∈ P3 that interpolates the data f =
(
f(−1), f ′(0),

f(1)
)T

, The new feature is that f(0) is missing. If we use the power basis, then we
obtain the linear system

Mp =





1 −1 1
0 1 0
1 1 1



 .

The determinant is evidently zero, so there is no solution for most data. An expla-
nation is that hf ′ = µδf for all f ∈ P3.

Newton’s interpolation formula can be generalized to the confluent case quite
easily. We will require some continuity and differentiability properties for divided
differences. These can be obtained through an alternative expression for divided
differences that we now give.

Definition 4.3.2.
A set S of points in C is called convex if for any z, u ∈ S, the straight line

{tz + (1 − t)u | t ∈ (0, 1)} is also contained in S; The convex hull of a set S in
Rd is the smallest convex subset of C which contains S.

Let D be the convex hull of the set of points z, u1, . . . , un in C. Assume that
f is defined in D and has that its nth derivative exists and is continuous on D. Set
u0(z) = f(z) and consider the functions (k = 1 : n)

wk(z) =

∫ 1

0

∫ t1

0

. . .

∫ tk−1

0

f (k)
[
u1+(u2−u1)t1+· · ·+(z−uk)tk

]
dtk · · · dt1. (4.3.5)

The argument of the integrand lies in the convex hull D, since

ζk = u1 + (z − u1)t1 + · · · + (z − uk)tk

= (1 − t1)u1 + (t1 − t2)u2 + · · · + (tk−1 − tk)uk + tkz

= λ1u1 + λ2u2 + · · · + λkuk + λk+1z,

where 1 ≤ k ≤ n. From 1 ≥ t1 ≥ t2 ≥ · · · ≥ tn ≥ 0, it follows that

k+1∑

i=1

λi = 1, λi ≥ 0, i = 1 : k + 1.

If in (4.3.5) we carry out the integration with respect to tk and express the
right hand side using uk−1 we find that the functions uk(z) can be defined through
the recursion

wk(z) =
wk−1(z) − wk−1(xk)

z − uk
, k = 1 : n, (4.3.6)
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with w0(z) = f(z). But this is the same recursion eq4.3.gelf) that was used before
to define the divided differences and thus

[z, u1, . . . , uk]f =

∫ 1

0

∫ t1

0

. . .

∫ tk−1

0

f (k)
[
u1+(u2−u1)t1+· · ·+(z−uk)tk

]
dtk · · · dt1,

(4.3.7)
holds for arbitrary distinct points z, u1, . . . , un.

Notice that the integrand on the right hand side of (4.3.7) is a continuous
function of the variables z, u1, . . . , un and hence the right hand side is a continuous
function of these variables. Thus, when the nth derivative of f exists and is contin-
uous on D, then (4.3.7) defines the continuous extension of [z, u1, . . . , uk]f to the
confluent case.

From the continuity of the divided differences it follows that the remainder
term for interpolation given in Theorem 4.2.3 is remains valid for Hermitian inter-
polation. Provided the points x, z1, . . . , zm are real we have

f(x) − p(x) =
f (n)(ξx)

n!
Φn(x), Φn(x) =

m∏

i=1

(x− zi)
ri . (4.3.8)

with ξx ∈ int (x, z1, . . . , zm).
From (4.3.7) follows

∣
∣[z, x1, . . . , xk]

∣
∣ ≤ max

z∈D

∣
∣f (n)(z)

∣
∣

∫ 1

0

∫ t1

0

. . .

∫ tn−1

0

dtn · · · dt1. (4.3.9)

=
1

n!
max
z∈D

∣
∣f (n)(z)

∣
∣. (4.3.10)

which can be used to give an upper found for the remainder in polynomial interpo-
lation for arbitrary interpolation points.

From (4.3.6) it follows that the divided difference [u1, . . . , uk+s, x]f is equal
to the divided difference of wk(x) at [uk+1, . . . , uk+s, x]f , so that by (4.3.7) we can
write

wk+s(z) =

∫ 1

0

. . .

∫ ts−1

0

u
(s)
k

[
uk+1 +(uk+2 −uk+1)t1 + · · ·+(z−uk+s)tk

]
dts · · · dt1,

If all points uk+1, . . . , uk+s all tend to the limit z and wk(z) has a continuous sth
derivative at z then it holds that

wk+s(z) = w
(s)
k (z)

∫ 1

0

. . .

∫ ts−1

0

dts · · · dt1 =
w

(s)
k (z)

s!
.

It can be shown that if f ∈ Ck, the divided differences belong to Ck+1−max ri , and
that the interpolation polynomial has this kind of differentiability with respect to
the ui, nota bene if the “groups” do not coalesce further.
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Example 4.3.3.
As established above, the usual recurrence formula for divided differences can

still be used for the construction of the divided difference table in case of multiple
points. The limit process is just applied to the divided differences, for example,

[x0, x0]f = lim
x1→x0

f(x1) − f(x0)

x1 − x0
= f ′(x0),

[x0, x0, x1]f =
[x0, x0]f − [x0, x1]f

x0 − x1
=
f ′(x0) − [x0, x1]f

x0 − x1
.

For the interpolation problem considered in Example 4.3.1. we construct the gen-
eralized divided-difference table, where x1 6= x0.

x0 f0
f ′
0

x0 f0
1
2f

′′
0

f ′
0 [x0, x0, x0, x1]f

x0 f0 [x0, x0, x1]f [x0, x0, x0, x1, x1]f
[x0, x1]f [x0, x0, x1, x1]f

x1 f1 [x0, x1, x1]f
f ′
1

x1 f1

The interpolating polynomial is

p(x) = f0 + (x− x0)f
′
0 + (x− x0)

2 1

2
f ′′
0 + (x − x0)

3[x0, x0, x0, x1]f,

+ (x− x0)
3(x− x1)[x0, x0, x0, x1, x1]f.

and the remainder is

f(x) − p(x) = [x0, x0, x0, x1, x1, x]f(x− x0)
3(x − x1)

2

= f (5)(ξx)(x− x0)
3(x− x1)

2/5!

An important case of Hermite interpolation problem is when the given data
is fi = f(xi), f

′
i = f ′(xi), i = 0, 1. We can then write the interpolation polynomial

as

p(x) = f0 + (x− x0)[x0, x1]f + (x− x0)(x− x1)[x0, x0, x1]f

+ (x− x0)
2(x− x1)[x0, x0, x1, x1]f.

Set x1 = x0 + h and x = x0 + θh, and denote the remainder f(x) − p(x) by RT .
Then one can show (Problem 4,3.1) that

p(x) = f0 + θ∆f0 + θ(1 − θ)(hf ′
0 − ∆f0)

− θ2(1 − θ)
[

(hf ′
0 − ∆f0) + (hf ′

1 − ∆f0)
]

(4.3.11)

= (1 − θ)f0 + θf1 + θ(1 − θ)
[

(1 − θ)(hf ′
0 − ∆f0) − θ(hf ′

1 − ∆f0)
]

,
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For x ∈ [x0, x1] we get the error bound

|f(x) − p(x)| ≤ 1

384
h4 max

x∈[x0,x1]
|f (4)(x)|. (4.3.12)

Setting t = 1/2, we get the useful approximation formula

f
(

1
2 (x0 + x1)

)
≈ 1

2
(f0 + f1) +

1

8
h(f ′

0 − f ′
1). (4.3.13)

If there are interpolation points of multiplicity greater than one the Lagrange–
Hermite formula for the interpolation polynomial is

p(z) =

m∑

i=1

[
ri−1∑

k=0

1

k!

dk

dzk
f(z)

m∏

q=1
q 6=i

(z − zq)
rq

∣
∣
∣
∣
∣
z=zi

(z − zi)
k

]
m∏

j=1
j 6=i

(z − zj)
rj . (4.3.14)

Clearly, when ri = 1 for all i = 1 : m, then this formula equals the usual Lagrange
interpolation formula. It can be written in the simpler form

p(z) =

n∑

i=1

ri−1∑

k=0

f (k)(zi)Lik(z), (4.3.15)

where Lik(z) are generalized Lagrange polynomials. These can be defined
starting from the auxiliary polynomials

lik(z) =
(z − zi)

k

k!

n∏

j=1
j 6=i

(
z − zj
zi − zj

)rj

, i = 1 : m, k = 0 : ri − 1.

Set

Li,ri−1 = li,ri−1, i = 1 : m,

and form recursively,

Lik(z) = lik(z) −
ri−1∑

ν=k+1

l
(ν)
ik (zi)Li,ν(z), k = ri − 2 : −1 : 0.

It can be showed by induction that

L
(σ)
ik (zj) =

{
1, if i = j and k = σ;
0, otherwise.

Hence the Lik are indeed the appropriate polynomials.
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Example 4.3.4.
When ri = 2, i = 1 : n, the Hermite interpolating polynomial is the polynomial

of degree less than n = 2m, which agrees with f(z) and f ′(z) at z = zi, i = 1 : m.
We have

p(z) =

n∑

i=1

(f(zi)Li0(z) + f ′(zi)Li1(z)),

where Lik(z) can be written in the form

Li1(z) = (z − zi)li(z)
2, Li0(z) = (1 − 2l′i(zi)(z − zi))li(z)

2,

and li(z), i = 1 : m, are the elementary Lagrange polynomials.

lik(z) =
(z − zi)

k

k!

n∏

j=1
j 6=i

(
z − zj
zi − zj

)rj

, i = 1 : n, k = 0 : ri − 1.

4.3.2 Complex Analysis in Polynomial Interpolation

We shall encounter multi-valued functions: the logarithm and the square root. For
each of these we choose that branch which is positive for large positive values of the
argument z. They will appear in such contexts that we can then keep them non-
ambiguous by forbidding z to cross the interval [−1, 1]. (We can, however, allow z
to approach that interval.)

We first consider the general problem of interpolation of an analytic function,
at an arbitrary sequence of nodes u1, u2, . . . , un in C. Multiple nodes are allowed.
Set136

Φn(z) = (z − u1)(z − u2) · · · (z − un), z, uj ∈ C.

Let D be a simply connected open domain in C that contains the point u and
the nodes. The interpolation problem is to find the polynomial p∗ ∈ Pn, that
is determined by the conditions p∗(uj) = f(uj), j = 1 : n, or the appropriate
Hermite interpolation problem in the case of multiple nodes. We know that p∗

depends linearly on f . In other words there exists a linear mapping Ln from some
appropriate function space so that p∗ = Lnf .

Assume that f is an analytic function in the closure of D, perhaps except for a
finite number of poles p. A pole must not be a node. Recall the elementary identity
(4.2.20) in Example 4.2.3,

1

z − u
=

n∑

j=1

Φj−1(u)

Φj(z)
+

Φn(u)

Φn(z)(z − u)
, (4.3.16)

which is valid also for multiple nodes. Introduce the linear operator Kn,

(Knf)(u) =
1

2πi

∫

∂D

Φn(u)f(z)

Φn(z)(z − u)
dz, (4.3.17)

136We use the notation u, ui instead of x, xi here, since x is traditionally associated with the real
part of a complex variable z.
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multiply the above identity by f(z)/(2πi), and integrate along the boundary of D
to get

1

2πi

∫

∂D

f(z)

z − u
dz =

n∑

j=1

Φj−1(u)
1

2πi

∫

∂D

f(z)

Φj(z)
dz + (Knf)(u) . (4.3.18)

First, assume that f has no poles in D. By applying the residue theorem to the
first two integrals, we note that the equation has the same structure as Newton’s
unique interpolation formula with exact remainder (4.2.6),

f(u) =

n∑

j=1

Φj−1(u)[u1, . . . , uj ]f + Φn(u)[u1, u2, . . . un, u]f.

Matching terms in the last two formulas we obtain the equation

(f − Lnf)(u) = (Knf)(u),

and, if f is analytic in D, also the formula for the divided difference

[u1, u2, . . . uj ]f =
1

2πi

∫

∂D

f(z) dz

(z − u1) · · · (z − uj)
. (4.3.19)

If there are poles p ∈ D with residues resf (p), we must add
∑

p resf (p)/(z−p)
to the left-hand side and

∑

p resf (p)
∑

j Φj−1(u)/Φj(p) to the right-hand side. By
(4.3.16) this is, however, equivalent to subtracting

∑

p resf (p)Φn(u)/Φn(p)(p − u)
from the right-hand side. This yields the following theorem:

Theorem 4.3.3.
Assume that f is analytic in the closure of the open region D, perhaps except

for a finite number of poles, p ∈ D, with residues resf (p). D also contains the in-
terpolation points u1, u2, . . . , un, as well as the point u. Multiple nodes are allowed.
The point u and the poles p must not be nodes, and p 6= u.

Then the interpolation error can be expressed as a complex integral,

(f − Lnf)(u) = (Knf)(u) − Φn(u)
∑

p

resf (p)

Φn(p)(p− u)
, (4.3.20)

where Kn is defined by (4.3.17) and the sum (which may be void) is extended over
the poles of f in D.

This theorem is valid, when the interpolation points uj are in the complex
plane, although we shall here mainly apply it to the case, when they are located in
the interval [−1, 1]. An important feature is that this expression for the interpolation
error requires no knowledge of f (n)(z).

For the case of distinct nodes we have, by the residue theorem,

(Knf)(u) =
n∑

j=1

Φn(u)

(uj − u)Φ′
n(uj)

f(uj) + f(u), (4.3.21)
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where the sum, with reversed sign, is Lagrange’s form of the interpolation poly-
nomial Lnf(u). This can be extended to the case of multiple poles by including
higher derivatives of f , but we prefer to concentrate on the Newton expansion and
the formula in the theorem.

Similarly, one can derive the expression for the divided difference given in
Problem 4.2.7 by applying the residue theorem to (4.3.19). Note the expression for
the interpolation polynomial Lnf given in Problem 4.3.7.

Example 4.3.5 (Chebyshev interpolation).

In Chebyshev interpolation on the interval [−1, 1], the nodes are the zeros of
the Chebyshev polynomials Tn(u), and

Φn(u) = 21−nTn(u).

Recall the notation and results in the discussion of Chebyshev expansions in Sec. 3.2.3.
In this example we assume that f(z) is analytic in D. We shall, by means of

the integral Knf , show that it yields almost as accurate an approximation as the
first n terms of the Chebyshev expansion of the same function.

Let D = ER, where ER is the ellipse with foci at ±1, and where R is the sume
of the semi-axis. Let z ∈ ∂ER and u ∈ [−1, 1]. Then |Tn(u)| ≤ 1, and it can be
shown (Problem 4.3.13) that

|Tn(z)| ≥ 1
2 (Rn −R−n), |z − u| ≥ aR − 1,

∫

∂ER

|dz| ≤ 2πaR,

If we assume that |f(z)| ≤MR for z ∈ ∂ER, a straightforward estimation of the line
integral (4.3.21) gives

|f(u) − (Lnf)(u)| = |(Knf)(u)| ≤ 1

2π

21−nMR2πaR

21−n 1
2 (Rn −R−n)(aR − 1)

≤ 2MRaRR
−n

(1 −R−2n)(aR − 1)
. (4.3.22)

We see that the interpolation error converges at the same exponential rate as the
truncation error of the Chebyshev expansion (see Theorem 3.2.4). If f(z) has a
singularity arbitrarily close to the interval [−1, 1], then R ≈ 1, and the exponential
convergence rate will be very poor.

4.3.3 Inverse interpolation

It often happens that one has a sequence of pairs {(xi, yi)} and want to determine a
point where y(x) = c. We saw an example in the simulation of the motion of a ball
(Sec. 1.4.2), where the landing point was computed by linear inverse interpolation.

In general a natural approach is to reverse the roles of x and y, i.e. to compute
the inverse function x(y) for y = c, by means of Newton’s interpolation formula
with the divided differences [yi, yi+1, . . . yi+j ]x (unscaled or scaled). This is called
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inverse interpolation. It is convenient to order the points so that . . . < y5 <
y3 < y1 < c < y2 < y4 < . . .. This approach is successful if the function x(y) is
suitable for local approximation by a polynomial.

Sometimes, however, the function y(x) is much better suited for local approx-
imation by a polynomial than the inverse function x(y). Then we can instead, for
some m, solve the following equation,

y1 + [x1, x2]y · (x− x1) +

n−1∑

j=2

[x1, x2, . . . xj+1]yΦj(x) = c. (4.3.23)

Again it is convenient to order the points so that the root α comes in the middle, for
example, . . . < x5 < x3 < x1 < α < x2 < x4 < . . . . Suppose that xi − x1 = O(h),
i > 1, where h is some small parameter in the context (usually some step size).
Then Φj(x) = O(hj), Φ′

j(x) = O(hj−1). The divided differences are O(1), and
we assume that [x1, x2]y is bounded away from zero. Then the terms of the sum
decrease like hj .

Writing the equation in the form x = x1 + F (x), where

F (x) ≡
(c− y1) −

∑n−1
j=2 [x1, x2, . . . xj+1]yΦj(x)

[x1, x2]y
, (4.3.24)

we can use the iteration xk+1 = x1 + F (xk) to determine x. We ignore the sum to
get the first guess x0; this means the same as linear inverse interpolation. We stop
when xk and xk−1 are sufficiently close. A more careful termination criterion will be
suggested in Chapter 6, where the effect on the result of errors like the interpolation
error is also discussed. From the discussion of fixed point iteration in Sec. 1.1.2, we
conclude that the iteration converges with linear ratio equals to

F ′(x) ≈ Φ′
2(x)[x1, x2, x3]y

[x1, x2]y
= O(h).

So, if h is small enough, the iterations converge rapidly. If more than two iterations
are needed, Aitken acceleration (Sec. 3.4.2) may be practical.

4.3.4 Rational Interpolation

The rational interpolation problem is to determine a rational function

rm,n(z) =
Pm(z)

Qn(z)
≡
∑m

j=0 pjz
j

∑n
j=0 qjz

j
, (4.3.25)

with nominator of degree m and denominator of degree n so that at distinct points
x0, x1, . . . , xn, agrees with a function f

rm,n(xi) = fi, i = 0 : N, N = m+ n. (4.3.26)

Rational approximation is often superior to polynomial approximation in the neigh-
borhood of a point at which the function has a singularity. Since the coefficients
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can be determined only up to a common nonzero factor the number of unknown
constants in (4.3.25) equals the number of interpolation points N + 1 = m+ n+ 1.

A necessary condition for (4.3.26) to hold clearly is that the linearized condi-
tion

Pm(xi) − fiQn(xi) = 0, i = 0 : N, (4.3.27)

is satisfied, i.e. for i = 0 : m+ n,

p0xi + p1xi + · · · + pmx
m
i − fi(q0xi + q1xi + · · · + qnx

n
i ) = 0, (4.3.28)

This is a homogeneous linear system of (m+ n+ 1) equations for the (m+ n+ 2)
coefficients in Pm and Qn. If we introduce the Vandermonde matrices

A =







1 x0 . . . xm0
1 x1 . . . xm1
...

...
. . .

...
1 xN . . . xmN






, B =







1 x0 . . . xn0
1 x1 . . . xn1
...

...
. . .

...
1 xN . . . xnN






,

this system can be written in matrix form as

(A FB )

(
p
q

)

= 0, F = diag (f0, f1, . . . , fN), (4.3.29)

where p = (p0, p1, . . . , pm)T , q = (q0, q1, . . . , qn)
T . This is a homogeneous linear

system of N+1 equations in N+2 unknowns. Such a system always has a nontrivial
solution. Moreover, since A has full column rank, we must have q 6= 0 for such a
solution.

We note that the rational interpolant is fully determined by the denomina-
tor polynomial. By (4.3.27) Pm(x) is the unique polynomial determined by the
interpolation conditions

P (xi) = fiQ(xi), i = 1 : m.

While for polynomial interpolation there is always a unique solution to the
interpolation problem, this cannot be guaranteed for rational interpolation as shown
by the example below. A further drawback is that the denominator polynomialQ(x)
may turn out to have zeros in the interval of interpolation.

Example 4.3.6.
Assume that we want to interpolate the four points

x 0 1 2 3

y 2 3/2 4/5 1/2

by a rational function

r(x) =
p0 + p1x+ p2x

2

q0 + q1x
.
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Then we must solve the homogeneous linear system






1 0 0
1 1 1
1 2 4
1 3 9










p0

p1

p2



−






2 0
3/2 3/2
4/5 8/5
1/2 3/2






(
q0
q1

)

= 0.

Setting p2 = 1 we find the solution p0 = 8, p1 = −6, q0 = 4, q1 = −2. The
corresponding rational function

r(x) =
8 − 6x+ x2

4 − 2x
=

(4 − x)(2 − x)

2(2 − x)

has the common factor (2 − x) and is reducible to f2,1 = (4 − x)/2. The original
form is indeterminate 0/0 at x = 2, while the reduced form does not take on the
prescribed value at x = 2.

As shown in the above example, for given data (x0, f0), . . . , (xn, fn) there can
be certain points xj where the given function value fj cannot be attained. Such
a point xj is called unattainable. This can occur only if xj is a zero of the
denominator Qn(x). From (4.3.27) it follows that then also Pm(xj) = 0. Hence
the polynomials P (x) and Q(x) have a common factor (x− xj)

d, where d is chosen
maximal. The polynomials pair

P ∗(x) =
P (x)

(x− xj)d
, Q∗(x) =

Q(x)

(x− xj)d
(4.3.30)

then satisfies (4.3.27) for all points xk 6= xj . Since d was chosen maximal it holds
that Q∗(xj) 6= 0, and the value P ∗(xj)/Q∗(xj) must be finite. But since when
Qn(xj) = 0 the equation (4.3.27) is satisfied for any choice of fj one cannot expect
the rational function to interpolate a particular value at xj .

If there are unattainable points, then the polynomials defined in (4.3.30) only
solve the linearized equations in the attainable points. It can also happen that
the polynomials given by the linearized equations have a common factor (x− x∗)d,
d ≥ 1, with x∗ 6= xi, i = 1 : n. In this case all polynomials of the form

P ∗(x) =
P (x)

(x− xj)ν
, Q∗(x) =

Q(x)

(x− xj)ν
, ν = 0 : d,

satisfy the linearized system and the matrix (A FB ) in (4.3.29) has at most rank
N + 1 − d. Conversely we have the result:

Theorem 4.3.4.
If the rank of the matrix (A FB ) equals N+1−d, then there exists a unique

solution p, q corresponding to polynomials P ∗ and Q∗ with degrees at most m − d
and n− d. Further all solutions have the form

r(x) =
s(x)P ∗(x)
s(x)Q∗(x)

,
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where s(x) is apolynomial of degree at most d. A point xj is unattainable if and
only if Q∗(xj) = 0.

Proof. See Schaback and Werner [278, Theorem12.1.8].

Another complication of rational interpolation is that zeros may occur in
Qn(x), which are not common to Pm(x). These zeros correspond to poles in r(x),
which if they lie inside the interval [minxk,maxxk] may cause trouble. In general
it is not possible to determine a priori if the given data (xk, fk) will give rise to
such poles. Neither does the coefficients in the representation of r(x) give any hint
of such occurrences.

An algorithm similar to Newton’s algorithm can be used for finding rational
interpolants in continued fraction form. Set v0(x) = f(x), and use a sequence of
substitutions

vk(x) = vk(xk) +
x− xk
vk+1(x)

, k = 0, 1, 2, . . . . (4.3.31)

The first two substitutions give

f(x) = v0(x) = v0(x0) +
x− x0

v1(x)
= v0(x0) +

x− x0

v1(x1) +
x− x1

v2(x)

.

In general this gives a continued fraction

f(x) = a0 +
x− x0

a1 +
x− x1

a2 +
x− x2

a3+

. . . = a0 +
x− x1

a1+

x− x2

a2+

x− x3

a3+
. . . , (4.3.32)

where ak = vk(xk), and we have used the compact notation introduced in Sec. 3.5.1.
This becomes an identity if the expansion is terminated by replacing an in the last
denominator by an + (x − xn)/vn+1(x). If we set x = xk, k ≤ n, then the fraction
terminates before the residual (x − xn)/vn+1(x) is introduced. This means that
setting 1/vk+1 = 0 will give a rational function which agrees with f(x) at the points
xi, i = 0 : k ≤ n, assuming that the constants a0, . . . , ak exist. These continued
fractions give a sequence of rational approximations fk,k, fk+1,k, k = 0, 1, 2, . . ..

Introducing the notation

vk(x) = [x0, x1, . . . , xk−1, x]φ (4.3.33)

we have ak = [x0, x1, . . . , xk−1, xk]φ. Then by (4.3.31) we have

[x]φ = f(x), [x0, x]φ =
x− x0

[x]φ− [x0]φ
=

x− x0

f(x) − f(x0)
,

[x0, x1, x]φ =
x− x1

[x0, x]φ− [x0, x1]φ
,
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and in general

[x0, x1, . . . , xk−1, x]φ =
x− xk−1

[x0, . . . , xk−2, x]φ− [x0, . . . , xk−2, xk−1]φ
. (4.3.34)

Therefore we also have

ak =
xk − xk−1

[x0, . . . , xk−2, xk]φ− [x0, . . . , xk−2, xk−1]φ
. (4.3.35)

We call the quantity defined by (4.3.35) the kth inverse divided difference of
f(x). Note that certain inverse differences can become infinite if the denominator
vanishes. They are, in general, symmetrical only in their last two arguments

The inverse divided differences of a function f(x) can conveniently be com-
puted recursively and arranged in a table similar to the divided difference table.

x1 f(x1) [x1]φ
[x1, x2]φ

x2 f(x2) [x2]φ [x1, x2, x3]φ
[x2, x3]φ [x1, x2, x3, x4]φ

x3 f(x3) [x3]φ [x2, x3, x4]φ
[x3, x4]φ

x4 f(x4) [x4]φ

Here the upper diagonal elements are the desired coefficients in the expansion
(4.3.32).

Example 4.3.7.
Assume that we want to interpolate the points given in Example 4.3.7. Form-

ing the inverse differences we get the table

xi fi φ1 φ2 φ3 φ4

0 2
−2

1 3/2 3
5/3 0

2 4/5 ∞ −5
−2 −1/5

3 1/2 −7
−17/7

4 6/17

This gives a sequence of rational approximations. If we terminate the expansion

f2,2 = 2 +
x

−2+

x− 1

3+

x− 2

0+

x− 3

−5
.

after a3 we recover the solution of the previous example. Note that the degeneracy
of the approximation is shown by the entry a3 = 0. Adding the last fraction gives
the (degenerate) approximation

f2,2 =
2 + x

1 + x2
.
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It is verified directly that this rational function interpolates all the given points.

Because the inverse differences are not symmetric in all their arguments the
reciprocal differences are often preferred. These are recursively defined by

[xi]ρ = fi, [xi, xi+1]ρ =
xi − xi+1

fi − fi+1
, (4.3.36)

[xi, xi+1, . . . , xi+k]ρ =
xi − xi+k

[xi, . . . , xi+k−1]ρ− [xi+1, . . . , xi+k]ρ

+ [xi+1, . . . , xi+k−1]ρ. (4.3.37)

see Hildebrand [182, p. 406]. While this formula is less simple than (4.3.35) the
reciprocal differences are symmetric functions of all their arguments. The symmetry
permits the calculation of the kth reciprocal difference from any two (k − 1)th
reciprocal differences having k − 1 arguments in common, together with the (k −
2)th reciprocal difference formed with this argument. Using (4.3.37) a reciprocal
difference table may be constructed.

The coefficients in the continued fraction (4.3.32) can then be determined by
an interpolation formula due to Thiele [311]:

a0 = f0, a1 = [x0, x1]ρ, a2 = [x0, x1, x2]ρ− f0,

a3 = [x0, x1, x2, x3]ρ− [x0, x1]ρ, . . . .

The formulas using inverse or reciprocal differences are useful if one wants
to determine the coefficients of the rational approximation, and use it to compute
approximations for several arguments. If one is only wants the value of the rational
interpolating function for a single argument, then it is more convenient to use an
alternative algorithm of Neville-type. This is the case in the ρ-algorithm, which is
a convergence acceleration procedure using rational interpolation to extrapolate to
infinity with the same degree in the numerator and denominator.

If we consider the sequence of rational approximations of degrees (m,n)

(0, 0), (0, 1), (1, 1), (1, 2), (2, 2),

the following recursive algorithm results (Stoer and Bulirsch [302, Sec. 2.2]):
For i = 0, 1, 2, . . ., set Ti,−1 = 0, Ti,0 = fi, and

Tik = Ti,k−1 +
Ti,k−1 − Ti−1,k−1

x− xi−k
x− xi

[

1 − Ti,k−1 − Ti−1,k−1

Ti,k−1 − Ti−1,k−2

]

− 1

, 1 ≤ k ≤ i. (4.3.38)
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As in Neville interpolation the calculations can be arranged in a table of the form

(m,n) (0, 0) (0, 1) (1, 1) (1, 2) · · ·

f1 = T1,0

0 T2,1

f2 = T2,0 T3,2

0 T3,1 T4,3

f2 = T2,0 T4,2

...
. . .

0 T4,1

...

f4 = T4,0

...
...

...

Here any entry is determined by a rhombus rule from three entries in the preceding
two columns. Note that it is easy to add a new interpolation point in this scheme.

Every rational interpolant can be written in barycentric form

r(x) =

N∑

k=0

uk
x− xk

fk

/ N∑

k=0

uk
x− xk

. (4.3.39)

Let qk = Qn(xk), k = 1 : N , be the values of the denominator at the nodes. Then
the barycentric representation of the denominator Qn(x) is

Qn(x) =
N∏

i=0

(x− xi)
N∑

k=0

wk
x− xk

qk, wk = 1

/ N∏

i=0

(xk − xi).

Hence r(x) can be written as in (4.3.39) where uk = wkqk is the weight correspond-
ing to the node xk. Since wk 6= 0 for all k, there follows that qk = 0 at a node if
and only if the corresponding weight equals zero.

The barycentric form has the advantage that the barycentric weights give in-
formation about possible unattainable points. However, the determination of the
parameter vector u = (u0, u1, . . . , uN)T is more complicated. Berrut and Mittel-
mann [21] give an elimination method for the direct computation of u, which is of
the complexity O(n3).

4.3.5 Multivariate Interpolation

Polynomial interpolation for functions of several independent variables are in general
more difficult than the univariate case. There is in general a lack of uniqueness. In
particular, it may not suffice to require that the interpolation points are distinct;
see Problem 4.3.9 (b).

As a simple example, consider the problem of interpolating a function given
at three distinct points pi = (xi, yi), i = 1 : 3, by a linear function in two variables,

p(x, y) = c1 + c2x+ c3y.
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This leads to the linear system V c = f , where

V =





1 x1 y1
1 x2 y2
1 x3 y3



 , c =





c1
c2
c3



 , f =





f1
f2
f3



 .

The interpolation problem has exactly one solution if V is nonsingular, i.e. when
det(V ) 6= 0. But 1

2 det(V ) is just the area of the triangle with vertices (xi, yi),
i = 1 : 3. If this area is zero then the three points lie on a line and the problem has
either infinitely many solutions, or no solution.

Much of the theory for univariate interpolation can be generalized to multi-
variate interpolation problems provided that the function is specified on a Cartesian
(tensor) product grid. For simplicity, we first concentrate on functions f(x, y) of
two variables, but the extension to more dimensions is not difficult. Assume that
we are given function values

fij = f(xi, yj), i = 1 : n, j = 1 : m, (4.3.40)

where xi, i = 1 : n, and yj , j = 1 : m, are distinct points. We seek a polynomial
p(x, y) of degree at most n− 1 in x and at most m− 1 in y that interpolates these
values. Such a polynomial has the form

p(x, y) =

n−1∑

i=0

m−1∑

j=0

cijx
iyj , (4.3.41)

where the mn coefficients cij are to be determined. Since the number of coefficients
equal the number of interpolatory conditions we can expect the polynomial p(x, y)
to be uniquely determined. To show this it suffices to show that any polynomial
q(x, y) of degree n− 1 in x and m− 1 in y that vanishes at the mn distinct points
(xi, yj), i = 1 : n, and yj , j = 1 : m, must vanish identically.

If we want compute p(x, y) for given values of x and y, then we can proceed
as follows. For each j = 1 : m, use univariate interpolation to determine the values
p(x, yj), where p(x, y) is the interpolation polynomial in (4.3.41). Next, the m
values p(x, yj), j = 1 : m, are interpolated using univariate interpolation, which
determines p(x, y). Note that since the points xi and yj are distinct all univariate
interpolation polynomials are uniquely determined. It is clear that we will obtain
the same result, whether we interpolate first for x and then for y or vice versa.
Clearly this approach can be used also in more than two dimensions.

In many cases we are not satisfied with obtaining p(x, y) for specific values of
x and y, but want to determine p(x, y) as a polynomial in x and y. We can then use
the above procedure algebraically to derive a Newton formula for tensor product
interpolation problem in two variables. We set [xi; yj]f = f(xi, yj), and define
bivariate divided differences [x1, . . . , xν ; y1, . . . , yµ]f , by recurrences, separately for
each variable. We start by forming, for each yj , j = 1 : m, divided differences with
respect to the x variable:
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[x1; y1]f [x1, x2; y1]f · · · [x1, x2, . . . , xn; y1]f

[x1; y2]f [x1, x2; y2]f · · · [x1, x2, . . . , xn; y2]f
...

...
...

[x1; ym]f [x1, x2; ym]f · · · [x1, x2, . . . , xn; ym]f

These are used to form the Newton polynomials

p(x, yj) =

n∑

i=1

[x1, . . . , xi; yj ]f

i−1∏

ν=1

(x− xν), j = 1 : m.

which give, for any x, the values of the interpolation polynomial p(x, y) for y1, . . . , ym.
Next we form in each column above the divided differences with respect to y:

[x1; y1]f [x1, x2; y1]f · · · [x1, . . . , xn; y1]f

[x1; y1, y2]f [x1, x2; y1, y2]f · · · [x1, . . . , xn; y1, y2]f
...

...
...

[x1; y1, . . . , ym]f [x1, x2; y1, . . . , ym]f · · · [x1, . . . , xn; y1, . . . , ym]f

If these nm divided differences are used for Newton interpolation in the y variable,
we obtain Newton’s interpolation formula in two variables

p(x, y) =
n∑

i=1

m∑

j=1

[x1, . . . , xi; y1, . . . , yj ]f
i−1∏

ν=1

(x− xν)

j−1
∏

µ=1

(y − yµ), (4.3.42)

where empty products have the value 1. Note that it is indifferent in which order the
divided differences are formed. We could equally well have started to form divided
differences with respect to y.

Remainder formulas can be derived from the corresponding univariate error
formulas; see Isaacson and Keller [187, Sec. . 6.6]. For f sufficiently smooth there
exist values ξ, ξ′, η, η′ such that

R(x, y) =
∂nf(ξ, y)

∂xn

∏n
ν=1(x − xν)

n!
+
∂mf(x, η)

∂ym

∏m
µ=1(y − yµ)

m!
(4.3.43)

−∂
n+mf(ξ′, η′)
∂xn∂ym

∏n
ν=1(x− xν)

n!

∏m
µ=1(y − yµ)

m!
. (4.3.44)

Lagrange’s interpolation formula can also be generalized for the tensor product
case. We have

p(x, y) =

n∑

i=1

m∑

j=1

f(xi, yj)

n∏

ν=1
ν 6=i

(x− xν)

(xi − xν)

n∏

µ=1
µ6=j

(y − yµ)

(yj − yµ)
, (4.3.45)

Clearly p(x, y) assumes the values f(xi, yj) for i = 1 : n, j = 1 : m. As the polyno-
mial is of degree n− 1 in x and m− 1 in y, it must equal the unique interpolating
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polynomial. Therefore the remainder must also be the same as for Newton formula.
The Lagrange formula (4.3.45) is easily extended to three and more variables.

The interpolation problem we have treated so far, specifies the maximum
degree of p(x, y) in x and y separately. Instead we could specify the total degree to
be at most n− 1. Then the interpolation polynomial must have the form

p(x, y) =

n−1∑

i=0

n−i−1∑

j=0

bijx
iyj, (4.3.46)

There are 1
2n(n+ 1) coefficients to determine in (4.3.46). We shall show that with

the “triangular” array of interpolation points (xi, yj), i+j = 1 : n, the interpolation
polynomial is uniquely determined.

The Newton formula (4.3.42) can be generalized to the case when for each i,
i = 1 : n, the interpolation given points are (xi, yj), j = 1 : mi with 1 ≤ mi ≤ m,
with a slightly more complicated remainder formula. A particularly interesting case
is when mi = n− i+ 1, i.e. the interpolation points form a triangle. This gives rise
to the interpolating polynomial

p(x, y) =
∑

2≤i+j≤n+1

[x1, . . . , xi; y1, . . . , yj ]f

i−1∏

ν=1

(x − xν)

j−1
∏

µ=1

(y − yµ), (4.3.47)

with remainder formula

R(x, y) =
n+1∑

i=1

∂nf(ξi, ηi)

∂xi∂yn−i

∏i−1
ν=1(x− xν)

(i− 1)!

∏n−i
µ=1(y − yµ)

(n− i)!
. (4.3.48)

This formula is due to Biermann [23].
Interpolation formulas for equidistant points xi = x0 + ih and yj = y0 + jk

can readily be obtained from Newton’s formula (4.3.42). Using the points (xi, yj),
i = 0 : n, i = 0 : m, we get

p(x0 + ph, y + qk) =

n∑

i=0

m∑

j=0

(
p

i

)(
q

j

)

∆i
x∆

j
yf(x0, y0) (4.3.49)

Example 4.3.8.
Formulas for equidistant points can also be obtained by using the operator

formulation of Taylor’s expansion

f(x0 + h, y0 + k) = exp
(
hDx + kDy

)
f(x0, y0) (4.3.50)

= f0,0 +
(
hDx + kDy

)
f0,0

+
(
h2D2

x + 2hkDxDy + k2D2
y

)
f0,0 + O(h3 + k3).

An interpolation formula, exact for all functions p(x, y) in (4.3.41) with m = n =
3, can be obtained by replacing in Taylor’s formula the derivatives by difference
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approximations valid for quadratic polynomials,

f(x0 + ph, y0 + qh) ≈ f0,0 +
1

2
p(f1,0 − f−1,0) +

1

2
q(f0,1 − f0,−1)

+
1

2
p2(f1,0 − 2f0,0 + f−1,0) (4.3.51)

+
1

4
pq(f1,1 − f1,−1 − f−1,1 + f−1,−1)

+
1

2
q2(f0,1 − 2f0,0 + f0,−1).

This formula uses function values in nine points. (The proof of the expression for
approximating the mixed derivative DxDyf0,0 is left as an exercise, Problem 4.3.11.

An important case, to be treated in Sec. 5.4.4, is interpolation formulas in two
or more dimensions, with function values specified on the vertices and sides of a
simplex. These play a fundamental role in the Finite Element Method.

4.3.6 Analysis of a Generalized Runge Phenomenon

In this section we make a more detailed theoretical and experimental study of
the Runge phenomenon (see Sec. 4.2.5). We then study interpolation at an infinite
equidistant point set from the point of view of Complex Analysis. This interpolation
problem, which was studied by Whittaker and others in the beginning of the 20th
century, became revived and modified in the middle of the same century under
the name of the Shannon sampling theorem, with important applications to
Communication Theory.

It is well known that the Taylor series of an analytic function converges at an
exponential rate inside its circle of convergence, while it diverges at an exponential
rate outside. The circle of convergence passes through the nearest singularity. We
shall see that similar results hold for certain interpolation processes. In general, the
domains of convergence are not disks but bounded by level curves of a logarithmic
potential, related to the asymptotic distribution of the interpolation points.

For the sake of simplicity, we now confine the discussion to the case, when the
points of interpolation are located in the standard interval [−1, 1], but we are still
interested in the evaluation of the polynomials in the complex domain. Part of the
discussion can, however, be generalized to a case, when the interpolation points are
on an arc in the complex plane.

We shall study interpolation processes which are regular in the following sense.
Let the nodes tn,j , j = 1 : n, n = 1, 2, 3, . . . , be such that there exists an increasing
continuously differentiable function q : [a, b] 7→ [−1, 1], such that

q(a+ (b− a)(j − 1)/n) < tn,j ≤ q(a+ (b− a)j/n),

i.e. one node in each of n subintervals of [−1, 1]. More precisely, we assume that
q′(τ) > 0, τ ∈ (0, 1), while q′(0), q′(1) may be zero. Suppose that z /∈ [−1, 1], but
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z may be close to this interval. Then

1

n
ln Φn(z) =

1

n

n∑

j=1

ln (z − tn,j)

→ ψ(z) :=
1

b− a

∫ b

a

ln (z − q(τ)) dτ, (n→ ∞). (4.3.52)

The crucial factors of the interpolation error are Φn(u)/Φn(p) and Φn(u)/Φn(z).
We now obtain a fundamental approximation formula:

Φn(u)/Φn(z) = exp
(
ln Φn(u) − ln Φn(z)

)

= expn
(
ψ(u) − ψ(z) + o(1)

)
, (n → ∞). (4.3.53)

If u and z are bounded away from the nodes, the o(1)-term is of marginal impor-
tance; it is basicallyO(1/n). For u ∈ [−1, 1] Φn(u) and ln |Φn(u)| are oscillatory, and
this formula is there to be considered as a one-sided approximate error bound; see
Figure 4.3.2 and a more detailed discussion in the preparation for Proposition 4.3.6.

We now make a variable transformation, in order to be able to utilize results
of classical potential theory. Put q(τ) = t ∈ [−1, 1], dt = q′(τ)dτ . Then we can
define an asymptotic node density for the process,

w(t) =
1

q′τ (τ(t))(b − a)
, w(t)dt =

dτ

b− a
, (4.3.54)

where w is the derivative of the inverse function of q divided by b− a. Then

ψ(z) =

∫ 1

−1

ln(z − t)w(t) dt, w ∈ C(−1, 1), w(t) > 0,

∫ 1

−1

w(t) dt = 1,

(4.3.55)
and ψ(z) is analytic in the whole plane outside the interval [−∞, 1]. Its real part is
the logarithmic potential of the density w, with reversed sign,

1

n
ln |Φn(z)| ≈ ℜψ(z) =

∫ 1

−1

ln |z − t|w(t) dt. (4.3.56)

ℜψ(z) is a harmonic function, ∀z = x + iy /∈ [−1, 1], i.e., it satisfies Laplace’s
equation ∂2ℜψ/∂x2 + ∂2ℜψ/∂y2 = 0.

The function 1
n ln |Φn(z)| is itself the logarithmic potential of a discrete dis-

tribution of equal weights 1/n, at the nodes tj,n, but it is less pleasant to deal with
than ℜψ(z). For example, it becomes −∞ at the nodes while, according to clas-
sical results of potential theory, ℜψ(z) is continuous and single-valued everywhere,
also on the interval [−1, 1] (see Figure 4.3.1). The imaginary part, however, is not
single-valued. It becomes single-valued, if we cut the complex plane along the real
axis from −∞ to 1, but it tends to +π or −π, depending on whether the cut is
approached from above or from below.

Another result from classical potential theory that will be useful later, reads

ψ′(x− 0i) − ψ′(x + 0i) = 2πiw(x), x ∈ [−1, 1]. (4.3.57)
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Figure 4.3.1. ℜψ(u), u ∈ [−1, 1] for the processes based on equidistant
nodes and on Chebyshev nodes. For Chebyshev nodes, the convergence properties
are the same over the whole interval [−1, 1], because ℜψ(u) = − ln 2 = −0.693,
∀u ∈ [−1, 1]. For equidistant nodes, the curve, which is based on (4.3.62), partly
explains why there are functions f such that the interpolation process diverges fast
in the outer parts of [−1, 1] and converges fast in the central parts (often faster than
Chebyshev interpolation).

For |z| ≫ 1, ψ(z) depends only weakly on the node distribution, and the level
curves approach circles, since by (4.3.56)

ψ(z) =

∫ 1

−1

(

ln z + ln(1 − z−1t)
)

w(t) dt

= ln z − z−1

∫ 1

−1

tw(t) dt − 1

2
z−2

∫ 1

−1

t2w(t) dt . . . . (4.3.58)

Note that the coefficient of z−1 vanishes for a symmetric node distribution.
We have

∂ℜψ
∂y

=
ℜ∂ψ
∂y

= ℜ
∫ 1

−1

i

x− t+ iy
w(t) dt =

∫ 1

−1

y

(x− t)2 + y2)
w(t) dt > 0,

if y > 0. Then ℜψ(x + iy) is an increasing function of y for y > 0.

∂ℜψ
∂x

=
ℜ∂ψ
∂x

= ℜ
∫ 1

−1

1

x− t+ iy
w(t) dt =

∫ 1

−1

x− t

(x− t)2 + y2)
w(t) dt > 0,

if x > 1. Then ℜψ(x + iy) is an increasing function of x for x > 1. Similarly
ℜψ(x + iy) is a decreasing function of y for y < 0, and a decreasing function of x
for x < −1.

We define the region

D(v) =
{
z ∈ C : ℜψ(z) < ℜψ(v)

}
. (4.3.59)
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Set P ∗ = maxx∈[−1,1] ℜψ(x), and suppose that ℜψ(v) > P ∗. It then follows that
D(v) is a simply connected domain, and the level curve

∂D(v) =
{
z : ℜψ(z) = ℜψ(v)

}

encloses [−1, 1]. Suppose that a′ > a and a′ > P ∗. Then the level curve
{z : ℜψ(z) = a} is strictly inside the level curve {z : ℜψ(z) = a′}. (The proof
of these statements essentially utilizes the minimum principle for harmonic func-
tions and the fact that ℜψ(z) is a regular harmonic function outside [−1, 1] that
grows to ∞ with |z|.)

Suppose that f(z) is analytic for |z| = R, where R is so large that we can set
ψ(z) ≈ ln z, see (4.3.58). We then obtain, by Theorem 4.3.3, (4.3.21), and (4.3.53),

ln
∣
∣(f − Lnf)(u)

∣
∣ ≈ n

(
ℜψ(u) − lnR+ o(1)

)
+ lnM(R). (4.3.60)

Example 4.3.9 (An entire function).

For f(z) = exp zα, α > 0, lnM(R) = Rα. For a fixed n, large enough so
that the o(1)-term can be neglected, the bound in (4.3.60) has a minimum for
R = (n/α)1/α. Inserting this into (4.3.60) we obtain

ln
∣
∣(f − Lnf)(u)

∣
∣ ≤ n

(

ℜψ(u) − 1

α
(lnn+ 1 + lnα) + o(1)

)

,

which shows that, in this example, the convergence is faster than exponential, and
depends rather weakly on the node distribution.

The following estimate comes as a consequence,
∣
∣(f − Lnf)(u)

∣
∣ = Φn(u)n

−ne−n+o(1)n,

but this is no surprise. If u is real and α = 1, it follows directly from the remainder
term (4.2.10) in interpolation

(f − Lnf)(u) = Φn(u)e
ξu/n!,

together with Stirling’s formula (3.2.36).
The technique used in this example is, however, very general. It can be used

for complex u, and for more complicated entire functions.

Example 4.3.10 (Functions with poles).

We choose D = D(v) =
{
z ∈ C : ℜψ(z) < ℜψ(v)

}
and assume that f(z)

has two conjugate poles, p, p̄, ℜψ(p) < ℜψ(v). (There may be other poles outside
D(v).) Consider the error formula of Theorem 4.3.3. For n ≫ 1, the ratio of Knf
to the contribution from the poles is exp(−n(ℜψ(v) − ℜψ(p) + o(1))); we can thus
neglect Knf(u). It follows that

∣
∣(f − Lnf)(u)

∣
∣ ≈ |Φn(u)

∑

p

resf(p)

Φn(p)(p− u)
|

= exp n
(
ℜψ(u) −ℜψ(p) + o(1)

)
·
∣
∣
∣
∣

2resf(p)

(p− u)

∣
∣
∣
∣
, (4.3.61)
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An important conclusion is that the level curve of the logarithmic potential through
the pole p separates the points u /∈ [−1, 1], where the interpolation process converges
from the points where it diverges. This separation statement holds under more
general conditions than we have in this example.

For u ∈ [−1, 1] there are, however, interpolation processes that may converge
in an enumerable point set that is everywhere dense in [−1, 1], even though ℜψ(u) >
ℜψ(p) in large parts of this interval. It is doubtful if such a process can be regular
in the sense defined above, but it can be a subprocess of a regular process.137

Figure 4.3.3 may give hints how the above separation statement is to be modified
in order to make sense also in such a case. The smooth curves of Figure 4.3.3 have
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−0.848

−0.307

−1.000

Figure 4.3.2. Some level curves of the logarithmic potential for w(t) ≡ 1
2 ,

t ∈ [−1, 1]. Due to the symmetry only one quarter of each curve is shown. The value
of ℜψ(z) on a curve is seen to the left close to the curve. It is told in Example 4.3.11
how the curves have been computed.

been computed by means of (4.3.61) for Runge’s example f(z) = 1/(1 + 25z2) with
equidistant nodes; see Example 4.3.11.

We now consider two node distributions.

Example 4.3.11 (Equidistant interpolation).

In this case we may take q(τ) = τ , τ ∈ [−1, 1], t ∈ [−1, 1], hence w(t) ≡ 1/2.
For this equidistant case we have if z /∈ [−∞, 1],

ψ(z) = 1
2

∫ 1

−1

ln(z − t) dt = 1
2

(

(1 − z) ln(z − 1) + (1 + z) ln(z + 1)
)

− 1.

The real part ℜψ(z) is, however single-valued and continuous everywhere, as men-
tioned in the comment after (4.3.56). Some level curves are shown in Figure 4.3.2.

137For example, a process generated by successive bisections of the interval [−1, 1] can be a
subprocess of one of the equidistant processes studied in next example.



“dqbjV
2007/5/28
page 407

4.3. Generalizations and Applications 407

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−5

−4

−3

−2

−1

0

1

2

3

4

5

x

Lo
g1

0(
In

te
rp

ol
at

io
n 

E
rr

or
)

Figure 4.3.3. log10 |(f − Lnf)(u)| for Runge’s classical example f(u) =
1/(1 + 25u2) with 30 equidistant nodes in [−1, 1]. The oscillating curves are the
empirical interpolation errors (observed at 300 equidistant points), for u = x in the
lower curve and for u = x + 0.02i in the upper curve; in both cases x ∈ [−1, 1].
The smooth curves are the estimates of these quantities obtained by the logarithmic
potential model, see Examples 4.3.10 and 4.3.11.

Note that the tangent of a curve is discontinuous at the intersection with [−1.1].
On the imaginary axis,

ℜψ(iy) = 1
2 ln(1 + y2) + y(sign (y)π/2 − arctan y) − 1.

When z → x ∈ [−1, 1], from any direction, ℜψ(z) tends to

ℜψ(x) = 1
2

(
(1 − x) ln(1 − x) + (1 + x) ln(1 + x)

)
− 1. (4.3.62)

The level curve of ℜψ(z) that passes through the points ±1, intersects the
imaginary axis at the points ±iy, determined by the equation ℜψ(iy) = ℜψ(1) =
ln 2−1, with the root y = 0.5255. Theorem 4.3.5 (below) will tell us that Lnf(x) →
f(x), ∀x ∈ (−1, 1), if f(z) is analytic inside and on this contour.

In the classical example of Runge, f(z) = 1/(1 + 25z2) has poles inside this
contour at z = ±0.2i. The separation statement in Example 4.3.10 told us that
the level curve of ℜψ(z) which passes through these poles will separate between
the points, where the interpolation process converges and diverges. Its intersection
with the real axis is determined by the equation ℜψ(x) = ℜψ(0.2i) = −0.70571.
The roots are x = ±0.72668; see also Figure 4.3.2.

The theory based on the logarithmic potential is of asymptotic nature, and
one may ask how relevant it is when the number of nodes is of a reasonable size for
practical computation. After all, the behaviour of the interpolation error between
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the nodes is quite different from the smooth logarithmic potential. Figure 4.3.3
indicates however that the prediction of this theory can be rather realistic when we
ask for local maxima of the modulus of the interpolation error on the real axis.

Example 4.3.12 (Chebyshev interpolation revisited).

In this example we have q(t) = cos(πτ), τ ∈ [−1, 0]. By (4.3.54)

w(t) =
1

−π sinπτ
=

1

π
(1 − t2)−

1
2 .

Moreover,138

Φn(z) = 21−nTn(z) = 2−n(sn + s−n),

where z = 1
2 (s + s−1), s = z +

√
z2 − 1. According to our convention about the

choice of branch for the square root |s| ≥ 1. Hence,

ℜψ(z) = lim
1

n
ln |Φn(z)| − ln 2 = ln

|s|
2

= ln |z +
√

z2 − 1| − ln 2.

As in the previous example, ℜψ(z) is single-valued and continuous everywhere,
while ψ(z) is unique for z /∈ [−∞, 1] only. Therefore, the family of confocal ellipses
∂ER with foci at ±1, are the level curves of ℜψ(z). In fact, the interior of ER equals
D(lnR − ln 2). The family includes, as a limit case (R → 1), the interval [−1, 1],
on which ℜψ(z) = lnR− ln 2 → − ln 2 = −0.693. Note that as z → cosφ ∈ [−1, 1]
then

|z +
√

(z2 − 1)| = | cosφ+ i sinφ| = 1, ∀φ.
Some level curves are shown in Figure 4.3.4.

Note that ℜψ(z) is smaller in [−1, 1] than anywhere else; this confirms the
conclusion in Sec. 4.3.2 that, for any function analytic in a region D that encloses
[−1, 1], Chebyshev interpolation converges at the same exponential rate in (almost)
all points u close to [−1, 1].

For the classical Runge case, we have

|(f − Lnf)(u)| ≈ en(ψ(0)−ψ(0.02i)) = en(−0.693+0.494) = e−0.199n.

This is very different from the equidistant case which diverges for if |u| > 0.72668,
but at the central subinterval has, by Figure 4.3.2,

|(f − Lnf)(u)| ≈ en(−1+0.706) = e−0.294n,

which is better than Chebyshev interpolation.
Also note that if z /∈ [−1, 1], we can, by the definition of ℜψ(z) as a Riemann

sum (see (4.3.52)) find a sequence {ǫn} that decreases monotonically to zero, such
that

1

n

∣
∣ ln Φn(z) − ψ(z)

∣
∣ < ǫn, z /∈ [−1, 1]. (4.3.63)

138The complex variable denoted w in Sec. 3.2.3, is now denoted s, in order to avoid a collision
with the density w(t).
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Figure 4.3.4. Some level curves of the logarithmic potential associated with
Chebyshev interpolation. They are ellipses with foci at ±1. Due to the symmetry
only a quarter is shown of each curve. The value of ℜψ(z) for a curve is seen to
the left, close to the curve.

It is conceivable that the same sequence can be used for all z on a curve that does
not touch the interval [−1, 1]. (This can be proved, but the proof is omitted.)

We can only claim a one-sided inequality, if we allow that u ∈ [−1, 1].

1

n
ℜ
(
ln Φn(u) − ψ(u)

)
< ǫn, u ∈ C. (4.3.64)

(Recall that ℜ ln Φn(u) = −∞ at the nodes.) We can use the same sequence for
z and u. We can also say that |Φn(u)| behaves like exp

(
(ℜψ(u) ± δ)n

)
outside the

immediate vicinity of the interpolation points.

Theorem 4.3.5.
Assume that the nodes are in [−1, 1], and that [−1, 1] is strictly inside a simply

connected domain D ⊇ D(v).
If f(ζ) is analytic in the closure of D, then the interpolation error (Lnf)(u)−

f(u) converges like an exponential to 0 for any u ∈ D(v).

Proof. By Theorem 4.3.3, f(u) − (Lnf)(u) = In(u), where

In(u) =
1

2πi

∫

∂D

Φn(u)f(z)

Φn(z)(z − u)
dz. (4.3.65)

Note that ℜψ(z) ≥ ℜψ(v), because D ⊇ D(v). Then, by (4.3.63) and (4.3.64),

∣
∣Φn(u)/Φn(z)

∣
∣ < expn

(
ℜψ(u) −ℜψ(v) + 2ǫn

)
.

Let |f(z)| ≤ M . For any u ∈ D(v), we can choose δ > 0, such that ℜψ(u) <
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ℜψ(v) − 3δ, |z − u| > δ. Next, choose n large enough so that ǫn < δ. Then

|f(u) − (Lnf)(u)| < 1

2π
M expn(−3δ + 2δ)

∫

∂D(v)

|dz|
δ

≤ K exp(−nδ)
δ

.

where K = K(v) does not depend on n, δ and u, hence the convergence is expo-
nential.

We shall now state without proof a complement and a kind of converse to
Theorem 4.3.5, for functions f(z) that have simple poles in D(v).

Proposition 4.3.6.
Assume that [−1, 1] is strictly inside a domain D ⊃ D(v), and that f(ζ) is

analytic in the closure of D, except for a finite number of simple poles p in the
interior, all with the same value of P (p).

Outside the interval [−1, 1], the curve ∂D(p) then separates the points, where
the sequence {(Lnf)(u)} converges, from the points, where it diverges. The behavior
of |(Lnf)(u) − f(u)|, when u ∈ D(v), n≫ 1 is roughly described by the formula,

|(f − Lnf)(u)| ≈ K|Φn(u)|e(−P (p)±δ)n/max
p

(1/|p− u|). (4.3.66)

There are several interpolation processes with interpolation points in [−1, 1]
that converge for all u ∈ [−1, 1], when the condition of analyticity is replaced by a
more modest smoothness assumption, for example, f ∈ Cp. This is the case, when
the sequence of interpolation points are the zeros of the orthogonal polynomials
which belong to a density function that is continuous and strictly positive in ]−1, 1[.
We shall prove the following result.

Proposition 4.3.7.
Consider an interpolation process where the interpolation points have a (per-

haps unknown) asymptotic density function w(x), x ∈ [−1, 1]. Assume that, for
some k ≥ 1,

(Lnf − f)(x) → 0, ∀x ∈ [−1, 1], ∀f ∈ Ck[−1, 1],

as n → ∞. Then the logarithmic potential ℜψ(x) must be constant in [−1, 1], and
the density function must be the same as for Chebyshev interpolation, i.e. w(x) =
1
π (1 − x2)−1/2.

Proof. Let f(z) be analytic in some neighborhood of [−1, 1], for example, any
function with a pole at a point p (arbitrarily) close to this interval. A fortiori, for
such a function our interpolation process must converge at all points u in some
neighborhood of the interval [−1, 1].

Suppose that ℜψ(x) is not constant, and let x1, x2 be points, such that
ℜψ(x1) < ℜψ(x2). We can then choose the pole p so that ℜψ(x1) + δ < ℜψ(p) <
ℜψ(x2) − δ. By Proposition 4.3.6, the process would then diverge at some point u
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arbitrarily close to x2. This contradiction shows that ℜψ(x) must be constant in
[−1, 1], ℜψ(x) = a, (say).

This gives a Dirichlet problem for the harmonic function ℜψ(z), z /∈ [−1, 1],
which has a unique solution, and one can verify that the harmonic function ℜψ(z) =
a+ ℜ ln(z +

√
z2 − 1) satisfies the boundary condition. We must also determine a.

This is done by means of the behaviour as z → ∞. We find that

ℜψ(z) = a+ ℜ ln
(
z + z(1 − z−2)1/2

)

= a+ ℜ ln
(
2z −O(z−1)

)
= a+ ℜ ln z + ln 2 −O(z−2).

This is to be matched with the result of the discussion of the general logarithmic
potential in the beginning of Sec. 4.3.6. In our case, where we have a symmetric

distribution, and
∫ 1

1 w(x) dx = 1, we obtain ℜψ(z) = ℜ ln z+O(z−2). The matching
yields a = − ln 2. Finally, by (4.3.57), we obtain after some calculation, w(x) =
(1 − x2)−1/2.

Our problem is related to a more conventional application of potential theory,
namely the problem of finding the electrical charge distribution of a long insulated
charged metallic strip through [−1, 1], perpendicular to the (x, y)-plane. Such a
plate will be equipotential. Suppose that such a distribution is uniquely determined
by the total charge.139 The charge density must then be proportional to the density
in our example. This density w corresponds to q(τ) = cosπt, i.e. w(x) = 1

π (1 −
x2)−1/2. A fascinating relationship of electricity to approximation!

The above discussion is related to the derivations and results concerning the
asymptotic distribution of the zeros of orthogonal polynomials, given in the standard
monograph G. Szegö [310].

Review Questions

3.1. What is meant by Lagrange–Hermite interpolation (osculatory interpolation)?
Prove the uniqueness result for the Lagrange–Hermite interpolation problem.

3.2. (a) Write down the confluent Vandermonde matrix for the Lagrange–Hermite
cubic interpolation problem.

(b) Express the divided difference [x0, x0, x1, x1]f in terms of f0, f
′
0,and f1,f

′
1.

3.3. What are the inverse divided differences of a function f(x) used for? How are
they defined? Are they symmetric in all their arguments?

3.4. Give the complex integral formula for the interpolation error of a function that
is analytic in a domain. Give the assumptions, and explain your notations.
Give the interpolation error also for the case with poles in the domain.

3.5. How is bilinear interpolation performed? What is the order of accuracy?

139It is unique, but we have not proved this.
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3.6. What is Chebyshev interpolation, and what can be said about its convergence
for analytic functions?

Problems and Computer Exercises

3.1. (a) Construct the divided difference scheme for the simplest Lagrange–Hermite
interpolation problem, where the given data are f(xi), f

′(xi), i = 0, 1; x1 =
x0 + h. Prove all the formulas concerning this problem that are stated at the
end of Sec. 4.3.1.

(b) For f(x) = (1 + x)−1, x0 = 1, x1 = 1.5, compute f(1.25) by Lagrange–
Hermite interpolation. Compare the error bound and the actual error.

(c) Show that for Lagrange–Hermite interpolation

|f ′(x) − p′(x)| ≤ h3

72
√

3

(

max
x∈[x0,x1]

|f (iv)(x)| +O(h|f (v)(x)|)
)

.

Hint: d
dx [x0, x0, x1, x1, x]f = [x0, x0, x1, x1, x, x]f ≤ . . ..

3.2. Given xi, y(xi), y
′(xi), xi = x0 + ih, i = 1, 2, 3. Let p ∈ P6 be the Lagrange–

Hermite interpolation polynomial to these data.

(a) Find the remainder term, and show that the interpolation error for x ∈
[x1, x3] does not exceed h6 max |f (6)(x)|/4860 in magnitude.

(b) Write a program that computes p(x1 + 2jh/k), j = 0 : k.

Comment: This is one of several possible procedures for starting a multistep
method for an ordinary differential equation y′ = f(x, y). Two steps with
an accurate one-step method, provide values of y, y′, and this program then
produces starting values (y only) for the multistep method.

3.3. Give a short and complete proof of the uniqueness of the interpolation polyno-
mial for distinct points, by the use of the ideas of the proof of Theorem 4.3.1.

3.4. Derive an approximate formula for f ′(x0) when the values f(x−1), f(x0), f(x1)
are given at three non-equidistant points. Give an approximate remainder
term. Check the formula and the error estimate on an example of your own
choice.

3.5. Consider the problem of finding a polynomial p ∈ P4 that interpolates the
data f(1), f(−1), f ′′(1), f ′′(−1). The new feature is that there are no first
derivatives. Show that this problem is uniquely solvable.

Hint: Show that using the power basis one obtains a linear system of the form
Mc = f , where f = (f1, f−1, f

′′
1 , f

′′
−1)

T , and

M =






1 1 1 1
1 −1 1 −1
0 0 2 6
0 0 2 −6




 .

with det(M) = 48.
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3.6. (a) Given a sequence of function values f1, f2, f3 . . . at equidistant points xj =
x0 + jh. Assume that min fj = fn, and let p(x) be the quadratic interpolation
polynomial determined by fn−1, fn, fn+1. Show that

min p(x) = fn − (µδfn)
2

2δ2fn
, at x = xn − h

µδfn
δ2fn

,

and that the error of the minimum value can be bounded by max |∆3fj |/
√

243,
where j is in some neighborhood of n. Why and how is the estimate of x less
accurate?

(b) Write a handy program that includes the search all local maxima and
minima. Sketch or work out improvements of this algorithm, perhaps with
ideas of inverse interpolation and with cubic interpolation. And perhaps for
non-equidistant data.

3.7. We use the notations and assumptions of Theorem 4.3.3.

Using the representation of the interpolation operator as an integral operator,
show that

(Lnf)(x) =
1

2πi

∫

∂D
K(x, z)

f(z)

Φ(z)
dz, K(x, z) =

Φ(x) − Φ(z)

(x− z)
,

also if x /∈ D. Note that K(x, z) is a polynomial, symmetric in the two vari-
ables x, z.

3.8. If f ∈ Pn, then f − Lnf is clearly zero. How would you deduce this obvious
fact from the integral (Knf)(u) ?

Hint: Let ∂D be the circle |z| = R. Make the standard estimation, and let
R → ∞.

3.9. (a) Show the bilinear interpolation formula

p(x0 + ph, y0 + qk) = (1 − p)(1 − q)f0,0 + p(1 − q)f1,0 + (1 − p)qf0,1 + pqf1,1.
(4.3.67)

with error bound,

1

2

(
p(1 − p)h2|fxx| + q(1 − q)k2|fyy|

)
+O(k2h2),

where fxx and fyy denote partial derivatives.

(b) Compute by bilinear interpolation f(0.5, 0.25) when

f(0, 0) = 1, f(1, 0) = 2, f(0, 1) = 3, f(1, 1) = 5.

3.10. (a) Consider the interpolation problem: Given xi, yi, fi, i = 1 : 6; find
c = (c1, c2, c3, c4, c5, c6)

T , so that p(xi, yi; c) = fi, i = 1 : 6, where

p(x, y; c) = c1 + c2x+ c3y + c4x
2 + c5xy + c6y

2.
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Choose xi, yi, fi, i = 1 : 6 by 18 independent random numbers, solve the
linear system p(xi, yi; c) = fi, i = 1 : 6, look at max |ci|. Repeat this (say) 25
times. You have a fair chance to avoid singular cases, or cases where max |ci|
is very large.

(b) Now choose (xi, yi) as 6 distinct points on some circle in R2, and choose fi
at random. This should theoretically lead to a singular matrix. Explain why,
and find experimentally the rank (if your software has convenient commands
or routines for that). Find a general geometric characterization of the sex-
tuples of points (xi, yi), i = 1 : 6, that lead to singular interpolation problems.

Hint: Brush up your knowledge of conic sections.

3.11. Derive a formula for f ′′
xy(0, 0) using fij , |i| ≤ 1, |j| ≤ 1, which is exact for all

quadratic functions.

3.12. (Bulirsch and Rutishauser (1968))
(a) The function cotx has a singularity at x = 0. Use values of cotx for
x = 1◦, 2◦, . . . , 5◦, and rational interpolation of order (2,2) to determine an
approximate value of cotx for x = 2.5◦, and its error.

(b) Use polynomial interpolation for the same problem. Compare the result
with that in (a).

3.13 Check the omitted details of the derivations in Example 4.3.5. Compare the
bounds for Chebyshev interpolation and Chebyshev expansion for R = 1+k/n.

3.14 Check the validity of (4.3.57) on the Chebyshev and the equidistant cases. Also

show that
∫ 1

−1
w(x) dx = 1, and check the statements about the behaviour of

P (z) for |z| ≫ 1.

3.15. A generalization of Runge’s example. Let f be an analytic function for which
the poles nearest to [−1, 1] are a pair of complex conjugate poles at an arbitrary
place on the imaginary axis. Consider interpolation with nodes in [−1, 1].

(a) Suppose that equidistant interpolation converges at u = 1. Is it true that
Chebyshev interpolation converges faster at u = 1?

(b) Is it true that equidistant interpolation converges faster than Chebyshev
interpolation in an environment of u = 0?

3.16. (After Meray (1884) and Cheney [59, p. 65].)

(a) Let Lnf be the polynomial of degree less than n which interpolates to the
function f(z) = 1/z at the nth roots of unity. Show that (Lnf)(z) = zn−1,
and that

lim
n→∞

max
|u|=1

|(Lnf − f)(u)| > 0.

Hint: Solve this directly, without the use of the previous theory.

(b) Modify the theory of Sec. 4.3.2 to the case in (a) with equidistant interpo-
lation points on the unit circle, and make an application to f(z) = 1/(z − a),
a > 0, a 6= 1. Here, Φn(z) = zn − 1. What is ψ(z), P (z)? The density
function? Check your result by thinking like Faraday. Find out for which
values of a, u, (|u| 6= 1, |u| 6= a), (Lnf − f)(u) → 0, and estimate the speed of
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convergence (divergence).

Hint: The integral for ψ(z) is a little tricky, but you may find it in a ta-
ble. There are, however, simpler alternatives to the integral, see the end of
Sec. 4.3.2.

(c) What can be said about the cases excluded above, i.e. |u| = 1, |u| = a?
Also look at the case, when |a| = 1, (a 6= 1).

(d) Is the equidistant interpolation on the unit circle identical to the Cauchy–
FFT method (with a = 0, R = 1) for the approximate computation of the
coefficients in a power series?

4.4 Piecewise Polynomial Interpolation

Interpolating a given function by a single polynomial over its entire range can be an
ill-conditioned problem as illustrated by Runge’s phenomenon. On the other hand,
polynomials of low degree can give good approximations locally in a small interval.
In this section we will consider approximation schemes for piecewise polynomial
approximation with different degrees of global continuity.

With the use of piecewise polynomials, there is no reason to fear equidistant
data, as opposed to the situation with higher-degree polynomials. Moreover, if the
function to be approximated is badly behaved in a subregion the effect of this can
be confined locally, allowing good approximation elsewhere.

In computer graphics and computer aided design (CAD) curves and surfaces
have to be represented mathematically, so that they can be manipulated and visual-
ized easily. In 1962 Bézier and de Casteljau, working for the French car companies
Renault and Citroën, independently developed Bézier curves for fitting curves and
surfaces. Similar work, using bicubic splines, was done in USA at General Mo-
tors by Garret Birkhoff and Henry Garabedian [25]. Subsequently, W. J. Gordon
of General Motors Research developed the technique of spline blending for fitting
smooth surfaces to a rectangular smooth mesh of curves.

Today Bézier curves and spline functions are used extensively in all aircraft
and automotive industries. Spline functions can also be used in the numerical
treatment of boundary-value problems for differential equations. Bézier curves have
found use also in computer graphics and typography. For example, scalable fonts
like postscript are stored as piecewise Bézier curves.

4.4.1 Bernštein Polynomials and Bézier Curves

In the following we restrict ourselves to considering polynomial curves, i.e. one-
dimensional geometric objects. Parametric curves are often used to find the func-
tional form of a curve given geometrically by a set of points pi ∈ Rd, i = 0 : n.

Let c(t) ∈ Rd, t ∈ [0, 1] be a parametric curve. In the simplest case, n = 1,
we take c(t) to be linear

c(t) = (1 − t)p0 + tp1.

and connecting the two points p0 and p1 so that p0 = c(0) and p1 = c(1). For n > 1
this will not give a smooth curve and is therefore of limited interest.
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We now generalize this approach and take c(t) to be a polynomial of degree n

c(t) =

n∑

i=0

piBi(t), t ∈ [0, 1],

where Bi(t), i = 0 : n, are the Bernštein polynomials140 defined by

Bni (t) =

(
n

i

)

ti(1 − t)n−i, i = 0 : n. (4.4.1)

Using the binomial theorem we have

1 = ((1 − t) + t)n =

n∑

i=0

(
n

i

)

ti(1 − t)n−i =

n∑

i=0

Bni (t).

Thus the Bernštein polynomials of degree n are nonnegative on [0, 1] and give a
partition of unity.

For n = 3 the four cubic Bernštein polynomials are

B3
0 = (1 − t)3, B3

1 = 3t(1 − t)2, B3
2 = 3t2(1 − t), B3

3 = t3. (4.4.2)

They are plotted in Figure 4.4.1.
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1

Figure 4.4.1. The four cubic Bernštein polynomials.

Some important properties of the Bernštein polynomials are given in the fol-
lowing theorem.

140Bernštein introduced the polynomials named after him in 1911.
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Theorem 4.4.1. The Bernštein polynomials Bni (t) have the following properties:

1. Bni (t) > 0, t ∈ (0, 1) (nonnegativity);

2. Bni (t) = Bnn−i(1 − t) (symmetry);

3. Bni (t) = 0 has a root t = 0 of multiplicity i and a root t = 1 of multiplicity
n− i.

4. The Bernštein polynomials Bni (t) have a unique maximum value at t = i/n
on [0, 1];

5. The Bernštein polynomials satisfy the following recursion formula

Bni (t) = (1 − t)Bn−1
i (t) + tBn−1

i−1 (t), i = 0 : n. (4.4.3)

6. The Bernštein polynomials of degree n form a basis for the space of polyno-
mials of degree ≤ n.

Proof. The first four properties follows directly from the definition (4.4.1). The
recursion formula is a consequence of the relation

(
n

i

)

=

(
n− 1

i

)

+

(
n− 1

i− 1

)

between the binomial coefficients.
To show the linear independence we observe that if

n∑

i=0

aiB
n
i (t) = 0,

then according to 3,

n∑

i=0

aiB
n
i (1) = anB

n
i (1) = an = 0.

By repeatedly dividing by (1 − t) and using the same argument we find that a0 =
· · · = an−1 = an = 0.

The unique parametric Bézier curve corresponding to a given set of n + 1
control points pi, i = 0 : n, equals

c(t) =
n∑

i=0

piB
n
i (t), t ∈ [0, 1], (4.4.4)

where Bni (t) are Bernštein polynomials of degree n. By property 3 in Theorem 4.4.1
the Bézier curve interpolates the first and last control points p0 and pn. Often a
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curve is constructed by smoothly patching together several Bézier curves of low
order.

Starting with B0
0(t) = 1, and setting Bn−1(t) = Bnn+1(t) = 0 the recursion in

Theorem 4.4.1 can be used to evaluate the Bernštein polynomials at a given point t.
It follows directly from the form of (4.4.4) that applying an affine transforma-

tion to c(t) can be performed simply by applying the same transformation to the
control points. Hence the Bézier curve has the desirable property that it is invariant
under translations and rotations.

Example 4.4.1.
A quadratic Bézier curve is given by

c(t) = (1 − t)2p0 + 2t(1 − t)p1 + t2p2, t ∈ [0, 1].

Clearly c(0) = p0 and c(1) = p2. For t = 1/2 we get

c(1/2) =
1

2

(p0 + p2

2
+ p1

)

.

Hence we can construct the point c(1/2) geometrically as the intersection between
the midpoint of the line between p0 and p2 and the point p1; see Figure 4.4.2.

p
0

p
1

p
2

Figure 4.4.2. Quadratic Bézier curve with control points.

The Bézier polygon is the closed piecewise linear curve connecting the con-
trol points pi and pi+1, i = 0 : n− 1 and finally pn and back to p0. In Figure 4.4.2
this is the polygon formed by the dashed lines. This polygon provides a rough idea
about the shape of the Bézier curve.

From the definition (4.4.4) of the Bézier curve it follows that for all t ∈ [0, 1],
the curve c(t) is a convex combination of the control points. Therefore c(t) lies
within the convex hull (see Definition 4.3.2) of the control points.

The variation of a function in an interval [a, b] is the least upper bound on the
sum of the oscillations in the closed subintervals [a, x1], [x1, x2], . . . , [xn, b], for all
possible such subdivisions. The Bézier curve is variation diminishing. In particular
if the control points pi are monotonic, so is c(t).
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p
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p
1

p
2

p
3

Figure 4.4.3. Cubic Bézier curve with control points p0, . . . , p3.

Usually all control points are not known in advance. The shape of the curve
is controlled by moving the control points until the curve has the desired shape.
For example, in the quadratic case moving p1 has a direct and intuitive effect on
the curve c(t). An advantage of the Bernštein basis for representing polynomials is
that the coefficients (control points) are closely related to the shape of the curve.
This is not the case when using a monomial or Chebyshev basis.

Theorem 4.4.2.
The Bézier curve c(t) is tangent to p1 − p0 and pn− pn−1 for t = 0 and t = 1,

respectively.

Proof. To show this we compute the derivative of the Bernštein polynomial (4.4.1)

d

dt
Bni (t) =







−nBn−1
0 (t), if i = 0

n
(
Bn−1
i−1 (t) −Bn−1

i (t)
)
, if 0 < i < n;

nBn−1
n−1(t), if i = n.

This follows from

d

dt
Bni (t) =

(
n

i

)
(
iti−1(1 − t)n−i − (n− i)ti(1 − t)n−i−1

)
,

and using the definition of the Bernštein polynomials. Setting t = 0 we find that
d
dtB

n
i (0) = 0, i > 1, and therefore from (4.4.4)

d

dt
c(t) = n(p1 − p0),

The result for t = 1 follows from symmetry.

More generally, at a boundary point the kth derivative of the Bézier curve
depends only on the k closest control points. This fact is useful for smoothly joining
together several pieces of Bézier curves.



“dqbjV
2007/5/28
page 420

420 Chapter 4. Interpolation and Approximation

De Casteljau’s Algorithm

To evaluate the Bézier curve at t ∈ [0, 1] we use the recursion formula (4.4.3) to
obtain

c(t) =
n∑

i=0

piB
n
i (t) = (1 − t)

n−1∑

i=0

piB
n−1
i (t) + t

n∑

i=1

piB
n−1
i−1 (t)

=
n−1∑

i=0

(
(1 − t)pi + tpi+1

)
Bn−1
i (t) =

n−1∑

i=0

p
(1)
i (t)Bn−1

i (t).

Here we have introduced the new auxiliary control points

p
(1)
i (t) = (1 − t)pi + tpi+1, i = 0 : n− 1,

as convex combinations (depending on t) of the original control points. Using this
result we can successively lower the grade of the Bernštein polynomial until we
arrive at B0

0 = 1. This gives De Casteljau’s algorithm, a recursion scheme for
the auxiliary control points

p
(0)
i (t) = pi, i = 0 : n

p
(r)
i (t) = (1 − t)p

(r−1)
i (t) + tp

(r−1)
i+1 (t), i = 0 : n− r. (4.4.5)

It follows

c(t) =

n−r∑

i=0

p
(r)
i (t)Bn−ri (t), r = 0 : n (4.4.6)

and in particular c(t) = p
(n)
0 .

De Casteljau’s algorithm works by building convex combinations (4.4.5) and is
therefore numerically is very stable. It can conveniently be arranged in a triangular
array

p0 = p
(0)
0

p
(1)
0

p1 = p
(0)
1 p

(2)
0

p
(1)
1

p2 = p
(0)
2

... p
(2)
1

. . .
...

...
...

... p
(n)
0

... p
(1)
n−2

...

pn−1 = p
(0)
n−1 p

(2)
n−2

p
(1)
n−1

pn = p
(0)
n

(4.4.7)

The algorithm uses about n2 operations and so is less efficient than Horner’s algo-
rithm for evaluating a polynomial in the monomial basis.
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Figure 4.4.4. Casteljau’s algorithm for n = 2, t = 1
2 .

The kth derivative of c(t) is also available from the de Casteljau scheme. It
holds that

c′(t) = n(p
(n−1)
1 − p

(n−1)
0 ),

c′′(t) = n(n− 1)(p
(n−2)
2 − 2p

(n−2)
1 + p

(n−2)
0 ), . . . ,

and in general

c(k)(t) =
n!

(n− k)!
∆kp

(n−k)
0 , 0 ≤ k ≤ n, (4.4.8)

where the difference operates on the lower index i.
De Casteljau’s algorithm is illustrated for the quadratic case in Figure 4.4.4,

where the following geometric interpretation can be observed. In the interval [0, t]

the Bézier curve is represented by a quadratic spline with control points p0, p
(1)
0 , p

(2)
0 .

In the remaining interval [t, 1] it is represented by a quadratic spline with control

points p
(2)
0 , p

(1)
1 , p2. Note that these two sets of control points lie closer to the curve

c(t). After a few more subdivisions it will be hard to distinguish the polygon joining
the control points form the curve.

De Casteljau’s algorithm can also be used to subdivide a Bézier curve into
two segments. By repeating this partitioning the Bézier polygons converge fast to
the curve. This construction is very well suited to control, for example, a milling
machine which can only remove materiel.

4.4.2 Spline Functions

The name spline comes from a very old technique in drawing smooth curves in
which a thin strip of wood, called a drafting spline, is bent so that it passes through
a given set of points, see Figure 4.5.5. The points of interpolation are called knots
and the spline is secured at the knots by means of lead weights called ducks. Before
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the computer age splines were used in all kinds of geometric design to produce
sufficiently smooth profiles. This process was slow and expensive.

Figure 4.4.5. A drafting spline.

By Hamilton’s principle the curve y = s(x), x ∈ [a, b], described by the spline
has the property that its elastic strain energy

E(s) =

∫ b

a

κ(x)2 dx, κ(x) =
s′′(x)

(1 + (s′(x))2)3/2
, (4.4.9)

is minimized. Here κ(x) is the curvature of the spline. A mathematical model of a
spline was given by Daniel Bernoulli (1742) and Euler (1744)141.

For slowly varying deflections, i.e. when (s′(x))2 is approximately constant,
we have the approximation

E(s) ≈ const ·
∫ b

a

s′′(x)2 dx.

Under this assumption, s(x) is built up of piecewise cubic polynomials in such a way
that s(x) and its two first derivatives are everywhere continuous. Let xi, i = 0 : m,
be the points the spline is forced to interpolate. Then the third derivative can have
discontinuities at the points xi.

The mathematical concept of spline functions was introduced in 1946 by
Schoenberg in the seminal paper [279]. The importance of the B-spline basis
for spline approximation (see Sec. 4.4.3) was also first appreciated by Schoenberg.
These were not used in practical calculations for general knot sequences until the
early seventies, when a stable recurrence relation was established independently by
de Boor [32] and Cox [75].

In the following we restrict ourself to consider curves in the plane. Today
B-splines enable the mathematical representation of surfaces far beyond hand tech-
niques. In aircraft design computations may involve more than 50, 000 data points!

141Euler derived the differential equation satisfied by the spline using techniques now known as
calculus of variation and Lagrange multipliers. When Euler did this work Lagrange was still a
small child!
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Linear and Cubic Splines

We start by formally defining a spline function of order k ≥ 1.

Definition 4.4.3.
A spline function of order k ≥ 1 (degree k − 1 ≥ 0), on a grid

∆ = {a = x0 < x1 < · · · < xm = b}.

of distinct knots is a real function s with properties:

(a) For x ∈ [xi, xi+1], i = 0 : m− 1, s(x) is a polynomial of degree < k.

(b) For k = 1, s(x) is a piecewise constant function. For k ≥ 2, s(x) and its first
k − 2 derivatives are continuous on [a, b], i.e. s(x) ∈ Ck−2[a, b].

The space of all spline functions of order k on ∆ is denoted by S∆,k. From the
definition it follows that if s1(x) and s2(x) are spline functions of the same degree,
so is c1s1(x) + c2s2(x). Clearly S∆,k is a linear vector space. The space Pk of
polynomials of degree less than k is a linear subspace of S∆,k. Also the truncated
power functions

(x − xj)
k−1
+ = max{(x− xj)

k−1, 0}, j = 1 : m− 1,

introduced in Sec. 3.3.3 in connection with the Peano kernel are elements of S∆,k.

Theorem 4.4.4.
The monomials and truncated power functions

{1, x, . . . , xk−1, (x− x1)
k−1
+ , . . . , (x− xm−1)

k−1
+ } (4.4.10)

form a basis for the spline space S∆,k. In particular the dimension of this space is
k +m− 1.

Proof. All we need for the first subinterval is a basis of Pk, for example, the power
basis {1, x, . . . , xk−1}. For each additional subinterval [xj , xj+1), j = 1 : m− 1, we
need only add the new basis function (x − xj)

k−1
+ . It is easy to show that these

k +m− 1 functions are linearly independent.

The truncated power basis (4.4.34) has several disadvantages and is not well
suited for numerical computations. The basis functions are not local; i.e. they are
nonzero on the whole interval [a, b]. Further they (4.4.34) are almost linearly depen-
dent when the knots are close. Therefore this basis yields dense ill-conditioned linear
systems for various tasks. A more suitable basis will be introduced in Sec. 4.4.3.

The simplest case k = 1 is the linear spline interpolating given values yi =
f(xi), xi ∈ [a, b], i = 0 : m. This is the broken line

s(x) = qi(x) = yi−1 + di(x− xi−1), x ∈ [xi−1, xi), i = 1 : m. (4.4.11)
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Here
di = [xi−1, xi]f(x) = (yi − yi−1)/hi, hi = xi − xi−1, (4.4.12)

are the divided differences of f at [xi−1, xi]. By (4.2.16) the error satisfies

|f(x) − s(x)| ≤ 1

8
max
i

(

h2
i max
x∈[xi−1,xi]

|f ′′(x)|
)

, (4.4.13)

if f ∈ C2[a, b]. Hence, we can make the error arbitrary small by decreasing maxi hi.
An important property of interpolation with a linear spline function is that it pre-
serves monotonicity and convexity of the interpolated function.

The broken line interpolating function has a discontinuous first derivative at
the knots which makes it unsuitable for many applications. To get better smooth-
ness piecewise polynomials of higher degree need to be used. Cubic spline functions,
which interpolate a given function f(x) on the grid ∆ and have continuous first and
second derivatives are by far the most important; see Figure 4.4.6.
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Figure 4.4.6. Broken line and cubic spline interpolation.

With piecewise Lagrange–Hermite interpolation we can interpolate given func-
tion values and first derivatives of a function on the grid ∆. First recall that in
cubic Lagrange–Hermite interpolation (see Theorem 4.3.1 and Problem 4.3.1) a cu-
bic polynomial qi(x) is fitted to values of a function and its first derivative at the
end points of the interval [xi−1, xi). Let

θ =
x− xi−1

hi
∈ [0, 1), x ∈ [xi−1, xi), (4.4.14)

be a local variable. Then, by (4.3.11), translated to the notation in (4.4.12), the
cubic qi(x) can be written in the form

qi(x) = θyi + (1 − θ)yi−1 + hiθ(1 − θ) [(ki−1 − di)(1 − θ) − (ki − di)θ] , (4.4.15)

where hi, di, i = 1 : m, are as defined in (4.4.12), and

ki = q′i(xi), (4.4.16)
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is the derivative at xi.
The second derivative (and the curvature) of this piecewise polynomial will

in general be discontinuous at the grid points. We now show how to choose the
parameters ki, i = 0 : m, to get also a continuous second derivative. This will
yield an interpolating cubic spline. In contrast to piecewise Lagrange–Hermite
interpolation, each piece of the cubic spline will depend on all data points.

Theorem 4.4.5.
Every cubic spline function, with knots a = x0 < x1 < · · · < xm = b, which

interpolates the function y = f(x),

s(xi) = f(xi) = yi, i = 0 : m,

equals for x ∈ [xi−1, xi), i = 1 : m, a third degree polynomial of the form (4.4.15).
The m+ 1 parameters ki, i = 0 : m, satisfy m− 1 linear equations

hi+1ki−1 + 2(hi + hi+1)ki + hiki+1 = 3(hidi+1 + hi+1di), (4.4.17)

i = 1 : m− 1,

where hi = xi − xi−1, di = (yi − yi−1)/hi.

Proof. We require the second derivative of the spline s(x) to be continuous at xi,
i = 1 : m− 1. We have

s(x) =

{
qi(x), x ∈ [xi−1, xi),
qi+1(x), x ∈ [xi, xi+1),

where qi(x) is given by (4.4.21)–(4.4.22). Differentiating qi(x) twice we get 1
2q

′′
i (x) =

a2,i + 3a3,i(x− xi−1), and putting x = xi

1
2q

′′
i (xi) = a2,i + 3a3,ihi = (ki−1 + 2ki − 3di)/hi. (4.4.18)

Replacing i by i+ 1 we get 1
2q

′′
i+1(x) = a2,i+1 + 3a3,i+1(x− xi), and hence

1
2q

′′
i+1(xi) = a2,i+1 = (3di+1 − 2ki − ki+1)/hi+1. (4.4.19)

These last two expressions must be equal which gives the conditions

1

hi
(ki−1 + 2ki − 3di) =

1

hi+1
(3di+1 − 2ki − ki+1), i = 1 : m− 1. (4.4.20)

Multiplying both sides by hihi+1 we get (4.4.17).

If the cubic spline s(x) is to be evaluated at many points then it is more
efficient to first convert it from the form (4.4.15) to piecewise polynomial form
(pp-form)

qi(x) = yi−1 + a1i(x− xi−1) + a2i(x− xi−1)
2 + a3i(x − xi−1)

3, (4.4.21)
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i = 1 : m. From (4.4.15) we obtain after some calculation

a1i = q′i(xi−1) = ki−1,

a2i = 1
2q

′′
i (xi−1) = (3di − 2ki−1 − ki)/hi, (4.4.22)

a3i = 1
6q

′′′
i (xi−1) = (ki−1 + ki − 2di)/h

2
i .

Using Horner’s scheme qi(x) can be evaluated from (4.4.21) using only four multipli-
cations. Algorithms for performing conversion to pp-form are given in [33, Chapter
X].

The conditions (4.4.17) are (m − 1) linearly independent equations for the
(m + 1) unknowns ki, i = 0 : m. Two additional conditions are therefore needed
to uniquely determine the interpolating spline. The most important choices are
discussed below.

If the derivatives at the end points are known we can take

k0 = f ′(a), km = f ′(b). (4.4.23)

The corresponding spline function s(x) is called the complete cubic spline in-
terpolant.

If k0 and km are determined by numerical differentiation with a truncation
error O(h4), we call the spline interpolant almost complete. For example, k0 and
km may be the sum of (at least) four terms of the expansions

Df(x0) =
1

h
ln(1 + ∆)y0, Df(xm) = − 1

h
ln(1 −∇)ym,

into powers of the operators ∆ and ∇, respectively.142

A physical spline is straight outside the interval [a, b]. The corresponding
boundary conditions are q′′1 (x0) = q′′m(xm) = 0. From (4.4.19) and (4.4.18) it
follows that

1
2q

′′
i (xi−1) = (3di − 2ki−1 − ki)/hi,

1
2q

′′
i (xi) = −(3di − ki−1 − 2ki)/hi.

Setting i = 1 in the first equation and i = m in the second gives the two conditions

2k0 + k1 = 3d1 (4.4.24)

km−1 + 2km = 3dm.

The spline function corresponding to these boundary conditions is called the natu-
ral spline interpolant. It should be stressed that when a cubic spline is used for
the approximation of a smooth function, these boundary conditions are not natural!
Although the natural spline interpolant in general converges only with order h2 it
has been shown that on any compact subinterval of the open interval (a, b) the order
of convergence is O(h4).

142Two terms of the central difference expansion in (3.3.46).
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If the end point derivatives are not known, a convenient boundary condition
is to require that s′′′(x) be continuous across the first and last interior knots x1 and
xm−1. Hence

q′′′1 (x) = q′′′2 (x), q′′′m−1(x) = q′′′m(x).

Then x1 and xm−1 are no longer knots, and the corresponding spline interpolant is
called the not a knot spline interpolant.

From (4.4.22) we obtain,

1
6q

′′′
i (x) = a3i = (ki−1 + ki − 2di)/h

2
i , x ∈ [xi−1, xi), i = 1 : m.

Hence the condition q′′′1 = q′′′2 gives (k0 + k1 − 2d1)/h
2
1 = (k1 + k2 − 2d2)/h

2
2, or

h2
2k0 + (h2

2 − h2
1)k1 − h2

1k2 = 2(h2
2d1 − h2

1d2).

Since this equation would destroy the tridiagonal form of the system, we use (4.4.17),
with i = 1 to eliminate k2. This gives the equation

h2k0 + (h2 + h1)k1 = 2h2d1 +
h1(h2d1 + h1d2)

h2 + h1
. (4.4.25)

If the right boundary condition is treated similarly we get

(hm−1 + hm)km−1 + hm−1km = 2hm−1dm +
hm(hm−1dm + hmdm−1)

hm−1 + hm
. (4.4.26)

The error of the not a knot spline interpolant is of the same order as that of the
complete spline. For functions f ∈ C4[a, b] one has an error estimate of the same
form as () for r = 0 : 2; see Beatson [20]. Indeed the error analysis below shows
that the Lagrange–Hermite interpolation error is, in the whole interval [a, b], asymp-
totically, the dominant source of error for both for complete and not-a-knot spline
approximation.

If the spline is used to represent a periodic function, then y0 = ym and the
boundary conditions

s′(a) = s′(b), s′′(a) = s′′(b), (4.4.27)

suffice to determine the spline uniquely. From the first condition it follows that
k0 = km, which can be used to eliminate k0 in the equation (4.4.17) for k = 1. The
second condition in (4.4.27) gives using (4.4.20) (k0 + 2k1 − 3d1)/h1 = −(2km−1 +
km − 3dm)/hm, or after eliminating k0,

2hmk1 + 2h1km−1 + (h1 + hm)km = 3(hmd1 + h1dm).

The spline interpolant has the following best approximation property.

Theorem 4.4.6.
Among all functions g that are twice continuously differentiable on [a, b] and

which interpolate f at the points a = x0 < x1 < · · · < xm = b, the natural spline
function minimizes

∫ b

a

(
s′′(t)

)2
dt.
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The same minimum property holds for the complete spline interpolant, if the func-
tions g satisfy g′(a) = f ′(a), and g′(b) = f ′(b).

Proof. See de Boor [33, 1978, Chapter 5].

Due to this property spline functions yield smooth interpolation curves, except
for rather thin oscillatory layers near the boundaries if the “natural” boundary
conditions s′′(a) = s′′(b) = 0 are far from being satisfied. For the complete or
almost complete cubic spline and for cubic splines determined by the “not-a-knot”
conditions, these oscillations are much smaller as we shall see below. Hence, when
a spline is to be used for the approximate representation of a smooth function, the
natural spline is not a natural choice!

Equations (4.4.17) together with any of these boundary conditions gives a
linear system for determining the derivatives ki. It can be shown that this system
is well-conditioned using the following result, which will be proved in Volume II.

Lemma 4.4.7.
Assume that the matrix A ∈ Rn×n is strictly row diagonally dominant, i.e.

αi := |aii| −
∑

j 6=i
|aij | > 0, i = 1 : n. (4.4.28)

Then A is nonsingular, and for row diagonally dominant linear systems Gaussian
elimination without pivoting is stable.

For the first three boundary conditions the system is tridiagonal, and which
is easily verified, also strictly row diagonally dominant. In Example 1.3.2, and
algorithm was given for solving a tridiagonal linear systems of order m by Gaussian
elimination in O(m) flops.

The linear system resulting from the not-a-knot boundary condition is not
diagonally dominant in the first and last row. However, it can be shown that also
in this case the system is well-conditioned and can be solved stably by Gaussian
elimination without pivoting.

Example 4.4.2.
In the case of spline interpolation with constant stepsize hi = h equation

(4.4.17) becomes

ki−1 + 4ki + ki+1 = 3(di + di+1), i = 1 : m− 1. (4.4.29)

The “not a knot” boundary conditions (4.4.25)–(4.4.26) become

k0 + 2k1 = 1
2 (5d1 + d2), 2km−1 + km = 1

2 (dm−1 + 5dm). (4.4.30)
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We obtain for (k0, k1, . . . , km), a tridiagonal system Tk = g where

T =









1 2
1 4 1

. . .
. . .

. . .

1 4 1
2 1









, g = 3









(5d1 + d2)/6
d1 + d2

...
dm−1 + dm

(dm−1 + 5dm)/6









.

Except for the first and last row, the elements of T are constant along the diagonals.
The condition number of T increases very slowly with m; for example, κ(T ) < 16
for m = 100.

Consider now the periodic boundary conditions in (iv). Setting km = k0 in
the last equation we obtain a linear system of equations Tk = g for k1, . . . , km−1

where

T =














b1 c1 am

a1 b2 c2 0

. . .
. . .

. . .
...

am−3 bm−2 cm−2 0

am−2 bm−1 cm−1

cm 0 · · · 0 am−1 bm














. (4.4.31)

Here T is tridiagonal except for its last row and last column, where an extra nonzero
element occurs. Such systems, called arrowhead system, can be solved with about
twice the work of a tridiagonal system; see [26].

In some applications one wants to smoothly interpolate given points (xj , yj),
j = 0 : m, where a representation of the form y = f(x) is not possible. Then
we can use a parametric spline representation x = x(t), y = y(t), where the
parameter values 0 = t0 ≤ t1 ≤ · · · ≤ tm correspond to the given points. Using
the approach described previously, two spline functions sx(t) and sy(t) can then be
determined, that interpolate the points (ti, xi) and (ti, yi), i = 0 : m, respectively.
The parametrization is usually chosen as ti = di/d, i = 1 : m, where d0 = 0,

di = di−1 +
√

(xi − xi−1)2 + (yi − yi−1)2, i = 1 : m,

are the cumulative distance and d = dm.
For boundary conditions we have the same choices as mentioned previously.

In particular, using periodic boundary conditions for sx(t) and sy(t) allows the
representation of closed curves (see Problem 4.5.8 (b)). Parametric splines can also
be used to approximate curves in higher dimensions.

Error in Cubic Spline Interpolation

For the complete spline interpolant the following standard error estimate holds:
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Theorem 4.4.8.
Let the function f be four times continuously differentiable in [a, b] and let s

be the complete cubic spline interpolant on the grid a = x0 < x1 < · · · < xm = b.
Then

max
x∈[a,b]

|f (r)(x) − s(r)(x)| ≤ cr(β)h4−r max
x∈[a,b]

|f (iv)(x)|, r = 0 : 3, (4.4.32)

where h = maxi hi, and β = h/mini hi, and

c0 =
5

384
, c1 =

1

216
(9 +

√
3), c2(β) =

1

12
(1 + 3β), c3(β) =

1

2
(1 + β2).

Proof. Beatson [20]

We comment below on the above result for r = 0 and how it is influenced by
the choice of other boundary conditions. Let x ∈ Ii = [xi−1, xi], i = 1 : m, and set

t = (x− xi−1)/hi, yi = f(xi), y′i = f ′(xi).

The error in cubic spline interpolation can be expressed as the sum of two compo-
nents:

i. The error EH(x) due to Lagrange–Hermite interpolation with correct values
of f ′(xi−1), f

′(xi), From (4.3.12) we obtain

max
x∈Ii

|EH(x)| ≤ 1

384
max
x∈Ii

|h4
i f

(iv)(x)|.

ii. The error ES(x) due to the errors of the slopes ei = ki − y′i, i = 0 : m. In
particular e0 and em are the errors in the boundary derivatives.

The bound in Theorem 4.4.8 for r = 0 is only a factor of five larger than that for
piecewise Lagrange–Hermite interpolation with correct derivatives of f at all points
xi, i = 0 : m, not just at x0 = a and xm = b. Indeed, typically the error EH(x) is
the dominant part. By (4.4.15) the second part of the error is

ES(x) = hit(1 − t)
[
ei−1(1 − t) − eit

]
, x = xi−1 + thi, t ∈ [0, 1).

Since |1− t|+ |t| = 1, and the maxima of t(1− t) on [0, 1] equals 1/4, it follows that

|ES(x)| ≤ 1

4
max

1≤i≤m
|hiej |, j = i− 1, i. (4.4.33)

where hi = xi − xi−1.
We shall consider the case of constant step size hi = h. For complete splines

e0 = em = 0 and for almost complete splines e0 = O(h4), em = O(h4). It can
be shown that then ei = O(h4), and its contribution to ES is O(h5). So if h is
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Figure 4.4.7. Boundary slope errors eB,i for a cubic spline, e0 = em = −1;
m = 20.

sufficiently small, the Lagrange–Hermite interpolation error is asymptotically the
dominant source of error in the whole interval [a, b],

Finally we discuss the effect of the boundary slope errors for other boundary
conditions. Figure 4.4.7 shows (for m = 20, e0 = em = −1) how rapidly the error
component from the boundary dies out. At the midpoint x = 0.5 the error is
0.3816 · 10−5. If m ≫ 1, e0 6= 0, and em 6= 0 the error is negligible outside thin
oscillatory boundary layers near x = x0 and x = xm. The height and thickness of
the layers depend on e0 and em.

Consider the left boundary; the right one is analogous. For the natural splines,
there is a peak error near x = x0 of approximately 0.049h2|y′′|, i.e. 40% of the linear
interpolation error (instead of cubic). This is often clearly visible in a graph of s(x).

For the “not a knot” splines we obtain approximately e0 ∼ 0.180h3y(4), and
the peak near x0 becomes 0.031h4y(4), typically very much smaller than we found
for natural splines. Still it is about 11.5 times as large as the Lagrange–Hermite
interpolation error, but since the oscillations quickly die out, we conclude that the
Lagrange–Hermite interpolation is the dominant error source in cubic “not a knot”-
spline interpolation in (say) the interval [a+ 3h, b− 3h] .

Similar conclusions seem to hold also in the case of variable step size, under
the reasonable assumption that hn+1 − hn = O(h2

n). (The use of variable step size
in the context of ordinary differential equations will be treated in a later volume.)

4.4.3 The B-Spline Basis

In the following we will introduce a more convenient B-spline basis for the linear
space S∆,k of spline functions of degree k. The term B-spline was coined by I. J.
Schoenberg [279] and is short for basis spline.

It was shown in Sec. 4.4.2 that the set of spline functions of order k, S∆,k, on
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the grid
∆ = {a = x0 < x1 < · · · < xm = b}

is a linear space of dimension k+m−1. One basis was shown to be the truncated
power basis.

{
1, x, . . . , xk−1

}
∪
{
(x− x1)

k−1
+ , (x− x2)

k−1
+ , . . . , (x− xm−1)

k−1
+

}
. (4.4.34)

In particular a basis for S∆,2 consists of continuous piecewise linear functions

{1, x} ∪ {l1(x), . . . , lm−1(x)}, li(x) = (x− xi)+.

Another basis for S∆,2 is obtained by introducing an artificial exterior knot x−1 ≤
x0. Then it is easy to see that using the functions li(x), i = −1 : m− 1 every linear
spline on [x0, xm] can also be written as

s(x) =
m−1∑

i=−1

cili(x).

In anticipation of the fact that it may be desirable to interpolate at other
points than the knots we consider from now on the sequence of knots

∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm}. (4.4.35)

where τi < τi+k, i = 0 : m−k, i.e. at most k successive knots are allowed to coincide.
We start by considering the space S∆,1. This consists of piecewise constant functions
and a basis is

Ni,1(x) =
{

1 x ∈ [τi, τi+1);
0 otherwise.

, i = 0 : m− 1. (4.4.36)

The basis functions are arbitrarily chosen to be continuous from the right, i.e.
Ni,1(τi) = Ni,1(τi + 0).

For k = 2 we define the hat functions143 by

Ni,2(x) =







(x− τi)/(τi+1 − τi), x ∈ [τi, τi+1],
(τi+2 − x)/(τi+2 − τi+1), x ∈ [τi+1, τi+2),
0, x 6∈ (τi, τi+2),

i = −1 : m− 1. (4.4.37)

We have here introduced two exterior knots τ−1 ≤ τ0 and τm+1 ≥ τm at the
boundaries. (In the following we refer to the knots τ0, . . . , τm as interior knots.)

At a distinct knot τi just one hat function is nonzero, Ni+1,2(τi) = 1. If all
knots are distinct it follows that the spline function of order k = 2 interpolating the
points (τi, yi), i = 0 : m, can uniquely be written as

s(x) =

m−1∑

i=−1

ciNi,2(x). (4.4.38)

143The generalization of hat functions to several dimensions plays a very important role in finite
element methods, see Sec. 5.4.4.
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where ci = yi+1. This shows that the restriction of the functions Ni,2(x), i = −1 :
m − 1, to the interval [τ0, τm] are (m + 1) linearly independent functions in S∆,2

and form a basis for S∆,2.
If we allow two interior knots coalesce, τi = τi+1, 0 < i < m − 1, then

Ni−1,2(x) and Ni,2(x) will have a discontinuity at τi. This generalizes the concept
of a B-spline of order 2 given in Definition 4.4.3 and allows us to model functions
with discontinuities at certain knots. Figure 4.4.8 illustrates the formation of a
double knot for a linear spline.

0 2 4 6 8 10
1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

Figure 4.4.8. Formation of a double knot for a linear spline.

By definition the basis functionNi,2(x) is nonzero only on the interval (τi, τi+2).
It follows that for x ∈ (τi, τi+1) we have Nj,2(x) = 0, j 6= i − 1, i. Hence, for any
given value of x at most two hat functions will be nonzero and

s(x) = ci−1Ni−1,2(x) + ciNi,2(x), x ∈ (τi, τi+1).

The exterior knots are usually taken to coincide with the boundary so that
τ−1 = τ0 and τm+1 = τm. In this case N−1,1 and Nm−1,1 become “half-hats” with
a discontinuity at τ0 and τm, respectively.

It is easily verified that the functions Ni,2(x) can be written as a linear com-
bination of the basis function li(x) = (x− τi)+, i = 1 : m+ 1. We have

Ni,2(x) =
(
(x− τi+2)+ − (x− τi+1)+

)
/(τi+2 − τi+1)

−
(
(x− τi+1)+ − (x− τi)+

)
/(τi+1 − τi)

=
(
[τi+1, τi+2]t(t− x)+ − [τi, τi+1]t(t− x)+ (4.4.39)

= (τi+2 − τi)[τi, τi+1, τi+2]t(t− x)+, i = 1 : m.

Here [τi, τi+1, τi+2]t means the second order divided difference functional144 operat-
ing on a function of t, i.e. the values τi are to be substituted for t not for x. Recall

144The notation is defined in Sec. 4.2.1
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that divided differences are defined also for coincident values of the argument; see
Sec. 4.3.1.

The Peano kernel and its basic properties were given in Sec. 3.3.3. The last
expression in (4.4.39) tells us that Ni,2 is the Peano kernel of a second order divided
difference functional multiplied by the constant τi+2−τi. This observation suggests
a definition of B-splines of arbitrary order k and a B-spline basis for the space S∆,k.

Definition 4.4.9.
Let ∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm} be an arbitrary sequence of knots such that

τi < τi+k, i = 0 : m− k. Then a B-spline of order k (apart from a stepsize factor)
equals the Peano kernel of a k-th order divided difference functional; more precisely
we define (with the notations used in this chapter)

Ni,k(x) = (τi+k − τi)[τi, τi+1, . . . , τi+k]t(t− x)k−1
+ , (4.4.40)

where [τi, τi+1, . . . , τi+k]l
k−1
x denotes the k-th divided difference of the function lk−1

x (·)
with respect to the set of points τi, τi+1, . . . , τi+k. This definition remains valid for
knots that are not distinct.

It can be shown that Ni,k(x) is defined for all x. If the knots are distinct then
by Problem 4.2.7,

Ni,k(x) = (τi+k − τi)
i+k∑

j=i

(τj − x)k−1
+

Φ′
i,k(τj)

, Φi,k(x) =
i+k∏

j=i

(x− τj), (4.4.41)

which shows that Ni,k is a linear combination of functions (τj −x)k−1
+ , j = i : i+ k.

Hence it is a spline of order k (as anticipated in the terminology).
For equidistant knots the B-spline is related to the probability density of the

sum of k uniformly distributed random variables on [− 1
2 ,

1
2 ]. This was known already

to Laplace.
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Figure 4.4.9. B-splines of order k = 1, 2, 3.
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Theorem 4.4.10. The B-splines of order k have the following properties:

(i) Positivity: Ni,k(x) > 0, x ∈ (τi, τi+k).

(ii) Compact support: Ni,k(x) = 0, x 6∈ [τi, τi+k].

(iii) Summation property:
∑

iNi,k(x) = 1, ∀x ∈ [τ0, τm].

Proof. A proof can be based on the general facts concerning Peano kernels found
in Sec. 3.3.3, where also an expression for the B-spline (k = 3) is calculated for the
equidistant case. (Unfortunately the symbol x means different things here and in
Sec. 3.3.3.)

(i) By (4.2.11) Rf = [τi, τi+1, . . . , τi+k]f = f (k)(ξ)/k!, ξ ∈ (τi, τi+k), and Rp = 0,
for p ∈ Pk. It then follows from the corollary of Peano’s remainder theorem
that the Peano kernel does not change sign in [τi, τi+k]. It must then have the
same sign as

∫
K(u) du = R(x− a)k/k! = 1. This proves a somewhat weaker

statement than (i) (Ni,k(x) ≥ 0 instead of Ni,k(x) > 0).

(i) This property follows since a Peano kernel always vanishes outside its interval
of support of the functional; in this case [τi, τi+k]. (A more general result
concerning the number of zeros is found, e.g., in Powell [262, Theorem 19.1].
Among other things this theorem implies that the jth derivative of a B-spline,
j ≤ k − 2, changes sign exactly j times. This explains the “bell-shape” of B-
splines.)

(iii) For a sketch of a proof of the summation property145, see Problem 4.5.11.

To get a basis of B-splines for the space S∆,k, ∆ = {τ0 ≤ τ1 ≤ · · · ≤ τm},
(m+k−1) B-splines of order k are needed. We therefore choose 2(k−1) additional
knots τ−k+1 ≤ · · · ≤ τ−1 ≤ τ0, and τm+k−1 ≥ · · · ≥ τm+1 ≥ τm, and B-splines
Ni,k(x), i = −k + 1 : m− 1.

As for k = 2 it is convenient to let the exterior knots coincide with the end
points,

τ−k+1 = · · · = τ−1 = τ0, τm = τm+1 = · · · = τm+k−1.

It can be shown that this choice tends to optimize the conditioning of the B-spline
basis. Figure 4.4.10 shows the first four cubic B-splines for k = 4 (the four last
B-splines are a mirror image of these). We note that N−3,4 is discontinuous, N−2,4

has a non-zero first derivative, and N−2,4 a non-zero second derivative at the left
boundary.

Interior knots of multiplicity r > 1 are useful when we want to model a
function which has less than k − 2 continuous derivatives at a particular knot. If
r ≤ k interior knots coalesce then the spline will only have k − 1 − r continuous
derivatives at this knot.
145The B-splines Mi,k originally introduced by Schoenberg in 1946 were normalized so that

R

∞

−∞
Mi,k dx = 1.
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Figure 4.4.10. The four cubic B-splines nonzero for x ∈ (t0, t1) with
coalescing exterior knots t−3 = t−2 = t−1 = t0.

Lemma 4.4.11. Let τi be a knot of multiplicity r ≤ k, i.e.

τi−1 < τi = · · · = τi+r−1 < τi+r.

Then Ni,k is at least (k − r − 1) times continuously differentiable at τi. For r = k,
the B-spline becomes discontinuous.

Proof. The truncated power (t− τi)
k−1
+ is (k− 2) times continuously differentiable

and [τi, . . . , τi+k]g contains at most the (r − 1)st derivative of g. Hence the lemma
follows.

Consider the spline function

s(x) =

m−1∑

i=−k+1

ciNi,k(x). (4.4.42)

If s(x) = 0, x ∈ [τ0, τm], then s(τ0) = s′(τ0) = · · · = s(k−1)(τ0) = 0, and s(τi) = 0,
i = 1 : m− 1. From this it can be deduced by induction that in (4.4.42) ci = 0, i =
−k+1 : m−1. This shows that the (m+k−1) B-splines Ni,k(x), i = −k+1 : m−1,
are linearly independent and form a basis for the space S∆,k. (A more general result
is given in de Boor [33, Theorem IX.1].) Thus any spline function s(x) of order k
(degree k − 1) on ∆ can be uniquely written in the form (4.4.42). Note that from
the compact support property it follows that for any fixed value of x ∈ [τ0, τm] at
most k terms will be nonzero in the sum in (4.4.42), so we have

s(x) =

j
∑

i=j−k+1

ciNi,k(x), x ∈ [τj , τj+1). (4.4.43)
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We will now develop a very important stable recurrence relation for com-
puting B-splines. For this we need the following difference analogue of Leibniz’
formula146.

Theorem 4.4.12 (Leibniz’ Formula).

Let f(x) = g(x)h(x), and xi ≤ xi+1 ≤ . . . ≤ xi+k. Then

[xi, . . . , xi+k]f =

i+k∑

r=i

[xi, . . . , xr]g · [xr , . . . , xi+k]h, (4.4.44)

provided that g(x) and f(x) are sufficiently many times differentiable so that the
divided differences on the right-hand side are defined for any coinciding points xj .

Proof. Note that the product polynomial

P (x) =
i+k∑

r=i

(x− xi) · · · (x− xr−1)[xi, . . . , xr]g

·
i+k∑

s=i

(x− xs+1) · · · (x− xi+k)[xs, . . . , xi+k]h

agrees with f(x) at xi, . . . , xi+k since by Newton’s interpolation formula the first
factor agrees with g(x) and the second with h(x) there. If we multiply out we can
write P (x) as a sum of two polynomials

P (x) =

i+k∑

r,s=i

. . . =
∑

r≤s
. . .+

∑

r>s

. . . = P1(x) + P2(x).

Since in P2(x) each term in the sum has
∏i+k
j=i (x − xj) as a factor it follows that

P1(x) will also interpolate f(x) at xi, . . . , xi+k. The theorem now follows since the

leading coefficient of P1(x) which equals
∑i+k

r=i [xi, . . . , xr]g · · · [xr, . . . , xi+k]h, must
equal the leading coefficient [xi, . . . , xi+k]f of the unique interpolation polynomial
of degree k.

Theorem 4.4.13.
The B-splines satisfy the recurrence relation

Ni,k(x) =
x− τi

τi+k−1 − τi
Ni,k−1(x) +

τi+k − x

τi+k − τi+1
Ni+1,k−1(x). (4.4.45)

Proof. (de Boor [33, pp. 130–131]) The recurrence is derived by applying Leibniz’
formula for the k-th divided difference to the product

(t− x)k−1
+ = (t− x)(t− x)k−2

+ .

146Gottfried Wilhelm von Leibniz (1646–1716), a German mathematician, who developed his
version of calculus at the same time as Newton. Many of the notations he introduced are still used
today.
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This gives

[τi, . . . , τi+k]t(t− x)k−1
+ = (τi − x)[τi, . . . , τi+k]t(t− x)k−2

+

+ 1 · [τi+1, . . . , τi+k]t(t− x)k−2
+ . (4.4.46)

since [τi]t(t − x) = (τi − x), [τi, τi+1]t(t − x) = 1, and [τi, . . . , τj ]t(t − x) = 0 for
j > i+ 1. By the definition of a divided difference

(τi − x)[τi, . . . , τi+k]t =
τi − x

τi+k − τi
([τi+1, . . . , τi+k]t − [τi, . . . , τi+k−1]t) .

Substitute this in (4.4.46), simplify and apply the definition of B-splines. This yields
(4.4.45).

Note that with k multiple knots at the boundaries the denominators in (4.4.45)
can become zero. In this case the corresponding nominator also is zero and the term
should be set equal to zero.

From Property (ii) in Theorem 4.4.10 we conclude that only k B-splines of
order k may be nonzero on a particular interval [τj , τj+1]. Starting from Ni,1(x) =
1, x ∈ [τi, τi+1) and 0 otherwise, cf. (4.4.36), these B-splines of order k can be
simultaneously evaluated using this recurrence by forming successively their values
for order 1 : k in only about 3

2k
2 flops. This recurrence is very stable, since it

consists of taking a convex combinations of two lower order splines to get the next
one.

Suppose that x ∈ [τi, τi+1], and τi 6= τi+1. Then the B-splines of order k =
1, 2, 3, . . ., nonzero at x can be simultaneously evaluated by computing the triangular
array

0
0 . . .

0 Ni−3,4

0 Ni−2,3 . . .
Ni−1,2 Ni−2,4

Ni,1 Ni−1,3 . . .
Ni,2 Ni−1,4

0 Ni,3 . . .
0 Ni,4

0 . . .
0

(4.4.47)

The boundary of zeros in the array is due to the fact that all other B-splines not
mentioned explicitly vanish at x. This array can be generated column by column.
The first column is known from (4.4.36), and each entry in a subsequent column can
be computed as a linear combination with nonnegative coefficients of its two neigh-
bors using (4.4.45). Note that if this is arranged in a suitable order the elements in
the new column can overwrite the elements in the old column.

To evaluate s(x), we first determine the index i such that x ∈ [τi, τi+1) using,
for example, a linear search or bisection (see Sec. 6.1.2). The recurrence above is
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then used to generate the triangular array (4.4.47) which provides Nj,k(x), j =
i− k + 1 : i. in the sum (4.4.43).

Assume now that τ0 < τ1 < · · · < τm are distinct knots. Using the B-spline
basis we can formulate a more general interpolation problem, where the n = m+k−1
interpolation points (knots) xj do not necessarily coincide with the knots τi. We
consider determining a spline function s(x) ∈ S∆,k, such that

s(xj) = fj , j = 1 : m+ k − 1.

Since any spline s(x) ∈ S∆,k can be written as a linear combination of B-splines,
the interpolation problem can equivalently be written

m−1∑

i=−k+1

ciNi,k(xj) = fj , j = 1 : m+ k − 1. (4.4.48)

These equations form a linear system Ac = f for the coefficients, where

aij = Ni−k,k(xj), i, j = 1 : m+ k − 1, (4.4.49)

and
c = (c−k+1, . . . , cm−1)

T , f = (f1, . . . , fm+k−1)
T .

The elements aij = Ni−k,k(xj) of the matrix A can be evaluated by the recurrence
(4.4.45). The matrix A will have a banded structure since aij = 0 unless xj ∈
[τi, τi+k]. Hence at most k elements are nonzero in each row of A. (Note that if
xj = τi for some i only k−1 elements will be nonzero. This explains why tridiagonal
systems were encountered in cubic spline interpolation in earlier sections.)

Schoenberg and Whitney [280, ] showed that the matrix A is nonsingular
if and only if its diagonal elements are nonzero,

ajj = Nj−k,k(xj) 6= 0, j = 1 : n,

or equivalently if the knots xj satisfy

τj−k < xj < τj , j = 1 : n. (4.4.50)

Further, the matrix can be shown to be totally nonnegative, i.e. the determinant
of every submatrix is nonnegative. For such systems, if Gaussian elimination is
carried outwithout pivoting, the error bound is particularly favorable; see [84]. This
will also preserve the banded structure of A during the elimination.

When the B-spline representation (4.4.42) of the interpolant has been deter-
mined it can be evaluated at a given point using the recursion formula (4.4.45). If it
has to be evaluated at more than two or three times per polynomial piece it is more
efficient to first convert the B-spline to pp-form (4.4.21). For hints on how to do
that, see Problem 4.5.12 (b) and (c). A detailed discussion is found in de Boor [33,
Chapter X].

Unless the Schoenberg–Whitney condition (4.4.50) is well-satisfied the system
may become ill-conditioned. For splines of even order k the interior knots

τ0 = x0, τj+1 = xj+k/2, j = 0 : n− k − 1, τm = xn,
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is a good choice in this respect. In the important case of cubic splines this means
that knots are positioned at each data point except the second and next last (cf.
the “not a knot” condition in Sec. 4.4.2.
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Figure 4.4.11. Banded structure of the matrices A and ATA arising in
cubic spline approximation with B-splines. (nonzero elements showed).

4.4.4 Least Squares Splines Approximation

In some application we are given function values fj = f(xj), j = 1 : n, that we want
to approximate with a spline functions with much fewer knots so that m+k−1 ≤ n.
Then (4.4.48) is an overdetermined linear system and the interpolation conditions
cannot be satisfied exactly. We therefore consider the linear least squares spline
approximation problem

min

n∑

j=1

( m−1∑

i=−k+1

ciNi,k(xj) − fj

)2

. (4.4.51)

Using the same notation as above this can be written in matrix form

min
c

‖Ac− f‖2
2. (4.4.52)

The matrix A will have full column rank equal to m+ k − 1 if and only if there is
a subset of points τj satisfying the Schoenberg–Whitney conditions (4.4.50).

If A has full column rank then the least squares solution c is is uniquely
determined by the normal equations ATAc = AT f . Since A has at most k nonzero
elements in each row the matrix ATA will have symmetric banded form with at
most 2k + 1 nonzero elements in each row; see Figure 4.4.11.
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Figure 4.4.12. Least squares cubic spline approximation of Titanium data
using 17 knots marked on the axes by a “o”.

Example 4.4.3 (de Boor [33]).
Consider experimental data describing a property of titanium as a function

of temperature. Experimental values for ti = 585 + 10i, i = 1 : 49, are given. We
want to fit this data using a least squares cubic spline Figure 4.4.12 shows results
from using a least squares fitted cubic spline with 17 knots. The spline with 9 knots
shows oscillations near the points where the curve flattens out and the top of the
peak is not well matched. Increasing the number of knots to 17 we get a very good
fit.

We have in the treatment above assumed that the set of (interior) knots {τ0 ≤
τ1 ≤ · · · ≤ τm} is given. In many spline approximation problems it is more realistic
to consider the location of knots to be free and try to determine a small set of knots
such that the given data can be approximated to a some preassigned accuracy.
Several schemes have been developed to treat this problem.

One class of algorithms start with only a few knots and iteratively add more
knots guided by some measure of the error; see de Boor [32, Chapter XII]. The
placement of the knots are chosen so that the Schoenberg–Whitney conditions are
always satisfied. The iterations are stopped when the approximation is deemed
satisfactory. If a knot τ̄ ∈ [τj , τj+1) is inserted then the B-spline series with respect
to the enlarged set of knots can cheaply and stably be computed from the old one
(see Dierckx [89]).

Other algorithms starts with many knots and successively remove knots which
are not contributing much to the quality of the approximation. In these two classes
of algorithms one does not seek an optimal knot placement at each step. This is
done in a more recent algorithms; see Schwetlick and Schütze [284].
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Review Questions

5.1. What is meant by a cubic spline function? Give an example where such a
function is better suited than a polynomial for approximation over the whole
interval.

5.2. (a) What is the dimension of the space S∆,k of spline functions of order k on
a grid ∆ = {x0, x1, . . . , xm}? Give a basis for this space.

(b) Set up the linear system for cubic spline interpolation in the equidistant
case for some common boundary conditions. What does the unknown quan-
tities mean, and what conditions are expressed by the equations? About how
many operations are required to interpolate a cubic spline function to m+ 1,
m≫ 1, given values of a function?

5.3. What error sources have influence on the results of cubic spline interpolation?
How fast do the boundary errors die out? How do the results in the interior
of the interval depend on the step size (asymptotically)? One of the common
types of boundary conditions yield much larger error than the others. Which
one? Compare it quantitatively with one of the others.

5.4. Approximately how many arithmetic operations are required to evaluate the
function values of all cubic B-splines that are nonzero at a given point?

5.5. Express the restrictions of f(x) = 1 and f(x) = x to the interval [x0, xm] as
linear combinations of the hat functions defined by (4.4.37).

5.6. The Schoenberg–Whitney conditions give necessary and sufficient conditions
for a certain interpolation problem with B-splines of order k. What is the
interpolation problem and what are the conditions?

Problems and Computer Exercises

5.1. Consider a cubic Bézier curve defined by the four control points p0, p1, p2 and
p3. Show that at t = 1/2

c(1/2) =
1

4

p0 + p3

2
+

3

4

p1 + p2

2

and interpret this formula geometrically.

5.2. (G. Eriksson) Approximate the function y = cosx on [−π/2, π/2] by a cubic
Bézier curve. Determine the four control points in such a way that it interpo-
lates cosx and its derivative at −π/2, 0 and π/2.

Hint Use symmetry and the result of Problem 4.5.1 to find the y-coordinate
of p1 and p2.

5.3. Suppose that f(x) and the grid ∆ are symmetric around the midpoint of the
interval [a, b]. You can then considerably reduce the amount of computa-
tion needed for the construction of the cubic spline interpolant by replacing
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the boundary condition at x = b by an adequate condition at the midpoint.
Which?

(a) Set up the matrix and right-hand side for this in the case of constant step
size h.

(b) Do the same for a general case of variable step size.

5.4. (a) Write a program for solving a tridiagonal linear system by Gaussian elim-
ination without pivoting. Assume that the nonzero diagonals are stored in
three vectors. Adapt it to cubic spline interpolation with equidistant knots
with several types of boundary conditions.

(b) Consider the tridiagonal system resulting from the not-a-knot boundary
conditions. Show that after eliminating k0 between the first two equations
and km between the last two equations the remaining tridiagonal system for
k1, . . . , km−1 is diagonally dominant.

(c) Interpolate a cubic spline s(x) through the points (xi, f(xi)), where

f(x) = (1 + 25x2)−1, xi = −1 +
2

10
(i− 1), i = 1 : 11.

Compute a natural spline, a complete spline (here f ′(x1) and f ′(x11) are
needed) and a “not a knot” spline. Compute and compare error curves (nat-
ural and logarithmic).

(d) Similar runs as in (b), though for f(x) = 1/x, 1 ≤ x ≤ 2, with h = 0.1
and h = 0.05. Compare the “almost complete”, as described in the text, with
the complete and the natural boundary condition.

5.5. If f ′′ is known at the boundary points, then the boundary conditions can be
chosen so that f ′′ = s′′ at the boundary points. Show that this leads to the
conditions

2k0 + k1 = 3d1 − h1f
′′(x0),

km−1 + 2km = 3dm + hmf
′′(xm).

5.6. Show that the formula
∫ xm

x0

s(x)dx =

m∑

i=1

(1

2
hi(yi−1 + yi) +

1

12
(ki−1 − ki)h

2
i

)

,

is exact for all cubic spline functions s(x). How does the formula simplify if
all hi = h?

Hint: Integrate (4.4.15) from xi−1 to xi.

5.7. In (4.4.15) the cubic spline qi(x) on the interval [xi−1, xi) is expressed in terms
of function values yi−1, yi, and the first derivatives ki−1, ki.

(a) Show that if Mi = s′′(xi), i = 0 : m, are the second derivatives (also called
moments) of the spline function then

ki − di =
hi
6

(2Mi +Mi−1), ki−1 − di = −hi
6

(Mi + 2Mi−1).
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Hence qi(x) can also be uniquely expressed in terms of yi−1, yi and Mi−1,Mi.

(b) Show that, using the parametrization in (a), the continuity of the first
derivative of the spline function at an interior point xi gives the equation

hiMi−1 + 2(hi + hi+1)Mi + hi+1Mi+1 = 6(di+1 − di).

5.8. (a) Develop an algorithm for solving the arrowhead linear system Tk = g
(4.4.31), using Gaussian elimination without pivoting. Show that about twice
the number of arithmetic operations are needed compared to a tridiagonal
system.

(b) At the end of Sec. 4.4.2 parametric spline interpolation to given points
(xi, yi), i = 0 : m, is briefly mentioned. Work out the details on how to use
this to represent a closed curve. Try it out on a boomerang, an elephant, or
what have you?

5.9. (a) Compute and plot a B-spline basis of order k = 3 (locally quadratic) and
m = 6 subintervals of equal length.

Hint: In the equidistant case there is some translation invariance and symme-
try, so you do not really need more than essentially three different B-splines.
You need one spline with triple knot at x0 and a single knot at x1 (very easy
to construct), and two more splines.

(b) Set up a scheme to determine a locally quadratic B-spline which interpo-
lates given values at the midpoints

xi = (τi+1 + τi)/2, (τi+1 6= τi), i = 0 : m− 1,

and the boundary points τ0, τm. Show that the spline is uniquely determined
by these interpolation conditions.

5.10. Derive the usual formula of Leibniz for the kth derivative from (4.4.44) by a
passage to the limit.

5.11. Use the recurrence (4.4.45)

Ni,k(x) =
x− τi

τi+k−1 − τi
Ni,k−1(x) +

τi+k − x

τi+k − τi+1
Ni+1,k−1(x)

to show that
∑

i

Ni,k(x) =
∑

i

Ni,k−1(x), τ0 ≤ x ≤ τm,

where the sum is taken over all nonzero values. Use this to give an induction
proof of the summation property in Theorem 4.4.10.

5.12. (a) Using the result
d

dx
(t − x)k−1

+ = −(k − 1)(t − k)k−2
+ , k ≥ 1, show the

formula for differentiating a B-spline

d

dx
Ni,k(x) = (k − 1)

(
Ni,k−1(x)

τi+k−1 − τi
− Ni+1,k−1(x)

τi+k − τi+1

)

.
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Then use the relation (4.4.45) to show

d

dx

s∑

i=r

ciNi,k(x) = (k − 1)

s+1∑

i=r

ci − ci−1

τi+k−1 − τi
Ni,k−1(x),

where cr−1 := cs+1 := 0.

(b) Given the B-spline representation of a cubic spline function s(x). Show
how to find its polynomial representation (4.4.21) by computing the function
values and first derivatives s(τi), s

′(τi), i = 0 : m.

(c) Apply the idea in (a) recursively to show how to compute all derivatives
of s(x) up to order k − 1. Use this to develop a method for computing the
polynomial representation of a spline of arbitrary order k from its B-spline
representation.

5.13. Three different bases for the space of cubic polynomials of degree ≤ 3 on
the interval [0, 1] are the monomial basis {1, t, t2, t3}, the Bernštein basis
{B3

0(t), B3
1(t), B3

2(t), B3
3(t)}, and the Hermite basis. Determine the matrices

for these basis changes.

4.5 Approximation and Function Spaces

Function space concepts have been introduced successively in this book. Recall, for
example, the discussion of operators and functionals in Sec. 3.3.2, where also the
linear space Pn, the n-dimensional space of polynomials of degree less than n was
introduced. This terminology was used and extended in Sec. 4.1, in the discussion
of various bases and coordinate transformations in Pn.

For coming applications of functional analysis to interpolation and approxi-
mation it is now time for a digression about:

• distances and norms in function spaces;

• a general error bound that we call the norm and distance formula;

• inner-product spaces and orthogonal systems.

4.5.1 Distance and Norm

For the study of accuracy and convergence of methods of interpolation and approx-
imation we now introduce the concept of a metric space. By this we understand a
set of points S, and a real-valued function d, a distance defined for pairs of points
in S in such a way that the following axioms are satisfied for all x, y, z in S. (Draw
a triangle with vertices at the points x, y, z.)

1. d(x, x) = 0, (reflexivity)

2. d(x, y) > 0 if x 6= y, (positivity)

3. d(x, y) = d(y, x), (symmetry)

4. d(x, y) ≤ d(x, z) + d(z, y) (triangle inequality).
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The axioms reflect familiar features of distance concepts used in mathematics
and everyday life, such as the absolute value of complex numbers, the shortest
distance along a geodesic on the surface of the earth, or the shortest distance along
a given road system.147.

Many other natural and useful relations can be derived from these axioms,
such as

d(x, y) ≥ |d(x, z) − d(y, z)|, d(x1, xn) ≤
n−1∑

i=1

d(xi, xi+1), (4.5.1)

where x1, x2, . . . , xn is a sequence of points in S; see Problem 4.5.1.

Definition 4.5.1.
A sequence of points {xn} in a metric space S is said to converge to a limit

x∗ ∈ S if d(xn, x
∗) → 0. As n → ∞, we write xn → x∗ or limn→∞ xn = x∗.

A sequence {xn} in S is called a Cauchy sequence, if for every ǫ > 0, there is
an integer N(ǫ) such that d(xm, xn) < ǫ, for all m,n ≥ N(ǫ). Every convergent
sequence is a Cauchy sequence, but the converse is not necessarily true. S is called
a complete space if every Cauchy sequence in S converges to a limit in S.

It is well known that R satisfies the characterization of a complete space,
but the set of rational numbers is not complete. For example, the Newton iteration
x1 = 1, xn+1 = 1

2 (xn+2/xn), defines a sequence of rational numbers that converges

to
√

2 which is not a rational number.
Many important problems in Pure and Applied Mathematics can be formu-

lated as minimization problems. The function space terminology often makes proofs
and algorithms less abstract.

Most spaces that we shall encounter in this book are linear spaces. Their
elements are called vectors, why these spaces also are called vector spaces Two
operations are defined in these spaces, namely the addition of vectors and the mul-
tiplication of a vector by a scalar. They obey the usual rules of algebra.148 The
set of scalars can be either R or C; the vector space is then called real or complex,
respectively.

Definition 4.5.2.
Let f be in a metric space B with a distance function d(x, y), and let S be a

subset or linear subspace of B. We define the distance of f to S by

dist (f,S) = inf
g∈S

d(f, g). (4.5.2)

147If S is a functions space, the points of S are functions with operands in some other space, for
example, in R or Rn

148See Appendix A.1 for a summary about vector spaces. In larger texts on linear algebra
or functional analysis you find a collection of eight axioms (commutativity, associativity, etc.)
required by a linear vector space.
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Much of our discussion also applies to linear spaces of infinite dimension,
i.e. function spaces. The elements (vectors) then are functions of one or several
real variables on a compact set, i.e. a closed bounded region. The idea of such a
functions space is now illustrated on an example.

Example 4.5.1.
Consider the set of functions representable by a convergent power series on

the interval [−1, 1],
f(t) = c0 + c1t+ c2t

2 + · · · .
This is an infinite-dimensional linear space. The functions 1, t, t2, . . . can be con-
sidered as a standard basis of this space. The coordinates of f(t) then is the vector
c0, c1, c2, . . ..

We shall be concerned with the problem of linear approximation, i.e. a
function f is to be approximated using a function f∗ that can be expressed as a
linear combination

f∗ = c1φ1(x) + c2φ2(x) + · · · + cnφn(x), (4.5.3)

of n given linearly independent functions φ1(x), φ2(x), . . . , φn(x), where c1, c2, . . . , cn
are parameters to be determined.149 They may be considered as coordinates of f∗

in the functions space spanned by φ1(x), φ2(x), . . . , φn(x).
In a vector space the distance of the point f from the origin is called the norm

of f and denoted by ‖f‖, typically with some subscript that more or less cryptically
indicates the relevant space. The definition of the norm depends on the space. The
following axioms must be satisfied.

Definition 4.5.3.
A real valued function ‖f‖ is called a norm on a vector space S, if it satisfies

the conditions 1–3 below for all f, g ∈ S, and for all scalars λ

1. ‖f‖ > 0, unless f = 0, (positivity)

2. ‖λf‖ = |λ|‖f‖, (homogeneity)

3. ‖f + g‖ ≤ ‖f‖ + ‖g‖. (triangle inequality)

A normed vector space is a metric space with the distance

d(x, y) = ‖x− y‖.

If it is also a complete space, it is called a Banach space.150

149The functions φj , however, are typically not linear. The term “linear interpolation” is from
our present point of view rather misleading.
150Stefan Banach (1892–1945), a Polish mathematician, at the University in Lvov. Banach

founded modern Functional Analysis and gave major contributions to the theory of topological
vector spaces, measure theory and related topics. In 1939 he was elected President of the Polish
Mathematical Society.
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The most common norms in spaces of (real and complex) infinite sequences
x = (ξ1, ξ2, ξ3, . . .)

T or spaces of functions on a bounded and closed interval [a, b]
are

‖x‖∞ = max
j

|ξj |, ‖f‖∞ = max
x∈[a,b]

|f(x)|,

‖x‖2 =
( ∞∑

j=1

|ξj |2
)1/2

, ‖f‖2 = ‖f‖2,[a,b] =
(∫ b

a

|f(x)|2 dx
)1/2

,

‖x‖2,ω =
( ∞∑

j=1

ωj|ξj |2
)1/2

, ‖f‖2,ω =
(∫ b

a

|f(x)|2ω(x) dx
)1/2

,

These norms are called

• the max(imum) norm (or the uniform norm),

• the Euclidean norm (or the l2 norm for coordinate sequences and L2 norm
for integrals),

• the weighted Euclidean norm. Here ω(x) is a weight function, assumed to
be continuous and strictly positive on the open interval (a, b).

We assume that the integrals
∫ b

a

|x|kω(x) dx

exist for all k. Integrable singularities at the end points are permitted; an important
example is ω(x) = (1 − x2)−1/2 on the interval [−1, 1].

The above norms are special cases or limiting cases (p → ∞ gives the max
norm) of the lp or Lp norms and weighted variants of these. They are defined for
p ≥ 1, as follows151

‖x‖p =
( ∞∑

j=1

|ξj |p
)1/p

, ‖f‖p =
(∫ b

a

|f(x)|p dx
)1/p

. (4.5.4)

(The sum in the lp norm has a finite number of terms, if the space is finite dimen-
sional.)

From the minimax property of Chebyshev polynomials (Lemma 3.2.4) it fol-
lows that the best approximation in the maximum norm to the function f(x) = xn

on [−1, 1] by a polynomial of lower degree is given by xn − 21−nTn(x). The error
assumes its extrema in a sequence of n+ 1 points xi = cos(iπ/n). The sign of the
error alternates at these points.

The above property is generalized in the following theorem which is the basis
of many algorithms for computing approximations in the maximum norm. For a
proof see Davis [83, Sec. 7.6]

151The triangle inequality for ‖x‖p is derived from two classical inequalities due to Hölder and
Minkowski. Elegant proofs of these are found in Hairer and Wanner [163, p. 327].
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Theorem 4.5.4 (The Chebyshev Equioscillation Theorem).

Let f be a continuous function on [a, b] and let p be the nth degree polynomial
which best approximates f in the maximum norm. Then p is characterized by the
fact that there exist at least n + 2 points a ≤ ζ0 < ζ1 < ζ2 < · · · < ζn+1 ≤ b,
where the error r = p̂ − f takes on its maximal magnitude with alternating signs;
i.e. |r(ζi)| = ‖r‖∞ and

r(ζi+1) = −r(ζi), i = 0 : n.

This characterization constitutes both a necessary and sufficient condition. If
f (n+1)(x) has constant sign in [a, b] then ζ0 = a, ζn+1 = b.

Convergence in a space, equipped with the max norm, means uniform con-
vergence. Therefore, the completeness of the space C[a, b] follows from a classical
theorem of Analysis that tells us that the limit of a uniformly convergent sequence
is a continuous function. The generalization of this theorem to several dimensions
implies the completeness of the space of continuous functions, equipped with the
max norm on a closed bounded region in Rn.

Other classes of functions can be normed with the max norm maxx∈[a,b] |f(x)|,
for example, C1[a, b]. But this space is not complete; but one can often live well
with incompleteness.

The notation L2 norm comes from the function space L2[a, b], which is the class

of functions for which the integral
∫ b

a |f(x)|2 dx exists, in the sense of Lebesgue. The
Lebesgue integral is needed in order to make the space complete and greatly extends
the scope of Fourier analysis. No knowledge of Lebesgue integration is needed for
the study of this book, but this particular fact can be interesting as a background.
One can apply this norm also to the (smaller) class of continuous functions on [a, b].
In this case the Riemannn integral is equivalent. This also yields a normed linear
space but it is not complete.152

Although C[0, 1] is an infinite-dimensional space, the restriction of the con-
tinuous functions f to the equidistant grid defined by xi = ih, h = 1/n, i = 0 : n,
constitutes an n + 1 dimensional space, with the function values on the grid as
coordinates. If we choose the norm

‖f‖2,Gh
=
( 1/h
∑

i=0

h|f(xi)|2
)1/2

,

then

lim
h→0

‖f‖2,Gh
=
( ∫ 1

0

|f(x)|2 dx
)1/2

= ‖f‖2,[0,1].

Limit processes of this type are common in Numerical Analysis.

152A modification of the L2 norm that also includes higher derivatives of f is used in the Sobolev
spaces which is a theoretical framework for the study of the practically very important Finite
Element Methods (FEM), used in particular for the numerical treatment of partial differential
equations.
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Notice that even if n+1 functions φ1(x), φ1(x), . . . , φn+1(x) are linearly inde-
pendent on the interval [0, 1] (say), their restrictions to a grid with n points must
be linearly dependent; but if a number of functions are linearly independent on
a set M (a discrete set or continuum), any extensions of these functions to a set
M′ ⊃ M will also be linearly independent.

The class of functions, analytic in a simply connected domain D ⊂ C, normed
with ‖f‖D = maxz∈∂D |f(z)|, is a Banach space denoted by Hol(D). (The explana-
tion to this term is that analytic functions are also called holomorphic.) By the
maximum principle for analytic functions |f(z)| ≤ ‖f‖D for z ∈ D.

4.5.2 Operator Norms and the Distance Formula

The concepts of linear operator and linear functional were introduced in
Sec. 3.3.2. We here extend to a general vector space B some definitions for a fi-
nite dimensional vector space given in Appendix A.

Next we shall generalize the concept operator norm that is used for matrices;
see Sec. A.3.3. Consider an arbitrary bounded linear operator A : S1 7→ S2 in a
normed vector space S.

‖A‖ = sup
‖f‖S1

‖Af‖S2 (4.5.5)

Note that ‖A‖ depends on the vector norm in both S1 and S2. It follows that
‖Af‖ ≤ ‖A‖‖f‖. Moreover, whenever the ranges of the operators A1, A2 are such
that A1 +A2 and A1A2 are defined

‖λA‖ ≤ |λ|‖A‖, ‖A1 +A2‖ ≤ ‖A1‖ + ‖A2‖, ‖A1 · A2‖ ≤ ‖A1‖ · ‖A2‖. (4.5.6)

Similarly for sums with an arbitrary number of terms and for integrals. It follows
that ‖An‖ ≤ ‖A‖n, n = 2, 3, . . ..

Example 4.5.2.
Let f ∈ C[0, 1], ‖f‖ = ‖f‖∞,

Af =

m∑

i=1

aif(xi) ⇒ ‖A‖ =

m∑

i=1

|ai|,

Af =

∫ 1

0

e−xf(x) dx ⇒ ‖A‖ =

∫ 1

0

e−x dx = 1 − e−1,

B =

m∑

i=1

aiA
i ⇒ ‖B‖ ≤

m∑

i=1

|ai|‖A‖i, (ai ∈ C),

Kf =

∫ 1

0

k(x, t)f(t) dt ⇒ ‖K‖∞ ≤ sup
x∈[0,1]

∫ 1

0

|k(x, t)| dt.

The proofs of these results are left as a problem. In the last example, approximate
the unit square by a uniform grid (xi, tj)

m
i,j=1, h = 1/m, and approximate the

integrals by Riemann sums. Then approximate ‖K‖∞ by the max norm for the
matrix with the elements ki,j = hk(xi, tj); see Appendix A.8.
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Example 4.5.3.
For the forward difference operator ∆ we obtain ‖∆‖∞ = 2, hence ‖∆k‖∞ ≤

2k. In fact ‖∆k‖∞ = 2k, because the upper bound 2k is attained (for every integer
k) by the sequence {(−1)n}∞0 .

Example 4.5.4.
Let D be a domain in C, the interior of which contains the closed interval

[a, b]. Define the mapping Dk: HolD ⇒ C[a, b] (with maxnorm), by

Dkf(x) =
∂k

∂xk
1

2πi

∫

∂D
f(z)

1

(z − x)
dz =

1

2πi

∫

∂D

k!f(z)

(z − x)k+1
dz.

Then

supx∈[a,b]‖Dkf(x)‖ ≤ max
z∈∂D

|f(z)| · sup
x∈[a,b]

k!

2π

∫

∂D

|dz|
|z − x|k+1

<∞.

Note that Dk is in this setting a bounded operator, while if we had considered Dk

to be a mapping from Ck[a, b] to C[a, b], where both spaces are normed with the
max norm in [a, b], Dk would have been an unbounded operator.

Many of the procedures for the approximate computation of linear functionals
that we encounter in this book may be characterized as follows. Let A be a linear
functional, such that Af cannot be easily computed for an arbitrary function f , but
it can be approximated by another linear functional Ãk, more easily computable,
such that Ãkf = Af ∀f ∈ Pk. A general error bound to such procedures was given
in Sec. 3.3.3 by the Peano Remainder Theorem, in terms of an integral,

∫

f (k)(u)K(u) du

where the Peano kernel K(u) is determined by the functional R = Ã−A.
Now we shall give a different type of error bound for more general approxi-

mation problems, where other classes of functions and operators may be involved.
Furthermore, no estimate of f (k)(u) is required. It is based on the following almost
trivial theorem. It yields, however, often less sharp bounds than the Peano formula,
in situations when the latter can be applied.

Theorem 4.5.5 (The Norm and Distance Formula).

Let A, Ã be a two linear operators bounded in a Banach space B, such that
for any vector s in a certain linear subspace S, Ãs = As. Then

‖Ãf −Af‖ ≤ ‖Ã−A‖ dist (f,S) ∀f ∈ B.

Proof. Set R = Ã−A. For any positive ǫ, there exists a vector sǫ ∈ S such that

‖f − sǫ‖ = dist (f, sǫ) < inf
s∈S

dist (f, s) + ǫ = dist (f,S) + ǫ.
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Then ‖Rf‖ = ‖Rf−Rsǫ‖ = ‖R(f−sǫ)‖ ≤ ‖R‖‖f−sǫ‖ < (dist (f,S)+ǫ)‖R‖.
The theorem follows, since this holds for every ǫ > 0.

The following is a common particular case of the theorem. If A, Ak are linear
functionals such that Akp = Ap for all p ∈ Pk, then

|Akf −Af | ≤ (‖Ak‖ + ‖A‖)dist (f,Pk). (4.5.7)

Another important particular case of the theorem concerns projections P from a
function space to a finite dimensional subspace Sk, for example, interpolation and
series truncation operators, A = I, Ã = P , see the beginning of Sec. 4.5.2. Then

‖Pf − f‖ ≤ ‖(P − I)f‖ ≤ (‖P‖ + 1)dist (f,Sk). (4.5.8)

The Norm and Distance Formula requires bounds for ‖Ã‖, ‖A‖ and dist (f,S).
We have seen examples above, how to obtain bounds for operator norms. Now we
shall exemplify how to obtain bounds for the distance of f from some relevant
subspace S, in particular spaces of polynomials or trigonometric polynomials re-
stricted to some real interval [a, b]. For the efficient estimation of dist (f,S) it may
be important, to take into account that f is analytic in a larger domain than [a, b].

Theorem 4.5.6 (Estimation of dist∞(f,Pk) in terms of ‖f (k)‖∞).

Let f ∈ Ck[a, b] ⊂ R, and define the norm

‖g‖∞,[a,b] = max
t∈[a,b]

|g(t)|, ∀ g ∈ C[a, b].

Then

dist∞,[a,b](f,Pk) ≤
2

k!

(b− a

4

)k

‖f (k)‖∞,[a,b].

Proof. Let p(t) be the polynomial which interpolates f(t) at the points tj ∈ [a, b],
j = 1 : k. By the remainder term (4.2.10) in interpolation,

|f(t) − p(t)| ≤ max
ξ∈[a,b]

|f (k)(ξ)|
k!

k∏

j=1

|t− tj |.

Set t = 1
2 (b+ a)+ 1

2 (b− a)x, and choose tj = 1
2 (b+ a)+ 1

2 (b− a)xj where xj are the
zeros of the Chebyshev polynomial Tk(x). Then p is the Chebyshev interpolation
polynomial for f on the interval [a, b], and with M = maxt∈[a,b] |f (k)|/k!

|f(t) − p(t)| ≤M

k∏

j=1

(b − a)|x− xj |
2

, x ∈ [−1, 1].

Since the leading coefficient of Tk(x) is 2k−1 and |Tk(x)| ≤ 1, we have, for t ∈ [a, b],

|f(t) − p(t)| ≤M

(
b− a

2

)k
1

2k−1
|Tk(x)| ≤M

(
b− a

2

)k
1

2k−1
.

The bound stated for dist∞(f,Pk) is thus satisfied.
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Example 4.5.5.
By the above theorem, the function et can be approximated on the interval

[0, 1] by a polynomial in P6 with the error bound 2e·4−6/6! ≈ 2· 10−6. According
to the proof this accuracy is attained by Chebyshev interpolation on [0, 1].

If one instead uses the Maclaurin series, truncated to P6, then the remainder
is eθ/(6!) ≥ 1.3 · 10−3. Similarly, with the truncated Taylor series about t =
1
2 the remainder is eθ/(266!) ≥ 2 · 10−5, still significantly less accurate than the
Chebyshev interpolation. Economization of power series (see Problem 3.2.5), yields
approximately the same accuracy as Chebyshev interpolation.

If we do these things on an interval of length h (instead of the interval [0, 1])
all the bounds are to multiplied by h6.

Example 4.5.6.
The use of analyticity in estimates for dist∞(f,Pn): Denote by ER an ellipse

in C with foci at −1 and 1; R is equal to the sum of the semi-axes. Bernštein’s
approximation theorem, Theorem 3.2.5, gives the following truncation error bound
for the Chebyshev expansion for a function f ∈ Hol(ER), real-valued on [−1, 1] and
with ‖f‖ER

≤M :

∣
∣
∣f(x) −

n−1∑

j=0

cjTj(x)
∣
∣
∣ ≤ 2MR−n

1 −R−1
, x ∈ [−1, 1].

This implies that, on the same assumptions concerning f ,

dist∞,[−1,1](f,Pn) ≤
2MR−n

1 −R−1
.

By the application of a theorem of Landau concerning bounded power series
one can obtain the following bound that can be sharper when R ≈ 1:

dist∞,[−1,1](f,Pn) ≤ 2MR−(n+1)Gn, (4.5.9)

where

Gn = 2 +
(1

2

)2

+
(1 · 3

2 · 4
)2

+ · · · +
(1 · 3 · · · (2n− 1)

2 · 4 · · · 2n
)2

∼ logn

π
.

Suppose that f ∈ Hol(D), where D ⊇ b+ a

2
+
b− a

2
ER. Then transforming

from [−1, 1] to a general interval [a, b] ⊂ R, we have

dist∞,[a,b](f,Pn) ≤ 2‖f‖∞,D

(
b − a

2R

)n
2R

2R− (b − a)
.

Example 4.5.7.
As a first simple example we shall derive an error bound for one step with the

trapezoidal rule. Set

Af =

∫ h

0

f(x) dx, A2f =
h

2

(
f(0) + f(h)).
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We know that A2p = Ap if p ∈ P2. By Theorem 4.5.6, dist∞(f,P2) ≤ ‖f ′′‖∞h2/16.

Furthermore, ‖A‖∞ =
∫ h

0
dx = h, ‖A2‖∞ = h, hence by (4.5.7) the requested

error bound becomes

‖A2f −Af‖∞ ≤ 2h · ‖f ′′‖∞h2/16 = ‖f ′′‖∞h3/8.

This general method does not always give the best possible bounds but, typically,
it gives no gross overestimate. For the trapezoidal rule we know by Peano’s method
(Example 3.3.7) that ‖f ′′‖h3/12 is the best possible estimate, so we now obtained
a 50% overestimate of the error.

The norm and distance formula can also be written in the form

dist (f,S) ≥ |Af − Ãf |/‖A− Ã‖. (4.5.10)

This can be used for finding a simple lower bound for dist (f,Pk) in terms of an
easily computed functional that vanishes on Pk.

Example 4.5.8.
Let Ã = 0. The functional Af = f(1)− 2f(0) + f(−1) vanishes for f ∈ P2. If

the maximum norm is used on [-1,1], then ‖A‖ = 1 + 2 + 1 = 4. Thus

dist (f,P2)∞,[−1,1] ≥
|Af |
‖A‖ =

1

4
|f(1) − 2f(0) + f(−1)|.

It follows, for example, that the curve y = ex cannot be approximated by a straight
line in [−1, 1] with an error less than (e − 2 + e−1)/4 ≈ 0.271. (This can also be
seen without the use of the Norm and Distance Formula.)

It is harder to derive the following generalization without the Norm and Dis-
tance Formula. By Example 4.5.3, ‖∆k‖ = 2k, ∆kp = 0 if p ∈ Pk, hence

dist (f,Pk)∞,[x0,xk] ≥ 2−k|∆kf(x0)|. (4.5.11)

There is another inequality that is usually sharper but less convenient to use. (It
follows from the discrete orthogonality property of the Chebyshev polynomials, see
Sec. 4.6.)

dist (f,Pk)∞,[x0,xk] ≥
1

k

∣
∣
∣
∣
∣
∣

k∑

j=0

(−1)jajf

(

cos
jπ

k

)
∣
∣
∣
∣
∣
∣

, (4.5.12)

where aj = 1
2 , j = 0, k and aj = 1 otherwise. Inequalities of this type can reveal

when one had better using piecewise polynomial approximation of a function on
an interval instead of using a single polynomial over the whole interval. See also
Sec. 4.4.

Denote by C[a, b] the space of continuous functions on a closed bounded in-
terval [a, b]. We shall study the approximation of a continuous function f ∈ C[a, b]
by polynomials. We introduce a metric by

‖f‖ = max
x∈[a,b]

|f(x)|.
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One of the fundamental theorems in approximation theory is Weierstrass’153

approximation theorem from 1885. It is concerned with the uniform approximation
of a continuous function f on a closed bounded interval by polynomials. It is of
basic importance for many convergence proofs as we shall see examples of in this
book.

Theorem 4.5.7 (Weierstrass’ Approximation Theorem).

Suppose that f is continuous on a closed, bounded interval [a, b]. Let Pn denote
the space of polynomials of degree less than n. Then we can, for any ǫ > 0, find a
polynomial pn ∈ Pn such that

max
x∈[a,b]

|f(x) − pn(x)| < ǫ,

Two equivalent formulations are:

• dist (f,Pn) ↓ 0 as n→ ∞.

• The set of polynomials are dense in C[a, b].

Proof. Our proof is based on ideas of Lebesgue [215]. For simplicity we assume
that the interval is [0, 1]. First we interpolate f(x) by a piecewise affine functions
on the grid xk = k/r, k = 0 : r, i.e. by a linear spline; see Sec. 4.4.2. A basis for
the space of linear splines is given by

{1, (x− x0)+, (x− x1)+, . . . , (x− xr−1)+}

see (4.4.10), where we recall the notation (x− a)+ = max(x − a, 0). Hence we can
write the interpolating linear spline in the form

g(x) = f(0) +

r−1∑

k=0

ck(x− xk)+. (4.5.13)

Set Mk = max(f(xk), f(xk+1)) and mk = min(f(xk), f(xk+1)). For x ∈ [xk, xk+1

we have

Mk − ω(1/r) ≤ f(x) ≤ mk + ω(1/r), −Mk ≤ −g(x) ≤ −mk.

Adding the last two inequalities we obtain

−ω(1/r) ≤ f(x) − g(x) ≤ ω(1/r).

This holds for x ∈ [xk, xk+1, k = 0 : r− 1, hence ‖f − g‖ ≤ ω(1/r). We now choose
r so that ω(1/r) < ǫ/2 so that ‖f − l‖ < ǫ/2. Now that r is fixed we see that the
coefficients are bounded, (say) |ck| ≤ L. (In fact we may choose any L ≥ rǫ.)

153Kurt Theodor Wilhelm Weierstrass (1815–1897), German mathematician, whose lectures at
Berlin University attracted students from all over the world. He set high standards of rigor in his
work and is considered as the father of modern analysis. For a more detailed biography and a
survey of Weierstrass work in approximation theory, see Pinkus [261].
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If we can find any polynomial p such that ‖p− g‖ < ǫ/2, we are through. In
order to achieve this we look at each term in the sum (4.5.13), and set t = x− xk.
We shall next find a polynomial P such that

|P (t) − t+| <
ǫ

2rL
, t ∈ [−1, 1]. (4.5.14)

Note that

t+ = 1
2 (t+ |t|) = 1

2

(
t+

√

1 − (1 − t2)
)
, t ∈ [−1, 1].

Set z = 1− t2. We know that the binomial expansion of
√

1 − z is valid for |z| < 1.
By a classical theorem of Abel, see e.g., Titchmarsh [312, §1.22], the sequence of
partial sums also converges uniformly to

√
1 − z for z ∈ [0, 1]. After return to the

variable t, we thus have a sequence of polynomials that converge uniformly to |t|,
t+ ∈ [−1, 1], and this trivially yields a polynomial p(t) that satisfies (4.5.14).

If we now set

P (x) = f(0) +

r−1∑

k=0

ckp(x− xk),

then

|P (x) − g(x)| =
∣
∣
∣

r−1∑

k=0

lk(p(x− xk) − (x− xk)+)
∣
∣
∣ < 2

ǫ

2
= ǫ.

This finishes our proof.

Several other proofs have been given, e.g., one by S. Bernštein, using Bernštein
polynomials; see Davis [83, Sec. 6.2].

The smoother f is, the quicker dist(f, Pn) decreases, and the narrower the
interval is, the less dist(f, Pn) becomes. In many cases dist(f, Pn) decreases so
slowly toward zero (as n grows) that it is impractical to attempt to approximate f
with only one polynomial in the entire interval [a, b].

In infinite-dimensional spaces, certain operators may not be defined every-
where, but only in a set that is everywhere dense in the space. For example, in
the space C[a, b] of continuous functions on a bounded interval (with the maximum
norm), the operator A = d/dx is not defined everywhere, since there are continuous
functions which are not differentiable. By Weierstrass’ Approximation Theorem
the set of polynomials is everywhere dense in C, and hence the set of differentiable
functions is so too. Moreover, even if Au exists, A2u may not exist. That A−1 may
not exist, is no novel feature of infinite-dimensional spaces. In C[a, b] the norm of
A = d/dx is infinite. This operator is said to be unbounded.

4.5.3 Inner Product Spaces and Orthogonal Systems

An abstract foundation for least squares approximation is furnished by the theory
of inner product spaces which we now introduce.



“dqbjV
2007/5/28
page 457

4.5. Approximation and Function Spaces 457

Definition 4.5.8.
A normed linear space S will be called an inner product space, if for each two

elements f, g in S there is a scalar designated by (f, g) with the following properties

1. (f + g, h) = (f, h) + (g, h) (linearity)

2. (f, g) = (g, f) (symmetry)
3. (f, αg) = α(f, g), α scalar (homogeneity)
4. (f, f) ≥ 0, (f, f) = 0, (positivity)

The inner product (f, g) is scalar, i.e. real in a real space and complex in a
complex space. We set ‖f‖ = (f, f)1/2. If ‖f‖ = 0 implies that f = 0 this is a
norm on S; otherwise it is a semi-norm. on S.

We shall show below that the triangle inequality is satisfied. (The other ax-
ioms for a norm are obvious.) The standard vector inner products introduced in
Appendix A.1.1, are particular cases, if we set (x, y) = yTx in Rn, and (x, y) = yHx
in Cn. A complete inner-product space is called a Hilbert space and is often
denoted H in this book.

One can make computations using the more general definition of (f, g) given
above in the same way that one does with scalar products in linear algebra. Note,
however, the conjugations necessary in a complex space,

(αf, g) = ᾱ(f, g), (4.5.15)

because, by the axioms,

(αf, g) = (g, αf) = α(g, f) = ᾱ(g, f) = ᾱ(f, g).

By the axioms it follows by induction that

(

φk,
n∑

j=0

cjφj

)

=
n∑

j=0

(φk, cjφj) =
n∑

j=0

cj(φk, φj). (4.5.16)

Theorem 4.5.9 (Cauchy–Schwarz inequality).

The Cauchy–Schwarz inequality in a complex space

|(f, g)| ≤ ‖f‖ ‖g‖.

Proof. Let f , g be two arbitrary elements in an inner-product space. Then154, for
every real number λ,

0 ≤ (f + λ(f, g)g, f + λ(f, g)g) = (f, f) + 2λ|(f, g)|2 + λ2|(f, g)|2(g, g).
154We found this proof in [270, n◦83]. The application of the same idea in a real space can be

made simpler.
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This polynomial in λ with real coefficients cannot have two distinct zeros, hence
the discriminant cannot be positive, i.e.

|(f, g)|4 − (f, f)|(f, g)|2(g, g) ≤ 0.

So, even if (f, g) = 0, |(f, g)|2 ≤ (f, f)(g, g).

By Definition 4.5.8 and the Cauchy–Schwarz inequality,

‖f + g‖2 = (f + g, f + g) = (f, f) + (f, g) + (g, f) + (g, g)

≤ ‖f‖2 + ‖f‖ ‖g‖+ ‖g‖ ‖f‖+ ‖g‖2 = (‖f‖ + ‖g‖)2.

This shows that the triangle inequality is satisfied by the norm defined above.

Example 4.5.9.
The set of all complex infinite sequences {xi} for which

∑∞
i=1 |xi|2 < ∞ and

equipped with the inner product

(x, y) =

∞∑

i=1

xiyi,

constitutes a Hilbert space.

Definition 4.5.10.
Two functions f and g are said to be orthogonal if (f, g) = 0. A finite or

infinite sequence of functions φ0, φ1, . . . , φn constitutes an orthogonal system, if

(φi, φj) = 0, i 6= j, and ‖φi‖ 6= 0, ∀i. (4.5.17)

If, in addition, ‖φi‖ = 1, for all i ≥ 0, then the sequence is called an orthonormal
system.

Theorem 4.5.11 (Pythagoras’ theorem).

Let {φ1, φ2, . . . , φn} be an orthogonal system in an inner-product space. Then

∥
∥
∥

n∑

j=0

cjφj

∥
∥
∥

2

=

n∑

j=0

|cj |2‖φj‖2.

The elements of an orthogonal system are linearly independent.

Proof. We start as in the proof of the triangle inequality:

‖f + g‖2 = (f, f) + (f, g) + (g, f) + (g, g) = (f, f) + (g, g) = ‖f‖2 + ‖g‖2.

Using this result and induction the first statement follows. The second statement
then follows because

∑
cjφj = 0 ⇒ |cj | = 0, for all j.
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Theorem 4.5.12.
A linear operator P is called idempotent if P = P 2. Let V be the range of

P . Then P is a projection (or projector) onto V if and only if P is idempotent
and Pv = v for each v ∈ V.

Proof. If P is a projection, then v = Px for some x ∈ B, hence Pv = P 2x = Px =
v. Conversely, if Q is a linear operator, such that Qx ∈ V , ∀x ∈ B, and v = Qv,
∀v ∈ V , then Q is a projection, in fact Q = P .

Note that I − P is also a projection, because

(I − P )(I − P ) = I − 2P + P 2 = I − P.

Any vector x ∈ B can be written uniquely in the form

x = u+ w, u = Px, w = (I − P )x. (4.5.18)

Important examples of projections in function spaces are interpolation oper-
ators, for example, the mapping of C[a, b] into Pk by Newton or Lagrange interpo-
lation, because each polynomial is mapped to itself. The two types of interpolation
are the same projection, although they use different bases in Pk. Another example
is the mapping of a linear space of functions, analytic on the unit circle, into Pk so
that each function is mapped to its Maclaurin expansion truncated to Pk. There
are analogous projections where periodic functions and trigonometric polynomials
are involved

In an inner product space, the adjoint operator A∗ of a linear operator A
is defined by the requirement that

(A∗u, v) = (u,Av), ∀ u, v. (4.5.19)

An operator A is called self-adjoint if A = A∗. In Rn, we define (u, v) = uT v,
i.e. the standard scalar product. Then (A∗u)T v = uTAv, i.e. uT ((A∗)T v = uTAv
hence A∗ = AT . It follows that symmetric matrices are self-adjoint in Rn.

In Cn, with the inner product (u, v) = uHv, it follows that A∗ = AH , i.e. Her-
mitean matrices are self-adjoint. An operator B is positive definite if (u,Bu) > 0,
for all u 6= 0.

Example 4.5.10.
An important example of an orthogonal system is the sequence of trigonomet-

ric functions φj(x) = cos jx, j = 0 : N − 1. These form an orthogonal system, with
either of the two inner products

(f, g) =







∫ π

0

f(x)g(x) dx (continuous case),

N−1∑

i=0

f(xi)g(xi), xi =
2i+ 1

N

π

2
(discrete case).

(4.5.20)
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Moreover, it holds that

‖φj‖2 =







1

2
π, j ≥ 1, ‖φ0‖2 = π, (continuous case),

1

2
N, j = 1 : N − 1, ‖φ0‖2 = N. (discrete case).

These results are closely related to the orthogonality of the Chebyshev polynomials;
see Theorem 4.5.20. Trigonometric interpolation and Fourier analysis will be treated
in Sec. 4.6.

There are many other examples of orthogonal systems. Orthogonal systems
of polynomials play an important role in approximation and numerical integration.
Orthogonal systems also occur in a natural way in connection with eigenvalue prob-
lems for differential equations which are quite common in mathematical physics.

4.5.4 Solution of the Approximation Problem

Orthogonal systems give rise to extraordinary formal simplifications in many situ-
ations. We now consider the least squares approximation problem.

Theorem 4.5.13.
If φ0, φ1, . . . , φn are linearly independent, then the least squares approximation

problem of minimizing the norm of the error function ‖f∗ − f‖ over all functions
f∗ =

∑n
j=0 cjφj , has the unique solution,

f∗ =

n∑

j=0

c∗jφj . (4.5.21)

The solution is characterized by the orthogonality property that f∗− f is orthogonal
to all φj , j = 0 : n. The coefficients c∗j are called orthogonal coefficients (or
Fourier coefficients), and satisfy the linear system of equations

n∑

j=0

(φj , φk)c
∗
j = (f, φk), (4.5.22)

called normal equations. In the important special case when φ0, φ1, . . . , φn form an
orthogonal system, the coefficients are computed more simply by

c∗j = (f, φj)/(φj , φj), j = 0 : n. (4.5.23)

Proof. Let (c0, . . . , cn) be a sequence of coefficients with cj 6= c∗j for at least one j.
Then

n∑

j=0

cjφj − f =
n∑

j=0

(cj − c∗j )φj + (f∗ − f).
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If f∗ − f is orthogonal to all the φj , then it is also orthogonal to the linear combi-
nation

∑n
j=0(cj − c∗j )φj , and according to the Pythagorean Theorem

∥
∥
∥

n∑

j=0

cjφj − f
∥
∥
∥

2

=
∥
∥
∥

n∑

j=0

(cj − c∗j )φj
∥
∥
∥

2

+ ‖(f∗ − f)‖2 > ‖(f∗ − f)‖2.

Thus if f∗ − f is orthogonal to all φk, then f∗ is a solution to the approximation
problem. It remains to show that the orthogonality conditions

( n∑

j=0

c∗jφj − f, φk

)

= 0, k = 0 : n,

can be fulfilled. The above conditions are equivalent to the normal equations in
(4.5.22). If {φj}nj=0 constitutes an orthogonal system, then the system can be
solved immediately, since in each equation all the terms with j 6= k are zero. The
formula in (4.5.23) then follows immediately.

Suppose now that we know only that {φj}nj=0 are linearly independent. The
solution to the normal equations exists and is unique, unless the homogeneous
system,

n∑

j=0

(φj , φk)c
∗
j = 0, k = 0 : n

has a solution c0, c1, . . . , cn, with at least one ci 6= 0. But this would imply

∥
∥
∥

n∑

j=0

cjφj

∥
∥
∥

2

=
( n∑

j=0

cjφj ,

n∑

k=0

ckφk

)

=

n∑

k=0

n∑

j=0

(φj , φk)cjck =

n∑

k=0

0 · ck = 0

which contradicts that the φj were linearly independent.

In the case where {φj}nj=0 form an orthogonal system, the Fourier coefficients
c∗j are independent of n (see formula (4.5.23)). This has the important advan-
tage that one can increase the total number of parameters without recalculating
any previous ones. Orthogonal systems are advantageous not only because they
greatly simplify calculations; using them, one can often avoid numerical difficulties
with round-off error which may occur when one solves the normal equations for a
nonorthogonal set of basis functions.

With every continuous function f one can associate an infinite series,

f ∼
∞∑

j=0

c∗jφj , c∗j =
(f, φj)

(φj , φj)
.

Such a series is called an orthogonal expansion. For certain orthogonal systems
this series converges with very mild restrictions on the function f .
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Theorem 4.5.14.
If f∗ is defined by formulas (4.5.21) and (4.5.23), then

‖f∗ − f‖2 = ‖f‖2 − ‖f∗‖2 = ‖f‖2 −
n∑

j=0

(c∗j )
2‖φj‖2.

Proof. Since f∗−f is, according to Theorem 4.5.13, orthogonal to all φj , 0 ≤ j ≤ n,
then f∗−f is orthogonal to f∗. The theorem then follows directly from Pythagoras’
Theorem.

We obtain as corollary Bessel’s inequality:

n∑

j=0

(c∗j )
2‖φj‖2 ≤ ‖f‖2. (4.5.24)

The series
∑∞
j=0(c

∗
j )

2‖φj‖2 is convergent. If ‖f∗− f‖ → 0 as n→ ∞, then the sum

of the latter series is equal to ‖f‖2 which is Parseval’s identity.

Theorem 4.5.15.
If {φj}mj=0 are linearly independent on the grid G = {xi}mi=0, then the inter-

polation problem of determining the coefficients {cj}mj=0 such that

m∑

j=0

cjφj(xi) = f(xi), i = 0 : m, (4.5.25)

has exactly one solution. Interpolation is a special case (n = m) of the method of
least squares. If {φj}mj=0 is an orthogonal system, then the coefficients cj are equal
to the orthogonal coefficients in (4.5.23).

Proof. The system of equations (4.5.25) has a unique solution, since its column
vectors are the vectors φj(G), j = 0 : n, which are linearly independent. For the
solution of the interpolation problem it holds that ‖cjφj − f‖ = 0; i.e., the error
function has the least possible semi-norm. The remainder of the theorem follows
from Theorem 4.5.13.

The following collection of important and equivalent properties is named
the Fundamental theorem of orthonormal expansions, by Davis [83, The-
orem8.9.1], whom we follow closely at this point.

Theorem 4.5.16.
Let φ0, φ1, φ2, · · ·, be a sequence of orthonormal elements in a complete inner

product space H. The following seven statements are equivalent: 155

155We assume that H is not finite-dimensional, in order to simplify the formulations. Only minor
changes are needed in order to cover the finite-dimensional case.
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(A) The φj is a complete orthonormal system in H.

(B) The orthonormal expansion of any element y ∈ H converges in norm to y; i.e.

lim
n→∞

∥
∥
∥y −

n∑

j=0

(y, φj)φj

∥
∥
∥. (4.5.26)

(C) Parseval’s identity holds for every y ∈ H, i.e.

‖y‖2 =

∞∑

j=0

|(y, φj)|2. (4.5.27)

(D) There is no strictly larger orthonormal system containing φ1, φ2, · · ·

(E) If y ∈ H and (y, φj) = 0, j = 0, 2, . . . , then y = 0.

(F) An element of H is determined uniquely by its Fourier coefficients, i.e. if
(w, φj) = (y, φj), j = 0, 2, · · ·, then w = y.

Proof. The proof that A ⇔ B is formulated with respect to the previous. By the
conjugations necessary in the handling of complex scalars in inner products (see
(4.5.15) and (4.5.16)),

(

x−
∞∑

j=0

(x, φj)φj , y −
n∑

j=0

(y, φj)φj

)

= (x, y) −
n∑

j=0

(x, φj)(φj , y).

By the Schwarz inequality,

∣
∣
∣
∣
(x, y) −

n∑

j=0

(x, φj)(φj , y)

∣
∣
∣
∣
≤
∥
∥
∥x−

∞∑

j=0

(x, φj)φj

∥
∥
∥ ·
∥
∥
∥y −

n∑

j=0

(y, φj)φj

∥
∥
∥.

For the rest of the proof, See Davis [83, pp. 192ff].

Theorem 4.5.17.
The converse of statement (F) holds, i.e. let H be a complete inner product

space, and let aj be constants such that
∑∞
j=0 |aj |2 < ∞. Then there exists an

y ∈ H, such that y =
∑∞

j=0 ajφj and (y, φj) = aj ∀ j.

Proof. See Davis [83, Sec. 8.9].
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4.5.5 Mathematical Properties of Orthogonal Polynomials

By a family of orthogonal polynomials we mean a triangle family of polyno-
mials (see (4.1.8)), which (in the continuous case) is an orthogonal system with
respect to a given inner product. The theory of orthogonal polynomials is also of
fundamental importance for many problems which at first sight seem to have lit-
tle connection with approximation (e.g., numerical integration, continued fractions,
and the algebraic eigenvalue problem).

We assume in the following that in the continuous case the inner product is

(f, g) =

∫ b

a

f(x)g(x)w(x) dx, w(x) ≥ 0, (4.5.28)

where −∞ ≤ a < b ≤ ∞. We assume that the weight function w(x) ≥ 0 is such
that the moments

µk = (xk, 1) =

∫ b

a

xkw(x) dx. (4.5.29)

are defined for all k ≥ 0, and µ0 > 0. In the discrete case. we define the weighted
discrete inner product of two real-valued functions f and g on the grid {xi}mj=0 of
distinct points by

(f, g) =

m∑

i=0

wif(xi)g(xi), wi > 0. (4.5.30)

Note that both these inner products have the property that

(xf, g) = (f, xg). (4.5.31)

The continuous and discrete case are both special cases of the more general inner
product

(f, g) =

∫ b

a

f(x)g(x) dα(x), (4.5.32)

where the integral is a Stieltjes integral (see Definition 3.4.4) and α(x) is allowed to
be discontinuous, However, in the interest of clarity, we will in the following treat
the two cases separately.

The weight function w(x) determines the orthogonal polynomials φn(x) up to
a constant factor in each polynomial. The specification of those factors are referred
to as standardization. These polynomials satisfy a number of relationships of the
same general form. In the case of a continuously differentiable weight function w(x)
we have an explicit expression

φn(x) =
1

anw(x)

dn

dxn
{w(x)(g(x))n}, n = 0, 1, 2, . . . , (4.5.33)

where g(x) is a polynomial in x independent of n. This is Rodrigues’ formula.
The orthogonal polynomials also satisfy a second order differential equation

g2(x)φ
′′
n + g1(x)φ

′
n + anφn = 0 (4.5.34)
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where g2(x) and g1(x) are independent of n and an is a constant only dependent
on n.

Let pn(x) = knx
n + · · ·, n = 0, 1, 2, . . ., be a family of real orthogonal polyno-

mials. The symmetric function

Kn(x, y) =

n∑

k=0

pk(x)pk(y), (4.5.35)

is called the kernel polynomial of order n for the orthogonal system. It can
be shown that the kernel polynomial has the reproducing property that for every
polynomial p of degree at most n, then

(p(x),Kn(x, y)x = p(y). (4.5.36)

Here the subscript x indicates that the inner product is taken with respect to
x. Conversely, if K(x, y) is a polynomial of degree at most n in x and y and if
(p(x),K(x, y)x = p(y), for all polynomials p of degree at most n, then K(x, y) =
Kn(x, y).

An alternative expression, the Christoffel–Darboux formula, can be given
for the kernel polynomial.

Theorem 4.5.18.
Let pn(x) = knx

n + · · ·, n = 0, 1, 2, . . ., be real ortgonal polynomials. Then

Kn(x, y) =
kn
kn+1

pn+1(x)pn(y) − pn(x)pn+1(y)

x− y
. (4.5.37)

Proof. See Davis [83, Theorem10.1.6].

Given a linearly independent sequence of vectors an orthogonal system can be
derived by a process analogous to Gram–Schmidt orthogonalization.

Theorem 4.5.19.
For every weight function in an inner product space there is a triangle family

of orthogonal polynomials φk(x), k = 0, 1, 2, . . ., such that φk(x) has exact degree k,
and is orthogonal to all polynomials of degree less than k. The family is uniquely
determined apart from the fact that the leading coefficients can be given arbitrary
positive values.

The monic orthogonal polynomials satisfy the three-term recurrence formula,

φk+1(x) = (x − βk)φk(x) − γ2
k−1φk−1(x), k ≥ 1, (4.5.38)

with initial values φ−1(x) = 0, φ0(x) = 1. The recurrence coefficients are given by
Darboux’s formulas

βk =
(xφk, φk)

‖φk‖2
, γ2

k−1 =
‖φk‖2

‖φk−1‖2
. (4.5.39)
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Proof. By induction: We have φ−1 = 0. φ0 = 1. Suppose that φj 6= 0 have
been constructed for 0 ≤ j ≤ k, k ≥ 0. We now seek a polynomial φk+1 of degree
k + 1 with leading coefficient equal to 1, which is orthogonal to all polynomials of
degree ≤ k. Since {φj}kj=0 is a triangle family, every polynomial of degree k can be
expressed as a linear combination of these polynomials. Therefore we can write

φk+1 = xφk −
k∑

i=0

ck,iφi, (4.5.40)

where φk+1 has leading coefficient one. The orthogonality condition is fulfilled if
and only if

(xφk, φj) −
k∑

i=0

ck,i(φi, φj) = 0, j = 0 : k.

But (φi, φj) = 0 for i 6= j, and thus ck,j‖φj‖2 = (xφk, φj). This determines the
coefficients uniquely. From the definition of inner product (4.5.28), it follows that

(xφk, φj) = (φk, xφj).

But xφj is a polynomial of degree j + 1. Thus if j < k, then it is orthogonal to φk.
So ckj = 0 for j < k − 1. From (4.5.40) it then follows that

φk+1 = xφk − ck,kφk − ck,k−1φk−1, (4.5.41)

with ck,k−1 = 0 if k = 0. This has the same form as the original assertion of the
theorem if we set

βk = ck,k =
(xφk, φk)

‖φk‖2
, (4.5.42)

γ2
k−1 = ck,k−1 =

(φk, xφk−1)

‖φk−1‖2
. k ≥ 1.

In the discrete case the division in (4.5.42) can always be performed, as long as
k ≤ m. In the continuous case, no reservation need be made.

The expression for γ2
k−1 can be written in another way. If we take the inner

product of (4.5.40) and φk+1 we get

(φk+1, φk+1) = (φk+1, xφk) −
k∑

i=0

ck,i(φk+1, φi) = (φk+1, xφk).

Thus (φk+1, xφk) = ‖φk+1‖2, or if we decrease all indices by 1, (φk, xφk−1) = ‖φk‖2.
Substituting this in the expression for γ2

k−1 gives the second equation of (4.5.39).

If the weight distribution w(x) is symmetric about β, i.e. (in the continuous
case) w(β − x) = w(x + β), then βk = β for all k ≥ 0. Further

φk(β − x) = (−1)kφk(x+ β), k ≥ 0, (4.5.43)



“dqbjV
2007/5/28
page 467

4.5. Approximation and Function Spaces 467

that is φk is symmetric about β for k even and anti-symmetric for k odd. The proof
is by induction. We have φ0 = 1 and φ1(x) = x − β0. Clearly (φ1, φ0) = 0 implies
that φ1 is anti-symmetric about β and therefore β0 = β. Thus the hypothesis is
true for k ≤ 1. Now assume that (4.5.43) holds for k ≤ n. Then

βn =
(xφn, φn)

‖φn‖2
=

((x − β)φn, φn)

‖φn‖2
+ β.

Here the first term is zero since it is an integral of an anti-symmetric function. It
follows that

φn+1(x) = (x− β)φn(x) − γ2
n−1φn−1(x),

which shows that (4.5.43) holds for k = n + 1. An analogue result holds for a
symmetric discrete inner product.

Often it is more convenient to consider corresponding orthonormal polyno-
mials φ̂k(x), which satisfy ‖φ̂k‖ = 1. We set φ̂0 = 1/

√
µ0, µ0 = ‖φ0‖2

2, and scale
the monic orthogonal polynomials according to

φk = (γ1 · · · γk−1)φ̂k, k ≥ 1, (4.5.44)

then we find using (4.5.39) that

‖φ̂k‖
‖φ̂k−1‖

=
γ1 · · · γk−2

γ1 · · · γk−1

‖φk‖
‖φk−1‖

= 1.

Substituting (4.5.44) in (4.5.38) we obtain the recurrence relation for the orthonor-
mal polynomials

γkφ̂k+1(x) = (x − βk)φ̂k(x) − γk−1φ̂k−1(x), k ≥ 1, (4.5.45)

where γk is determined by the condition ‖φ̂k+1‖ = 1.
Perhaps the most important example of a family of orthogonal polynomials

is the Chebyshev polynomials Tn(x) = cos(n arccos(x)) introduced in Sec. 3.2.3.
These are orthogonal on [−1, 1] with respect to the weight function (1 − x2)−1/2

and also with respect to a discrete inner product. Their properties can be derived
by rather simple methods.

Theorem 4.5.20.
The Chebyshev polynomials have the following two orthogonality properties.

Set

(f, g) =

∫ 1

−1

f(x)g(x)(1 − x2)−1/2 dx (4.5.46)

(the continuous case). Then (T0, T0) = π, and

(Tj , Tk) =

{
0 if j 6= k,
π/2 if j = k 6= 0.

(4.5.47)
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Let xk be the zeros of Tm+1(x) and set

(f, g) =

m∑

k=0

f(xk)g(xk), xk = cos
(2k + 1

m+ 1

π

2

)

(4.5.48)

(the discrete case). Then (T0, T0) = m+ 1, and

(Tj , Tk) =

{
0 if j 6= k,
(m+ 1)/2 if j = k 6= 0.

(4.5.49)

Proof. In the continuous case, let j 6= k, j ≥ 0, k ≥ 0. From x = cosφ it follows
that dx = sinφdφ = (1 − x2)1/2dφ. Hence

(Tj, Tk) =

∫ π

0

cos jx cos kx dx =

∫ π

0

1

2

(
cos(j − k)x+ cos(j + k)x

)
dx

=
1

2

( sin(j − k)π

j − k
+

sin(j + k)π

j + k

)

= 0,

whereby orthogonality is proved.
In the discrete case, set h = π/(m+ 1), xµ = h/2 + µh,

(Tj , Tk) =

m∑

µ=0

cos jxµ cos kxµ =
1

2

m∑

µ=0

(
cos(j − k)xµ + cos(j + k)xµ

)
.

Using notation from complex numbers (i =
√
−1) we have

(Tj , Tk) =
1

2
Re
( m∑

µ=0

ei(j−k)h(1/2+µ) +

m∑

µ=0

ei(j+k)h(1/2+µ)
)

. (4.5.50)

The sums in (4.5.50) are geometric series with ratios ei(j−k)h and ei(j+k)h, respec-
tively. If j 6= k, 0 ≤ j ≤ m, 0 ≤ k ≤ m, then the ratios are never equal to 1,
since

0 < | (j ± k)h| ≤ 2m

m+ 1
π < π.

The first sum in (4.5.50) is, then, using the formula for the sum of a geometric series

ei(j−k)(h/2)
ei(j−k)(m+1)h − 1

ei(j−k)h − 1
=

ei(j−k)π − 1

ei(j−k)(h/2) − e−i(j−k)(h/2) − 1

=
(−1)j−k − 1

2i sin(j − k)h/2
.

The real part of the last expression is clearly zero. An analogous computation shows
that the real part of the other sum in (4.5.50) is also zero. Thus the orthogonality
property holds in the discrete case also. It is left to the reader to show that the
expressions when j = k given in the theorem are correct.



“dqbjV
2007/5/28
page 469

4.5. Approximation and Function Spaces 469

For the uniform weight distributionw(x) = 1 on [−1, 1] the relevant orthogonal
polynomials are the Legendre polynomials156 Pn(x). The Legendre polynomials
are defined by the Rodrigues’ formula

Pn(x) = (−1)n
1

2nn!

dn

dxn
{(1 − x2)n}, n = 0, 1, 2, . . . . (4.5.51)

Since (1 − x2)n is a polynomial of degree 2n, Pn(x) is a polynomial of degree n.
The Legendre polynomials Pn = Anx

n + · · · have leading coefficient and norm

An =
(2n)!

2n(n!)2
, ‖Pn‖ =

2

2n+ 1
. (4.5.52)

This standardization for corresponds to setting Pn(1) = 1, for all n ≥ 0. The
extreme values are

|Pn(x)| ≤ 1, x ∈ [−1, 1].

There seems to be no easy proof for the last result; see [175, p. 219].
Since the weight distribution is symmetric about the origin they have the

symmetry property

Pn(−x) = (−1)nPn(x).

The Legendre polynomials satisfy the three-term recurrence formula P0(x) = 1,
P1(x) = x,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x) − n

n+ 1
Pn−1(x), n ≥ 1. (4.5.53)

The first few Legendre polynomials are

P2(x) =
1

2
(3x2 − 1), P3(x) =

1

2
(5x3 − 3x),

P4(x) =
1

8
(35x4 − 30x2 + 3), P5(x) =

1

8
(63x5 − 70x3 + 15), . . . .

Often a more convenient standardization is to consider monic Legendre poly-
nomials, with leading coefficient equal to 1. These satisfy the recurrence formula
P0(x) = 1, P1(x) = x,

Pn+1(x) = xPn(x) − n2

4n2 − 1
Pn−1(x), n ≥ 1; (4.5.54)

note that we have kept the same notation for the polynomials. It can be shown that

Pn = xn + cnx
n−2 + · · · , cn = − n(n− 1)

2(2n− 1)
.

156Legendre had obtained these polynomials earlier in 1784–1789 in connection with his investi-
gation concerning the attraction of spheroids and the shape of planets.
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Figure 4.5.1. The Legendre polynomial P21.

The Jacobi polynomials157 Jn(x;α, β) arise from the weight function

w(x) = (1 − x)α(1 + x)β , x ∈ [−1, 1], α, β > −1,

They are special cases of Gauss’ hypergeometric function F (a, b, c : x)

F (−n, α+ 1 + β + n, α+ 1;x).

(see (3.1.16)). The Jacobi polynomials are usually standardized so that the coeffi-
cient An of xn in Jn(x;α, β) is given by

An =
1

2nn!

Γ(2n+ α+ β + 1)

Γ(n+ α+ β + 1)
.

The Legendre polynomials are obtained as the special case when α = β = 0. The
case α = β = −1/2, which corresponds to the weight function w(x) = 1/

√
1 − x2,

gives the Chebyshev polynomials.

The generalized Laguerre polynomials L
(α)
n (x) are orthogonal with respect

to the weight function

w(x) = xαe−x, x ∈ [0,∞], α > −1.

Setting α = 0, we get the Laguerre polynomials L
(0)
n (x) = Ln(x). Standardizing

these so that Ln(0) = 1, they satisfy the three-term recurrence relation

(n+ 1)Ln+1(x) = (2n+ 1 − x)Ln(x) − nLn−1(x), (4.5.55)

Rodrigues’ formula

Lαn(x) =
ex

n!x(α)

dn

dxn
(xn−αe−x).

157Carl Gustaf Jacob Jacobi (1805–1851) was a German mathematician. Jacobi joined the faculty
of Berlin university in 1825. Like Euler, he was a proficient calculator, who drew a great deal of
insight from immense algorithmic work.
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The Hermite polynomials are orthogonal with respect to the weight func-
tion

w(x) = e−x
2

, −∞ < x <∞.

With the classic standardization they satisfy the recurrence relation H0(x) = 1,
H1(x) = 2x,

Hn+1(x) = 2xHn(x) − 2nHn−1(x).

and

Hn(0) =

{
(−1)m(2m)!/m!, if n = 2m;
0, if n = 2m+ 1;

The Hermite polynomials can also be defined by the Rodrigues’ formula

Hn(x) = (−1)nex
2 dn

dxn
{e−x2}.

It can be verified that these polynomials are identical to those defined by the re-
currence relation.

Table 4.5.1. Weight functions and recurrence coefficients for some classi-
cal monic orthogonal polynomials.

[a, b] w(x) orthog. pol. µ0 βk γ2
k

[−1, 1] 1 Pn(x) Legendre 2 0
k2

4k2 − 1
[−1, 1] (1 − x2)−1/2 Tn(x) Cheb. 1st π 0 1

2
(k = 1)

1
4

(k > 1)

[−1, 1] (1 − x2)1/2 Un(x) Cheb. 2nd π/2 0 1
4

[−1, 1] (1 − x)α(1 + x)β Jn(x;α, β) Jacobi

[0,∞] xαe−x, α > −1 L
(α)
n (x) Laguerre Γ(1 + α) 2k + α + 1 k(k + α)

[−∞,∞] e−x2

Hn(x) Hermite
√

π 0 1
2
k

The properties of some important families of orthogonal polynomials are sum-
marized in Table 4.5.1. Note that here the coefficients in the three term recurrence
relation are given for the monic orthogonal polynomials; cf. (4.5.38).

For equidistant data, the Gram polynomials {Pn,m}mn=0 are of interest.158

158Jørgen Pedersen Gram (1850–1916), a Danish mathematician, graduated from Copenhagen
University and then worked as company director for a life insurance company. He introduced
the Gram determinant in connection with his study of linear independence and his name is also
associated with Gram–Schmidt orthogonalization.
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These polynomials are orthogonal with respect to the discrete inner product

(f, g) =
1

m

m∑

i=1

f(xi)g(xi), xi = −1 + (2i− 1)/m.

The weight distribution is symmetric around the origin αk = 0. For the monic
Gram polynomials the recursion formula is (see [16])

P−1,m(x) = 0, P0,m = 1,

Pn+1,m(x) = xPn,m(x) − βn,mPn−1,m(x), n = 0 : m− 1,

where (n < m)

βn,m =
n2

4n2 − 1

(

1 − n2

m2

)

.

When n ≪ m1/2, these polynomials are well behaved. But when n ≥ m1/2,
the Gram polynomials have very large oscillations between the grid points, and a
large maximum norm in [−1, 1]. This fact is related to the recommendation that
when fitting a polynomial to equidistant data, one should never choose n larger than
about 2m1/2.

Complex Orthogonal Polynomials

So far we have considered the inner products (4.5.28) defined by an integral over
the real interval [a, b]. Now let Γ be a rectifiable curve (i.e. a curve of finite length)
in the complex plane. Consider the linear space of all polynomials with complex
coefficients and z = x+ iy on Γ. Let α(s) be a function on Γ with infinitely many
points of increase and define an inner product by the line integral

(p, q) =

∫

Γ

p(z)q(z)w(s) d(s), (4.5.56)

The complex monomials 1, z, z2, . . . , are independent functions, since if a0 + a1z +
a2z

2 + · · · + anz
n ≡ 0 on Γ it would follow from the fundamental theorem of

algebra that a0 = a1 = a2 = · · · = an = 0. There is a unique infinite sequence of
polynomials φj = zj + c1z

j−1 + · · ·+ cj, j = 0, 1, 2, . . . , which are orthonormal with
respect to (4.5.56). They can be constructed by Gram–Schmidt orthogonalization
as in the real case.

An important case is when Γ is the unit circle in the complex plane. We then
write

(p, q) =
1

2π

∫ π

−π
p(z)q(z)dα(t), z = eit, (4.5.57)

where the integral is o be interpreted as a Stieltjes integral. The corresponding
orthogonal polynomials are known as Szegő polynomials and have applications,
e.g., in signal processing.

Properties of Szegő polynomials are discussed in [160]. Together with the
reverse polynomials φ̃j(z) = zjφj(1/z) they satisfy special recurrence relations. A
linear combination

∑n
j=0 cjφj(z) can be evaluated by an analogue to the Clenshaw

algorithm; see [5]. .
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4.5.6 Expansions in Orthogonal Polynomials

Expansions of functions in terms of orthogonal polynomials are very useful. They
are easy to manipulate, have good convergence properties in the continuous case,
and usually give a well conditioned representation.

Let p̂n denote the polynomial of degree n for which

‖f − p̂n‖∞ = En(f) = min
p∈Pn+1

‖f − p‖∞,

and set

pn =

n∑

j=0

cjφj ,

where cj is the jth Fourier coefficient of f and {φj} are the orthogonal polynomials
with respect to the inner product (4.5.28). If we use the weighted Euclidian norm,
p̂n is of course not a better approximation than pn. In fact

‖f − pn‖2
w =

∫ b

a

|f(x) − pn(x)|2w(x) dx

≤
∫ b

a

|f(x) − p̂n(x)|2w(x) dx ≤ En(f)2
∫ b

a

w(x) dx. (4.5.58)

This can be interpreted as saying that a kind of weighted mean of |f(x)− pn(x)| is
less than or equal to En(f) which is about as good result as one could demand. The
error curve has an oscillatory behavior. In small subintervals |f(x)− pn(x)| can be
significantly greater than En(f). This is usually near the ends of the intervals or in
subintervals where w(x) is relatively small. Note that from (4.5.58) and Weierstrass
approximation theorem it follows that

lim
n→∞

‖f − p‖2
2,w = 0

for every continuous function f . From (4.5.58) one gets after some calculations

∞∑

j=n+1

c2j‖φj‖2 = ‖f − pn‖2
2,w ≤ En(f)2

∫ b

a

w(x) dx

which gives one an idea of how quickly the terms in the orthogonal expansion
decrease.

Example 4.5.11 (Chebyshev interpolation).
Let p(x) denote the interpolation polynomial in the Chebyshev points (4.5.48)

xk, k = 0 : m. For many reasons it is practical to write this interpolation polynomial
in the form

p(x) =

m∑

i=0

ciTi(x). (4.5.59)
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Then using the discrete orthogonality property (4.5.49)

ci =
(f, Ti)

‖Ti‖2
=

1

‖Ti‖2

m∑

k=0

f(xk)Ti(xk), xk = cos
(2k + 1

m+ 1

π

2

)

(4.5.60)

where

‖T0‖2 = m+ 1, ‖Ti‖2 = 1
2 (m+ 1), i > 0.

The recursion formula (3.2.20) can be used for calculating the orthogonal coefficients
according to (4.5.60).

For computing p(x) with (4.5.59) Clenshaw’s algorithm [63] can be used. Clen-
shaw’s algorithm holds for any sum of the form S =

∑n
k=1 ckφk, where {φk} sat-

isfies a three-term recurrence relation. It can also be applied to series of Legendre
functions, Bessel functions, Coulomb wave functions, etc., because they satisfy re-
currence relations of this type, where the αk, γk depend on x; see the Handbook [1]
or any text on special functions.

Theorem 4.5.21 (Clenshaw’s algorithm).

Suppose that a sequence {pk} satisfies the three-term recurrence relation

pk+1 = γkpk − βkpk−1, k = 0 : n− 1, (4.5.61)

where p−1 = 0. Then

S =
n∑

k=0

ckpk = y0p0

where yn+1 = 0, yn = cn, and y0 is obtained by the recursion

yk = ck + γk−1yk+1 − βkyk+2, k = n− 1 : −1 : 0. (4.5.62)

Proof. Write the recursion (4.5.61) in matrix form as Lnp = p0e1, where

Ln =












1

−γ0 1

β1 −γ1 1

. . .
. . .

. . .

βn−1 −γn−1 1












is unit lower triangular and e1 is the first column of the unit matrix. Then

S = cT p = cTL−1
n g = gT (LTn )−1c = gT y,

where y is the solution to the upper triangular system LTny = c. Solving this by
backsubstitution we get the recursion (4.5.62).
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It can proved that Clenshaw’s algorithm is componentwise backward stable
with respect to the data γk and βk; see Smoktunowicz [294].

Occasionally one is interested in the partial sums of (4.5.59). For example, if
the values of f(x) are afflicted with statistically independent errors with standard
deviation σ, then the series can be broken off when for the first time

∥
∥
∥f −

p
∑

i=0

ciTi(x)
∥
∥
∥ < σm1/2.

The proof of Theorem 4.5.19 is constructive and leads to a unique construction
of the sequence of orthogonal polynomials φk, n ≥ 1, with leading coefficients equal
to 1. The coefficients βk and γk and the polynomials φk can be computed, in the
order

β0, φ1(x), β1, γ0, φ2(x), . . . .

(Recall that φ−1 = 0 and φ0 = 1.) This procedure is called the Stieltjes procedure
This assumes that the inner product (xφk, φk) and norm ‖φk‖2 can be computed.
This clearly can be done for any discrete n-point weight.

For a continuous weight function w(x) this is more difficult. One possible way
to proceed is then to approximate the integrals using some appropriate quadrature
rule. For a discussion of such methods and examples we refer to Gautschi [137].

There are many computational advantages of using the Stieltjes procedure
when computing the discrete least squares approximation

f(x) ≈ pm(x) =

m∑

k=0

ckφk(x), (4.5.63)

where φ0(x), . . . , φm(x) are the orthogonal polynomials with respect to the discrete
weight function (4.5.30). Recall the family ends with φm(x), since

φm+1(x) = (x− x0)(x− x1) · · · (x− xm).

is zero at each grid point and ‖φm+1‖ = 0. The construction cannot proceed,
which is natural since there cannot be more than m+1 orthogonal (or even linearly
independent) functions on a grid with m+ 1 points.

By Theorem 4.5.13 the coefficients are given by

ck = (f, φk)/‖φk‖2, k = 0 : m. (4.5.64)

Approximations of increasing degree can be recursively generated as follows. Sup-
pose that φj , j = 0 : k, and the least squares approximation pk of degree k have
been computed. In the next step the coefficients βk, γk−1, and φk+1 are computed
and the next approximation is obtained by

pk+1 = pk + ck+1φk+1, ck+1 = (f, φk+1)/‖φk+1‖2. (4.5.65)

To compute numerical values of p(x) Clenshaw’s algorithm is used; see Theo-
rem 4.5.21.
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For unit weights and a symmetric grid the Stieltjes procedure requires about
4mn flops to compute the orthogonal functions φk at the grid points. If there are
differing weights, then about mn additional operations are needed. Similarly, mn
additional operations are required if the grid is not symmetric. If the orthogonal
coefficients are determined simultaneously for several functions on the same grid,
then only about mn additional operations per function are required. (In the above,
we assume m≫ 1, n≫ 1.) Hence the procedure is much more economical than the
general methods based on normal equations which require O(mn2) flops.

Since pk is a linear combination of φj , j = 0 : k, φk+1 is orthogonal to pk.
Therefore an alternative expression for the new coefficient is

ck+1 = (rk, φk+1)/‖φk+1‖2, rk = f − pk, (4.5.66)

where rk is the residual. Mathematically the two formulas (4.5.65) and (4.5.66)
for ck+1 are equivalent. In finite precision, as higher degree polynomials pk+1 are
computed, they will gradually lose orthogonality to previously computed pj , j ≤ k.
In practice there is an advantage in using (4.5.66) since cancellation then will mostly
take place in computing the residual rk = f − pk, and the inner product (rk, pk+1)
is computed more accurately. Theoretically the error ‖pk − f‖ must be a non-
increasing function of k. Often the error decreases rapidly with k and then pk
provides a good representation of f already for small values of k. Note that for
n = m we obtain the (unique) interpolation polynomial for the given points.

When using the first formula one sometimes finds that the residual norm in-
creases when the degree of the approximation is increased! With the modified for-
mula (4.5.66) this is very unlikely to happen; see Problem 4.6.17.159

One of the motivations for the method of least squares is that it effectively
reduces the influence of random errors in measurements. We now consider some
statistical aspects of the method of least squares.

Let f ∈ Rm be a vector of observations that is related to a parameter vector
c ∈ Rn by the linear relation

f = Ac+ ǫ, A ∈ Rm×n, (4.5.67)

where A is known matrix of full column rank and ǫ ∈ Rm is a vector of random
errors. We assume here that ǫi, i = 1 : m has zero mean and that ǫi and ǫj , i 6= j,
are uncorrelated, i.e.

E(ǫ) = 0, V (ǫ) = σ2I,

(Recall the definitions of mean value and correlation in Sec. 1.5.2.) The parameter c
is then a random vector which we want to estimate in terms of the known quantities
A and f .

Let yT c be a linear functional of the parameter c in (4.5.67). We say that
θ = θ(A, f) is an unbiased linear estimator of yT c if E(θ) = yT c. It is a best
linear unbiased estimator (BLUE) if θ has the smallest variance among all
such estimators.

159The difference between the two variants discussed here is similar to the difference between the
so called classical and modified Gram–Schmidt orthogonalization methods.
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The following theorem160 places the method of least squares on a sound the-
oretical basis.

Theorem 4.5.22 (Gauss–Markov Theorem).

Consider a linear model (4.5.67), where ǫ is an uncorrelated random vector
with zero mean and covariance matrix V = σ2I. Then the best linear unbiased
estimator of any linear functional yT c is yT ĉ, where

ĉ = (ATA)−1AT f

is the least squares estimator obtained by minimizing the sum of squares ‖f −Ac‖2
2.

The covariance matrix of the least squares estimate ĉ equals

V (ĉ) = σ2(ATA)−1. (4.5.68)

Furthermore, the quadratic form

s2 = ‖f −Aĉ‖2
2/(m− n) (4.5.69)

is an unbiased estimate of σ2, i.e. E(s2) = σ2.

Proof. See Zelen [345, pp. 560–561].

In practice a slightly more general form is often needed.

Corollary 4.5.23.
Assume that in the linear model (4.5.67), ǫ has zero mean and positive definite

covariance matrix σ2V . In this case the normal equations for estimating c are

(ATV −1A)ĉ = ATV −1f

In particular if V = diag (σ2
1 , σ

2
2 , . . . , σ

2
n) this corresponds to a row scaling of the

linear model f = Ac+ ǫ.

Suppose that the values of a function have been measured in the points
x1, x2, . . . , xm. Let f(xp) be the measured value, and let f̄(xp) be the “true” (un-
known) function value which is assumed to be the same as the expected value of
the measured value. Thus no systematic errors are assumed to be present. Sup-
pose further that the errors in measurement at the various points are statistically
independent. Then we have a linear model f(xp) = f̄(xp) + ǫ, where

E(ǫ) = 0, V (ǫ) = diag (σ2
1 , . . . , σ

2
n). (4.5.70)

The problem is to use the measured data to estimate the coefficients in the series

f(x) =
n∑

j=1

cjφ(x), n ≤ m.

160This theorem is originally due to C. F. Gauss (1821). His contribution was somewhat neglected
until rediscovered by the Russian mathematician A. A Markov in 1912.
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where φ1, φ2, . . . , φn are known functions. According to Gauss–Markov theorem
and its corollary the estimates c∗j which one gets by minimizing the sum

m∑

p=1

wp

(

f(xp) −
n∑

j=1

cjφj(xp)
)2

, wp = σ−2
p ,

have a smaller variance than the values one gets by any other linear unbiased es-
timation method. This minimum property holds not only for the estimates of the
coefficients cj , but also for every linear functional of the coefficients, for example,
the estimate

f∗
n(α) =

n∑

j=1

c∗jφj(α)

of the value f(α) at an arbitrary point α.
Suppose now that σp = σ for all p and that the functions {φj}nj=1 form an

orthonormal system with respect to the discrete inner product

(f, g) =
m∑

p=1

f(xp)g(xp).

Then the least squares estimates are c∗j = (f, φj), j = 1 : n. According to (4.5.68)
the estimates c∗j and c∗k are uncorrelated if j 6= k and

E{(c∗j − c̄j)(c
∗
k − c̄k)} =

{
0, if j 6= k;
σ2 if j = k,

From this it follows that

var{f∗
n(α)} = var

{ n∑

j=1

c∗jφj(α)
}

=

n∑

j=1

var{c∗j}|φj(α)|2 = σ2
n∑

j=1

|φj(α)|2.

As an average, taken over the grid of measurement points, the variance of the
smoothed function values is

1

m

n∑

j=1

var{f∗
n(xi)} =

σ2

m

n∑

j=1

m∑

i=1

|φj(xi)|2 = σ2 n

m
.

Between the grid points, however, the variance can in many cases be significantly
larger. For example, when fitting a polynomial to measurements in equidistant
points, the Gram polynomial Pn,m can be much larger between the grid points
when n > 2m1/2. Set

σ2
I = σ2

n∑

j=1

1
2

∫ 1

−1

|φ(x)|2 dx.

Thus σ2
I is an average variance for f∗

n(x) taken over the entire interval [−1, 1]. The
following values for the ratio ρ between σ2

I and σ2(n + 1)/(m + 1) when m = 42
were obtained by H. Björk [28]. Related results are found in Reichel [265].
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n+ 1 5 10 15 20 25 30 35

ρ 1.0 1.1 1.7 26 7 · 103 1.7 · 107 8 · 1011

These results are related to the recommendation that one should choose n < 2m1/2

when fitting a polynomial to equidistant data. This recommendation seems to
contradict the Gauss–Markov theorem, but in fact it just means that one gives up
the requirement that the estimates are unbiased. Still it is remarkable that this can
lead to such a drastic reduction of the variance of the estimates f∗

n.
If the measurement points are the Chebyshev abscissae, then no difficulties

arise in fitting polynomials to data. The Chebyshev polynomials have a magnitude
between grid points not much larger than their magnitude at the grid points. The
average variance for f∗

n becomes the same on the interval [−1, 1] as on the net of
measurements, σ2(n+ 1)/(m+ 1).

The choice of n when m is given, is a question of compromising between taking
into account the truncation error (which decreases as n increases) and the random
errors (which grow when n increases). If f is a sufficiently smooth function, then in
the Chebyshev case |cj | decreases quickly with j. In contrast, the part of cj which
comes from errors in measurements varies randomly with a magnitude of about
σ(2/(m + 1)1/2), using (4.5.48) and ‖Tj‖2 = (m + 1)/2. The expansion should
be broken off when the coefficients begin to “behave randomly”. An expansion in
terms of Chebyshev polynomials can hence be used for filtering away the “noise”
from the signal, even when σ is initially unknown.

Example 4.5.12.
Fifty-one equidistant values of a certain analytic function were rounded to four

decimals. In Figure 4.5.1, a semilog diagram is given which shows how |ci| varies
in an expansion in terms of the Chebyshev polynomials for this data. For i > 20
(approximately) the contribution due to noise dominates the contribution due to
signal. Thus it is sufficient to break off the series at n = 20.

Review Questions

6.1. State the axioms that any norm must satisfy. Define the maximum norm and
the Euclidean norm for a continuous function f on a closed interval.

6.2. Define dist(f, Pn), and state Weierstrass’ approximation theorem.

6.3. Prove the Pythagorean theorem in an inner product space.

6.4. Define and give examples of orthogonal systems of functions.

6.5. Formulate and prove Bessel’s inequality and Parseval’s identity, and interpret
them geometrically.

6.6. (a) Give some reasons for using orthogonal polynomials in polynomial approx-
imation with the method of least squares.
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Figure 4.5.2. Magnitude of coefficients ci in a Chebyshev expansion of an
analytic function contaminated with roundoff noise.

(b) Give some argument against the assertion that orthogonal polynomials are
difficult to work with.

6.7. In Chebyshev interpolation we seek the coefficients cj such that

p(xk) =
m∑

j=0

cjTj(xk), k = 0 : m,

where xk are the zeros of Tm+1(x). How would you compute cj?

6.8. The Gram polynomials are examples of orthogonal polynomials. With respect
to what inner product are they orthogonal?

6.9. Let φk(x), k = 1, 2, 3, . . . be a triangle family of orthogonal polynomials in an
inner product space. What property can be used to generate this sequence of
polynomials?

Problems and Computer Exercises

6.1. Compute ‖f‖∞ and ‖f‖2 for the function f(x) = (1 + x)−1 on the interval
[0, 1].

6.2. Determine straight lines which approximate the curve y = ex such that:

(a) the discrete Euclidean norm of the error function on the grid (−1,−0.5, 0, 0.5, 1)
is as small as possible;

(b) the Euclidean norm of the error function on the interval [−1, 1] is as small
as possible.
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(c) the line is tangent to y = ex at the point (0, 1), i.e. the Taylor approxima-
tion at the midpoint of the interval.

6.3. Determine, for f(x) = π2 − x2, the “cosine polynomial” f∗ =
∑n

j=0 cj cos jx
which makes ‖f∗ − f‖2 on the interval [0, π] as small as possible.

6.4. (a) Show that on any interval containing the points −1,−1/3, 1/3, 1,

E2(f) ≥ 1

8

∣
∣
∣f(1) − 3f(1/3) + 3f(−1/3)− f(−1)

∣
∣
∣.

(b) Compute the above bound and the actual value of E2(f) for f(x) = x3.

6.5. (a) Let a scalar product be defined by (f, g) =
∫ b

a f(x)g(x) dx. Calculate the
matrix of normal equations, when φj(x) = xj , j = 0 : n, when a = 0, b = 1.

(b) Do the same when a = −1, b = 1. Show how in this case the normal
equations can be easily decomposed into two systems, with approximately
(n+ 1)/2 equations in each.

6.6. Verify the formulas for ‖φj‖2 given in Example 4.5.10.

6.7. (a) Show that ‖f − g‖ ≥ ‖f‖−‖g‖ for all norms. (Use the axioms mentioned
in Sec. 4.5.1.)

(b) Show that if {cj}n0 is a set of real numbers and if {fj}n0 is a set of vectors,
then ‖∑ cjfj‖ ≤∑ |cj |‖fj‖.

6.8. Let G ∈ Rn×n be a symmetric positive definite matrix. Show that an inner
product is defined by the formula (u, v) = uTGv. Show that A∗ = G−1ATG.

6.9. In a space of complex-valued twice differentiable functions of t which vanish
at t = 0 and t = 1, let the inner product be:

(u, v) =

∫ 1

0

u(t)v̄(t) dt.

What is the adjoint of the operator A = d/dt? Is it true that the operator iA
is self-adjoint, and that −A2 is self-adjoint and positive definite?

6.10. a) Show that, in a real inner-product space,

4(u, v) = ‖u+ v‖2 − ‖u− v‖2.

In a complex space this gives only the real part of the inner product. Show
that one has to add ‖u− iv‖2 − ‖u+ iv‖2.

(b) This can be used to reduce many questions concerning inner-products to
questions concerning norms. For example, in a general inner product space a
unitary operator is defined by the requirement that ‖Au‖ = ‖u‖ ∀u. Show
that (Au,Av) = (u, v) ∀u, v.
Note, however, that the relation (u,Au) = (Au, u) ∀u which, in a real space,
holds for every operator A, does not imply that (u,Av) = (Au, v) ∀u, v. The
latter holds only if A is self-adjoint.

6.11. Show that (AB)∗ = B∗A∗. Also show that if C is self-adjoint and positive
definite, then A∗CA is so too. (A is not assumed to be self-adjoint.)
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6.12. Show that
(A−1)∗ = ((A∗))−1, (Ap)∗ = ((A∗))p,

for all integers p, provided that the operators mentioned exist. Is it true that
Cp is self-adjoint and positive definite, if C is so?

6.13. Show the following minimum property of orthogonal polynomials: Among
all nth degree polynomials pn with leading coefficient 1, the smallest value of

‖pn‖2 =

∫ b

a

p2
n(x)w(x)dx, w(x) ≥ 0,

is obtained for pn = φn/An, where φn is the orthogonal polynomial with
leading coefficient An associated with the weight distribution w(x).

Hint: Determine the best approximation to xn in the above norm or consider
the expansion pn = φn/An +

∑n−1
j=0 cjφj .

6.14. Verify the formulas for ‖Tj‖2 given in Theorem 4.5.20.

6.15. Modify Clenshaw’s algorithm to a formula for the derivative of an orthogonal
expansion.

6.16. (a) Let αj , j = 1 : n be the zeros of the Chebyshev polynomial Tn(x), n ≥
1. (There are, of course, simple trigonometric expressions for them.) Apply

Clenshaw’s algorithm to compute
∑n−1

m=0 Tm(α1)Tm(x), for x = αj , j = 1 : n.
It turns out that the results are remarkably simple.

(b) Show that S =
∑n−1

k=0 ckφk can be computed by a forward version of
Clenshaw’s algorithm that reads

y−2 = 0; y−1 = 0;

for k = 0 : n− 1,

yk = (−yk−2 + αkyk−1 + ck)/γk+1;

end

S = cnφn + γnyn−1φn−1 − yn−2φn.

Add this version as an option to your program, and study Numerical Recipes
[263, Sec. 5.4], from which this formula is quoted (with adaptation to our
notation). Make some test example of your own choice.

6.17. (a) Write a Matlab function c = stieltjes(f,x,w,m,n) that computes the
orthogonal coefficients in a least squares polynomial fit to the data (fi, xi)
and weights wi, i = 0 : m. Compute the orthogonal polynomials φk using
the Stieltjes procedure. For computing ck, k = 0 : n, use either (4.5.65) or
(4.5.66).

(b) Apply the function in (a) to the case fi = x7
i , wi = 1/(fi)

2, and m = 20.
Compute and print the error ‖pk − f‖, for k = 0 : 10 using the expression
(4.5.65) for ck+1. Note that for k > 7 the fit should be exact!

(c) Repeat the calculations in (b) using the modified formula (4.5.66). Com-
pare the error with the results in (b).
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4.6 Fourier Methods

Many natural phenomena, for example, acoustical and optical, are of a periodic
character. For instance, it was known already by Phythagoras (600 B.C.) that a
musical sound is composed of regular oscillations, partly a fundamental tone with
a certain frequency f , and partly overtones with frequencies 2f , 3f , 4f ,. . . . The
ratio of the strength of the fundamental tone to that of the overtones is decisive
for our impression of the sound. Sounds which are free from overtones occur, for
instance, in electronic music, where they are called pure sine tones.

In an electronic oscillator, a current is generated whose strength at time t
varies according to the formula r sin(ωt+ v), where r is called the amplitude of the
oscillation; ω is called the angular frequency, and is equal to 2π times the frequency;
v is a constant which defines the state at the time t = 0. In a loudspeaker, variations
of current are converted into variations in air pressure which, under ideal conditions,
are described by the same function. In practice, however, there is always a certain
distortion, overtones occur. The variations in air pressure which reach the ear can,
from this viewpoint, be described as a sum of the form

∞∑

k=0

rk sin(kωt+ vk). (4.6.1)

An expansion of this form is called a
The separation of a periodic phenomenon into a fundamental tone and over-

tones permeates not only acoustics, but also many other areas. It is related to an
important, purely mathematical theorem, first given by Fourier161 . According to
this theorem, every function f(t) with period 2π/ω can, under certain very general
conditions, be expanded in a Fourier series of the form (4.6.1). (A function has
period p if f(t+ p) = f(t), for all t.) A more precise formulation will be given later
in Theorem 4.6.2.

Fourier series are valuable aids in the study of phenomena which are periodic
in time, such as vibrations, sound, light, alternating currents, or in space (waves,
crystal structure, etc.). One very important area of applications is in digital signal
and image processing which is used in interpreting radar and sonar signals. Another
is statistical time series, which are used in communications theory, control theory,
and the study of turbulence. For the numerical analyst, Fourier analysis is partly
a very common computational task and partly an important aid in the analysis of
properties of numerical methods.

Modifications of pure Fourier methods are used as a means of analyzing non-
periodic phenomena; see, e.g., Sec. 4.6.3 (periodic continuation of functions) and
Sec. 4.6.5 (Fourier transforms). The approximation of Fourier expansions using
sampled data and discrete Fourier analysis is treated in Sec. 4.6.2. The Fast Fourier
Transform (FFT) for discrete Fourier analysis and synthesis is treated Sec. 4.7.1. It

161Jean Baptist Joseph Fourier (1768–1830), a French mathematician. In 1807 Fourier completed
and read to the Paris Institute his important memoir “Théorie Analytique de la Chaleur”, in which
he used what is now called Fourier series. It won a prize competition set by the Institute in 1811,
but was not published until 1822.
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has caused a complete change of attitude toward what can be done using discrete
Fourier methods.

4.6.1 Basic Formulas and Theorems

The basic formulas and theorems derived in this section rely to a great extent on
the theory in Sec. 4.5. An expansion of the form of (4.6.1) can be expressed in many
equivalent ways. If we set ak = rk sin vk, bk = rk cos vk, then using the addition
theorem for the sine function we can write

f(t) =

∞∑

k=0

(ak cos kωt+ bk sinkωt), (4.6.2)

where ak, bk are real constants. Another form, which is often the most convenient,
can be found with the help of Euler’s formulas,

cosx =
1

2
(eix + e−ix), sinx =

1

2i
(eix − e−ix), (i =

√
−1).

Here and in what follows i denotes the imaginary unit. Then one gets

f(t) =
∞∑

k=−∞
cke

ikωt, (4.6.3)

where
c0 = a0, ck = 1

2 (ak − i bk), c−k = 1
2 (ak + i bk), k ≥ 1, . . . . (4.6.4)

In the rest of this chapter we shall use the term Fourier series to denote an expansion
of the form of (4.6.1) or (4.6.3). We shall call the partial sums of the form of these
series trigonometric polynomials. Sometimes the term spectral analysis is
used to describe the above methods.

We shall study functions with period 2π. These are fully defined by their
values on the fundamental interval [−π, π]. If a function of t has period L,
then the substitution x = 2πt/L transforms the function to a function of x with
period 2π. We assume that the function can have complex values, since the complex
exponential function is convenient for manipulations.

In the continuous case the inner product of two complex-valued functions f
and g of period 2π is defined in the following way (the bar over g indicates complex
conjugation)

(f, g) =

∫ π

−π
f(x)ḡ(x)dx. (4.6.5)

(It makes no difference what interval one uses, as long as it has length 2π—the
value of the inner product is unchanged.) As usual the norm of the function f is
defined by ‖f‖ = (f, f)1/2. Notice that (g, f) = (f, g).
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Theorem 4.6.1.
The following orthogonality relations hold for the functions

φj(x) = eijx, j = 0,±1,±2, . . . ,

where

(φj , φk) =

{
2π, if j = k,
0, if j 6= k.

(4.6.6)

Proof. In the continuous case, if j 6= k, it holds that

(φj , φk) =

∫ π

−π
eijxe−ikxdx =

∣
∣
∣

π

−π

ei(j−k)x

i(j − k)
=

(−1)j−k − (−1)j−k

i(j − k)
= 0.

whereby orthogonality is proved. For j = k

(φk, φk) =

∫ π

−π
eikxe−ikxdx =

∫ π

−π
1 dx = 2π.

If one knows that the function f(x) has an expansion of the form

f =

∞∑

j=−∞
cjφj ,

then from Theorem 4.6.1 it follows formally that

(f, φk) =

b∑

j=a

cj(φj , φk) = ck(φk, φk), a ≤ k ≤ b,

since (φj , φk) = 0 for j 6= k. Thus, changing k to j, we have

cj =
(f, φj)

(φj , φj)
=

1

2π

∫ π

−π
f(x)e−ijxdx, (4.6.7)

These coefficients are called Fourier coefficients; see the more general case in
Theorem 4.5.13. In accordance with (4.6.4) set

aj = cj + c−j , bj = i(cj − c−j).

Then

N∑

j=−N
cje

ijx = c0 +

N∑

j=1

(
cj(cos jx+ i sin jx) + c−j(cos jx− i sin jx)

)

= 1
2a0 +

N∑

j=1

(aj cos jx+ bj sin jx).
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where

aj =
1

π

∫ π

−π
f(x) cos jx dx, j ≥ 0, bj =

1

π

∫ π

−π
f(x) sin jx dx, j ≥ 1. (4.6.8)

(Notice that the factors preceding the integral are different in the expressions for cj
and for aj , bj, respectively.)

From a generalization of Theorem 4.5.13, we also know that the error

∥
∥
∥f −

n∑

j=−n
kjφj

∥
∥
∥, n <∞,

becomes as small as possible if we choose kj = cj , −n ≤ j ≤ n. Theorem 4.5.14
and its corollary, Parseval’s identity

2π

∞∑

j=−∞
|cj |2 = ‖f‖2 =

∫ π

−π
|f(x)|2 dx, (4.6.9)

are of great importance in many applications of Fourier analysis. The integral in
(4.6.9) can be interpreted as the “energy” of the function f(x).

Theorem 4.6.2 (Fourier Analysis, Continuous Case).

Assume that the function f is defined at every point in the interval [−π, π]
and that f(x) is finite and piecewise continuous. Associate with f a Fourier series
in the following two ways:

1

2
a0 +

∞∑

j=1

(aj cos jx+ bj sin jx), and
∞∑

j=−∞
cje

ijx.

where the coefficients aj , bj, and cj are defined by (4.6.8) in the first case and (4.6.7)
in the second case. Then the partial sums of the above expansions give the best
possible approximations to f(x) by trigonometric polynomials, in the least squares
sense.

If f is of bounded variation and has at most a finite number of discontinuities,
then the series is everywhere convergent to f(x). At a point x = a of discontinuity
f(a) equals the mean f(a) = 1

2 (f(a+) + f(a−)).

Proof. The proof of the convergence results is outside the scope of this book (see,
e.g., Courant and Hilbert [74].) The rest of the assertions follow from previously
made calculations in Theorem 4.6.1 and the comments following; see also the proof
of Theorem 4.5.13.

The more regular a function is, the faster its Fourier series converges. The
following useful result is relatively easy to prove using (4.6.7) and integrating by
parts k + 1 times (cf. (3.2.8)).
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Theorem 4.6.3.
If f and its derivatives up to and including order k are periodic and everywhere

continuous, and if f (k+1) is piecewise continuous, then

|cj | ≤
1

j(k+1)
‖f (k+1)‖∞. (4.6.10)

Sometimes it is convenient to separate a function f defined on [−π, π], into
an even and an odd part. We set f(x) = g(x) + h(x), where

g(x) = 1
2 (f(x) + f(−x)), h(x) = 1

2 (f(x) − f(−x)), ∀x. (4.6.11)

Then g(x) = g(−x) and h(x) = −h(−x). For both g(x) and h(x) it suffices to to
give the function only on [0, π]. For the even function g(x) the sine part of the
Fourier series drops and we have

g(x) = 1
2a0 +

∞∑

j=1

aj cos jx, aj =
2

π

∫ π

0

g(x) cos jx dx. (4.6.12)

For h(x) the cosine part drops out and we obtain and the Fourier series becomes a
sine series

h(x) =

∞∑

j=1

bj sin jx, bj =
2

π

∫ π

0

h(x) sin jx dx. (4.6.13)

The proof is left as an exercise to the reader (use the formulas for the coeffi-
cients given in (4.6.8)).

−π 0 π

Figure 4.6.1. A rectangular wave.
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Example 4.6.1.
Consider the rectangular wave function obtained by periodic continuation out-

side the interval (−π, π) of

f(x) =

{
−1/2, −π < x < 0,

1/2, 0 < x < π,
,

see Figure 4.6.1. The function is odd, so aj = 0 for all j, and

bj =
1

π

∫ π

0

sin jx dx =
1

jπ
(1 − cos jπ) =

{
0, if j even,
2/(jπ), if j odd.

Hence

f(x) =
2

π

(

sinx+
sin 3x

3
+

sin 5x

5
+ · · ·

)

. (4.6.14)

Notice that the coefficients cj decay as j−1 in agreement with Theorem 4.6.3.
The sum of the series is zero at the points where f has a jump discontinuity;

this agrees with the fact that the sum should equal the average of the limiting values
to the left and to the right of the discontinuity.

−4 −3 −2 −1 0 1 2 3 4
−1.5

−1

−0.5

0

0.5

1

1.5

Figure 4.6.2. Illustration of Gibbs’ phenomenon.

Figure 4.6.2 shows the approximations to the square wave using 1,2,5 and
10 terms of the series (4.6.14). As can be seen, there is a ringing effect near the
discontinuities. The width and energy of this error is reduced when the number of
terms in the approximation is increased. However, the height of the overshoot and
undershoot near the discontinuity converges to a fixed height, which can be shown
to equal about 0.179 times the jump in the function value. This artifact is known
as Gibbs’ phenomenon162.

162Named after the American physicist J. William Gibbs, who in 1899 proved that this ringing
effect will always occur when approximating a discontinuous function with a Fourier series.
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The Gibbs’ oscillations can be smoothed by multiplying the terms by factors
which depend onm, the order of the partial sum. Let us consider the finite expansion

fm(x) =

m−1∑

k=−(m−1)

cke
ikx.

Then in the smoothed expansion each term in the sum is multiplied by the Lanczos
σ-factors,

fm(x) =
m−1∑

k=−(m−1)

σkcke
ikx, σk =

sinπk/m

π/m
, (4.6.15)

(see Lanczos [209, Sec. IV 6,9]). Since the coefficients in the real form of the Fourier
series are

ak = ck + c−k, bk = i(ck − c−k)

the same σ-factor applies to them.

4.6.2 Discrete Fourier Analysis

Although the data to be treated in Fourier analysis are often continuous in the time
or space domain, for computational purposes this data must usually be represented
in terms of a finite discrete sequence. For example, a function f(t) of time, is
recorded at evenly spaced intervals ∆t in time. Assume that the function f is
known at equidistant arguments in the interval [0, 2π],

xk = 2πk/N, k = 0 : N − 1.

Such data can be analyzed by discrete Fourier analysis. Define the inner product

(f, g) =

N−1∑

k=0

f(xk)ḡ(xk), xk = 2πk/N. (4.6.16)

Then with φj(x) = eijx, we have

(φj , φk) =

N−1∑

k=0

eijxke−ikxk =

N−1∑

k=0

ei(j−k)hk.

From Lemma 3.2.2 now follows

(φj , φk) =

{
N, if (j − k)/N is an integer,
0, otherwise.

(4.6.17)
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Theorem 4.6.4 (Trigonometric Interpolation).

Every function, defined on the equidistant grid xk = 2πk/N , k = 0 : N − 1,
can be interpolated by the trigonometric polynomial

f(x) =







k+θ∑

j=−k
cje

ijx,

1
2a0 +

k∑

j=1

(aj cos jx+ bj sin jx) +
1

2
θak+1 cos(k + 1)x,

(4.6.18)

Here

θ =

{
1, if N even,
0, if N odd,

, k =

{
N/2 − 1, if N even,
(N − 1)/2, if N odd,

(4.6.19)

and

cj =
1

N

N−1∑

k=0

f(xk)e
−ijxk , (4.6.20)

aj =
2

N

N−1∑

k=0

f(xk) cos jxk, bj =
2

N

N−1∑

k=0

f(xk) sin jxk. (4.6.21)

If the sums in (4.6.18) are terminated when |j| < k + θ, then one obtains the
trigonometric polynomial which is the best least squares approximation, among all
trigonometric polynomials with the same number of terms, to f on the grid.

Proof. The expression for cj is justified by (4.6.17). Further, by (4.6.20)–(4.6.21)
it follows that

aj = cj + c−j , bj = i(cj − c−j), ck+1 =
1

2
ak+1.

The two expressions for f(x) are equivalent, because

k+θ∑

j=−k
cje

ijx = c0 +
k∑

j=1

(
cj(cos jx+ i sin jx) + c−j(cos jx− i sin jx)

)

+ θck+1 cos(k + 1)x

= c0 +

k∑

j=1

(aj cos jx+ bj sin jx) +
1

2
θak+1 cos(k + 1)x.

The function f(x) coincides on the grid x0, x1, . . . , xN−1 with the function

f∗(x) =
N−1∑

j=0

cje
ijx, (4.6.22)
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because

e−i(N−j)xk = eijxk , c−j = cN−j.

However, the functions f and f∗ are not identical between the grid points. If we
set ω = eix, and ωk = eixk , then

f∗(x) = P (ω) =

N−1∑

j=0

cjω
j.

where P (ω) is a polynomial of degree less than N . It becomes clear that trigono-
metric interpolation is equivalent to polynomial interpolation at the grid points ωk.
The mapping CN → CN

(f0, f1, . . . , fN−1) 7→ (c0, c1, . . . , cN−1)

is called the discrete Fourier transform (DFT).
The calculations required to compute the coefficients cj according to (4.6.20),

Fourier analysis, are of essentially the same type as the calculations needed to
compute f∗(x) at the grid points

xk = 2πk/N, k = 0 : N − 1,

when the expansion in (4.6.22) is known, so-called Fourier synthesis. Both cal-
culations can be performed very efficiently using FFT algorithms; see Sec. 4.7.1.

Functions of several variables are treated analogously. Quite simply, one takes
one variable at a time. In the discrete case, with two variables we set

xk = 2πk/N, yℓ = 2πℓ/N,

and assume that f(xk, yℓ) is known for k = 0 : N − 1, ℓ = 0 : N − 1. Set

cj(yℓ) =
1

N

N−1∑

k=0

f(xk, yℓ)e
−ijxk ,

cj,k =
1

N

N−1∑

ℓ=0

cj(yℓ)e
−ikyℓ .

From Theorem 4.6.4, then (with obvious changes in notations),

cj(yℓ) =

N−1∑

k=0

cj,ke
ikyℓ ,

f(xk, yℓ) =
N−1∑

j=0

cj(yℓ)e
ijxk =

N−1∑

j=0

N−1∑

k=0

cj,ke
(ijxk+ikyℓ).

The above expansion is of considerable importance in, e.g., crystallography.
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The Fourier coefficients

cj(f) =
1

2π

∫ π

−π
f(x)eijx dx, j = 0,±1,±2, . . . , (4.6.23)

of a function f with period 2π are often difficult to compute. On the other hand
the coefficients of the discrete Fourier transform

ĉj(f) =
1

N

N−1∑

k=0

f(xk)e
−ijxk , xk = 2πk/N, j = 0 : N − 1, (4.6.24)

can be computed very efficiently by the FFT. Now, since f(x0) = f(xN ), the sum
in (4.6.24) can be thought of as a trapezoidal sum

ĉj(f) =
1

N

[
1
2f(x0) + f(x1)e

−ijx1 + · · · + f(xN−1)e
−ijxN−1 + 1

2f(xN )
]

approximating the integral (4.6.23). Therefore one might think of using ĉj as an
approximation to cj for all j = 0,±1,±2, . . .. But ĉj(f) are periodic in j with
period N , whereas by Theorem 4.6.3 the true Fourier coeffcients cj(f) decay as
some power j−(k+1) as j → ∞.

We now show a way to remove this deficiency. Let fk, k = 0,±1,±2, . . ., be an
infinite N -periodic sequence with fk = f(xk). Let ϕ = Pf be a continuous function
such that ϕ(xk) = fk, k = 0,±1,±2, . . ., and approximate cj(f) by cj(ϕ). Then
cj(ϕ) will decay to zero as j → ∞. It is a remarkable fact that if the approximation
scheme P is linear and translation invariant we have

cj(ϕ) = τj ĉj(f), (4.6.25)

where the attenuation factors τj depend only on the approximation scheme P
and not the function f . This implies that τj can be determined from (4.6.25) by
evaluating cj(ϕ) and ĉj(f), for some suitable sequence fk, k = 0,±1,±2, . . . .. This
allows the the FFT to be used. For a proof of the above result and a more detailed
exposition of attenuation factors in Fourier analysis, we refer to Gautschi [130].

Example 4.6.2.
For a given N -periodic sequence fk, k = 0,±1,±2, . . ., take ϕ(x) = Pf be

defined as the piecewise linear function such that ϕ(xk) = fk, k = 0,±1,±2, . . ..
Clearly this approximation scheme is linear and translation invariant. Further the
function ϕ is continuous and has period 2π.

Consider in particular the sequence fk = 1, k = 0 modN . and fk = 0
otherwise. We have

ĉj(f) =
1

N

N−1∑

k=0

f(xk)e
−ijxk =

1

N
.

Further, setting h = 2π/N , and using symmetry, we get

cj(Pf) =
1

2π

∫ h

−h

(

1 − |x|
h

)

eijx dx

=
1

π

∫ h

0

(

1 − x

h

)

cos jx dx =
2

j2πh
sin2

( jh

2

)

.
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This gives the attenuation factors

τj =

(
sin(jπ/N)

jπ/N

)2

, j = 0,±1,±2, . . . .

Note that the coefficients cj(Pf) decay as j−2 reflecting the fact that the first
derivative of Pf is discontinuous. If we instead had used a cubic spline approxima-
tion the first and second derivatives are continuous and the attenuation factors will
decay as j−4.

4.6.3 Periodic Continuation of a Function

Assume now that the function f is from the beginning defined on the interval [0, π]
only. In that case we can extend the function to [−π, 0] either as an even or as an
odd function. Hence the same function can be expanded either as a sine series or
as a cosine series. Both expansions will converge to the given f(x) in the interval
[0, π] provided f satisfies the conditions in Theorem 4.6.2. However, the rate of
convergence of the two Fourier expansions may be vastly different depending on
continuity properties at the points x = 0 and x = π, of the original interval.

−π 0 π 2π

Figure 4.6.3. Periodic continuation of a function f outside [0, π] as an
odd function.

If the function f defined in [0, π] satisfies f(0) = f(π) = 0, it can be continued
as an odd function (see Figure 4.6.3). Its Fourier expansion then becomes a sine
series. In the continuous case,

∞∑

j=1

bj sin jx, bj =
2

π

∫ π

0

f(x) sin jx dx. (4.6.26)

In the discrete case: (xk = πk/N)

N−1∑

j=1

bj sin jx, bj =
2

N

N−1∑

k=1

f(xk) sin jxk. (4.6.27)

The reflection as an odd function preserves the continuity in function values and the
first derivative in the extended function. According to Theorem 4.6.3 the Fourier
coefficients bj therefore will decrease as j−3.

If f(0) 6= 0, one can still use such an expansion but the function will cause
a discontinuity at x = 0 and x = π. The discontinuity at x = 0 follows from the
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reflection; The discontinuity at x = π from the periodicity condition f(x + 2π) =
f(x) which gives f(π) = f(−π). This will cause slow convergence (as j−1) of the
Fourier coefficients and cause undesirable oscillations due to Gibbs’ phenomenon.
However, by subtracting a linear function a+ bx from f we can always ensure that
the condition f(0) = f(π) = 0 is satisfied.

If f(0) 6= 0, and one makes a continuation of f into an even function on [−π, π]
the extended function will be continuous at x = 0 and x = π. The Fourier series
then becomes a pure cosine series In the continuous case:

1

2
a0 +

∞∑

j=1

aj cos jx, aj =
2

π

∫ π

0

f(x) cos jx dx, (4.6.28)

In the discrete case: (xk = πk/N)

1

2
a0 +

N−1∑

j=1

aj cos jx, aj =
2

N

N−1∑

k=0

f(xk) cos jxk. (4.6.29)

The coefficients aj will decrease as j−2. If f ′(0) = f ′(π) = 0, then also the first
derivative will be continuous. One can still use such an expansion even if f ′(0) 6= 0
or f ′(π) 6= 0, but then a discontinuity appears in the first derivative.

4.6.4 Convergence Acceleration of Fourier Series.

The generalized Euler transformation described in Sec. 3.4.3 can be used for acceler-
ating the convergence of Fourier series, except in the immediate vicinity of singular
points. Consider a complex power series

S(z) =
∞∑

n=1

unz
n−1, z = eiφ. (4.6.30)

A Fourier series that is originally of the form
∑∞
n=−∞ cne

inφ, or in trigonometric
form, can easily be brought to this form; see Problem 4.7.7.

We consider the case

S(z) = −1

z
log(1 − z) =

∞∑

n=1

1

n
zn−1, (4.6.31)

which is typical for a power series with completely monotonic terms. (The rates of
convergence are the same for almost all series of this class.) Numerical computation,
essentially by the above algorithm, gave the following results. The coefficients uj
are computed in IEEE double precision arithmetic. We make the rounding errors
during the computations less important by subtracting the first row of partial sums
by its last element; it is, of course, added again to the final result. 163 The first table

163Tricks like this can often be applied in linear computations with a slowly varying sequence
of numbers. See, for example, the discussion of rounding errors in Richardson extrapolation in
Sec. 3.4.6.
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shows, for various φ, the most accurate result that can be obtained without thinning.
These limits are due to the rounding errors; we can make the pure truncation error
arbitrarily small by choosing N large enough.

φ π 2π/3 π/2 π/3 π/4 π/8 π/12 π/180

|error| 2·10−16 8·10−16 10−14 6·10−12 10−9 5·10−7 3·10−5 2·10−1

N 30 33 36 36 36 40 40 100

kk 21 22 20 21 20 13 10 (3)

Note that a rather good accuracy is obtained also for φ = π/8 and φ = π/12,
where the algorithm is “unstable”, since | z

1−z | > 1. In this kind of computations
“instability” does not mean that the algorithm is hopeless, but it shows the impor-
tance of a good termination criterion. The question is to navigate safely between
Scylla and Charybdis. For a small value such as φ = π/180, the sum is approxi-
mately 4.1 + 1.5i. The smallest error with 100 terms (or less) is 0.02; it is obtained
for k = 3. Also note that kk/N increases with φ.

By the application of thinning the results can often be improved considerably
for φ ≪ π, in particular for φ = π/180. Let τ be a positive integer. The thinned
form of S(z) reads

S(z) =

∞∑

p=1

u∗pz
τ ·(p−1), u∗p =

τ∑

j=1

uj+τ ·(p−1) z
j−1.

The series (4.6.31) has “essentially positive”terms originally can become “essentially
alternating” by thinning. For example, if z = eiπ/3 and τ = 3, the series becomes
an alternating series, perhaps with complex coefficients. It does not matter in the
numerical work that u∗p depends on z.

We present the errors obtained for four values of the parameter τ , with differ-
ent amount of work. Compare |error|, kk, etc. with appropriate values in the table
above. We see that, by thinning, it is possible to calculate the Fourier series very
accurately also for small values of φ.

τ 80 120 90 15

τ ·φ π 2π/3 π/2 π/12

|error| 2·10−14 10−14 3·10−13 3·10−5

N 28 31 33 41

kk 20 22 18 10

no. terms 5040 3720 2970 615

Roughly speaking, the optimal rate of convergence of the Euler Transforma-
tion depends on z in the same way for all power series with completely monotonic
coefficients; independently of the rate of convergence of the original series. The
above tables from a particular example can therefore—with some safety margin—
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be used as a guide for the application of the Euler transformation with thinning to
any series of this class.

Say that you want the sum of a series
∑
unz

n for z = eiφ, φ = π/12, with
relative |error| < 10−10. You see in the first table that |error| = 6 ·10−12 for
φ = π/3 = 4π/12 without thinning. The safety margin is hopefully large enough.
Therefore, try τ = 4. We make two tests with completely monotonic terms: un =
n−1 and un = exp(−√

n). Tol = 10−10 is hopefully large enough to make the
irregular errors relatively negligible. In both tests the actual magnitude of the error
turns out to be 4 · 10−11, and the total number of terms is 4·32 = 128. The values
of errest are 6 ·10−11 and 7·10−11; both slightly overestimate the actual errors and
are still smaller than Tol.

4.6.5 The Fourier Integral Theorem

We have seen how Fourier methods can be used on functions defined on a finite
interval usually taken to be [−π, π]. Fourier found that expansion of an arbitrary
function in a Fourier series remains possible even if the function is defined on an in-
terval that extends on both sides to infinity. In this case the fundamental frequency
converges to zero and the summation process changes into one of integration.

Suppose that the function f(x) is defined on the entire real axis, and that it
satisfies the regularity properties which we required in Theorem 4.6.2. Set

ϕ(ξ) = f(x), ξ = 2πx/L ∈ [−π, π],

and continue ϕ(ξ) outside [−π, π] so that it has period 2π. By Theorem 4.6.2, if

cj =
1

2π

∫ π

−π
ϕ(ξ)e−ijξ dξ =

1

L

∫ L/2

−L/2
f(x)e−2πixj/L dx, (4.6.32)

then ϕ(ξ) =
∑∞

j=−∞ cje
ijξ, ξ ∈ (−π, π), and hence

f(x) =

∞∑

j=−∞
cje

2πixj/L, x ∈ (−L/2, L/2).

If we set

gL(ω) =

∫ L/2

−L/2
f(x)e−2πixω dx, ω = j/L, (4.6.33)

then by (4.6.32) we have cj = (1/L)gL(ω), and hence

f(x) =
1

L

∞∑

j=−∞
gL(ω)e2πixω, x ∈ (−L/2, L/2). (4.6.34)

Now by passing to the limit L → ∞, one avoids making an artificial periodic
continuation outside a finite interval. The sum in (4.6.34) is a “sum of rectangles”
similar to the sum which appears in the definition of a definite integral. But here
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the argument varies from −∞ to +∞, and the function gL(t) depends on L. By a
somewhat dubious passage to the limit, then, the pair of formulas of (4.6.33) and
(4.6.34) becomes the pair

g(ω) =

∫ ∞

−∞
f(x)e−2πixω dx ⇐⇒ f(x) =

∫ ∞

−∞
g(ω)e2πixω dω. (4.6.35)

One can, in fact, after a rather complicated analysis, show that the above result is
correct; see, e.g., Courant–Hilbert [74]. The proof requires, besides the previously
mentioned “local” regularity conditions on f , the “global” assumption that

∫ ∞

−∞
|f(x)| dx

is convergent. The beautiful, almost symmetric relation of (4.6.35) is called the
Fourier integral theorem. This theorem, and other versions of it, with varying
assumptions under which they are valid, is one of the most important aids in both
pure and applied mathematics. The function g is called the Fourier transform164

of f . The Fourier transform is one of the most important tools of Applied Analysis.
It plays a fundamental role in problems relating to input-output relations, e.g., in
electrical networks.

Clearly the Fourier transform is a linear operator. Another elementary prop-
erty that can easily be verified is:

f(ax) ⇐⇒ 1

|a|g(ω/a),

If the function f(x) has even or odd symmetry and is real or pure imaginary
this leads to relations between g(ω) and g(−ω) that can be used to increase com-
putational efficiency. Some of these properties are summarized in the table below.

Table 4.6.1. Useful symmetry properties of the continuous Fourier transform.

Function Fourier transform

f(x) real g(−ω) = g(ω)

f(x) imaginary g(−ω) = −g(ω)

f(x) even g(−ω) = g(ω)

f(x) odd g(−ω) = −g(ω)

f(x) real even g(ω) real even

f(x) imaginary odd g(ω) real odd

164The terminology in the literature varies somewhat as to the placement of the factor 2π; it can
be taken out of the exponent by a simple change of variable.
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Example 4.6.3.
The function f(x) = e−|x| has Fourier transform

g(ω) =

∫ ∞

−∞
e−|x|e−2πixω dx =

∫ ∞

0

(
e−(1+2πiω)x + e−(1−2πiω)x

)
dx

=
1

1 + 2πiω
+

1

1 − 2πiω
=

2

1 + 4π2ω2
.

Here f(x) is real and an even function. In agreement with the table above the
Fourier transform is also real and even.

From (4.6.35) it follows that

e−|x| =

∫ ∞

−∞

2

1 + 4π2ω2
e2πixω dω =

2

π

∫ ∞

0

1

1 + x2
cosπxdx, (2πω = x).

It is not so easy to prove this formula directly.

Many applications of the Fourier transform involve the use of convolutions.

Definition 4.6.5.
The convolution of f1 and f2 is the function

h(ξ) = conv (f1, f2) =

∫ ∞

−∞
f1(x)f2(ξ − x) dx. (4.6.36)

It is not difficult to verify that conv (f1, f2) = conv (f2, f1). The following
theorem states that the convolution of f1 and f2 can be computed as the inverse
Fourier transform of the product g1(ω)g2(ω). This fact is of great importance in
the application of Fourier analysis, to differential equations and probability theory.

Theorem 4.6.6.
Let f1 and f2 have Fourier transforms g1 and g2, respectively. Then the

Fourier transform g of the convolution of f1 and f2, is the product g(ω) = g1(ω)g2(ω).

Proof. By definition the Fourier transform of the convolution is

g(ω) =

∫ ∞

−∞
e−2πiξω

(∫ ∞

−∞
f1(x)f2(ξ − x) dx

)

dξ

=

∫ ∞

−∞

∫ ∞

−∞
e−2πi(x+ξ−x)ωf1(x)f2(ξ − x) dx dξ

=

∫ ∞

−∞
e−2πixωf1(x) dx

∫ ∞

−∞
e−2πi(ξ−x)ωf2(ξ − x) dξ

=

∫ ∞

−∞
e−2πixωf1(ξ) dx

∫ ∞

−∞
e−2πixωf2(x) dx = g1(ω)g2(ω)

The legitimacy of changing the order of integration is here taken for granted.
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In many physical applications, the following relation, analogous to Parseval’s
identity (corollary to Theorem 4.5.14), is of great importance. If g is the Fourier
transform of f , then

∫ ∞

−∞
|g(ω)|2 dω =

∫ ∞

−∞
|f(ξ)|2 dξ. (4.6.37)

In signal processing this can be interpreted to mean that the total power in a signal
is the same whether computed in the time domain or the frequency domain.

4.6.6 Sampled Data and Aliasing

The ideas of the Sec. 4.3.6 can be applied to the derivation of the celebrated sam-
pling theorem. This is an interpolation formula that expresses a function that is
band-limited to the frequency interval [−W, W ]. Such a function has a Fourier
representation of the following form (see also Strang [303, p. 325]).

f(z) =
1

2π

∫ W

−W
f̂(k)eikz dk, |f̂(k)| ≤M, (4.6.38)

in terms of its values at all integer points.

Theorem 4.6.7 (Shannon’s Sampling Theorem).

Let the function be band-limited to the frequency interval [−W, W ]. Then

f(z) =

∞∑

j=−∞
f

(
jπ

W

)
sin(Wz − jπ)

(Wz − jπ)
. (4.6.39)

Proof. We shall sketch a derivation of this for W = π. (Strang [303] gives an
entirely different derivation, based on Fourier analysis.) We first note that (4.6.38)
shows that f(z) is analytic for all z. Then we consider the same Cauchy integral as
many times before,

In(u) =
1

2πi

∫

∂Dn

Φ(u)f(z)

Φ(z)(z − u)
dz, u ∈ Dn.

Here Φ(z) = sinπz which vanishes at all integer points, and Dn is the open rectangle
with vertices at ±(n + 1/2) ± bi. By the residue theorem, we obtain after a short
calculation,

In(u) = f(u) +

n∑

j=−n

Φ(u)f(j)

Φ′(j)(j − u)
= f(u) −

n∑

j=−n

f(j) sinπ(j − u)

π(j − u)
.

Set z = x+ iy. Note that

|f(z)| ≤ 1

2π

∫ π

−π
Me−kydk ≤ M(e|πy| − e−|πy|)

|2πy| , |Φ(z)| ≥ e|πy|.
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These inequalities, applied for y = b, allow us to let b→ ∞; (2b is the height of the
symmetric rectangular contour). Then it can be shown that In(u) → 0 as n → ∞
which establishes the sampling theorem for W = π. The general result is then
obtained by ”regula de tri”,165 but it is sometimes hard to get it right

Note the similarity of (4.6.39) to Lagrange’s interpolation formula. Like this
it is a so-called cardinal interpolation formula. As Wz/π tends to an integer m, all
terms except one on the right-hand side become zero; for j = m the term becomes
f(mπ/W ).

Let f be a function which is zero outside the interval [0, L]. Its Fourier trans-
form is then given by

g(ω) =

∫ L

0

f(x)e−2πiωx dx. (4.6.40)

We want to approximate g(ω) using values of f(x) sampled at intervals ∆x,

fj = f(j∆x), 0 < j < N − 1, L = N∆x.

The integral (4.6.40) can be approximated by

g(ω) ≈ L

N

N−1∑

j=0

fje
−2πiωj∆x. (4.6.41)

Since only N values of fj are used as input and we want the computed values to be
linearly independent, we cannot approximate g(ω) at more thanN points. The wave
of lowest frequency associated with the interval [0, L] is ω = 1/L = 1/(N∆x), since
then [0, L] corresponds to one full period of the wave. We therefore choose in the
frequency space points ωk = k∆ω, k = 0 : N , such that the following reciprocity
relations hold:

LW = N, ∆x∆ω = 1/N (4.6.42)

With this choice it holds that

W = N∆ω = 1/∆x, L = N∆x = 1/∆ω. (4.6.43)

Noting that (j∆x)(k∆ω) = jk/N we get from the trapezoidal approximation

g(ωk) ≈
L

N

N−1∑

j=0

fje
−2πikj/N = Lck, k = 0 : N − 1,

where ck is the coefficient of the discrete Fourier transform.
The frequency ωc = 1/(2∆x) = W/2 is the so called Nyquist critical fre-

quency. Sampling the wave sin(2πωcx) with sampling interval ∆x will sample
exactly two points per cycle. It is a remarkable fact that if a function f(x), defined
on [−∞,∞], is band-width limited to frequencies smaller or equal to ωc, then f(x)
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Figure 4.6.4. The real (top) and imaginary (bottom) parts of the Fourier
transform (solid line) of e−x and the corresponding discrete Fourier transform (dots)
with N = 32, T = 8.

is completely determined by its sample values j∆x, ∞ ≤ j ≤ ∞; see Shannon’s
Sampling Theorem4.6.7.

If the function is not band-width limited the spectral density outside the
critical frequency is moved into that range. This is called aliasing. The rela-
tionship between the Fourier transform g(ω) and the discrete Fourier transform
of a finite sampled representation can be characterized as follows. Assuming that
the reciprocity relations (4.6.42) are satisfied, the discrete Fourier transform of
fj = f(j∆x), 0 ≤ j < N , will approximate the periodic aliased function

g̃k = g̃(k∆ω), 0 ≤ j < N, (4.6.44)

where

g̃(ω) = g(ω) +
∞∑

k=1

(g(ω + kW ) + g(ω − kW )) , ω ∈ [0,W ]. (4.6.45)

165This rule from Euclides fifth book of Elementa tells how, given three out of four proportional
quantities a/b = c/d, one determines the fourth. This name is used in elementary mathematics
e.g., in Germany and Sweden, but does not seem to be known under the same name in English
speaking countries.
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Since by (4.6.43) W = 1/∆x, we can increase the frequency range [0,W ] covered
by decreasing ∆x.

Example 4.6.4.
The function f(x) = e−x, x > 0, f(x) = 0, x < 0, has Fourier transform

g(ω) =
1

1 + 2πiω
=

1 − i2πω

1 + 4π2ω2

(cf. Example 4.6.3. Set f(0) = 1/2, the average of f(−0) and f(+0), which is the
value given by the inverse Fourier transform at a discontinuity.

Set N = 32, T = 8, and sample the f in the interval [0, T ], at equidistant
points j∆t, j = 0 : N − 1. Note that T is so large that the aliased function (4.6.44)
is nearly equal to f . This sampling rate corresponds to ∆t = 8/32 = 1/4 and
W = 4.

The effect of aliasing in the frequency domain is evident. The error is signifi-
cant for frequencies larger than the critical frequencyW/2. To increase the accuracy
W can be increased by decreasing the sampling interval ∆x; see Figure 4.6.4

Review Questions

7.1. Derive the orthogonality properties and coefficient formulas which are funda-
mental to Fourier analysis, for both the continuous and the discrete case.

7.2. Give sufficient conditions for the Fourier series of the function f to be every-
where convergent to f . To what value will the Fourier series converge at a
point x = a of discontinuity of f?

7.3. How can the Fourier expansion be generaized to a function f(x, y) of two
variables?

7.4. Give two ways in which a real function f defined on the interval [0, π] can be
extended to a periodic function.

(b) What disadvantage (for Fourier analysis) is incurred if the periodic con-
tinuation has a discontinuity—for example, in its derivative at the end points
of 80, π9?

7.5. Describe how the behavior of the coefficients of the discrete Fourier expansion
can be modified to improve the approximation of the corresponding continuous
Fourier expansion.

7.6. Formulate the Fourier integral theorem.

7.7. What is meant by aliasing, when approximating the Fourier transform by a
discrete transform..



“dqbjV
2007/5/28
page 503

Problems and Computer Exercises 503

Problems and Computer Exercises

7.1. Give a simple characterization of the functions which have a sine expansion
containing odd terms only.

7.2. Let f be an even function, with period 2π, such that

f(x) = π − x, 0 ≤ x ≤ π.

(a) Plot the function y = f(x) for −3π ≤ x ≤ 3π. Expand f in a Fourier
series.

(b) Use this series to show that 1 + 3−2 + 5−2 + 7−2 + · · · = π2/8.

(c) Compute the sum 1 + 2−2 + 3−2 + 4−2 + 5−2 + · · ·.
(d) Compute, using (4.6.9), the sum 1 + 3−4 + 5−4 + 7−4 + · · ·.
(e) Differentiate the Fourier series term by term, and compare with the result
for the rectangular wave in Sec. 4.6.1.

7.3. (a) Show that the function G1(t) = t− 1/2, 0 < t < 1, has the expansion

G1(t) = −
∞∑

n=1

sin 2nπt

nπ
.

(b) Let G1(t) be as in (a) and consider a sequence of functions such that
G′
p+1(t) = Gp(t), p = 1, 2, . . .. Derive by term-wise integration, the expansion

for the functions Gp(t), and show that cp − Gp(t) has the same sign as cp.
Show also that for p even

∞∑

n=1

n−p =
1

2
|cp|(2π)p.

7.4. (a) Using that sinx is the imaginary part of eix, prove that

N−1∑

k=1

sin
πk

N
= cot

π

2N
.

(b) Determine a sine polynomial
∑n−1

j=1 bj sin jx, which takes on the value 1 at
the points xk = πk/n, k = 1 : n− 1.

Hint: Use (4.6.26) or recall that the sine polynomial is an odd function.

(c) Compare the limiting value for bj as n → ∞ with the result in Exam-
ple 4.6.1.

7.5. (a) Prove the inequality in (4.6.10).

(b) Show, under the assumptions on f which hold in (4.6.10), that, for k ≥ 1,
f can be approximated by a trigonometric polynomial such that

∥
∥
∥f −

n∑

j=−n
cje

ijx
∥
∥
∥
∞
<

2

knk
‖f (k+1)‖∞.
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7.6. (a) Fourier approximations to the rectangular wave, f(x) = 1, 0 < x < π,
f(x) = −1, −π < x < 0, are shown in Figure 4.6.2 for 1, 2, 5 and 10 terms.
Plot and compare the corresponding smoothed approximations when the σ-
factors in (4.6.15) have been applied.

(b) The delta function δ(x) is defined as being zero everywhere, except between
the limits ±ǫ, where ǫ tends to zero. At x = 0 the function goes to infinity
in such a way that the area under the function equals 1. The formal Fourier
expansion of δ(x) yields

f(x) =
1

π

(
1
2 + cosx+ cos 2x+ cos 3x+ · · ·

)
,

which does not converge anywhere. If the σ-factors in (4.6.15) are applied, we
obtain the expansion

ym(x) =
1

π

(
1
2 + σ1 cosx+ σ2 cos 2x+ · · · + σm−1 cos(m− 1)x

)
. (4.6.46)

which can be considered the trigonometric representation of the delta function.
Plot ym(x), −6 ≤ x ≤ 6, for several values of m.

7.7. (a) Consider a real function with the Fourier expansion

F (φ) =

∞∑

n=−∞
cne

inφ.

Show that this rewritten for convergence acceleration with the generalized
Euler’s method as

F (φ) = c0 + 2ℜ
∞∑

n=1

cnz
n, z = eiφ.

Hint: Show that c−n = c̄n.

(b) Set cn = an − ibn, where an, bn are real. Show that

∞∑

n=0

(an cosnφ+ bn sinnφ) = ℜ
∞∑

n=0

cnz
n.

(c) How would you rewrite the Chebyshev series
∑∞

n=0 Tn(x)/(1 + n2)?

(d) Consider also how to handle a complex function F (φ).

In the following problems, we do not require any investigation of whether it is
permissible to change the order of summations, integrations, differentiations;
it is sufficient to treat the problems in a purely formal way.

7.8. The partial differential equation
∂u

∂t
=
∂2u

∂x2
is called the heat equation. Show

that the function

u(x, t) =
4

π

∞∑

k=0

sin(2k + 1)x

2k + 1
e−(2k+1)2t,
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satisfies the differential equation for t > 0, 0 < x < π, with boundary con-
ditions u(0, t) = u(π, t) = 0 for t > 0, and initial condition u(x, 0) = 1 for
0 < x < π (see Example 4.6.1.)

7.9. Show that if g(t) is the Fourier transform of f(x), then

(a) e2πktg(t) is the Fourier transform of f(x+ k).

(b) (2πit)kg(t) is the Fourier transform of f (k)(x), assuming that f(x) and its
derivatives up to the kth order tend to zero, as x→ ∞.

7.10. The correlation of f1(x) and f2(x) is defined by

c(ξ) =

∫ ∞

−∞
f1(x+ ξ)f2(x) dx. (4.6.47)

Show that if f1(x) and f2(x) have Fourier transforms g1(t) and g2(t), respec-
tively, then the Fourier transform of c(ξ) is h(t) = g1(t)g2(−t).
Hint: Compare Theorem 4.6.6.

7.11. (a) Work out the details of the proof of the Sampling Theorem.

(b) The formulation of the Sampling Theorem with a generalW in Strang [303]
does not agree with ours in (4.6.39). Who is right?

7.12. Suppose that f(z) satisfies the assumptions of our treatment of the sampling
theorem for W = π/h. Show by integration term by term that

lim
R→∞

∫ R

−R
f(u) du = h lim

n→∞

n∑

j=−n
f(jh).

Hint: Use the classical formula
∫ ∞

−∞

sinx

x
dx = π.

Full rigor is not necessary.

4.7 The Fast Fourier Transform

4.7.1 The Fast Fourier Algorithm

Consider the Discrete Fourier Transform (DFT)

f(x) =

N−1∑

j=0

cje
ijx,

of a function, whose values f(xk) are known at the grid points xk = 2πk/N , k =
0 : N − 1. According to Theorem 4.6.4 the coefficients are given by

cj =
1

N

N−1∑

k=0

f(xk)e
−ijxk , j = 0 : N − 1. (4.7.1)
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The evaluation of expressions of the form (4.7.1) occur also in discrete approxima-
tions to the Fourier transform.

Setting ωN = e−2πi/N this becomes

cj =
1

N

N−1∑

k=0

ωjkN f(xk), j = 0 : N − 1. (4.7.2)

where ωN is an Nth root of unity, (ωN )N = 1. It seems from (4.7.2) that computing
the discrete Fourier coefficients would require N2 complex multiplications and addi-
tions. As we shall see, only about N log2N complex multiplications and additions
are required using an algorithm called the Fast Fourier Transform (FFT).

The modern usage of FFT started in 1965 with the publication of [70] by
James W. Cooley of IBM Research and John W. Tukey, Princeton University.166

However, similar ideas were used already by Gauss [127] and are also discussed (in
disguised form) in the textbook by Runge and König [274] and by Danielson and
Lanczos [81].

In many areas of application (digital signal and image processing, time-series
analysis, to name a few) the FFT has caused a complete change of attitude to-
ward what can be done using discrete Fourier methods. Without the FFT many
modern devices like cell phones, digital cameras, CAT scans and DVDs would not
be possible! Some applications considered in astronomy require FFTs of several
gigapoints.

In the following we will use the common convention not to scale the sum in
(4.7.2) by 1/N .

Definition 4.7.1.
The Discrete Fourier Transform (DFT) of the vector f ∈ CN is

y = FNf. (4.7.3)

where Fn ∈ CN×N is the DFT matrix with elements

(FN )jk = ωjkN , j, k = 0 : N − 1, (4.7.4)

where ωN = e−2πi/N .167

From the definition it follows that the DFT matrix FN is a complex Vander-
monde matrix. Since ωjkN = ωkjN , FN is symmetric. By Theorem 4.6.4

1

N
FHN FN = I,

166Tukey came up with the basic algorithm at a meeting of President Kennedy’s Science Advisory
Committee. One problem discussed at this meeting was that the ratification of a US–Sovjet Union
nuclear test ban depended on a fast method to detect nuclear tests by analyzing seismological
time-series data.
167Some authors set ωN = e2πi/N . Which convention is used does not much affect the develop-

ment.
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where FHN is the complex conjugate transpose of FN . Hence the matrix 1√
N
FN is a

unitary matrix and the inverse transform can be written

f =
1

N
FHN y.

We now describe the central idea of the FFT algorithm, which is based on the
divide-and-conquer strategy (see Sec. 1.2.3). Assume that N = 2p and set

k =

{
2k1, if k is even,
2k1 + 1 if k is odd,

, 0 ≤ k1 ≤ m− 1.

where m = N/2 = 2p−1. Split the DFT sum in an even and an odd part

yj =

m−1∑

k1=0

(ω2
N )jk1f2k1 + ωjN

m−1∑

k1=0

(ω2
N )jk1f2k1+1, j = 0 : N − 1,

Let β be the quotient and j1 the remainder when j is divided by m, i.e. j = βm+j1.
Then, since ωNN = 1,

(ω2
N )jk1 = (ω2

N )βmk1(ω2
N )j1k1 = (ωNN )βk1(ω2

N )j1k1 = ωj1k1m .

Thus if, for j1 = 0 : m− 1, we set

φj1 =

m−1∑

k1=0

f2k1ω
j1k1
m , ψj1 =

m−1∑

k1=0

f2k1+1ω
j1k1
m , (4.7.5)

then, yj = φj1 + ωjNψj1 . The two sums on the right are elements of the DFTs of
length N/2 applied to the parts of f with odd and even subscripts. The entire DFT
of length N is obtained by combining these two DFTs! Since ωmN = −1, we have

yj1 = φj1 + ωj1Nψj1 , (4.7.6)

yj1+N/2 = φj1 − ωj1Nψj1 , j1 = 0 : N/2 − 1. (4.7.7)

These expressions, noted already by Danielson and Lanczos [81], are often called
butterfly relations because of the data flow pattern. Note that these can be
performed in place, i.e. no extra vector storage is needed.

The computation of φj1 and ψj1 means that one does two Fourier transforms
with m = N/2 terms instead of one with N terms. If N/2 is even the same idea can
be applied to these two Fourier transforms. One then gets four Fourier transforms,
each of with has N/4 terms; If N = 2p this reduction can be continued recursively
until we get N DFTs with 1 term. But F1 = I, the identity. A recursive Matlab

implementation of the FFT algorithm is given in Problem 4.8.2.
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Example 4.7.1.
For n = 22 = 4, we have ω4 = e−πi/2 = −i, and the DFT matrix is

F4 =







1 1 1 1
1 −i (−i)2 (−i)3
1 (−i)2 (−i)4 (−i)6
1 (−i)3 (−i)6 (−i)9







=







1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i






. (4.7.8)

It is symmetric and its inverse is

F−1
4 =

1

4







1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i






.

The number of complex operations (one multiplication and one addition) re-
quired to compute {yj} from the butterfly relations when {φj1} and {ψj1} have
been computed is 2p, assuming that the powers of ω are precomputed and stored.
Thus, if we denote by qp the total number of operations needed to compute the
DFT when N = 2p, we have

qp ≤ 2qp−1 + 2p, p ≥ 1.

Since q0 = 0, it follows by induction that qp ≤ p · 2p = N · log2N . Hence, when
N is a power of two, the fast Fourier transform solves the problem with at most
N · log2N operations.

For example, when N = 220 = 1 048 576 the FFT algorithm is theoretically
a factor of 84 000 faster than the “conventional” O(N2) algorithm. On a 3 GHz
laptop, a real FFT of this size takes about 0.1 second using Matlab 6, whereas
more than 2 hours would be required by the conventional algorithm! The FFT not
only uses fewer operations to evaluate the DFT, it also is more accurate. Whereas
using the conventional method the roundoff error is proportional to N , for the FFT
algorithm it is proportional to log2N .

Example 4.7.2.
Let N = 24 = 16. Then the 16-point DFT (0:1:15) can be split into two

8-points DFTs (0:2:14) and (1:2:15) which each can be split in two 4-point DFTs.
Repeating these splittings we finally get 16 one-point DFTs which are the identity
F1 = 1; The structure of this FFT is illustrated below.

[ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ]

ւց

[ 0 2 4 6 8 10 12 14 ]

ւց
[ 1 3 5 7 9 11 13 ]

ւց
[ 0 4 8 12 ]

ւց
[ 2 6 10 14 ]

ւց
[ 1 5 9 13 ]

ւց
[ 3 7 11 15 ]

ւց
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[ 0 8 ]

ւց
[ 4 12 ]

ւց
[ 2 10 ]

ւց
[ 6 14 ]

ւց
[ 1 9 ]

ւց
[ 5 13 ]

ւց
[ 3 11 ]

ւց
[ 7 15 ]

ւց

[0] [8] [4] [12] [2] [10] [6] [14] [1] [9] [5] [13] [3] [11] [7] [15]

In most implementations the explicit recursion is avoided. Instead the FFT
algorithm is implemented in two stages:

• a reordering stage in which the data vector f is permuted;

• a second stage in which first N/2 FFT transforms of length 2 are computed on
adjacent elements, next N/4 transforms of length 4, etc, until the final result
is obtained by merging two FFTs of length N/2.

We now consider each stage in turn.
Each step of the recursion involves an even-odd permutation. In the first step

the points with last binary digit equal to 0 are ordered first and those with last
digit equal to 1 last. In the next step the two resulting subsequences of length N/2
are reordered according to the second binary digit, etc. It is not difficult to see that
the combined effect of the reordering in stage 1 is a bit-reversal permutation of
the data points. For i = 0 : N − 1, let the index i have the binary expansion

i = b0 + b1 · 2 + · · · + bt−1 · 2t−1

and set
r(i) = bt−1 + · · · + b1 · 2t−2 + b0 · 2t−1.

That is, r(i) is the index obtained by reversing the order of the binary digits. If
i < r(i) then exchange fi and fr(i). This reordering is illustrated for N = 16 below.

Decimal Binary
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001

10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

=⇒

Decimal Binary
0 0000
8 1000
4 0100

12 1100
2 0010

10 1010
6 0110

14 1110
1 0001
9 1001
5 0101

13 1101
3 0011

11 1011
7 0111

15 1111
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We denote the permutation matrix performing the bit-reversal ordering by
PN . Note that if an index is reversed twice we end up with the original index. This
means that

P−1
N = PTN = PN ,

i.e. PN is symmetric. The permutation can be carried out “in place” by a sequence
of pairwise interchanges or transpositions of the data points. For example, for N =
16 the pairs (1,8), (2,4), (3,12), (5,10), (7,14) and (11,13) are interchanged. The
bit-reversal permutation can take a substantial fraction of the total time to do the
FFT. Which implementation is best depends strongly on the computer architecture.

We now consider the second stage of the FFT. The key observation to develop
a matrix-oriented description of this stage is to note that the Fourier matrices FN
after an odd-even permutation of the columns can be expressed as a 2 × 2 block
matrix, where each block is either FN/2 or a diagonal scaling of FN/2.

Theorem 4.7.2 ((Van Loan [324, Theorem1.2.1])).

Let ΠT
N be the permutation matrix which applied to a vector groups the even-

indexed components first and the odd-indexed last.168 If N = 2m then

FNΠN =

(
Fm ΩmFm
Fm −ΩmFm

)

=

(
Im Ωm
Im −Ωm

)(
Fm 0
0 Fm

)

,

Ωm = diag (1, ωN , . . . , ω
m−1
N ), ωN = e−2πi/N . (4.7.9)

Proof. The proof essentially follows from the derivation of the butterfly relations
(4.7.6)–(4.7.7).

Example 4.7.3.
We illustrate Theorem 4.7.2 for N = 22 = 4. The DFT matrix F4 is given in

Example 4.7.1. After a permutation of the columns F4 can be written as a 2 × 2
block-matrix

F4Π
T
4 =







1 1 1 1
1 −1 −i i
1 1 −1 −1
1 −1 i −i







=

(
F2 Ω2F2

F2 −Ω2F2

)

,

where

F2 =

(
1 1
1 −1

)

, Ω2 = diag (1,−i).

When N = 2p the FFT algorithm can be interpreted as a sparse factorization
of the DFT matrix

FN = Ak · · ·A2A1PN , (4.7.10)

168Note that ΠT
N = Π−1

N is the so called perfect shuffle permutation. In this the permuted

vector ΠT
N f is obtained by splitting f in half and then “shuffling” the top and bottom halves.
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where PN is the bit-reversal permutation matrix and A1, . . . , Ak are block-diagonal
matrices,

Aq = diag (BL, . . . , BL
︸ ︷︷ ︸

r

), L = 2q, r = N/L. (4.7.11)

Here the matrix Bk ∈ CL×L is the radix-2 butterfly matrix defined by

BL =

(
IL/2 ΩL/2
IL/2 −ΩL/2

)

, (4.7.12)

ΩL/2 = diag (1, ωL, . . . , ω
L/2−1
L ), ωL = e−2πi/L. (4.7.13)

The FFT algorithm described above is usually referred to as the Cooley–Tukey
FFT algorithm. Using the fact that both the bit-reversal matrix PN and the DFT
matrix Fn are symmetric, we obtain by transposing (4.7.10) the factorization

FN = FTN = PNA
T
1 A

T
2 · · ·ATk . (4.7.14)

This gives rise to a “dual” FFT algorithm, referred to as the Gentleman–Sande
algorithm [143]. In this the bit-reversal permutation comes after the other com-
putations. In many important applications, such as convolution and the solution
of discretized Poisson equation (see Sec. 1.1.5), this permits the design of in-place
FFT solutions that avoid bit-reversal altogether; see Van Loan [324, Secs. 4.1, 4.5].

In the operation count for the FFT above we assumed that the weights ωjL,
j = 1 : L− 1, ωL = e−2πi/L are precomputed. To do this one could use that

ωjL = cos(jθ) − i sin(jθ), θ = 2π/L.

for L = 2q, q = 2 : k. This is accurate, but expensive, since it involves L − 1
trigonometric functions calls. An alternative is to compute ω = cos(θ) − i sin(θ)
and use repeated multiplication,

ωj = ωωj−1, j = 2 : L− 1.

This replaces one sine/cosine call with a single complex multiplication, but has the
drawback that accumulation of roundoff errors will give an error in ωjL of order ju.

4.7.2 Discrete Convolution by FFT

The most important operation in signal processing is computing the discrete version
of the convolution operator. This awkward operation in the time domain becomes
very simple in the frequency domain.

Definition 4.7.3.
Given two sequences fi and gi, i = 0 : N − 1. Then the convolution of f and

g, denoted by conv (f, g), is h = (h0, h1, . . . , hN−1)
T , where

hk =

N−1∑

i=0

figk−i, k = 0 : N − 1, (4.7.15)
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where the sequences are extended to have period N , by setting fi = fi+jN , gi =
gi+jN , for all integers i, j.

The discrete convolution can be used to approximate the convolution defined
for continuous functions in Definition 4.6.5 in a similar way as the Fourier transform
was approximated using sampled values in Sec. 4.6.6.

We can write the sum in (4.7.15) as a matrix-vector multiplication h = Gf ,
where G is a Toeplitz matrix. Writing out components we have









h0

h1

h2
...

hN−1









=









g0 gN−1 gN−2 · · · g1
g1 g0 gN−1 · · · g2
g2 g1 g0 · · · g3
...

...
... · · ·

gN−1 gN−2 gN−3 · · · g0

















f0
f1
f2
...

fN−1









.

Note that each column in G is a cyclic down-shifted version of the previous column.
Such a matrix is called a circulant matrix. We have

G = [ g CNg · · · CN−1
N g ] = g0I + g1CN + · · · + gN−1C

N−1
N . (4.7.16)

and CN is the circulant permutation matrix,

CN =










0 · · · 1
1

1
...

...
. . .

0 · · · 1 0










(4.7.17)

The following result is easily verified.

Lemma 4.7.4.
The eigenvalues of the circulant matrix CN in (4.7.17) are

ωj = e−2πj/N , j = 0 : N − 1,

where ω is an N roots of unity, i.e. ωN = 1. The columns of the DFT matrix FN

xj = (1, ωj, . . . , ω
N−1
j )T , j = 0 : N − 1.

are eigenvectors.

Since the matrix G in (4.7.16) is a polynomial in CN it has the same set of
eigenvectors and thus G is diagonalized by the DFT matrix FN ,

G = FNΛF−1
N , Λ = diag (λ1, . . . , λn), (4.7.18)

where the eigenvalues of G are

λi = (1, ωj , . . . , ω
N−1
j )g, j = 0 : N − 1,

which is the FFT of the first column in G, Hence Λ = diag (FNg), where diag (x)
denotes a diagonal matrix with diagonal elements equal to the elements in the
vector x.
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Theorem 4.7.5.
Let fi and gi, i = 0 : N − 1 be two sequences with DFTs equal to FNf and

FNg. Then the DFT of the convolution of f and g, is FNf. ∗FNg (.∗ denotes the
elementwise product).

Proof. From G = F−1
N diag (FNg)FN it follows that

h = Gf = F−1
N diag (FNg)FNf = F−1

N ((FNg). ∗ (FNf)). (4.7.19)

This shows that using the FFT algorithm the discrete convolution can be
computed in O(N log2N) operations as follows: First the two FFTs of f and g
are computed and multiplied (pointwise) together. Then the inverse DFT of this
product is computed. This is one of the most useful properties of the FFT!

Using the Gentleman–Sande algorithm FN = PNA
T for the forward DFT and

the Cooley–Tukey algorithm FN = APN for the inverse DFT,

F−1
N =

1

N
FHN =

1

N
ĀPN ,

we get from (4.7.19)

h =
1

N
ĀPN ((PNA

T f). ∗ (PNA
T g)) =

1

N
Ā((AT f). ∗ (AT g)). (4.7.20)

This shows that h can be computed without the bit-reversal permutation PN which
typically can save 10–30 percent of the overall computation time.

4.7.3 FFTs of Real Data

Frequently the FFT of a real data vector is required. The complex FFT algorithm
can still be used, but is inefficient both in terms of storage and operations. By using
symmetries in the DFT, which correspond to the symmetries noted in the Fourier
transform in Table 4.6.1, better alternatives can be found.

Consider the DFT matrix for N = 4 in (4.7.8). Note that the fourth row is
the conjugate of the second row. This is not a coincidence; the conjugate transpose
of the DFT matrix FN can be obtained by reversing the order of the last N − 1
rows. Let TN be the N × N permutation matrix obtained by reversing the last
N − 1 columns in the unit matrix IN . For example,

T4 =






1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0




 .

Then it holds that

FHN = FN = TNFN = FNTN . (4.7.21)
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We first verify that FN = TNFN , by observing that

[TNFN ]jk = ω
(N−j)k
N = ω−jk

N = ωjkN = [FN ]jk, 1 ≤ j ≤ N − 1.

Since FN and TN are both symmetric, we also have FHN = (TNFN )T = FNTN .
We say that a vector y ∈ CN is conjugate even if y = TNy, and conjugate

odd if y = −TNy. Suppose now that f is real and u = FNf . Then it follows that

u = FNf = TNFNf = TNu,

i.e. u is conjugate even. If a vector u of even length N is conjugate even, this
implies that

uj = uN−j, j = 1 : N/2.

In particular uj is real for j = 0, N/2.
For purely imaginary data g and v = FNg, we have

v = FHN g = −FHN g = −TNFNg = −TNv,

i.e. v is conjugate odd. Some other useful symmetry properties are given in Ta-
ble 4.7.1. We have proved the first two properties; the other are established similarly
and we leave the proofs to the reader; see Problem 4.8.4.

Table 4.7.1. Useful symmetry properties of the discrete Fourier transform.

Data f Definition DFT FNf

real conjugate even

imaginary conjugate odd

real even f = TNf real

real odd f = −TNf imaginary

conjugate even f = TNf real

conjugate odd f = −TNf imaginary

We now outline how symmetries can be used to compute the DFTs u = FNf
and v = FNg of two real functions f and g simultaneously. First form the complex
function f + ig and compute its DFT

w = FN (f + ig) = u+ iv

by any complex FFT algorithm. Multiplying by TN we have

TNw = TNFN (f + ig) = TN (u+ iv) = u+ iv,

where we have used that u and v are conjugate even. Adding and subtracting these
two equations we obtain

w + TNw = (u+ u) + i(v + v),

w − TNw = (u− u) + i(v − v).
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We can now retrieve the two DFTs from

u = FNf =
1

2

[
Re(w + TNw) + i Im(w − TNw)

]
, (4.7.22)

v = FNg =
1

2

[
Im(w + TNw) − iRe(w − TNw)

]
. (4.7.23)

Note that because of the conjugate even property of u and v there is no need to
save the entire transforms.

The above scheme is convenient when, as for convolutions, two real transforms
are involved. It can also be used to efficiently compute the DFT of a single real
function of length N = 2p. First express this DFT as a combination of the two real
FFTs of length N/2 corresponding to even and odd numbered data points (see as
in (4.7.5)). Then apply the procedure above to simultaneously compute these two
real FFTs.

4.7.4 Fast Trigonometric Transforms

Two real transforms, the discrete sine transform (DST) and discrete cosine
transform (DCT), are of interest. There are several variations of these. We define

• Given real data fj, j = 1 : N − 1 compute

yk =

N−1∑

j=1

sin
(

kj
π

N

)

fj (DST-1). (4.7.24)

• Given real data fj, j = 0 : N compute

yk =

N
∑′′

j=0

cos
(

kj
π

N

)

fj (DCT-1). (4.7.25)

(The double prime on the sum means that the first and last term are to be halved.)
The real and imaginary parts of the DFT matrix FN consist of cosines and

sines, FN = CN − iSN , where

(CN )kj = cos

(

kj
2π

N

)

, (SN )kj = sin

(

kj
2π

N

)

, k, j = 0 : N − 1. (4.7.26)

The DST and DCT transforms can be expressed in matrix form as

y = S2N (1 : N − 1, 1 : N − 1)f, y = C2N (0 : N, 0 : N)f̃ ,

respectively, where f̄ = (1
2f0, f1, . . . , fN−1,

1
2fN )T .

These two transforms can be computed by applying the FFT algorithm (for
real data) to an auxiliary vector f̃ formed by extending the given data vector f
either into an odd or even sequence.
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For DST-1 the data fj , j = 1 : N−1, is extended to an odd sequence of length
2N by setting

f0 = fN = 0, f2N−j ≡ −fj, j = 1 : N − 1.

For example, the data f = {f1, f2, f3}, (N = 4) is extended to

f̃ = {0, f1, f2, f3, 0,−f3,−f2,−f1}.

The extended vector satisfies f̃ = −T2N f̃ , and thus by Table 4.7.1 the DFT of f̃
will be pure imaginary.

For DCT-1 the data fj, j = 0 : N is extended to an even sequence of length
2N by setting

f2N−j ≡ fj, j = 1 : N.

For example, the data f = {f0, f1, f2, f3, f4}, (N = 4) is extended to

f̃ = {f0, f1, f2, f3, f4, f3, f2, f1}.

so that f̃ = T2N f̃ . By Table 4.7.1 the DFT of f̃ will then be real.

Theorem 4.7.6 (Van Loan [324, Sec. 4.4]).

Let fj, j = 1 : N − 1 form a real data vector f and extend it to a vector f̃

with f̃0 = f̃N = 0, so that f̃ = −T2N f̃ . Then y(1 : N − 1) is the DST of f̃ , where

y = y(0 : 2N − 1) =
i

2
F2N f̃ .

Let fj, j = 0 : N form a real data vector f and extend it to an vector f̃ so

that f̃ = T2N f̃ . Then y(0 : N) is the DCT of f , where

y = y(0 : 2N − 1) =
1

2
F2N f̃ .

There is an inefficiency factor of two in the above procedure. This can be
eliminated by using a different auxiliary vector. For details we refer to [263, p. 420–
421] and [324, Sec. 4.4].

In some application areas variants of the above transforms called DST-2 and
DCT-2 turn out to be more useful. We define

• Given real data fj , j = 1 : N compute

yk =

N∑

j=1

sin
(

k(2j − 1)
π

2N

)

fj (DST-2). (4.7.27)

• Given real data fj , j = 0 : N − 1 compute

yk =
N−1∑

j=0

cos
(

k(2j + 1)
π

2N

)

fj (DCT-2). (4.7.28)
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The DST-2 and DCT-2 transforms can also be obtained by extending the data
vector f .

For DST-2 the data vector fj, j = 0 : N − 1, is extended to an odd sequence
of length 2N . For example, the data {f1, f2, f3, f4}, (N = 4) is extended to

f̃ = {f1, f2, f3, f4,−f4,−f3,−f2,−f1}.

The extended vector satisfies f = −T2Nf , and thus by Table 4.7.1 the DFT of f
will be imaginary.

For DCT-2 the data fj , j = 0 : N is extended to an even sequence of length
2N . For example, the data {f0, f1, f2, f3}, (N = 4) is extended to

f̃ = {f0, f1, f2, f3, f3, f2, f1, f0}.

so that f = T2Nf . By Table 4.7.1 the DFT of f will then be real.
We give without proof the following result, which allows the computation of

DST-2 and DCT-2 from the FFT.

Theorem 4.7.7.
Let fj, j = 1 : N form a real data vector f and extend it to a vector f̃ , so that

f̃ = −T2N f̃ . Then y(1 : N) is the DST-2 of f , where

y = y(0 : 2N − 1) =
i

2
Ω2NF2N f̃ ,

where
Ω2N = diag (1, ω4N . . . . , ω

2N
4N ).

Let fj, j = 0 : N − 1 form a real data vector f and extend it to a vector f̃ so

that f̃ = T2N f̃ . Then y(0 : N − 1) is the DCT-2 of f , where

y = y(0 : 2N − 1) =
1

2
Ω2NF2N f̃ .

The two-dimensional DCT-2 transform has the property that, for a visual
image, most of the information is concentrated in the first few coefficients of the
DCT. For this reason the DCT-2 transform is often used in image compression
algorithms.169

4.7.5 The General Case FFT

It can be argued ([263, p. 409]) that one should always chooseN = 2k when using the
FFT. If necessary the data can be padded with zeros to achieve this. To introduce
an odd factor s, let N = sr, where r is a power of two. Then one can combine the
power of two algorithm for the r-point subseries with a special algorithm for the

169This transform is used in the JPEG (Joint Photographic Experts Group) compression algo-
rithm for image processing. Each 8 × 8 block in the image is transformed by a two-dimensional
DCT-2 transform; see Strang [304].
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s-point subseries. If s is a small number then one could generate the DFT matrix
Fs and use matrix-vector multiplication; (cf. the code given in Problem 4.8.2). But
the general case when N is not a power of two, is at least of theoretical interest.

Suppose that N = r1r2 · · · rp. We will describe an FFT algorithm which
requires N(r1 + r2 + · · · + rp) complex operations. Set

Nν =

p
∏

i=ν+1

ri, ν = 0 : p− 1, Np = 1.

Thus
N = r1r2 · · · rνNν , N0 = N.

The algorithm is based on two representations of integers which are generalizations
of the position principle (see Sec. 2.2.1).

I. Every integer j, 0 ≤ j ≤ N − 1 has a unique representation of the form

j = α1N1 + α2N2 + · · · + αp−1Np−1 + αp, 0 ≤ αi ≤ ri − 1. (4.7.29)

II. For every integer β, 0 ≤ β ≤ N − 1, β/N has a unique representation of the
form

β

N
=

k1

N0
+
k2

N1
+ · · · + kp

Np−1
, 0 ≤ ki ≤ ri − 1. (4.7.30)

Set

jν =

p
∑

i=ν+1

αiNi,
αν
Nν

=

p−1
∑

i=ν

ki+1

Ni
, (jν < Nν). (4.7.31)

As an exercise, the reader can verify that the coefficients in the above representations
can be recursively determined from the following algorithms: 170

j0 = j, ji−1/Ni = αi + ji/Ni, i = 1 : p;

β0 = β, βi−1/ri = βi + ki/ri, i = 1 : p.

From (4.7.29)–(4.7.31), it follows that, since Ni is divisible by Nν for i ≤ ν,

jβ

N
= integer +

p−1
∑

ν=0

kν+1

Nν

( p
∑

i=ν+1

αiNi

)

=

p−1
∑

ν=0

kν+1jν
Nν

+ integer.

From this, it follows that

ωjβ = e2πijβ/N =

p−1
∏

ν=0

ekν+1jν2πi/Nν =

p−1
∏

ν=0

ωjνkν+1
ν , (4.7.32)

where ων = e2πi/Nν , ω0 = ω.

170These algorithms can, in the special case that ri = B for all i, be used for converting integers
or fractions to the number system whose base is B; see Algorithm 2.2.1.
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A split-radix approach for the general case FFT, which has a lower operation
count, is described in Van Loan-[324, Sec. 2.1.4].

We now give an illustration of how the factorization in (4.7.32) can be utilized
in fast Fourier transform for the case p = 3. Set, in accordance with (4.7.30),

fβ = c(0)(k1, k2, k3).

We have then

cj =

N−1∑

β=0

fβω
jβ =

r1−1∑

k1=0

r2−1∑

k2=0

r3−1∑

k3=0

c(0)(k1, k2, k3)ω
j2k3
2 ωj1k21 ωjk1 .

One can thus compute successively (see (4.7.31))

c(1)(k1, k2, α3) =

r3−1∑

k3=0

c(0)(k1, k2, k3)ω
j2k3
2 (j2 depends only on α3),

c(2)(k1, α2, α3) =

r2−1∑

k2=0

c(1)(k1, k2, α3)ω
j1k2
1 (j1 depends only on α2, α3),

cj = c(3)(α1, α2, α3) =

r1−1∑

k1=0

c(2)(k1, α2, α3)ω
jk1 (j depends on α1, α2, α3).

The quantities c(i) are computed for all r1r2r3 = N combinations of the values of
the arguments. Thus the total number of operations for the entire Fourier analysis
becomes at most N(r3 + r2 + r1). The generalization to arbitrary p is obvious.

Review Questions

8.1. Suppose we want to compute the DFT for N = 210. Roughly how much faster
is the FFT algorithm compared to the straightforward O(N2) algorithm?

8.2. Show that the matrix U = 1√
N
FN is unitary, i.e. UHU = I, where UH =

(U)T .

8.3. Show that the DFT matrix F4 can be written as a 2 × 2 block matrix where
each block is related to F2. Give a generalization of this for FN , N = 2m, that
holds for arbitrary m..

8.4. Work out, on your own, the bit-reversal permutation of the vector [0 : N − 1]
for the case N = 24 = 16. How many exchanges need to be performed?

Problems and Computer Exercises

8.1. The following Matlab script uses an algorithm due to Cooley et al. to per-
mute the vector x(1 : 2m), in bit-reversal order:
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n = 2^m;

nv2 = n/2; nm1 = n - 1;

j = 1;

for i = 1:nm1

if i < j

t = x(j); x(j) = x(i); x(i) = t;

end

k = nv2;

while k < j

j = j - k; k = k/2;

end

j = j + k;

end

Plot the time taken by this algorithm on your computer for m = 5 : 10. Does
the execution time depend linearly on N = 2m?

8.2. The following Matlab program (C. Moler and S. Eddins [239]) demonstrates
how the FFT idea can be implemented in a simple but efficient recursive
Matlab program. The program uses the fast recursion as long as n is a
power of two. When it reaches an odd length it sets up the Fourier matrix
and uses matrix vector multiplication.

function y = fftx(x);

% FFT computes the Fast Fourier Transform of x(1:n)

x = x(:);

n = length(x);

omega = exp(-2*pi*i/n);

if rem(n,2) == 0

% Recursive divide and conquer

k = (0:n/2-1)

w = omega.^k;

u = fftx(x(1:2:n-1));

v = w.*fftx(x(2:2:n));

y = [u+v; u-v];

else

% Generate the Fourier matrix

j = 0:n-1;

k = j’;

F = omega.^(k*j);

y = F*x;

end

Apply this program to compute DFT of the rectangular wave in Sec. 4.6.1.
sampled at the points 2πα/N , α = 0 : N − 1. Choose, for instance, N =
32, 64, 128.

8.3. Write an efficient Matlab program for computing the DFT of a real data vector
of length N = 2m. As outlined in Sec. 4.7.3, first split the data in odd and even
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data points. Compute the corresponding DFTs using one call of the function
fftx in Problem 4.8.2 with complex data of length N/2.

8.4. Verify the last four symmetry properties of DFTs in Table 4.7.1.

Notes and Further Reading

Our notation [x1, . . . , xk]f for the divided difference agrees with that in de Boor [33].
A modern treatment where divided differences are considered as linear functionals
on some vector space of functions is given by de Boor [34]. A treatment of in-
terpolation on complex nodes is found in Gelfond [140, Sec. 1.4.3] and Horn and
Johnson [184, Sec. 6.1].

The problem of choosing a good orderings of points in Newton and Lagrange
interpolations is discussed in [328]. Newton interpolation using the Leja ordering
of points has been analyzed by Reichel [266]. The barycentric form of Lagrange’s
interpolation formula found in German literature never seems to have caught on
elsewhere. Berrut and Trefethen [22] argue convincingly that this should be the
standard method of polynomial interpolation.

Uniform methods of solving linear problems and computing the inverse of a
Vandermonde matrix have been studied by Traub [316]. The algorithm given in
the text is due to Higham [180, Sec. 22.1]. The O(n2) algorithm for solving primal
Vandermonde systems described in Sec. 4.2.4 is due to Björck and Pereyra [27]. It
has been generalized to yield fast algorithm for Vandermonde-like matrices defined
by V = (vij) = ((pi(xj)), where pi is a polynomial of degree n that satisfies a three-
term recurrence relation; see Higham [180, Sec. 22.2]. Also so called Cauchy linear
systems can be solved with a Björck–Pereyra-type algorithm; see Boros, Kailath
and Olshevsky [36].

The reciprocal differences of Thiele are treated by Milne-Thomson [236], who
also present expressions for the truncaton error. The ρ-algorithm for convergence
acceleration is due to Wynn [341].

The computational advantage of the Stieltjes approach for discrete least squares
fitting was pointed out by Forsythe [110, ]. Shampine [286, ] established
the advantage in using the alternative formula involving the residual rk.

A good reference for multivariate interpolation is Steffensen [295, § 19]; see also
Isaacson and Keller [187, Sec. . 6.6]. For a more practical introduction the survey by
Hayes [172] is still very good. The history of multivariate interpolation is surveyed
in [125].

The survey paper [24] gives a good summary of the work done by Garret
Birkhoff on interpolation and approximation of univariate and bivariate data. The
book A Practical Guide to Splines [33] by de Boor also has done much to further the
use of B-splines in geometric constructions. It contains a clear outline of the theory
and also a library of Fortran programs for computations with spline functions.
Several packages are available for computing with splines, e.g., the spline toolbox
in Matlab and FITPACK by Dierckx [87]–[88]. A more geometric view of splines
is taken in Farin [105].

The series named after Fourier was well established by the work of J. Bernoulli,



“dqbjV
2007/5/28
page 522

522 Chapter 4. Interpolation and Approximation

Euler and Lagrange, before the time of Fourier. The Fourier integral is, however,
the undisputed discovery of Fourier. An very readable introduction to Harmonic
Analysis is given in Lanczos [209, Chapter IV]. The Gibbs’ oscillations can be sup-
pressed also using the epsilon algorithm. For this purpose one adds the conjugate
Fourier series, applies the epsilon algorithm and keeps only the real part of the
result.

The FFT algorithm algorithm has been discovered independently by several
people. Indeed the idea was published in a paper by Gauss and the doubling
algorithm is contained in a textbook by Runge and König [274]. The modern usage
of FFT started in 1965 with the publication of the papers [70, 69] by James W.
Cooley of IBM Research and John W. Tukey, Princeton University. The re-discovery
of the FFT algorithm is surveyed by James W. Cooley in [68]. Applications are
surveyed in [52] and [51]. The matrix-oriented framework for the FFT used in this
book is due to Van Loan [324]. An early implementation of the FFT is given by
Singleton [289, 290]. For a roundoff error analysis of the FFT see [8]. Algorithms
for bit-reversal permutations are reviewed in [198].
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Numerical Integration

5.1 Interpolatory Quadrature Rules

5.1.1 Introduction

In this chapter we study the approximate calculation of a definite integral

I[f ] =

∫ b

a

f(x) dx. (5.1.1)

where f(x) is a given function and [a, b] a finite interval. This problem is often called
numerical quadrature, since it relates to the ancient problem of the quadrature
of the circle, i.e. constructing a square with equal area to that of a circle. The
computation of (5.1.1) is equivalent to solving the initial value problem

y′(x) = f(x), y(a) = 0, x ∈ [a, b], (5.1.2)

for y(b) = I[f ]; cf. Sec. 1.4.
As is well known, even many relatively simple integrals cannot be expressed

in finite terms of elementary functions, and thus must be evaluated by numerical
methods. (For a table of integrals that have closed analytical solutions, see [157].)
Even when a closed form analytical solution exists it may be preferable to use a
numerical quadrature formula.

Since I[f ] is a linear functional numerical integration is a special case of the
problem of approximating a linear functional studied in Sec. 3.3.4. The quadrature
rules considered will be of the form

I[f ] ≈
n∑

i=1

wif(xi), (5.1.3)

where x1 < x2 < · · · < xn are distinct nodes and w1, w2, . . . , wn the corresponding
weights. Often (but not always) all nodes lie in [a, b].

The weights wi are usually determined so that the formula (5.1.3) is exact
for polynomials of as high degree as possible. The accuracy therefore depends on

523
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how well the integrand f(x) can be approximated by a polynomial in [a, b]. If the
integrand has a singularity, for example, becomes infinite at some point in or near
the interval of integration, some modification is necessary. Another complication is
when the interval of integration is infinite. In both cases it may be advantageous
to consider a weighted quadrature rule

∫ b

a

f(x)w(x) dx ≈
n∑

i=1

wif(xi). (5.1.4)

Here w(x) ≥ 0 is a weight function (or density function) that incorporates the
singularity so that f(x) can be well approximated by a polynomial. The limits (a, b)
of integration are now allowed to be infinite.

To assure that the integral (5.1.4) is well defined when f(x) is a polynomial,
we assume in the following that the integrals

µk =

∫ b

a

xkw(x) dx, k = 1, 2, . . . , , (5.1.5)

are defined for all k ≥ 0, and µ0 > 0. The quantity µk is called the kth moment
with respect to the weight function w(x). Note that for the formula (5.1.4) to be
exact for f(x) = 1 it must hold that

µ0 =

∫ b

a

1 · w(x) dx =

n∑

i=1

wi. (5.1.6)

In the special case that w(x) = 1, we have µ0 = b− a.

Definition 5.1.1.
A quadrature rule (5.1.3) has order of accuracy (or degree of exactness)

equal to d if it is exact for all polynomials of degree ≤ d, i.e., for all p ∈ Pd+1.

In a weighted interpolatory quadrature formula the integral is approximated
by

∫ b

a

p(x)w(x) dx,

where p(x) is the unique polynomial of degree n−1 interpolating f(x) at the distinct
points x1, x2, . . . , xn. By Lagrange’s interpolation formula (Theorem 4.1.1)

p(x) =
n∑

i=1

f(xi)ℓi(x), ℓi(x) =
n∏

j=1
j 6=i

(x− xj)

(xi − xj)
,

where ℓi(x) are the elementary Lagrange polynomials associated with the nodes
x1, x2, . . . , xn. It follows that for an interpolatory quadrature formula the weights
are given by

wi =

∫ b

a

ℓi(x)w(x) dx. (5.1.7)



“dqbjV
2007/5/28
page 525

5.1. Interpolatory Quadrature Rules 525

In practice, the coefficients are often more easily computed using the method of
undetermined coefficients rather than by integrating ℓi(x).

An expression for the truncation error is obtained by integrating the remainder
(see Theorems 4.2.3 and 4.2.4)

Rn(f) =

∫ b

a

[x1, . . . , xn, x]f

n∏

i=1

(x − xi)w(x) dx

=
1

n!

∫ b

a

f (n)(ξx)
n∏

i=1

(x − xi)w(x) dx, ξx ∈ [a, b]. (5.1.8)

where the second expression holds if f (n) is continuous in [a, b].

Theorem 5.1.2.
For any given set of nodes x1, x2, . . . , xn an interpolatory quadrature formula

with weights given by (5.1.7) has order of exactness equal to at least n − 1. Con-
versely, if the formula has degree of exactness n − 1, then the formula must be
interpolatory.

Proof. For any f ∈ Pn we have p(x) = f , and hence (5.1.7) has degree of exactness
at least equal to n − 1. On the other hand, if the degree of exactness of (5.1.7) is
n − 1, then putting f = ℓi(x) shows that the weights wi satisfy (5.1.7), i.e. the
formula is interpolatory.

In general the function values f(xi) cannot be evaluated exactly. Assume that
the error in f(xi) is ei, where |ei| ≤ ǫ, i = 1 : n. Then, if wi ≥ 0, the related error
in the quadrature formula satisfies

∣
∣
∣

n∑

i=1

wiei

∣
∣
∣ ≤ ǫ

n∑

i=1

|wi| ≤ ǫµ0. (5.1.9)

The last upper bound holds only if all weights in the quadrature rules are positive.
So far we have assumed that all the nodes xi of the quadrature formula are

fixed. A natural question is, whether we can do better by a judicious choice of
the nodes. This question is answered positively in the following theorem. Indeed,
by a careful choice of nodes the order of accuracy of the quadrature rule can be
substantially improved.

Theorem 5.1.3.
Let k be an integer such that 0 ≤ k ≤ n. Consider the integral

I[f ] =

∫ b

a

f(x)w(x) dx,

and an interpolatory quadrature rule

In(f) =

n∑

i=1

wif(xi),
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using n nodes. Let

γ(x) =

n∏

i=1

(x− xi) (5.1.10)

be the corresponding node polynomial. Then the quadrature rule I[f ] ≈ In(f)
has degree of exactness equal to d = n + k − 1, if and only if, for all polynomials
p ∈ Pk, the node polynomial satisfies

∫ b

a

p(x)γ(x)w(x) dx = 0. (5.1.11)

Proof. We first prove the necessity of the condition (5.1.11). For any p ∈ Pk the
product p(x)γ(x) is in Pn+k. Then since γ(xi) = 0, i = 1 : n,

∫ b

a

p(x)γ(x)w(x) dx =

n∑

i=1

wif(xi)γ(xi) = 0,

so that (5.1.11) holds.
To prove the sufficiency, let p(x) be any polynomial of degree n+ k − 1. Let

q(x) and r(x) be the quotient and remainder, respectively, in the division

p(x) = q(x)γ(x) + r(x).

Then q(x) and r(x) are polynomials of degree k−1 and n−1, respectively. It holds
that

∫ b

a

p(x)w(x) dx =

∫ b

a

q(x)γ(x)w(x) dx +

∫ b

a

r(x)w(x) dx,

where the first integral on the right-hand side is zero because of the orthogonality
property of γ(x). For the second integral we have

∫ b

a

r(x)w(x) dx =
n∑

i=1

wir(xi),

since the weights were chosen such that the formula was interpolatory and therefore
exact for all polynomials of degree n− 1. Further, since

p(xi) = q(xi)γ(xi) + r(xi) = r(xi), i = 1 : n,

it follows that

∫ b

a

p(x)w(x) dx =

∫ b

a

r(x)w(x) dx =

n∑

i=1

wir(xi) =

n∑

i=1

wip(xi),

which shows that the quadrature rule is exact for p(x).

How to determine quadrature rules of optimal order will be the topic of
Sec. 5.3.
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5.1.2 Some Classical Formulas

Interpolatory quadrature formulas, where the nodes are constrained to be equally
spaced, are called Newton–Cotes171 formulas. These are especially suited for
integrating a tabulated function, a task that was more common before the computer
age. The midpoint, trapezoidal and Simpson’s rule, to be described here, are all
special cases of (unweighted) Newton–Cotes’ formulas.

The trapezoidal rule (cf. Figure 1.2.5) is based on linear interpolation of
f(x) at x1 = a and x2 = b, i .e. f(x) is approximated by

p(x) = f(a) + (x − a)[a, b]f = f(a) + (x− a)
f(b) − f(a)

b− a
.

The integral of p(x) equals the area of a trapezoid with base (b − a) times the
average height 1

2 (f(a) + f(b)). Hence

∫ b

a

f(x) dx ≈ (b − a)

2
(f(a) + f(b)).

To increase the accuracy we subdivide the interval [a, b] and assume that
fi = f(xi) is known on a grid of equidistant points

x0 = a, xi = x0 + ih, xn = b. (5.1.12)

where h = (b−a)/n is the step length. The trapezoidal approximation for the ith
subinterval is

∫ xi+1

xi

f(x) dx = T (h) +Ri, T (h) =
h

2
(fi + fi+1), (5.1.13)

Assuming that f ′′(x) is continuous in [a, b] and using the exact remainder in New-
ton’s interpolation formula (see Theorem 4.2.1) we get

Ri =

∫ xi+1

xi

(f(x) − p2(x)) dx =

∫ xi+1

xi

(x − xi)(x− xi+1) [xi, xi+1, x]f dx. (5.1.14)

Since [xi, xi+1, x]f is a continuous function of x and (x−xi)(x−xi+1) has constant
(negative) sign for x ∈ [xi, xi+1], the mean-value theorem of integral calculus gives

Ri = [xi, xi+1, ξi]f

∫ xi+1

xi

(x− xi)(x − xi+1) dx, ξi ∈ [xi, xi+1].

Setting x = xi + ht, and using the Theorem 4.2.3, we get

Ri = −1

2
f ′′(ζi)

∫ 1

0

h2t(t− 1)h dt = − 1

12
h3f ′′(ζi), ζi ∈ [xi, xi+1]. (5.1.15)

171Roger Cotes (1682–1716) was a highly appreciated young colleague of Isaac Newton. He was
entrusted with the preparation of of the second edition of Newton’s Principia. He worked out and
published the coefficients for Newton’s formulas for numerical integration for n ≤ 11.
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For another proof of this result using the Peano kernel; see Example 3.3.16.
Summing the contributions for each subinterval [xi, xi+1], i = 0 : n, gives

∫ b

a

f(x) dx = T (h) + ET , T (h) =
h

2
(f0 + fn) + h

n−1∑

i=2

fi, (5.1.16)

which is the composite trapezoidal rule. The global truncation error is

ET = −h
3

12

n−1∑

i=0

f ′′(ζi) = − 1

12
(b − a)h2f ′′(ξ), ξ ∈ [a, b]. (5.1.17)

(The last equality follows since f ′′ was assumed to be continuous on the interval
[a, b].) This shows that by choosing h small enough we can make the truncation
error arbitrary small. In other words we have asymptotic convergence when
h→ 0.

In the midpoint rule f(x) is approximated on [xi, xi+1] by its value

fi+1/2 = f(xi+1/2), xi+1/2 = 1
2 (xi + xi+1),

at the midpoint of the interval. This leads to the approximation

∫ xi+1

xi

f(x) dx = M(h) +Ri, M(h) = hfi+1/2 (5.1.18)

The midpoint rule approximation can be interpreted as the area of the trapezium
defined by the tangent of f at the midpoint xi+1/2.

The remainder term in Taylor’s formula gives

f(x) − (fi+1/2 + (x− xi+1/2)f
′
i+1/2) = 1

2 (x− xi+1/2)
2f ′′(ζx), ζx ∈ [xi, xi+1/2].

By symmetry the integral over [xi, xi+1] of the linear term vanishes. We can use
the mean value theorem, to show that

Ri =

∫ xi+1

xi

1
2f

′′(ζx)(x− xi+1/2)
2 dx = 1

2f
′′(ζi)

∫ 1/2

−1/2

h3t2 dt =
h3

24
f ′′(ζi).

Although it uses just one function value the midpoint rule, like the trapezoidal
rule, is exact when f(x) is a linear function. Summing the contributions for each
subinterval we obtain the composite midpoint rule

∫ b

a

f(x) dx = M(h) +RM , M(h) = h

n−1∑

i=0

fi+1/2. (5.1.19)

(Compare the above approximation with the Riemann sum in the definition of a
definite integral.) For the global error we have

RM =
(b− a)h2

24
f ′′(ζ), ζ ∈ [a, b]. (5.1.20)
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The trapezoidal rule is called a closed rule because values of f at both
endpoints are used. It is not uncommon that f has an integrable singularity at an
endpoint. In that case an open rule, like the midpoint rule, can still be applied.

If f ′′(x) has constant sign in each subinterval then the error in the midpoint
rule is approximately half as large as that for the trapezoidal rule and has the
opposite sign. But the trapezoidal rule is more economical to use when a sequence
of approximations for h, h/2, h/4, . . . is to be computed, since about half of the
values needed for h/2 were already computed and used for h. Indeed, it is easy to
verify the following useful relation between the trapezoidal and midpoint rules:

T (h/2) =
1

2
(T (h) +M(h)). (5.1.21)

If the magnitude of the error in the function values does not exceed 1
2U , then

the magnitude of the propagated error in the approximation for the trapezoidal and
midpoint rules is bounded by

RA = 1
2 (b− a)U, (5.1.22)

independent of h. By (5.1.9) this holds for any quadrature formula of the form
(5.1.3), provided that all weights wi are positive.

If the roundoff error is negligible and h sufficiently small, then it follows from
(5.1.17) that the error in T (h/2) is about 1/4-th of that in T (h). Hence the magni-
tude of the error in T (h/2) can be estimated by 1

3 |T (h/2)− T (h)|, or more conser-
vatively by |T (h/2) − T (h)|. (A more systematic use of Richardson extrapolation
is made in Romberg’s method; see Sec. 5.2.2.)

Example 5.1.1.

Use (5.1.21) to compute the sine integral Si(x) =

∫ x

0

sin t

t
dt for x = 0.8.

Midpoint and trapezoidal sums (correct to eight decimals) are given below.

h M(h) T (h)

0.8 0.77883 668 0.75867 805
0.4 0.77376 698 0.76875 736
0.2 0.77251 272 0.77126 217
0.1 0.77188 744

The correct value, to ten decimals, is 0.77209 57855 (see [1, Table 5.2]). Verify that
in this example the error is approximately proportional to h2 for both M(h) and
T (h). We estimate the error in T (0.1) to be 1

36.26 · 10−4 ≤ 2.1 · 10−4.

From the error analysis above we note that the error in the midpoint rule is
roughly half the size of the error in the trapezoidal rule and of opposite sign. Hence
it seems that the linear combination

S(h) =
1

3
(T (h) + 2M(h)). (5.1.23)
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should be a better approximation. This is indeed the case and (5.1.23) is equivalent
to Simpson’s rule172.

Another way to derive Simpson’s rule is to approximate f(x) by a piecewise
polynomial of third degree. It is convenient to shift the origin to the midpoint of
the interval and consider the integral over the interval [xi−h, xi+h]. From Taylor’s
formula we have

f(x) = fi + (x− xi)f
′
i +

(x− xi)
2

2
f ′′
i +

(x − xi)
3

3!
f ′′′
i +O(h4),

where the remainder is zero for all polynomials of degree 3 or less. Integrating term
by term, the integrals of the second and fourth term vanish by symmetry, giving

∫ xi+h

xi−h
f(x) dx = 2hfi + 0 +

1

3
h3f ′′

i + 0 +O(h5).

Using the difference approximation h2f ′′
i = (fi−1 − 2fi+ fi+1)+O(h4) (see (4.7.5))

we obtain
∫ xi+h

xi−h
f(x) dx = 2hfi +

1

3
h(fi−1 − 2fi + fi+1) +O(h5) (5.1.24)

=
1

3
h(fi−1 + 4fi + fi+1) +O(h5),

where the remainder term is zero for all third-degree polynomials. We now deter-
mine the error term for f(x) = (x− xi)

4, which is

RT =
1

3
h(h4 + 0 + h4) −

∫ xi+h

xi−h
x4 dx = (2/3 − 2/5)h5 =

4

15
h5.

It follows that an asymptotic error estimate for Simpson’s rule is

RT = h5 4

15

f (4)(xi)

4!
+O(h6) =

h5

90
f (4)(xi) +O(h6). (5.1.25)

A strict error estimate for Simpson’s rule is more difficult to obtain. As for
the midpoint formula the midpoint xi can be considered as a double point of
interpolation; see Problem 5.1.3. The general error formula (5.1.8) then gives

R(f) =
1

4!

∫ xi+1

xi−1

f (4)(ξx)(x− xi−1)(x − xi)
2(x− xi+1) dx.

where (x−xi−1)(x−xi)2(x−xi+1) has constant negative sign on [xi−1, xi+1]. Using
the mean value theorem gives the error

RT (f) =
1

90
f (4)(ξ)h5, ξ ∈ [xi − h, xi + h]. (5.1.26)

172Thomas Simpson (1710–1761), an English mathematician, best remembered for his work on
interpolation and numerical methods of integration. He taught mathematics privately in the
London coffee–houses and from 1737 began to write texts on mathematics.
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The remainder can also be obtained from Peano’s error representation. It can
be shown (see Stoer [302, p. 152ff]) that for Simpson’s rule

Rf =

∫

R

f (4)(u)K(u) du,

where the kernel equals

K(u) = − 1

72
(h− u)3(3u+ h)2, 0 ≤ u ≤ h,

and K(u) = K(|u|) for u < 0, K(u) = 0 for |u| > h. This again gives (5.1.26).
In the composite Simpson’s formula one divides the interval [a, b] into an

even number n = 2m steps of length h, and use the formula (5.1.24) on each of m
double steps, giving

∫ b

a

f(x) dx =
h

3
(f0 + 4S1 + 2S2 + fn) +RT , (5.1.27)

where
S1 = f1 + f3 + · · · + fn−1, S2 = f2 + f4 + · · · + fn−2,

are sums over odd and even indices, respectively. The remainder is

RT (f) =

m−1∑

i=0

h5

90
f (4)(ξi) =

(b− a)

180
h4f (4)(ξ), ξ ∈ [a, b]. (5.1.28)

This shows that we have gained two orders of accuracy compared to the trapezoidal
rule, without using more function evaluations. This is why Simpson’s rule is such a
popular general-purpose quadrature rule.

5.1.3 Treating Singularities

When the integrand or some of its low-order derivative is infinite at some point in
or near the interval of integration, Newton–Cotes’ quadrature rules will not work
well. It is not uncommon that a single step taken close to such a singular point will
give a larger error than all other steps combined. In some cases a singularity can
be completely missed by the quadrature rule.

If the singular points are known, then the integral should first be broken up in
several pieces so that all the singularities are located at one (or both) ends of the
interval [a, b]. Many integrals can then be treated by weighted quadrature rules,
i.e. the singularity is incorporated into the weight function. Romberg’s method
can be modified to treat integrals where the integrand has an algebraic end-point
singularity; see Sec. 5.2.2.

It is often profitable to investigate whether one can transform or modify the
given problem in some way to make it more suitable for numerical integration. Some
difficulties and possibilities in numerical integration are illustrated below in a series
of simple examples.
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Example 5.1.2.
In the integral

I =

∫ 1

0

1√
x
ex dx

the integrand is infinite at the origin. By the substitution x = t2 we get

I = 2

∫ 1

0

et
2

dt,

which can be treated without difficulty.
Another possibility is to use integration by parts.

I =

∫ 1

0

x−1/2ex dx = 2x1/2ex
∣
∣
1

0
− 2

∫ 1

0

x1/2ex dx

= 2e− 2
2

3
x3/2ex

∣
∣
1

0
+

4

3

∫ 1

0

x3/2ex dx =
2

3
e+

4

3

∫ 1

0

x3/2ex dx.

The last integral has a mild singularity at the origin. If one wants high accuracy,
then it is advisable to integrate by parts a few more times before the numerical
treatment.

Example 5.1.3.
Sometimes a simple simple comparison problem can be used. In

I =

∫ 1

0.1

x−3ex dx

the integrand is infinite near the left end point. If we write

I =

∫ 1

0.1

x−3
(

1 + x+
x2

2

)

dx+

∫ 1

0.1

x−3
(

ex − 1 − x− x2

2

)

dx

the first integral can be computed analytically. The second integrand can be treated
numerically. The integer and its derivatives are of moderate size. Note, however,
the cancellation in the evaluation of the integrand.

For integrals over an infinite interval one can try some substitution which
maps the interval (0,∞) to (0, 1), for example, t = e−x of t = 1/(1 + x). But in
such cases one must be careful not to introduce an unpleasant singularity into the
integrand instead.

Example 5.1.4.
More general integrals of the form

∫ 2h

0

x−1/2f(x) dx
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need a special treatment, due to the integrable singularity at x = 0. We shall find
a formula which is exact for any second-degree polynomial f(x).

Using the method of undetermined coefficients, we set

1√
2h

∫ 2h

0

x−1/2f(x) dx ≈ w0f(0) + w1f(h) + w2f(2h),

Equating the left and right-hand sides for f(x) = 1, x, x2 we obtain

w0 + w1 + w2 = 2,
1

2
w1 + w2 =

2

3
,

1

4
w1 + w2

2

5
.

This linear system is easily solved, giving

w0 = 12/15, w1 = 16/15, w2 = 2/15.

Example 5.1.5.
Consider the integral

I =

∫ ∞

0

(1 + x2)−4/3 dx.

If one wants five decimal digits in the result then
∫∞
R

is not negligible until R ≈ 103.
But one can expand the integrand in powers of x−1 and integrate term-wise,

∫ ∞

R

(1 + x2)−4/3 dx =

∫ ∞

R

x−8/3(1 + x−2)−4/3 dx

=

∫ ∞

R

(

x−8/3 − 4

3
x−14/3 +

14

9
x−20/3 − · · ·

)

= R−5/3
(3

5
− 4

11
R−2 +

14

51
R−4 − · · ·

)

.

If this expansion is used, then one needs only apply numerical integration to the
interval [0, 8].

With the substitution t = 1/(1 + x) the integral becomes

I =

∫ 1

0

(t2 + (1 − t)2)−4/3t2/3 dt.

The integrand now has an infinite derivative at the origin. This can be eliminated
by making the substitution t = u3, to get

I =

∫ 1

0

(u6 + (1 − u3)2)−4/33u4 du,

which can be computed with, for example, a Newton–Cotes’ method.
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5.1.4 Higher Order Newton–Cotes’ Formulas

The classical Newton–Cotes’ quadrature rules are interpolatory rules obtained for
w(x) = 1 and equidistant points in [0, 1]. There are two classes: closed formulas,
where the end points of the interval belong to the nodes, and open formulas,
where all nodes lie strictly in the interior of the interval (cf. the trapezoidal and
midpoint rules).

The closed Newton–Cotes’ formulas are usually written

∫ nh

0

f(x) dx = h

n∑

j=0

wjf(jh) +Rn(f). (5.1.29)

The weights satisfy wj = wn−j , and can, in principle, be determined from (5.1.7).
Further, by (5.1.6) it holds that

n∑

j=0

hwj = nh. (5.1.30)

(Note that we here sum over n+ 1 points in contrast to our previous notation.)
It can be shown that the closed Newton–Cotes’ formula have order of accuracy

d = n for n odd and d = n + 1 for n even. The extra accuracy for n even is, as
in Simpson’s rule, due to symmetry. For n ≤ 7 all coefficients wi are positive, but
for n = 8 and n ≥ 10 negative coefficients appear. Such formulas may still be
useful, but since

∑n
j=0 h|wj | > nh, they are less robust with respect to errors in the

function values fi.

Table 5.1.1. The coefficients wi = Aci in the n-points closed Newton–
Cotes’ formulas.

n d A c0 c1 c2 c3 c4 c5 c6 cn,d

1 1 1/2 1 1 −1/12

2 3 1/3 1 4 1 −1/90

3 3 3/8 1 3 3 1 −3/80

4 5 2/45 7 32 12 32 7 −8/945

5 5 5/288 19 75 50 50 75 19 −275/12 096

6 7 1/140 41 236 27 272 27 236 41 −9/1400

The closed Newton–Cotes’ rule for n = 1 and n = 2 are equivalent to the
trapezoidal rule and Simpson’s rule, respectively. The formula for n = 3 is called
the 3/8th rule; for n = 4 Milne’s rule, and for n = 6 Weddle’s rule. The weights
wi = Aci and error coefficient cn,d of Newton–Cotes’ closed formulas are given for
n ≤ 6 in Tables 5.1.1.
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The open Newton–Cotes’ formulas are usually written as

∫ nh

0

f(x) dx = h

n−1∑

i=1

wif(ih) +Rn−1,n(h),

and use n− 1 nodes. The weights satisfy w−j = wn−j . The simplest open Newton–
Cotes’ formula for n = 2 is the midpoint rule with step size 2h. The open formulas
have order of accuracy d = n− 1 for n even and d = n− 2 for n odd. For the open
formulas negative coefficients occur already for n = 4 and n = 6.

The weights and error coefficients of open formulas for n ≤ 5 are given in
Table 5.1.2. We recognize the midpoint rule for n = 2. Note that the sign of the
error coefficients in the open rules are opposite the sign in the closed rules.

Table 5.1.2. The coefficients wi = Aci in the n-points open Newton–Cotes’
formulas.

n d A c1 c2 c3 c4 c5 cn,d

2 1 2 1 1/24

3 1 3/2 1 1 1/4

4 3 4/3 2 −1 2 14/45

5 3 5/24 11 1 1 11 95/144

6 5 3/10 11 −14 26 −14 11 41/140

7 5 7/1440 611 −453 562 562 −453 611 5257/8640

The Peano kernels for both the open and the closed formulas can be shown
to have constant sign (Steffensen [295]). Thus the local truncation error can be
written as

Rn(h) = cn,dh
d+1f (d)(ζ), ζ ∈ [0, nh], (5.1.31)

It is easily shown that the Peano kernels for the corresponding composite formulas
also have constant sign.

Higher order Newton–Cotes’ formulas can be found in Abramowitz and Ste-
gun [1, pp. 886–887]. We now show how they can be derived using the operator
methods developed in Sec. 3.3.4. Let m, n be given integers and let h be a positive
step size. In order to utilize the symmetry of the problem easier, we move the origin
to the midpoint of the interval of integration. If we set

xj = jh, fj = f(jh), j = −n/2 : 1 : n/2,

the Newton–Cotes’ formula now reads

∫ mh/2

−mh/2
f(x) dx = h

n/2
∑

j=−n/2
wjfj +Rm,n(h), w−j = wj . (5.1.32)
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Note that j, n/2 andm/2 are not necessarily integers. For a Newton–Cotes’ formula
n/2 − j and m/2 − j are evidently integers and hence (m− n)/2 is an integer too.
There may, however, be other formulas, perhaps almost as good, where this is not
the case. The coefficients wj = wj;m,n are to be determined so that the remainder
Rm,n vanishes if f ∈ Pq, with q as large as possible for given m,n.

The left-hand side of (5.1.32), divided by h, reads in operator form,

(emhD/2 − e−mhD/2)(hD)−1f(x0),

which is an even function of hD. By (3.3.42), hD is an odd function of δ. It follows
that the left-hand side is an even function of δ, hence we can, for every m, write

(ehDm/2 − e−hDm/2)(hD)−1 7→ Am(δ2) = a1m + a2mδ
2 + . . .+ ak+1,mδ

2k . . .
(5.1.33)

We truncate after (say) δ2k; the first neglected term is then ak+2,mδ
2k+2. We saw

in Sec. 3.3.4 how to bring a truncated δ2-expansion to B(E)-form

b1 + b2(E + E−1) + b3(E
2 + E−2) + . . .+ bk(E

k + E−k).

by matrix multiplication with a matrix M of the form given in (3.3.49). By com-
parison with (5.1.32), we conclude that n/2 = k, that the indices j are integers, and
that wj = bj+1 (if j ≥ 0). If m is even, this becomes a Newton–Cotes’ formula. If m
is odd, it may still be a useful formula, but it does not belong to the Newton–Cotes’
family, because (m− n)/2 = m/2 − k is no integer.

If n = m a formula is of the closed type. Its remainder term is the first
neglected term of the operator series, truncated after δ2k, 2k = n = m (and multi-
plied by h). Hence the remainder of (5.1.32) can be estimated by a2+m/2δ

m+2f0.
or (better)

Rm,m ∼ (am/2+2/m)H(hD)m+2f0.

where we call H = mh the “bigstep”.
If the integral is computed over [a, b] by means of a sequence of “bigsteps”,

each of length H , an estimate of the global error has the same form, except that H
is replaced by b− a, and f0 is replaced by maxx∈[a,b] |f(x)|. The exponent of hD in
an error estimate that contains H or b− a, is known as the global order of accuracy
of the method.

If n < m, a formula of the open type is obtained. Among the open formulas
we shall only consider the case that n = m− 2, which are the open Newton–Cotes’
formula. The operator expansion is truncated after δm−2, and we obtain

Rm−2,m ∼ (am/2+1/m)H(hD)mf0.

Formulas with n > m are rarely mentioned in the literature (except form = 1).
We do not understand why; it is rather common that an integrand has a smooth
continuation outside the interval of integration.

We next consider the effect of a linear transformation of the independent
variable. Suppose that a formula

N∑

j=1

ajf(tj) −
∫ 1

0

f(t) dt ≈ cNf
(N)
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has been derived for the standard interval [0, 1]. Setting x = xk + th, dx = hdt we
find that the corresponding formula and error constant for the interval [xk, xk + h]
reads

N∑

j=1

ajg(xk + htj) −
∫ xk+h

xk

g(x) dx ≈ cNh
N+1g(N)(xk). (5.1.34)

This error estimate is valid asymptotically, as h → 0. The local order of accu-
racy, i.e. over one step of length h is N + 1; the global order of accuracy, i.e.
over (b− a)/h steps of length h, becomes N .

For example, the trapezoidal rule is exact for polynomials of degree 1 and hence
N = 2. For the interval [0, 1], L(t2) = 1/3, L̃(t2) = 1/2, so c2 = 1

2 (1/2−1/3) = 1/12.
On an interval of length h the asymptotic error becomes h3g′′/12. The local order
of accuracy is N + 1 = 3; the global oder of accuracy is N = 2.

If the “standard interval” is [−1, 1] instead the transformation becomes x =
1
2ht, and h is to be replaces by 1

2h everywhere in (5.1.34). Be careful about the
exact meaning of a remainder term for a formula of this type provided by a table.

We shall illustrate the use of the Cauchy+FFT method for computing the co-
efficients aim in the expansion (5.1.33). In this way extensive algebraic calculations
are avoided173. It can be shown that the exact coefficients are rational numbers,
though it is sometimes hard to estimate in advance the order of magnitude of the
denominators. The algorithm must be used with judgment. Figure 5.1.1 was ob-
tained for N = 32, r = 2; the absolute errors of the coefficients (see Lemma 3.1.2
about the error estimation) are then less than 10−13. The smoothness of the curves
for j ≥ 14 indicates that the relative accuracy of the values of am,j are still good
there; in fact other computations show that it is still good, when the coefficients
are as small as 10−20.

The coefficients are first obtained in floating-point representation. The trans-
formation to rational form is obtained by a continued fraction algorithm, described
in Example 3.5.3. For the case m = 8 the result reads,

A8(δ
2) = 8 +

64

3
δ2 +

688

45
δ4 +

736

189
δ6 +

3956

14175
δ8 − 2368

467775
δ10 + . . . (5.1.35)

The closed integration formula becomes

∫ x4

−x4

f(x)dx =
4h

14175

(

−4540f0 + 10496(f1 + f−1) − 928(f2 + f−2)

+ 5888(f3 + f−3)) + 989(f4 + f−4)
)

+R, (5.1.36)

R ∼ 296

467775
Hh10f (10)(x0). (5.1.37)

It goes without saying that this is not how Newton and Cotes found their
methods. Our method may seem complicated, but the Matlab programs for this
are rather short, and to a large extent useful for other purposes. The computation
of about 150 Cotes-coefficients and 25 remainders (m = 2 : 14), took less than two

173These could, however, be carried out using a system like Maple.
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Figure 5.1.1. The coefficients |am,j | of the δ2-expansion for m = 2 : 2 : 14,
j = 0 : 20. The circles are the coefficients for the closed Cotes’ formulas, i.e.
j = 1 +m/2.

seconds on a PC. This includes the calculation of several alternatives for rational
approximations to the floating-point results. For a small number of the 150 coeffi-
cients the judicious choice among the alternatives took, however, much more than
2 (human) seconds; this detail is both science and art.

It was mentioned that, if m is odd, (5.1.33) does not provide formulas of the
Newton–Cotes’ family, since (m−n)/2 is no integer, nor are the indices j in (5.1.32)
integers. So, the operator associated with the right-hand side of (5.1.32) is of the
form

c1(E
1/2 + E−1/2) + c2(E

3/2 + E−3/2) + c3(E
5/2 + E−5/2) + . . . .

If it is divided algebraically by µ = 1
2 (E1/2 + E−1/2), however, it becomes of the

B(E)-form (say)

b′1 + b′2(E + E−1) + b′3(E
2 + E−2) + . . .+ bk(E

k + E−k).

If m is odd we therefore expand

(ehDm/2 − e−hDm/2)(hD)−1/µ, µ =
√

1 + δ2/4,

into a δ2-series, with coefficients a′j . Again, this can be done numerically by the

Cauchy+FFT method. For each m two truncated δ2-series, one for the closed and
one for the open case, are then transformed into B(E)-expressions numerically by
means of the matrix M , as described above. The expressions are then multiplied
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algebraically by µ = 1
2 (E1/2 + E−1/2). We then have the coefficients of a Newton–

Cotes’ formula with m odd.
The asymptotic error is

a′m/2+1H(hD)m+1 and a′m/2−1H(hD)m−1

for the closed type, and open type, respectively (2k = m − 1). The global orders
of accuracy for Newton–Cotes’ methods with odd m are thus the same as for the
methods, where m is one less.

5.1.5 Fejér and Clenshaw–Curtis Rules

Equally spaced interpolation points as used in the Newton–Cotes’ formulas are
useful for low degrees, but can diverge as fast as 2n as n → ∞. Quadrature rules
which use a set of points, which cluster near the endpoints of the interval have
better properties for large n.

Fejér [106] suggested using the zeros of Chebyshev polynomial of first or second
kind as interpolation points for quadrature rules of the form

∫ 1

−1

f(x) dx =

n∑

k=0

wkf(xk). (5.1.38)

Fejér’s first rule uses the zeros of the Chebyshev polynomial Tn(x) =
cos(n arccosx) of the first kind in (−1, 1), which are

xk = cos θk, θk =
(2k − 1)π

2n
, k = 1 : n (5.1.39)

The following explicit formula for the weights is known (see [82])

wf1
k =

2

n

(

1 − 2

⌊n/2⌋
∑

j=1

cos(2jθk)

4j2 − 1

)

, k = 1 : n. (5.1.40)

Fejér’s second rule uses the zeros of the Chebyshev polynomial Un−1(x) of the
second kind , which are the extreme points of Tn(x) in (−1, 1); see Sec. 3.2.3).

xk = cos θk, θk =
kπ

n
, k = 1 : n− 1. (5.1.41)

An explicit formula for the weights is (see [82])

wf2
k ==

4 sin θk
n

⌊n/2⌋
∑

j=1

sin(2j − 1)θk
2j − 1

, k = 1 : n− 1. (5.1.42)

Both Fejér’s rules are open quadrature rules, i.e. they do not use the end points of
the interval [−1, 1]. Fejér’s second rule is the more practical, because going from
n + 1 to 2n + 1 points, only n new function values need to be evaluated; cf. the
trapezoidal rule.
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The quadrature rule of Clenshaw–Curtis [64] is a closed version of Fejér’s
second rule, i.e. the nodes are the n+1 extreme points of Tn(x), in [−1, 1], including
the endpoints x0 = 1, xn = −1. An explicit formula for the Clenshaw–Curtis
weights is

wcck =
ck
n

(

1 −
⌊n/2⌋
∑

j=1

bj
4j2 − 1

cos(2jθk)

)

, k = 0 : n, (5.1.43)

where

bj =

{
1, if j = n/2;
2, if j < n/2,

ck =

{
1, if k = 0, n;
2, otherwise

(5.1.44)

In particular the weights at the two boundary points are

wcc0 = wccn =
1

n2 − 1 + mod (n, 2)
. (5.1.45)

For both Fejér’s rules and for the Clenshaw–Curtis rule the weights can be
shown to be positive; see Imhof [186]. Therefore the convergence of In(f) as n→ ∞
for all f ∈ C[−1, 1] is assured for these rules by the following theorem, which is a
consequence of Weierstrass theorem:

Theorem 5.1.4.
Let xnj and anj, where j = 1 : n, n = 1, 2, 3, . . . , be triangular array of nodes

and weights, respectively, and suppose that anj > 0, for all n, j ≥ 1. Consider the
sequence of quadrature rules

Inf =

n∑

j=1

anjf(xnj),

for the integral If =
∫ b

a
f(x)w(x) dx, where [a, b] is a closed, bounded interval, and

w(x) is an integrable weight function. Suppose that Inp = Ip, ∀p ∈ Pkn
, where

{kn}∞n=1 is a strictly increasing sequence. Then

Inf → If, ∀f ∈ C[a, b].

Note that this theorem is not applicable to Cotes’ formulas, where some
weights are negative.

Convergence will be fast for the Fejér and Clenshaw–Curtis rules provided the
integrand is k times continuously differentiable—a property that the user often can
check. However, if the integrand is discontinuous the interval of integration should
be partitioned at the discontinuities and the subintervals treated separately.

Despite its advantages these quadrature rules did not receive much use early
on, because computing the weights using the explicit formulas given above is costly
(O(n2) flops) and not numerically stable for large values of n. However, it is not
necessary to compute the weights explicitly. Gentleman [142, 144] showed how the
Clenshaw–Curtis rule can be implemented by means of a discrete cosine transform
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(DCT, see Sec. 4.7.4). We recall that the FFT is not only fast, but also very resistant
against round off errors.

The interpolation polynomial Ln(x) can be represented in terms of Chebyshev
polynomials

Ln(x) =

n
∑′′

k=0

ckTk(x), ck =
2

n

n
∑′′

j=0

f(xj) cos(kjπ/n),

where xj = cos(jπ/n). This is the real part of an FFT. (The double prime on the
sum means that the first and last term are to be halved.) Then we have

In(f) =

∫ 1

−1

Ln(x) dx =

n
∑′′

k=0

ckµk, µk =

∫ 1

−1

Tk(x) dx.

where µk are the moments of the Chebyshev polynomials. It can be shown (Prob-
lem 5.1.7) that

µk =

∫ 1

−1

Tk(x) dx =

{
0 if k odd,
2/(1 − k2), if k even

.

The following Matlab program, due to Trefethen [320], is a compact implementa-
tion of this version of Clenshaw–Curtis quadrature.

Algorithm 5.1. Clenshaw Curtis Quadrature.

function I = clenshaw_curtis(f,n);

% Computes the integral I of f over [-1,1] by the

% Clenshaw-Curtis quadrature rule with n+1 nodes.

x = cos(pi*(0:n)’/n);

%Chebyshev extreme points

fx = feval(f,x)/(2*n);

%Fast Fourier transform

g = real(fft(fx([1:n+1 n:-1:2))));

%Chebyshev coefficients

a = [g(1); g(2:n)+g(2*n:-1:n+2); g(n+1)];

w = 0*a’; w(1:2:end) = 2./(1-(0:2:n).^2);

I = w*a;

A fast and accurate algorithm for computing the weights in the Fejér and
Clenshaw–Curtis rules weights in O(n log n) flops has been given by Waldvogel [325].
The weights are obtained as the inverse FFT of certain vectors given by explicit
rational expressions. On an average laptop this takes just about 5 seconds for
n = 220 + 1 = 1 048 577 nodes!

For Fejèr’s second rule the weights are the inverse discrete FFT of the vector
is v with components vk given by the expressions

vk =
2

1 − 4k2
, k = 0 : ⌊n/2⌋ − 1,
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v⌊n/2⌋ =
n− 3

2⌊n/2⌋ − 1
− 1, (5.1.46)

vn−k = vk, k = 1 : ⌊(n− 1)/2⌋.

(Note that this will give zero weights for k = 0, n corresponding to the endpoint
nodes x0 = −1 and xn = 1.)

For the Clenshaw–Curtis rule the weights of are the inverse FFT of the vector
v + g, where

gk = −wcc0 , k = 0 : ⌊n/2⌋ − 1,

g⌊n/2⌋ = w0 [(2 − mod (n, 2))n− 1] , (5.1.47)

gn−k = gk, k = 1 : ⌊(n− 1)/2⌋,

and wcc0 is given by (5.1.45). For the weights Fejèr’s first rule and Matlab files
implementing the algorithm, we refer to [325].

Since the complexity of the inverse FFT is O(n logn), this approach allows fast
and accurate calculation of the weights for rules of high order, in particular when
n is a power of two. For example, using the Matlab routine IFFT the weights for
n = 1024 only takes a few milliseconds on a PC.

Review Questions

1.1. Name three classical quadrature methods and give their order of accuracy.

1.2. What is meant by a composite quadrature rule? What is the difference be-
tween local and global error?

1.3. What is the advantage of including a weight function w(x) > 0 in some quadra-
ture rules?

1.4. Give an account of the theoretical background of the classical Newton–Cotes’
rules.

1.5. Describe some possibilities for treating integrals, where the integrand has a
singularity or is “almost singular”.

Problems and Computer Exercises

1.1. (a) Derive the closed Newton–Cotes’ rule for m = 3,

I =
3h

8
(f0 + 3f1 + 3f2 + f3) +RT , h = (b− a)/3,

also known as Simpson’s (3/8)-rule.

(b) Derive the open Newton–Cotes’ rule for m = 4,

I =
4h

3
(2f1 − f2 + 2f3) +RT , h = (b − a)/4.
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(c) Find asymptotic error estimates for the formulas in (a) and (b) by applying
them to suitable polynomials.

1.2. (a) Show that Simpson’s formula is the unique quadrature formula of the form

∫ h

−h
f(x) dx ≈ h(a−1f(−h) + a0f(0) + a1f(h))

that is exact whenever f ∈ P4. Try to find several derivations of Simpson’s
formula, with or without the use of difference operators.

(b) Find the Peano kernel K2(u), such that Rf =
∫

R
f ′′(u)K2(u) du, and find

the best constants c, p, such that

|Rf | ≤ chpmax |f ′′(u)|, ∀f ∈ C2[−h, h].

If you are going to deal with functions that are not in C3, would you still
prefer Simpson’s formula to the trapezoidal rule?

1.3. The quadrature formula

∫ xi+1

xi−1

f(x) dx ≈ h
(
af(xi−1) + bf(xi) + cf(xi+1)

)
+ h2df ′(xi),

can be interpreted as a Hermite interpolatory formula with a double point at
xi. Show that d = 0 and that this formula is identical to Simpson’s rule. Then
show that the error can be written as

R(f) =
1

4!

∫ xi+1

xi−1

f (4)(ξx)(x− xi−1)(x − xi)
2(x− xi+1) dx,

where f (4)(ξx) is a continuous function of x. Deduce the error formula for
Simpson’s rule. Setting x = xi + ht, we get

R(f) =
h4

24
f (4)(ξi)

∫ 1

−1

(t+ 1)t2(t− 1)h dt =
h5

90
f (4)(ξi).

1.4. A second kind of Newton–Cotes’ open quadrature rule uses the midpoints of
the equidistant grid xi = ih, i = 1 : n, i.e.

∫ xn

x0

f(x) dx =

n∑

i=1

wifi−1/2, xi−1/2 = 1
2 (xi−1 + xi).

(a) For n = 1 we get the midpoint rule. Determine the weights in this formula
for n = 3 and n = 5. (Use symmetry!)

(b) What is the order of accuracy of these two rules?



“dqbjV
2007/5/28
page 544

544 Chapter 5. Numerical Integration

1.5. (a) Simpson’s formula with end corrections is a quadrature formula of the
form

∫ h

−h
f(x) dx ≈ h

(
αf(−h) + βf(0) + αf(h)

)
+ h2γ(f ′(−h) − f ′(h)),

that is exact for polynomials of degree five. Determine the weights α, β, γ by
using the test functions f(x) = 1, x2, x4. Use f(x) = x6 to determine the error
term.

(b) Show that in the corresponding composite formula for the interval [a, b]
with b− a = 2nh, only the end point derivatives f ′(a) and f ′(b) are needed.

1.6. Compute the integral
1

2π

∫ 2π

0

e
1√
2

sin x
dx

by the trapezoidal rule, using h = π/2 and h = π/4.

1.7. Show the relations

∫ x

−1

Tn(t) dt =







Tn+1(x)

2(n+ 1)
− Tn−1(x)

2(n− 1)
+

(−1)n+1

n2 − 1
if n ≥ 2,

(T2(x) − 1)/4 if n = 1,
T1(x) + 1 if n = 0.

Then deduce that
∫ 1

−1

Tn(x) dx =

{
0 if n odd,
2/(1 − n2), if n even

.

Hint: Make a change of variable in the integral and use the trigonometric
identity 2 cosnφ sinφ = sin(n+ 1)φ− sin(n− 1)φ.

1.8. Compute the integral

∫ ∞

0

(1 + x2)−4/3 dx with five correct decimals. Expand

the integrand in powers of x−1 and integrate term-wise over the interval [R,∞],
for a suitable value of R. Then use a Newton–Cotes’ rule on the remaining
interval [0, R].

1.9. Write a program for the derivation of a formula for integrals of the form

I =
∫ 1

0 x
−1/2f(x) dx that is exact for f ∈ Pn and uses the values f(xi),

i = 1 : n, by means of the power basis.

(a) Compute the coefficients bi for n = 6 : 8 with equidistant points,
xi = (i− 1)/(n− 1), i = 1 : n. Apply the formulas to the integrals

∫ 1

0

x−1/2e−x dx;
∫ 1

0

dx

sin
√
x

;

∫ 1

0

(1 − t3)−1/2 dt.

In the first of the integrals compare with the result obtained by series expan-
sion in Problem 3.1.1. In the last integral a substitution is needed for bringing
it to the right form.
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(b) Do the same for the case, where the step size xi+1−xi grows proportionally
to i; x1 = 0; xn = 1. Is the accuracy significantly different compared to (a),
for the same number of points?

(c) Make some very small random perturbations of the xi, i = 1 : n in (a),
(say) of the order of 10−13. Of which order of magnitude are the changes in
the coefficients bi , and the changes in the results for the first of the integrals?

1.10. Propose a suitable plan (using a computer) for computing the following inte-
grals, for s = 0.5, 0.6, 0.7, . . . , 3.0:

(a)

∫ ∞

0

(x3 + sx)−1/2 dx; (b)

∫ ∞

0

(x2 + 1)−1/2e−sx dx, error < 10−6;

(c)

∫ ∞

π

(s+ x)−1/3 sinxdx.

1.11. It is not true that any degree of accuracy can be obtained by using a Newton–
Cotes’ formula of sufficiently high order. To show this, Compute approxima-
tions to the integral

∫ 4

−4

dx

1 + x2
= 2 tan−1 4 ≈ 2.6516353 . . . .

using the closed Newton–Cotes’ formula with n = 2, 4, 6, 8. Which formula
gives the smallest error?

1.12. For expressing integrals appearing in the solution of certain integral equations
the following modification of the midpoint rule is often used:

∫ xn

x0

K(xj , x)y(x) dx =

n−1∑

i=0

mijyi+1/2,

where yi+1/2 = y(1
2 (xi + xi+1)) and mij is the moment integral

mij =

∫ xi+1

xi

K(xj , x) dx.

Derive an error estimate for this formula.

1.13. (a) Suppose that you have found a truncated δ2-expansion, (say) A(δ2) ≡
a1 + a2δ

2 + . . . + ak+1δ
2k. Then an equivalent symmetric expression of the

form B(E) ≡ b1 + b2(E + E−1) + . . . + bk+1(E
k + E−k) can be obtained as

b = Mk+1a, where a, b are column vectors for the coefficients, and Mk+1 is
the (k + 1) × (k + 1) submatrix of the matrix M given in (3.3.49).
Use this for deriving (5.1.36) from (5.1.35). How do you obtain the remainder
term? If you obtain the coefficients as decimal fractions, multiply them by
14175/4 in order to check that they agree with (5.1.36).

(b) Use Cauchy+FFT for deriving (5.1.35), and the open formula and the
remainder for the same interval.

(c) Set zn = ∇−1yn−∆−1y0. We have, in the literature, seen the interpretation
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that zn =
∑n
j=0 yj if n ≥ 0. It seems to require some extra conditions to be

true. Investigate if the conditions z−1 = y−1 = 0 are necessary and sufficient.
Can you suggest better conditions? (The equations ∆∆−1 = ∇∇−1 = 1
mentioned earlier are assumed to be true.)

1.14. (a) Write a program for the derivation of quadrature formulas and error esti-
mates using the Cauchy-FFT method in Sec. 5.1.4 for m = n−1, n, n+1. Test
the formulas and the error estimates for some m,n on some simple (though
not too simple) examples. Some of these formulas are listed in the Hand-
book [1, Sec. 25.4]. In particular, check the closed Newton–Cotes’ 9-point
formula (n = 8).

(b) Sketch a program for the case that h = 1/(2n+ 1), with the computation
of f at 2m symmetrical points.

(c) Abramowitz–Stegun [1, Sec. 25.4] gives several Newton–Cotes’ formulas of
closed and open types, with remainders. Try to reproduce and extend their
tables with techniques related to Sec. 5.3.1.

5.2 Integration by Extrapolation

5.2.1 Euler–Maclaurin’s Formula

Newton–Cotes’ rules have the drawback that they do not provide a convenient way
of estimating the error. Also, for high order rules negative weights appear. In this
section we will derive formulas of high order, based on Euler–Maclaurin’s formula
(see Sec. 3.4.5), which do not share these drawbacks.

Let xi = a+ ih, xn = b, and let T (a : h : b)f denote the trapezoidal sum

T (a : h : b)f =

n∑

i=1

h

2

(
f(xi−1) + f(xi)

)
. (5.2.1)

According to Theorem 3.4.10, if f ∈ C2r+2[a, b], then

T (a : h : b)f −
∫ b

a

f(x) dx =
h2

12

(
f ′(b) − f ′(a)

)
− h4

720

(
f ′′′(b) − f ′′′(a)

)

+ . . . +
B2rh

2r

(2r)!

(
f (2r−1)(b) − f (2r−1)(a)

)
+R2r+2(a, h, b)f.

By (3.4.37) the remainder R2r+2(a, h, b)f is O(h2r+2) and represented by an integral
with a kernel of constant sign in [a, b]. The estimation of the remainder is very simple
in certain important particular cases. Note that although the expansion contains
derivatives at the boundary points only, the remainder requires that |f (2r+2)| is
integrable on the whole interval [a, b].

We recall the following simple and useful relation between the trapezoidal sum
and the midpoint sum (cf. (5.1.21))

M(a : h : b)f =

n∑

i=1

hf(xi−1/2) = 2T (a : 1
2h : b)f − T (a : h : b)f. (5.2.2)
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From this one easily derives the expansion

M(a : h : b)f =

∫ b

a

f(x) dx− h2

24

(
f ′(b) − f ′(a)

)
+

7h4

5760

(
f ′′′(b) − f ′′′(a)

)

+ . . .+
( 1

22r−1
− 1
)B2rh

2r

(2r)!

(
f (2r−1)(b) − f (2r−1)(a)

)
+ . . . ,

which has the same relation to the midpoint sum as the Euler–Maclaurin Formula
has to the trapezoidal sum.

The Euler–Maclaurin formulas can be used for highly accurate numerical in-
tegration when the values of derivatives of f are known at x = a and x = b. It is
also possible to use difference approximations to estimate the derivatives needed.
A variant with uncentered differences, is Gregory’s174 quadrature formula

∫ b

a

f(x) dx = h
En − 1

hD
f0 = h

(
fn

− ln(1 −∇)
− f0

ln(1 + ∆)

)

= T (a;h; b) + h

∞∑

j=1

aj+1(∇jfn + (−∆)jf0),

where T (a : h : b) is the trapezoidal sum. The operator expansion must be truncated
at ∇kfn and ∆lf0, where k ≤ n, l ≤ n. (Explain why the coefficients aj+1, j ≥ 1,
occur in the implicit Adams formula too, see Problem 3.3.9 (a)!)

5.2.2 Romberg’s Method

The Euler–Maclaurin formula is the theoretical basis for the application of re-
peated Richardson extrapolation (see Sec. 3.4.6) to the results of the trapezoidal
rule. This method is known as Romberg’s method175. It is one of the most
widely used methods, because it allows a simple strategy for the automatic deter-
mination of a suitable step size and order. Romberg’s method was made widely
known through Stiefel [301]. A thorough analysis of the method was carried out
by Bauer, Rutishauser and Stiefel in [18, 1963], which we shall refer to for proof
details.

Let f ∈ C2m+2[a, b] be a real function to be integrated over [a, b] and denote
the trapezoidal sum by T (h) = T (a : h : b)f . By Euler–Maclaurin’s formula it
follows that

T (h) −
∫ b

a

f(x) dx = c2h
2 + c4h

4 + · · · + cmh
2m + τm+1(h)h

2m+2, (5.2.3)

174James Gregory (1638–1675), a Scotch mathematician, discovered this formula long before the
Euler–Maclaurin formula. It seems to have been primarily used for numerical quadrature. It can
be used also for summation, but the variants with central differences are typically more efficient.
175Werner Romberg (1909–2003) was a German mathematician. For political reasons he fled

Germany in 1937, first to Ukraine and then to Norway, where in 1938 he joined the University
of Oslo. He spent the war years in Sweden and then returned to Norway. In 1949 he joined the
Norwegian Institute of Technology in Trondheim. He was called back to Germany in 1968 to take
up a position at the University of Heidelberg.
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where ck = 0 if f ∈ Pk. This suggests the use of Repeated Richardson extrapolation
applied to the trapezoidal sums computed with step lengths

h1 =
b − a

n1
, h2 =

h1

n1
, . . . , hq =

h1

nq
, (5.2.4)

where n1, n2, . . . , nq are strictly increasing positive integers. If we set Tm,1 =
T (a, hm, b)f , m = 1 : q, then using Neville’s interpolation scheme the extrapolated
values can be computed from the recursion

Tm,k+1 = Tm,k +
Tm,k − Tm−1,k

(hm−k/hm)2 − 1
, 1 ≤ k < m. (5.2.5)

Romberg used step sizes in a geometric progression, hm/hm−1 = q = 2, In this case
the denominators in (5.2.5) become 22k − 1. This choice has the advantage that
successive trapezoidal sums can be computed using the relation

T (h/2) =
1

2
(T (h) +M(h)), M(h) =

n∑

i=1

hf(xi−1/2) (5.2.6)

where M(h) is he midpoint sum. This makes it possible to reuse the function values
that have been computed earlier.

We remark that usually a composite form Romberg’s method is used where
the method is applied to a sequence interval [a + iH, a + (i + 1)H ] for some “big
step” H . The applications of repeated Richardson extrapolation and the Neville
algorithms to differential equations belong to the most important.

Rational extrapolation can also be used. This gives rise to a recursion of a
form similar to (5.2.5)

Tm,k+1 = Tm,k +
Tm,k − Tm−1,k

(hm−k/hm)2
[

1 − Tm,k − Tm−1,k

Tm,k − Tm−1,k−1

]

− 1

, 1 ≤ k ≤ m; (5.2.7)

see Sec. 4.3.4.
For practical numerical calculations the values of the coefficients ck in (5.2.3)

are not needed, but they are used, for example, in the derivation of an error bound,
see Theorem 5.2.1. It is also important to remember that the coefficients depend on
derivatives of increasing order; the success of repeated Richardson extrapolations is
thus related to the behavior in [a, b] of the higher derivatives of the integrand.

Theorem 5.2.1 (Error bound for Romberg’s method).

The items Tm,k in Romberg’s method are estimates of the integral
∫ b

a
f(x) dx,

that can be expressed as a linear functional,

Tm,k = (b − a)
n∑

j=0

α
(k)
m,jf(a+ jh), (5.2.8)
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where n = 2m−1, h = (b − a)/n, and

n∑

j=0

α
(k)
m,j = 1, α

(k)
m,j > 0. (5.2.9)

The remainder functional for Tm,k is zero for f ∈ P2k, and its Peano kernel is
positive in the interval (a, b). The truncation error of Tm,k reads

Tm,k −
∫ b

a

f(x)dx = rkh
2k(b − a)f (2k)(1

2 (a+ b)) +O(h2k+2(b− a)f (2k+2))

= rkh
2k(b − a)f (2k)(ξ), ξ ∈ (a, b), (5.2.10)

where
rk = 2k(k−1)|B2k|/(2k)!, h = 21−m(b− a).

Proof. Sketch: Equation (5.2.8) follows directly from the construction of the
Romberg scheme. (It is for theoretical use only; the recursion formulas are bet-
ter for practical use.) The first formula in (5.2.9) holds, because Tm,k is exact if
f = 1. The second formula is easily proved for low values of k. The general proof
is more complicated; see [18, Theorem 4].

The Peano kernel for m = k = 1 (the trapezoidal rule) was constructed in
Example 3.3.7. For m = k = 2 (Simpson’s rule), see Sec. 5.1.2. The general case is
more complicated. Recall that, by Corollary 3.3.9 of Peano’s Remainder Theorem,
a remainder formula with a mean value ξ ∈ (a, b), exists if and only if the Peano
kernel does not change sign.

Bauer, Rutishauser and Stiefel [18, pp. 207–210], constructed a recursion for-
mula for the kernels, and succeeded in proving that they are all positive, by an
ingenious use of the recursion. The expression for rk is also derived there, although
with a different notation; see also Problem 5.2.3.

From (5.2.9) it follows that if the magnitude of the irregular error in f(a+ jh)
is at most ǫ, then the magnitude of the inherited irregular error in Tm,k is at most
ǫ(b−a). There is another way of finding rk. Note that for each value of k, the error
of Tk,k for f(x) = x2k can be determined numerically. Then rk can be obtained
from (5.2.10). Tm,k is the same formula as Tk,k, although with a different h.

According to the discussion of repeated Richardson extrapolation in Sec. 3.4.6,
one continues the process, until two values in the same row agree to the desired
accuracy. If no other error estimate is available, mink |Tm,k − Tm,k−1| is usually
chosen as an estimate of the truncation error, even though it is usually a strong
overestimate. A feature of the Romberg algorithm is that it also contains exits with
lower accuracy at a lower cost.

Example 5.2.1. A numerical illustration to Romberg’s method.

Use Romberg’s method to compute the integral (cf. Example 5.1.1)
∫ 0.8

0

sinx

x
dx.
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The midpoint and trapezoidal sums are with ten correct decimals equal to

h M(h)f T (h)f

0.8 0.77883 66846 0.75867 80454
0.4 0.77376 69771 0.76875 73650
0.2 0.77251 27161 0.77126 21711
0.1 0.77188 74436

It can be verified that in this example the error is approximately proportional to
h2 for both M(h) and T (h). We estimate the error in T (0.1) to be 1

36.26 · 10−4 ≤
2.1 · 10−4.

The trapezoidal sums are then copied to the first column of the Romberg
scheme. Repeated Richardson extrapolation is performed giving the following table:

m Tm1 Tm2 Tm3 Tm4

1 0.75867 80454
2 0.76875 73650 0.77211 71382
3 0.77126 21711 0.77209 71065 0.77209 57710
4 0.77188 74437 0.77209 58678 0.77209 57853 0.77209 57855
5 0.77204 37039 0.77209 57906 0.77209 57855 0.77209 57855

We find that |T44 − T43| = 2 · 10−10, and the irregular errors are less than 10−10.
Indeed, all ten digits in T44 are correct, and I = 0.77209 57854 82 . . . . Note that the
rate of convergence in successive columns are as h2, h4, h6, h8, . . . .

The following Matlab program implements Romberg’s method. In each ma-
jor step a new row in the Romberg table is computed.

Algorithm 5.2. Romberg’s Method.

function [I, md, T] = romberg(f,a,b,tol,q)

% Romberg’s method for computing the integral of f over [a,b]

% using at most q extrapolations. Stop when two adjacent values

% in the same column differ by less than tol or when q

% extrapolations have been performed. Output is an estimate

% I of the integral with error bound md and the active part

% of the Romberg table.

%

T = zeros(q+2,q+1);

h = b - a; m = 1; P = 1;

T(1,1) = h*(feval(f,a) + feval(f,b))/2;

for m = 2:q+1

h = h/2; m = 2*m;

M = 0; % Compute midpoint sum

for k = 1:2:m

M = M + feval(f, a+k*h)
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end

T(m,1) = T(m-1,1)/2 + h*M;

kmax = min(m-1,q);

for k = 1:kmax % Repeated Richardson extrapolation

T(m,k+1) = T(m,k) + (T(m,k) - T(m-1,k))/(2^(2*k) - 1)

end

[md, kb] = min(abs(T(m,1:kmax) - T(m-1,1:kmax)));

I = T(m,kb);

if md <= tol % Check accuracy

T = T(1:m,1:kmax+1); % Active part of T

return

end

end

In the above algorithm the value Tm,k is accepted when |Tm,k−Tm−1,k| ≤ tol,
where tol is the permissible error. Thus one extrapolates until two values in the
same column agree to the desired accuracy. In most situations, this gives, if h is
sufficiently small, with a large margin a bound for the truncation error in the lower
of the two values. Often instead the subdiagonal error criterion |Tm,m−1−Tm,m| < δ
is used, and Tmm taken as the numerical result.

If the use of the basic asymptotic expansion is doubtful, then the uppermost
diagonal of the extrapolation scheme should be ignored. Such a case can be detected
by inspection of the difference quotients in a column. If for some k, where Tk+2,k

has been computed and the modulus of the relative irregular error of Tk+2,k−Tk+1,k

is less than (say) 20%, and, most important, the difference quotient

(Tk+1,k − Tk,k)/(Tk+2,k − Tk+1,k)

is very different from its theoretical value qpk , then the uppermost diagonal is to be
ignored (except for its first element).

Sometimes several of the uppermost diagonals are to be ignored. For the
integration of a class of periodic functions the trapezoidal rule is superconvergent;
see Sec. 5.2.3. In this case all the difference quotients in the first column are much
larger than qp1 = q2. According to the rule just formulated, every element of
the Romberg scheme, outside the first column should be ignored. It is correct;
in superconvergent cases Romberg’s method is of no use; it destroys the excellent
results that the trapezoidal rule has produced!

Example 5.2.2.
The remainder for Tk,k in Romberg’s method reads

Tk,k −
∫ b

a

f(x) dx = rkh
2k

(b− a)f2k

(ξ).

For k = 1, T11 is the trapezoidal rule with remainder r1h
2(b−a)f (2)(ξ). By working

algebraically in the Romberg scheme, we see that T22 is the same as Simpson’s
formula. It can also be shown that T33 is the same as Milne’s formula, i.e. the five
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point closed Newton–Cotes’ formula. it follows that for k = {1, 2, 3} both methods
give, with k′ = {2, 3, 5}, function values, exact results for f ∈ Pk′ .

This equivalence can also be proved by the following argument. By Corol-
lary 3.3.8, there is only one linear combination of the values of the function f at

n+ 1 given points that can yield
∫ b

a
f(x) dx exactly for all polynomials f ∈ Pn+1.

It follows that the methods of Cotes and Romberg Tkk are identical for k = 1, 2, 3.
For k > 3 the methods are not identical. For k = 4 (9 function values),

Cotes is exact in P10, while T44 is exact in P8. For k = 5 (17 function values),
Cotes is exact in P18, while T55 is exact in P10. This sounds like an advantage
for Cotes, but one has to be sceptical about formulas that use equidistant points in
polynomial approximation of very high degree; the discussion of Runge’s phenomena
in Chapter 4.

Note that the remainder of T44 is

r4h
8(b− a)f (8)(ξ) ≈ r4(b − a)∆8f(a), r4 = 16/4725,

where ∆8f(a) uses the same function values as T44 and C8. So we can use r4(b −
a)∆8f(a) as an asymptotically correct error estimate for T44.

We have assumed so far, that the integrand is a real function f ∈ C2m+2[a, b].
For example, if the integrand f(x) has an algebraic end-point singularity,

f(x) = xβh(x), −1 < β ≤ 0,

where h(x) ∈ Cp+1[a, b], this assumption is not valid. In this case an asymptotic
error expansion of the form

T (h) − I =

n∑

q=1

aqh
q+β +

q
∑

q=2

bqh
q +O(hq+1) (5.2.11)

can be shown to hold for a trapezoidal sum. Similar but more complicated expan-
sions can be obtained for other classes of singularities. If p = −1/2, then T (h) has
an error expansion in h1/2

T (h) − I = a1h
3/2 + b2h

2 + a2h
5/2 + b3h

3 + a3h
5/2 + . . . .

Richardson extrapolation can then be used with the denominators

2pj − 1, pj = 1.5, 2, 2.5, 3, . . . .

Clearly the convergence acceleration will be much less effective than in the standard
Romberg case.

In Richardson extrapolation schemes the exponents in the asymptotic error
expansions have to be known explicitly. In cases when the exponents are unknown a
nonlinear extrapolation scheme, like the ǫ-algorithm should be used. In this a two-

dimensional array of numbers ǫ
(p)
k , initialized with the trapezoidal approximations
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Tm = T (hm), hm = (b− a)/2m, is computed by the recurrence relation

ǫ
(m)
−1 = 0, m = 1 : n− 1, . . . ,

ǫ
(m)
0 = Tm, m = 0 : n,

ǫ
(m)
k+1 = ǫ

(m+1)
k−1 +

1

ǫ
(m+1)
k − ǫ

(m)
k

, k = 0 : n− 2, m = 0 : n− k − 1.

Example 5.2.3.
Accelerating the sequence of trapezoidal sums using the epsilon algorithm may

work when Romberg’s method fails. In the integral
∫ 1

0

√
xdx = 2/3.

the integrand has a singularity ate the left endpoint.
Using the trapezoidal rule with 2k + 1 points, k = 0 : 9, the error is di-

vided roughly by 2
√

2 ≈ 2.828 when the step size is halved. For k = 9 we get he
approximation I ≈ 0.66664 88815 with an error 0.18 · 10−4.

Applying the ǫ-algorithm to these trapezoidal sums, wee obtained the ac-
celerated values displayed in the table below. (Recall that the quantities in odd
numbered columns are only intermediate quantities.)

k ǫ
(9−2k)
2k error

0 0.66664888154995 −0.1779 · 10−4

1 0.66666673351817 0.6685 · 10−7

2 0.66666666666037 −0.6292 · 10−11

3 0.66666666666669 0.268 · 10−13

4 0.66666666666666 −0.044 · 10−13

The magnitude of the error in ǫ
(1)
8 is close to full IEEE double precision. Note that

we did not use any a priori knowledge of the error expansion!

An application of the epsilon algorithm to computing the integral of an oscil-
lating integrand to high precision is given in Example 5.2.8.

5.2.3 Superconvergence of the Trapezoidal Rule

In general the trapezoidal rule is second order accurate, unless f ′(a) = f ′(b), but
there exist interesting exceptions. Suppose that the function f is infinitely differen-
tiable for x ∈ R, and that f has [a, b] as an interval of periodicity, i.e.

f(x+ (b− a)) = f(x), ∀ x ∈ R.

Then
f (k)(b) = f (k)(a), k = 0, 1, 2, . . . ,
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hence every term in the Euler–Maclaurin expansion is zero for the integral over
the whole period [a, b]. One could be led to believe that the trapezoidal rule gives
the exact value of the integral, but this is usually not the case. For most periodic
functions f , limr→∞R2r+2f 6= 0; the expansion converges, of course, though not
necessarily to the correct result.

On the other hand, the convergence as h→ 0 for a fixed (though arbitrary) r
is a different story; the error bound (5.2.10) shows that

|R2r+2(a, h, b)f | = O(h2r+2).

Since r is arbitrary, this means that for this class of functions, the trapezoidal
error tends to zero faster than any power of h, as h → 0 . We may call this
superconvergence. The application of the trapezoidal rule to an integral over
[0,∞) of a function f ∈ C∞(0,∞) often yields similar features, sometimes even
more striking.

Example 5.2.4.
Let the interval be [0, 2π]. Then the composite trapezoidal rule with step

length h = 2π/n integrates any trigonometric polynomial

tm(x) = a0 + a1 cosx+ a2 cos 2x+ · · · + am cosmx

+ b1 sinx+ b2 sin 2x+ · · · + bm sinmx.

of degree m ≤ n− 1 exactly.

Suppose that the periodic function f(z), z = x + iy, is analytic in a strip,
|y| < c, around the real axis. It can then be shown that the error of the trapezoidal
rule is O(e−η/h) as h ↓ 0; η is related to the width of the strip. A similar result will
be obtained in Sec. sec3.2.2, for an annulus instead of a strip.

As a rule, this discussion does not apply to periodic functions which are defined
by periodic continuation of a function originally defined on [a, b] (like the Bernoulli
functions). They usually become non-analytic at a and b, and at all points a+(b−
a)n, n = 0,±1,±2, . . ..

The Poisson summation formula is, even better than the Euler–Maclaurin
formula for the quantitative study of the trapezoidal truncation error on an infinite
interval. For convenient reference we now formulate the following surprising result:

Theorem 5.2.2.
Suppose that the trapezoidal rule (or, equivalently, the rectangle rule) is applied

with constant step size h to
∫∞
−∞ f(x) dx. The Fourier transform of f reads

f̂(ω) =

∫ ∞

−∞
f(x)e−iωt dt.

Then the integration error decreases like 2f̂(2π/h) as h ↓ 0.
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Example 5.2.5.
For the normal probability density, we have

f(x) =
1

σ
√

2π
e−

1
2 (t/σ)2 , f̂(ω) = e−

1
2 (ωσ)2 .

The integration error is thus approximately 2 exp(−2(πσ/h)2). Roughly speaking,
the number of correct digits is doubled if h is divided by

√
2, for example, the error

is approximately 5.4 · 10−9 for h = σ, and 1.4 · 10−17 for h = σ/
√

2.

The application of the trapezoidal rule to an integral over [0,∞) of a function
f ∈ C∞(0,∞) often yields similar features, sometimes even more striking. Suppose
that, for k = 1, 2, 3, . . .,

f (2k−1)(0) = 0 and f (2k−1)(x) → 0, x→ ∞,

and
∫∞
0

|f (2k)(x)| dx < ∞. (Note that for any function g ∈ C∞(−∞,∞) the
function f(x) = g(x) + g(−x) satisfies such conditions at the origin.) Then all
terms of the Euler–Maclaurin expansion are zero, and one can be misled to believe
that the trapezoidal sum gives

∫∞
0
f(x) dx exactly for any step size h! We have

already seen an example of this in Example 3.5.3. See also Theorem 5.2.2 and
Problem 5.2.7. The explanation is that the remainder R2r+2(a, h,∞) will typically
not tend to zero, as r → ∞ for fixed h. On the other hand: if we consider the
behavior of the truncation error as h → 0 for given r, we find that it is o(h2r) for
any r, just like the case of a periodic unction.

For a finite subinterval of [0,∞), however, the remainder is still typically
O(h2), and for each step the remainder is typically O(h3). So, there is an enormous
cancellation of the local truncation errors, when a C∞-function, with vanishing
odd-order derivatives at the origin, is integrated by the trapezoidal rule over [0,∞).

Example 5.2.6.
For integrals of the form

∫∞
−∞ f(x) dx, the trapezoidal rule (or the midpoint

rule) often gives good accuracy if one integrates over the interval [−R1, R2], assum-
ing that f(x) and its lower derivatives are small for x ≤ −R1 and x ≥ R2.

The correct value to six decimal digits of the integral
∫∞
−∞ e−x

2

dx is π1/2 =

1.772454. For x± 4, the integrand is less than 0.5 · 10−6. Using the trapezoidal rule
with h = 1/2 for the integral over [−4, 4] we get the estimate 1.772453, an amazingly
good result. (The values of the function have been taken from a six-place table.)
The truncation error in the value of the integral is here less than 1/10,000 of the
truncation error in the largest term of the trapezoidal sum—a superb example of
“cancellation of truncation error”. The error committed when we replace ∞ by 4
can be estimated in the following way:

|R| = 2

∫ ∞

4

e−x
2

dx =

∫ ∞

16

e−t
1√
t
dt <

∫ ∞

16

e−t
1√
16
dt =

1

4
e−16 < 10−7.
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5.2.4 Oscillating Integrands

Highly oscillating integrals of the form

I[f ] =

∫ b

a

f(x)eiωg(x) dx, (5.2.12)

where f(x) is a slowly varying function and eiωg(x) is oscillating, frequently occur in
applications from electromagnetics, chemistry, fluid mechanics, etc. Such integrals
are allegedly difficult to compute. When a standard numerical quadrature rule is
used to compute (5.2.12) this requires using a step size h such that ωh ≪ 1. For
large values of ω this means an exceedingly small step size and a large number of
function evaluations.

Some previously mentioned techniques such as using a simple comparison
problem, or a special integration formula, can be effective also for an oscillating
integrand. Consider the case of a Fourier integral, where g(x) = x, in (5.2.12). The
trapezoidal rule gives the approximation

I[f ] ≈ 1
2h
(
f0e

iωa + fNe
iωb
)

+ h

N−1∑

j=1

fje
iωxj , (5.2.13)

where h = (b− a)/N , xj = a+ jh, fj = f(xj). This formula cannot be used unless
ωh ≪ 1, since its validity is based on the assumption that the whole integrand
varies linearly over an interval of length h.

A better method is obtained by approximating just f(x) by a piecewise linear
function,

pj(x) = fj +
x− xj
h

(fj+1 − fj), x ∈ [xj , xj+1], j = 0 : N − 1.

The integral over [xj , xj+1] can then be approximated by

∫ xj+1

xj

pj(x)e
iωx dx = heiωxj

(

fj

∫ 1

0

eiωht dt+ (fj+1 − fj)

∫ 1

0

teiωht dt
)

,

where we have made the change of variables x − xj = th. Let θ = hω be the
characteristic frequency. Then

∫ 1

0

eiθt dt =
1

iθ
(eiθ − 1) = α,

and using integration by parts

∫ 1

0

teiθt dt =
1

iθ
teiθt

∣
∣
∣
∣

1

0

− 1

iθ

∫ 1

0

eiθt dt =
1

iθ
eiθ +

1

θ2
(eiθ − 1) = β.

Here α and β depend on θ but not on j. Summing the contributions from all
intervals we obtain

h(α− β)
N−1∑

j=0

fje
iωxj + hβ

N−1∑

j=0

fj+1e
iωxj
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= h(α− β)

N−1∑

j=0

fje
iωxj + hβe−iθ

N∑

j=1

fje
iωxj

The resulting quadrature formula has the same form as (5.2.13),

I[f ] ≈ hw(θ)
N−1∑

j=0

fje
iωxj + hwN (θ)

(
fNe

iωxN − f0e
iωx0

)
, (5.2.14)

with the weights w0(θ) = α− β, wN (θ) = βe−iθ, and w(θ) = w0 + wN . Then

w0(θ) = wN (−θ) =
1 − iθ − e−iθ

θ2
, w(θ) =

(sin 1
2θ)

2

(1
2θ)

2
. (5.2.15)

Note that the same trigonometric sum is involved, now multiplied with the real
factor w(θ). The sum in (5.2.14) can be computed using the FFT; see Sec. 4.7.3.

The weights tend to the trapezoidal weights when ωh → 0 (check this!). For
small values of |θ| there will be cancellation in these expressions for the coefficients
and the Taylor expansions should be used instead; see Problem 5.2.11.

A similar approach for computing trigonometric integrals of one of the forms

∫ b

a

f(x) cos(ωx) dx,

∫ b

a

f(x) sin(ωx) dx, (5.2.16)

was advanced by Filon [107] already in 1928. In this the interval [a, b] is divided into
an even number of 2N subintervals of equal length h = (b− a)/(2N). The function
f(x) is approximated over each double interval [x2i, x2(i+1)], by the quadratic poly-
nomial pi(x) interpolating f(x) at x2i, x2i+1, and x2(i+1). Filon’s formula is thus
related to Simpson’s rule. (The formula (5.2.14) is often called the Filon-trapezoidal
rule.) For ω = 0, Filon’s formula reduces to the composite Simpson’s formula, but
it is not exact for cubic functions f(x) when ω 6= 0.

The integrals

∫ x2(i+1)

x2i

pi(x) cos(ωx) dx,

∫ x2(i+1)

x2i

pi(x) sin(ωx) dx

can be computed analytically using integration by parts. This leads to Filon’s
integration formula; see the Handbook [1, 25.4.47]

Similar formulas can be developed by using different polynomial approxima-
tions of f(x). Einarsson [95] uses a cubic spline approximation of f(x) and assumes
that the first and second derivatives of f at the boundary are available. The result-
ing quadrature formula has an error which usually is about four times smaller than
that for Filon’s rule.

Using the Euler–Maclaurin formula on the function it can be shown (see
Einarsson [96, 97]) that the expansion of the error for the Filon-trapezoidal rule,
the Filon–Simpson method as well as the cubic spline method, contain only even
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powers of h. Thus the accuracy can be improved by repeated Richardson extrap-
olation. For example, if the Filon-trapezoidal rule is used with a sequence of step
sizes h, h/2, h/4, . . ., then one can proceed as in Romberg’s method. Note that the
result after one extrapolation is not exactly equal to the Filon–Simpson rule, but
gives a marginally better result when ωh = O(1).

Example 5.2.7 (Einarsson [96]).

Using the standard trapezoidal rule to compute the Fourier integral

I =

∫ ∞

0

e−x cosωxdx =
1

1 + ω2
.

gives the result

IT = h
(

1
2 + ℜ

∞∑

j=1

e−jheihωj
)

=
h

2

sinhh

coshh− coshhω
,

where h is the step length. Assuming that hω is sufficiently small we can expand
the right-hand side in powers of h obtaining

IT = I
(

1 +
h2

12
(1 + ω2) +

h4

720
(1 + ω2)(3ω2 − 1) +O(h6)

)

.

For the Filon-trapezoidal rule the corresponding result is

IFT =
(sin 1

2ωh
1
2ωh

)2

IT = I
(

1 +
h2

12
− h4

720
(3ω2 + 1) +O(h6)

)

.

For small values of ω the two formulas are seen to be equivalent. However, for larger
values of ω, the error in the standard trapezoidal rule increases rapidly.

The expansions only have even powers of h. After one step of extrapolation
the Filon-trapezoidal rule gives a relative error equal to h4(3ω2 +1)/180, which can
be shown to be slightly better than for the Filon–Simpson rule.

More general Filon-type methods can be developed as follows. Suppose we
wish to approximate the integral

I[f ] =

∫ h

0

f(x)eiωx dx = h

∫ 1

0

f(ht)eihωt dt, (5.2.17)

where f is itself sufficiently smooth. We choose distinct nodes 0 ≤ c1 < c2 <
· · · cν ≤ 1 and consider the quadrature formula interpolatory weights b1, b2, . . . , bν .
Let s be the largest integer j so that

∫ 1

0

tj−1γ(t) dt = 0, γ(t) =

ν∏

i=1

(t− ci). (5.2.18)
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Then by Theorem 5.1.3, s ≤ ν, and the order of the corresponding quadrature
formula is p = ν+s. A Filon-type quadrature rule is now obtained by interpolating
f by the polynomial

p(x) =

ν∑

k=1

ℓk(x/h)f(ckh),

where ℓk is the kth cardinal polynomial of Lagrange interpolation. Replacing f by
p in (5.2.17), we obtain

Qh[f ] =

ν∑

k=1

βk(θ)f(ckh), βk(θ) =

∫ 1

0

ℓk(t)e
ihωt dt. (5.2.19)

The coefficients βk(θ) can be computed also from the moments

µk(θ) =

∫ 1

0

tkeiθt dt, k = 0 : ν − 1,

by solving the Vandermonde system

ν∑

j=1

βj(θ)c
k
j = µk(θ), k = 0 : ν − 1.

The derivation of the Filon-type quadrature rule is analogous to considering
eiθt as a complex-valued weight function. However, any attempt to choose the nodes
cj so that the order of the integration rule is increased over ν is likely to lead to
complex nodes and useless formulas.

The general behavior of Filon-type quadrature rules is that for 0 < θ ≪ 1
they show similar accuracy to the corresponding standard interpolatory rule. For
θ = O(1) they are also very effective, although having order ν ≤ p. The common
wisdom is that if used in the region where θ is large they can give large errors.
However, Einarsson [96] observed that the cubic spline method gives surprisingly
good results also for large values of θ, seemingly in contradiction to the condition
in the sampling theorem, that at least two nodes per full period are needed.

Iserles [188] shows that once appropriate Filon-type methods are used the
problem of highly oscillatory quadrature becomes relatively simple. Indeed, the
precision of the calculation actually increases as the oscillation grows. This is quan-
tified in the following theorem:

Theorem 5.2.3 (Iserles [188] Theorem 2).
Let θ = hω be the characteristic frequency. Then the error Eh[f ] in the Filon-

type quadrature formula (5.2.19) is

Eh[f ] ∼ O(hν+1θ−p), (5.2.20)

where p = 2 if c1 = 0, and cν = 0; p = 1 otherwise.
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Figure 5.2.1. The Filon-trapezoidal rule applied to the Fourier integral
with f(x) = ex, for h = 1/10, and ω = 1 : 1000; solid line: exact integral; dashed
line: absolute value of the error.

To get the best error decay the quadrature formula should include the points
c1 = 0, and cν = 1. This is the case both for the Filon-trapezoidal method and the
Filon–Simpson rule. Figure 5.2.1 shows the absolute value of the integral

I =

∫ h

0

exeiωx dx = (e(1+iω)h − 1)/(1 + iω),

and the absolute value of the error in the Filon-trapezoidal approximation for h =
0.1 and ω = 1 : 1000. Clearly the error is small and becomes smaller as the
characteristic frequency grows!

Sometimes convergence acceleration of a related series can be successfully
employed for the evaluation of an integral with an oscillating integrand. Assume
that the integral has the form

I[f ] =

∫ ∞

0

f(x) sin(g(x)) dx,

where g(x) is an increasing function, and both f(x) and g(x) can be approximated
by a polynomial. Set

I[f ] =
∞∑

n=0

(−1)Nun, un =

∫ xn+1

xn

f(x) |sin(g(x))| dx,

where x0, x1, x2, . . . are the successive zeros of sin(g(x)). The convergence of this
alternating series can then be improved with the help of repeated averaging; see
Sec. 3.4.3. Alternatively a sequence of partial sums can be computed, which then is
accelerated by the epsilon algorithm. Sidi [288] has developed a useful extrapolation
method for oscillatory integrals over an infinite interval.
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Example 5.2.8 (Gautschi [138]).

The first problem in “The Hundred-dollar, Hundred-digit Challenge”176 is to
compute the integral

I = lim
ǫ→0

∫ 1

ǫ

t−1 cos(t−1 ln t) dt. (5.2.21)

to 10 decimal places. Since the integrand is densely oscillating as t ↓ 0 and at
the same time the oscillations tend to infinity (see Figure 5.2.2) this is a challeng-
ing integral to compute numerically. (Even so the problem has been solved to an
accuracy of 10,000 digits!)

0 0.1 0.2 0.3 0.4 0.5
−400

−300

−200

−100

0

100

200

x

y

Figure 5.2.2. The oscillating function x−1 cos(x−1 lnx).

With the change of variables u = t−1, du = −t−2dt, we get

I =

∫ ∞

1

u−1 cos(u lnu) du. (5.2.22)

Making the further change of variables x(u) = u lnu, we have dx = (1 + lnu)du =
(u+ x)u−1du, and the integral becomes

I =

∫ ∞

0

cosx

x+ u(x)
dx. (5.2.23)

The inverse function u(x) is smooth and relatively slowly varying, with u(0) = 1,
u′(0) = 1. For x > 0, u′(x) is positive and decreasing, while u′′(x), is negative
and decreasing in absolute value. The function u(x) is related to Lambert’s W -
function, which is the inverse of the function x = wew (see Problem 3.1.12). Clearly
u(x) = ew(x).

176See [35] and http://www.siam.org/books/100digitchallenge.
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The zeros of the integrand in (5.2.23) are at odd multiples of π/2. We split
the interval of integration into intervals of constant sign for the integrand

I =

∫ π/2

0

cosx

x+ u(x)
dx+

∞∑

k=1

Ik, Ik =

∫ (2k+1)π/2

(2k−1)π/2

cosx

x+ u(x)
dx.

Changing variables x = t+ kπ in the integrals Ik

Ik = (−1)k
∫ π/2

−π/2

cos t

t+ kπ + u(t+ kπ)
dt. (5.2.24)

The terms form an alternating series with terms decreasing in absolute values. It
is, however, slowly converging and for an error bound of 1

210−5 about 116,000
terms would be needed. Accelerating the convergence using the epsilon algorithm,
Gautschi found that using only 21 terms in the series suffices to give an accuracy
of about 15 decimal digits,

I = 0.32336 74316 77779.

The integrand in the integrals (5.2.24) is regular and smooth. For computing
these, for example, a Clenshaw–Curtis quadrature rule can be used after shifting
the interval of integration to [−1, 1]; see also Problem 5.3.11.

5.2.5 Adaptive Quadrature

Suppose the integrand f(x) (or some of its low order derivatives) has strongly
varying orders of magnitude in different parts of the interval of integration [a, b].
Clearly one should then use different step sizes in different parts of the integration
interval. If we write

∫ b

a

=

∫ c1

a

+

∫ c2

c1

+ · · · +
∫ b

c1

,

then the integrals on the right-hand side can be treated as independent subproblems.
In adaptive quadrature methods step sizes are automatically adjusted so that
the approximation satisfies a prescribed error tolerance

∣
∣
∣I −

∫ b

a

f(x) dx
∣
∣
∣ ≤ ǫ. (5.2.25)

A common difficulty is when the integrand exhibits one or several sharp peaks
as exemplified in Figure 5.2.3. It should be realized that without further information
about the location of the peaks all quadrature algorithms can fail if the peaks are
sharp enough.

We consider first a fixed order adaptive method based on Simpson’s rule. For
a subinterval [a, b], set h = (b − a) and compute the trapezoidal approximations

T00 = T (h), T10 = T (h/2), T20 = T (h/4).
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Figure 5.2.3. A needle shaped function.

The extrapolated values

T11 = (4T10 − T00)/3, T21 = (4T20 − T10)/3,

are equivalent to (the composite) Simpson’s rule with step length h/2 and h/4,
respectively. We can also calculate

T22 = (16T21 − T11)/15,

which is Milne’s method with step length h/4 with remainder equal to

(2/945)(h/4)6(b − a)f (6)(ξ).

For T22 we can estimate the truncation error by |T22−T21|, which usually is a strong
overestimate. We accept the approximation if

|T22 − T21| <
hjǫ

b− a
, (5.2.26)

i.e. we require the error to be less than ǫ/(b − a) per unit step. Otherwise we
reject the approximation, and subdivide the interval in two intervals [aj ,

1
2 (aj+bj)],

[ 12 (aj + bj), bj ]. The same rule is now applied to these two subintervals.
Note that if the function values computed previously are saved, these can

be reused for the new intervals. We start with one interval [a, b] and carry on
subdivisions until the error criterion in (5.2.26) is satisfied for all intervals. Since
the total error is the sum of errors for all subintervals, we then have the required
error estimate

RT <
∑

j

hjǫ

b− a
= ǫ.



‘‘dqbjVol1’’

2007/5/28

page

564 Chapter 5. Numerical Integration

The possibility that a user might try to integrate a non-integrable function
(e.g., f(x) = x−1 on [0, 1]) cannot be neglected. In principle it is not possible to
decide whether or not a function f(x) is integrable on the basis of a finite sample
f(x1), . . . , f(xn) of function values. Therefore it is necessary to impose

1. an upper limit on the number of function evaluation.

2. a lower limit on the size of the subregions

This means that premature termination may occur even when the function is only
close to being non-integrable, for example, f(x) = x−0.99.

Many different adaptive quadrature schemes exits. Here we shall illustrate
one simple scheme based on a five point closed Newton–Cotes’ rule, which applies
bisection in a locally adaptive strategy. All function evaluations contribute to the
final estimate. In many situations it might be preferable to specify a relative error
tolerance

tol = η
∣
∣
∣

∫ b

a

f(x) dx
∣
∣
∣.

A more complete discussion of the choice of termination criteria in adaptive algo-
rithms is found in Gander and Gautschi [121].

Algorithm 5.3. Adaptive Simpson.

Let f be a given function to be integrated over [a, b]. The function adaptsimp uses a
recursive algorithm to compute an approximation with an error less than a specified
tolerance τ > 0.

function [I,nf] = adaptsimp(f,a,b,tol);

% ADAPTSIMP calls the recursive function ADAPTREC to compute

% the integral of the vector valued function f over [a,b];

% tol is the desired absolute accuracy; nf is the number of

% function evaluations.

%

ff = feval(f,[a, (a+b)/2, b]);

nf = 3; % Initial Simpson approximation

I1 = (b - a)*[1, 4, 1]*ff’/6;

% Recursive computation

[I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);

function [I,nf] = adaptrec(f,a,b,ff,I1,tol,nf);

h = (b - a)/2;

fm = feval(f, [a + h/2, b - h/2]);

nf = nf + 2;

% Simpson approximations for left and right subinterval

fR = [ff(2); fm(2); ff(3)];

fL = [ff(1); fm(1); ff(2)];

IL = h*[1, 4, 1]*fL/6;
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IR = h*[1, 4, 1]*fR/6;;

I2 = IL + IR;

I = I2 + (I2 - I1)/15; % Extrapolated approximation

if abs(I - I2) > tol % Refine both subintervals

[IL,nf] = adaptrec(f,a,a+h,fL,IL,tol/2,nf);

[IR,nf] = adaptrec(f,b-h,b,fR,IR,tol/2,nf);

I = IL + IR;!

end

Note that in a locally adaptive algorithm using a recursive partitioning
scheme, the subintervals are processed from left to right until the integral over each
subinterval satisfies some error requirement. This means that an a priori initial
estimate of the whole integral, needed for use in a relative local error estimate cannot
be updated until all subintervals are processed and the computation is finished.
Hence, if a relative tolerance is specified then a estimate of the integral is needed
before the recursion starts. This is complicated by the fact that the initial estimate
might be zero, for example if a periodic integrand is sampled at equidistant intervals.
Hence a combination of relative and absolute criterion might be preferable.

Example 5.2.9.
This algorithm was used to compute the integral

∫ 4

−4

dx

1 + x2
= 2.65163532733607.

with an absolute tolerance 10−p, p = 4, 5, 6. The following approximations were
obtained.

I tol n error
2.65162 50211 10−4 41 1.0 10−5

2.65163 52064 10−5 81 1.2 10−7

2.65163 5327353 10−6 153 −1.7 10−11

Note that the actual error is much smaller than the required tolerance.

So far we have considered adaptive routines, which use fixed quadrature rules
on each subinterval but where the partition of the interval depends on the integrand.
Such an algorithm is said to be partition adaptive. We can also consider doubly
adaptive integration algorithms. These can choose from a sequence of increasingly
higher order rules to be applied to the current subinterval. Such algorithms use a
selection criterion to decide at each stage whether to subdivide the current subinter-
val or to apply a higher order rule. Doubly adaptive routines copes more efficiently
with smooth integrands.

Many variations on the simple scheme outlined above are possible. For exam-
ple, we could base the method on a higher order Romberg scheme, or even try to
choose an optimal order for each subinterval. Adaptive methods work even when
the integrand f(x) is badly behaved. But if f has singularities or unbounded deriva-
tives, the error criterion may never be satisfied. For guard against such cases it is
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necessary to include some bound of the number of recursion levels that are allowed.
It should be kept in mind that although adaptive quadrature algorithms are conve-
nient to use they are in general less efficient than methods which have been specially
adapted for a particular problem.

We finally warn the reader that no automatic quadrature routine can be guar-

anteed always to work. Indeed any estimate of
∫ b

a f(x) dx based solely on the value
of f(x) on finitely many points can fail. The integrand f(x) may, for example, be
nonzero only on a small subset of [a, b]. An adaptive quadrature rule based only on
samples f(x) in a finite number of points theoretically may return the value zero in
such a case!

We recall the remark that evaluation of the integral
∫ b

a
f(x) dx is equivalent

to solving an initial value problem y′ = f(x), y(a) = 0, for an ordinary differen-
tial equation. For such problems sophisticated techniques for adaptively choosing
step size and order in the integration have been developed. These may be a good
alternative choice for handling difficult cases.

Review Questions

2.1. (a) Give an account of the theoretical background of Romberg’s method.

(b) For which values of k are the elements Tkk in the Romberg scheme identical
to closed Newton–Cotes’ formulas?

2.2. Romberg’s method uses extrapolation of a sequence of trapezoidal approxi-
mations computed for a sequence of step sizes h0, h1, h2, . . . . What sequences
have been suggested and what are their relative merits?

2.3. For some classes of functions the trapezoidal rule exhibits so called supercon-
vergence. What is meant by this term? Give an example of a class of functions
for which this is true.

2.4. When the integrand has a singularity at one of the endpoints, then many
quadrature methods converge very slowly. Name a few possible ways to resolve
this problem.

2.5. Romberg’s method works only when the error of the trapezoidal rule has an
expansion in even powers of h. If this is not the case, what other extrapolations
methods should be tried?

2.6. Describe at least two methods for treating an integral with an oscillating
integrand.

2.7. In partition adaptive quadrature methods the step sizes are locally adopted.
Discuss how the division into subintervals can be controlled.
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Problems and Computer Exercises

2.1. Is it true that (the short version of) Simpson’s formula is a particular case of
Gregory’s formula?

2.2. Use Romberg’s method to compute the integral
∫ 4

0
f(x) dx, using the following

(correctly rounded) values of f(x). Need all the values be used?

x 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0

f(x) −4271 −2522 −499 1795 4358 7187 10279 13633 17247

2.3. (a) Suppose that the form of the error of Romberg’s method is known, but
the error constant rk is not known. Determine rk numerically for k = 3 and
k = 4, by computing the Romberg scheme for f(x) = x2k.

(b) Prove the formula for the error constant of Romberg’s method.

2.4. Compute by the Euler–Maclaurin formula, or rather the trapezoidal rule,

(a)

∫ ∞

0

e−x
2/2dx, (b)

∫ ∞

0

dx

cosh(πx)
,

as accurately as you can with the normal precision of your computer (or soft-
ware). Then find out empirically how the error depends on h. Make semi-
logarithmic plots on the same screen. How long range of integration do you
need?

2.5. (a) Use Romberg’s method and Aitken acceleration to compute the integral

I[f ] =

∫ ∞

1

1

1 + x2
dx =

∫ 2

1

+

∫ 4

2

+

∫ 8

4

+ · · · .

Determine where to terminate the expansion, and then use Aitken acceleration
to find I[f ]. Compare with the exact result. Think of an error estimate that
can be used if the exact result is not known.

(b) Treat in the same way
∫ ∞

1

1√
x+ x3

.

Compare the computational effort for the computation of the tail
∫∞
R by ac-

celeration and by series expansion with the same accuracy.

2.6. Modify the Matlab function romberg so that it uses rational extrapolation
according to the recursion (5.2.7) instead of polynomial extrapolation. Use
the modified program to compute the integral in Example 5.2.2. Compare the
results for the two different extrapolation methods.

2.7. Compute the integral
1

2π

∫ 2π

0

e
1√
2

sin x
dx
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by the trapezoidal rule, using h = π/2k k = 0, 1, 2, . . . , until the error is on
the level of the roundoff errors. Observe how the number of correct digits vary
with h? Notice that Romberg is of no use in this problem.

Hint: First estimate how well the function g(x) = ex/
√

2 can be approxi-
mated by a polynomial in P8 for x ∈ [−1, 1]. The estimate found by the
truncated Maclaurin expansion is not quite good enough. Theorem 3.1.5 pro-
vides a sharper estimate with an appropriate choice of R; remember Scylla
and Charybdis.

2.8. (a) Show that the trapezoidal rule, with h = 2π/(n + 1), is exact for all
trigonometric polynomials of period 2π, i.e. for functions of the type

n∑

k=−n
cke

ikt, i2 = −1,

when it is used for integration over a whole period.

(b) Show that if f(x) can be approximated by a trigonometric polynomial
of degree n so that the magnitude of the error is less than ǫ, in the interval
(0, 2π), then the error with the use of the trapezoidal rule with h = 2π/(n+1)
on the integral

1

2π

∫ 2π

0

f(x) dx

is less than 2ǫ.

(c) Use the above to explain the sensationally good result in Problem 5.2.6
above, when h = π/4.

2.9. (J. N. Lyness) Consider the integral

I(f, g) =

∫ nh

0

f(x)g′(x) dx (5.2.27)

An approximation related to the trapezoidal rule is

Sm = 1
2

n−1∑

j=0

[
f(jh) + f((j + 1)h)

][
g((j + 1)h) − (g(jh)

]
,

which requires 2(m + 1) function evaluations. Similarly an analogue to the
“mid-point rule” is

Rm = 1
2

n−1∑

j=0

′′f(jh)
[
g((j + 1)h) − (g((j − 1)h)

]
,

where the double prime on the summation indicates that the extreme values
j = 0 and j = m are assigned a weighting factor 1

2 . This rule requires 2(m+2)
function evaluations, two of which lie outside the interval of integration.
(a) Show that the difference Sm −Rm is of order O(h2).
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2.10. Apply the Matlab program romberg in Sec. 5.2.2 and repeated averages on
the integral

∫ 1000

0

x cos(x3) dx.

Try to obtain the results with 10 decimal places.

2.11. (a) Show the following series expansions for the coefficients in Filon-trapezoidal
formula:

w0(θ) = wN (−θ) =
1

2
− θ2

24
+

θ4

720
− . . .+ i

(θ

6
− θ3

120
+

θ5

5040
− . . .

)

,

w(θ) = w0(θ) + wN (−θ) = 1 − θ2

12
+

θ4

360
− . . .

(b) For what value of θ should you switch to using the series expansions above,
if you want to minimize an upper bound for the error in the coefficients?

5.3 Quadrature Rules with Free Nodes

5.3.1 Method of Undetermined Coefficients

We have previously seen how to derive quadrature rules using Lagrange interpola-
tion or operator series. We now outline another general technique, the method of
undetermined coefficients, for determining quadrature formulas of maximum order
with both free and prescribed nodes.

Let L be a linear functional and consider approximation formulas of the form

Lf ≈ L̃f =

p
∑

i=1

aif(xi) +

q
∑

j=1

bjf(zj), (5.3.1)

where the xi are p given nodes, while the zj are q free nodes. The latter are
to be determined together with the weight factors ai, bj. The altogether p + 2q
parameters in the formula are to be determined, if possible, so that the formula
becomes exact for all polynomials of degree less than N = p+2q. We introduce the
two node polynomials

r(x) = (x − x1) · · · (x− xp), s(x) = (x− z1) · · · (x− zq), (5.3.2)

of degree p and q, respectively.
Let φ1, φ2, . . . , φN be a basis of the space of polynomials of degree less than

N . We assume that the quantities Lφk, k = 1 : p+ 2q are known. Then we obtain
the non-linear system

p
∑

i=1

φk(xi)ai +

q
∑

j=1

φk(zj)bj = Lφk, k = 1, 2, . . . , p+ 2q, (5.3.3)

for the p+2q parameters. This system is non-linear in zj , but of a very special type.
Note that the free nodes zj appear in a symmetric fashion; the system (5.3.3) is
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invariant with respect to permutations of the free nodes together with their weights.
We therefore first ask for their elementary symmetric functions, i.e. for the
coefficients gj of the node polynomial

s(x) = φq+1(x) −
q
∑

j=1

gjφj(x) (5.3.4)

that has the free nodes z1, . . . zq as zeros. We change the basis to the set

φ1(x), . . . φq(x), s(x)φ1(x), . . . , s(x)φp+q(x).

In the system (5.3.3), the equations for k = 1 : q will not be changed, but the
equations for k = 1 + q : p+ 2q become,

p
∑

i=1

φk′ (xi)s(xi)ai +

q
∑

j=1

φk′(zj)s(zj)bj = L(sφk′), 1 ≤ k′ ≤ p+ q. (5.3.5)

Here the second sum disappears since s(zj) = 0, for all j. (This is the nice feature
of this treatment!) Further by (5.3.4)

L(sφk′ ) = L(φk′φq+1) −
q
∑

j=1

L(φk′φj)gj , 1 ≤ k′ ≤ p+ q. (5.3.6)

We thus obtain the following linear system for the computation of the p+ q quan-
tities, gj, and Ai = s(xi)ai:

q
∑

j=1

L(φk′φj)gj +

p
∑

i=1

φk′ (xi)Ai = L(φk′φq+1), k′ = 1 : p+ q. (5.3.7)

The weights of the fixed nodes are ai = Ai/s(xi). The free nodes zj are then
determined by finding the q roots of the polynomial s(x). Methods for computing
roots of a polynomial are given in Sec. 6.5. Finally, with ai and zj known, the
weights bj are obtained by the solution of the first q equations of the system (5.3.3)
which are linear in bj .

The remainder term Rf = (Lf − L̃f) of the method, exact for all polynomials
of degree less than N = p+ 2q, is of the form

Rf = R(f − PN ) ≈ cNf
(N)(ξ), cN = R(xN )/N !,

where cN is called the error constant. Note that R(xN ) = R(φN+1), where φ(N+1)

is any monic polynomial of degree N , since xN − φ(N+1) is a polynomial of degree
less than N . Hence, for the determination of the error constant we compute the
difference between the right-hand side and the left hand side of

p
∑

i=1

φk(xi) ai +

q
∑

j=1

φk(zj) bj +N !cN = LφN+1, N = p+ 2q, (5.3.8)
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and divide by (N)!. If, for example, a certain kind of symmetry is present, then
it can happen that cp+2q = 0. The formula is then more accurate than expected,
and we take N = p+ 2q + 1 instead. The case that also cp+2q+1 = 0 may usually
be ignored. It can occur if several of the given nodes are located, where free nodes
would have been placed.

From a pure mathematical point of view all bases are equivalent, but equation
(5.3.3) may be better conditioned with some bases than with others, and this turns
out to be an important issue when p + 2q is large. We mention three different
situations.

(i) The most straightforward choice is to set [a, b] = [0, 1] and use the monomial
basis φk(x) = xk−1, x ∈ (0, b) (bmay be infinite). For this choice the condition
number of (5.3.3), increases exponentially with p+2q. Then the free nodes and
corresponding weights may become rather inaccurate when p+ 2q is large. It
is usually found, however, that unless the condition number is so big that the
solution breaks down completely, the computed solution will satisfy equation
(5.3.3) with a small residual. This is what really matters for the application
of formula (5.3.1).

(ii) Take [a, b] = [−1, 1], and assume that the weight function w(x) and the given
nodes xi are symmetrical with respect to the origin. Then the weights ai
and bi, and the free nodes zj will also be symmetrically located and with the
monomial basis it holds that L(φk(x)) = 0, when k is even. If p = 2p′ is even,
the number of parameters will be reduced to p′ + q by the transformation
x =

√
ξ, ξ ∈ [0, b2]. Note that w(x) will be replaced by w(

√
ξ)/

√
ξ. If p is

odd, one node is at the origin, and one can proceed in an analogous way. This
should also reduce the condition number approximately to its square root,
and it is possible to derive in a numerically stable way formulas with about
twice as high order of accuracy as in the unsymmetric case.

(iii) Taking φk to be the orthogonal polynomials for the given weight function will
give a much better conditioned system for determining the weights. This case
will be considered in detail in Sec. 5.3.5.

Example 5.3.1.

Consider the linear functional L(f) =
∫ 1

0
f(x) dx. Set p = 0, q = 3 and choose

the monomial basis φi(x) = xi−1. Introducing the node polynomial

s(x) = (x− z1)(x − z2)(x − z3) = x3 − s3x
2 − s2x− s1,

the linear system (5.3.6) becomes




1 1/2 1/3
1/2 1/3 1/4
1/3 1/4 1/5









s1
s2
s3



 =





1/4
1/5
1/6



 .

The exact solution is s1 = 1/20, s2 = −3/5, and s3 = 3/2. The free nodes thus
are the zeros of s(x) = x3 − 3x2/2 + 3x/5 − 1/20, which are z2 = 1/2 and z1,3 =

1/2 ±
√

3/20. The weights b1, b2, b3 are then found by solving (5.3.3) for k = 1 : 3.
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The matrix of the above system is a Hankel matrix. The reader should verify
that, when p > 0 the matrix becomes a kind of combination of a Hankel matrix and
a Vandermonde matrix.

5.3.2 Gauss–Christoffel Quadrature Rules

Assume that the n nodes in a quadrature formula are chosen so that

(f, s) =

∫ b

a

p(x)s(x)w(x) dx = 0, ∀ p(x) ∈ Pn. (5.3.9)

where s(x) = (x− x1)(x− x2) · · · (x− xn) is the node polynomial. Then, by Theo-
rem 5.1.3, the corresponding interpolatory quadrature rule will have the maximum
possible order 2n− 1.

We define an inner product with respect to a weight function w(x) ≥ 0 by

(f, g) =

∫ b

a

f(x)g(x)w(x) dx, (5.3.10)

and assume that the moments

µk = (xk, 1) =

∫ b

a

xkw(x) dx. (5.3.11)

are defined for all k ≥ 0, and µ0 > 0. This inner product has the important property
that (xf, g) = (f, xg). The condition (5.3.9) on the node polynomial can then be
interpreted to mean that s(x) is orthogonal to all polynomials in Pn.

For the weight function w(x) ≡ 1 the corresponding quadrature rules were
derived in 1814 by Gauss [126]. Formulas for more general weight functions were
given by Christoffel [61] in 1858177, which is why these are referred to as Gauss–
Christoffel quadrature rules.

The construction of Gauss–Christoffel quadrature rules is closely related to
the theory of orthogonal polynomials. In Sec. 4.5.5 we showed how the orthogonal
polynomials corresponding to the inner product (5.3.10) could be generated by a
three-term recurrence formula. The zeros of these polynomials are the nodes in
a Gauss–Christoffel quadrature formula. As for all interpolatory quadrature rules
the weights can be determined by integrating the elementary Lagrange polynomials
(5.1.7)

wi =

∫ b

a

ℓi(x)w(x) dx, ℓi(x) =

n∏

j=1
j 6=i

(x− xj)

(xi − xj)
, i = 1 : n.

In Sec. 5.3.5 we will outline a more stable algorithm that determines the nodes
and weights by solving the eigenvalue problem for a symmetric tridiagonal matrix
defined by the coefficients in the recurrence relation.

We shall now prove some important properties of Gauss–Christoffel quadrature
rules using the general theory of orthogonal polynomials.

177Elvin Bruno Christoffel (1829–1900) worked mostly in Strasbourg. He is best known for his
work in geometry and tensor analysis, which Einstein later used in his theory of relativity.
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Theorem 5.3.1.
The zeros xi, i = 1 : n, of the orthogonal polynomial polynomial ϕn+1(x) of

degree n, associated with the weight function w(x) ≥ 0 on [a, b], are real, distinct
and contained in the open interval (a, b).

Proof. Let a < x1 < x2 · · · < xm < b, be the roots of ϕn+1(x) of odd multiplicity,
which lie in (a, b). At these roots ϕn+1(x) changes sign and therefore the polynomial
q(x)ϕn+1(x), where

q(x) = (x − x1)(x − x2) · · · (x− xm),

has constant sign in [a, b]. Hence,

∫ b

a

ϕn+1q(x)w(x) dx > 0.

But this is possible only if the degree of q(x) is equal to n. Thus m = n and the
theorem follows.

Corollary 5.3.2.
If x1, x2, . . . , xn are chosen as the n distinct zeros of the orthogonal polynomial

ϕn+1 of degree n in the family of orthogonal polynomials associated with w(x), then
the formula

∫ b

a

f(x)w(x) dx ≈
n∑

i=1

wif(xi), wi =

∫ b

a

ℓi(x)w(x) dx, (5.3.12)

is exact for polynomials of degree 2n− 1.

Apart from having optimal degree of exactness equal to 2n − 1, Gaussian
quadrature rules have several important properties, which we now outline.

Theorem 5.3.3.
All weights in a Gaussian quadrature rule are real, distinct and positive.

Proof. Let

ℓi(x) =

n∏

j=1
j 6=i

(x− xj)

(xi − xj)
, i = 1 : n,

be the Lagrange polynomials. Then the quadrature formula (5.3.12) is exact for
p(x) = (ℓi(x))

2, which is of degree 2(n−1). Further ℓi(xj) = 0, j 6= i, and therefore

∫ b

a

(ℓi(x))
2w(x) dx = wi(ℓi(xi))

2 = wi.

Since w(x) > 0 it follows that wi > 0.
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Gaussian quadrature formulas can also be derived by Hermite interpolation on
the nodes xk, each counted as a double node, and requiring that coefficients of the
derivative terms should be zero. This interpretation gives a convenient expression
for the error term in Gaussian quadrature.

Theorem 5.3.4.
The remainder term in Gauss’ quadrature rule (5.3.12) with n nodes is given

by the formula

I[f ] − In(f) =
f (2n)(ξ)

(2n)!

∫ b

a

[ n∏

i=1

(x− xi)
]2

w(x) dx = cnf
(2n)(ξ), a < ξ < b.

(5.3.13)
The constant cn can be determined by applying the formula to some polynomial of
degree 2n.

Proof. Denote by q(x) the polynomial of degree 2n− 1 which solves the Hermite
interpolation problem (see Sec. 4.3.1)

q(xi) = f(xi), q′(xi) = f ′(xi), i = 1 : n.

The Gauss quadrature formula is exact for q(x), and hence

∫ b

a

q(x)w(x) dx =

n∑

i=1

wiq(xi) =

n∑

i=1

wif(xi).

Thus
n∑

i=1

wif(xi) −
∫ b

a

f(x)w(x) dx =

∫ b

a

(q(x) − f(x))w(x) dx.

Using the remainder term (4.3.4) in Hermite interpolation gives

f(x) − q(x) =
f (2n)(ξ)

(2n)!
(ϕn(x))2, ϕn(x) =

n∏

i=1

(x − xi).

and the theorem now follows.

Using Bernštein’s Approximation Theorem (Theorem 3.2.5) we get the follow-
ing corollary:

Corollary 5.3.5.
Let f real-valued for z ∈ [−1, 1], and analytic and single-valued |f(z)| ≤M in

the region z ∈ ER, R > 1, where

ER = {z : |z − 1| + |z + 1| ≤ R+R−1},
is an ellipse with foci at 1 and −1. Then the remainder term in a Gauss’ quadrature
rule with n nodes for the interval [−1, 1] satisfies

|I[f ] − In(f)| ≤ 2Mµ0

1 − 1/R
R−2n (5.3.14)
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This shows the rapid convergence of Gauss’ quadrature rules for functions
analytic in a region ER, with R ≫ 1.

We now mention some classical Gauss–Christoffel quadrature rules, which
are related to the orthogonal polynomials surveyed in Sec. 4.5.5. For an integral
∫ 1

−1
f(x) dx, with uniform weight distribution w(x) = 1, the relevant orthogonal

polynomials are the Legendre polynomials Pn(x).
As a historical aside, Gauss derived his quadrature formula by considering the

continued fraction

1

2

∫ 1

−1

dx

z − x
=

1

2
ln

(
z + 1

z − 1

)

=
1

z−
1/3

z−
4/(3 · 5)

z−
9/(5 · 7)

z− · · · (5.3.15)

which he had derived in an earlier paper. The nth convergent of this continued
fraction is a rational function with a numerator of degree n−1 in z and denominator
of degree n which is the (n− 1, n) Padé approximant to the function. Decomposing
this fraction in partial fractions the residues and the poles can be taken as nodes
of a quadrature formula. Using the accuracy properties of the Padé approximants
Gauss showed that the quadrature formula will have order 2n− 1.

The reciprocal of the denominators polynomials Pn(z) = znQn(1/z) are pre-
cisely the Legendre polynomials; see Example 3.5.6. Recall that the monic Legendre
polynomials satisfy the recurrence formula P0 = 1, P1 = x,

Pn+1(x) = xPn(x) − n2

4n2 − 1
Pn−1(x), n ≥ 1.

The first few monic Legendre polynomials are

P2(x) =
1

3
(3x2 − 1), P3(x) =

1

5
(5x3 − 3x),

P4(x) =
1

35
(35x4 − 30x2 + 3), P5(x) =

1

63
(63x5 − 70x3 + 15x), . . . .

Example 5.3.2.
For a two-point Gauss–Legendre quadrature rule the two abscissas are the

zeros of P2(x) = 1
3 (3x2 − 1), i.e. ±3−1/2. Note that since they are symmetric with

respect to the origin.
The weights can be determined by application of the formula to f(x) = 1 and

f(x) = x, respectively. This gives

w0 + w1 = 2, −3−1/2w0 + 3−1/2w1 = 0,

with solution w0 = w1 = 1. Hence the formula

∫ 1

−1

f(x) dx ≈ f(−3−1/2) + f(3−1/2)

is exact for polynomials of degree ≤ 3. For a three-point Gauss formula, see Prob-
lem 5.3.1 below.
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Abscissas and weights for Gauss formulas using n = m + 1 points. for n =
2 : 10, with 15 decimal digits and n = 12, 16, 20, 24, 32, 40, 48, 64, 80, and 96 with
20 digits are tabulated in Abramowitz–Stegun [1, Table 25.4]; see Table 5.3.1 for a
sample. Instead of storing these constants, it might be preferable to use a program
that generates abscissas and weights as needed.

Table 5.3.1. Abscissas and weight factors for some Gauss–Legendre
quadrature from Abramowitz–Stegun [1, Table 25.4].

xi wi
n = 3

0.00000 00000 00000 0.88888 88888 88889
±0.77459 66692 41483 0.55555 55555 55556

n = 4
±0.33998 10435 84856 0.65214 51548 62546
±0.86113 63115 94053 0.34785 48451 37454

n = 5
0.00000 00000 00000 0.56888 88888 88889
±0.53846 93101 05683 0.47862 86704 99366
±0.90617 98459 38664 0.23692 68850 56189

For the weight function

w(x) = (1 − x)α(1 + x)β , x ∈ [−1, 1], α, β > −1,

the nodes are obtained from the zeros of the Jacobi polynomials Jn(x;α, β). In
the special case When α = β = 0 these equal the Legendre polynomials. The
case α = β = −1/2, which corresponds to the weight function w(x) = 1/

√
1 − x2,

gives the Chebyshev polynomials Tn(x) of the first kind. Similarly, α = β = 1/2,
corresponds to gives the Chebyshev polynomials Un(x) of the second kind.

If a quadrature rule is given for the standard interval [−1, 1], the corresponding
formula for an integral over the interval [a, b] is obtained by the change of variable
t = 1

2 ((b − a)x + (a+ b)), which maps the interval [a, b] onto the standard interval
[−1, 1],

∫ b

a

f(t)dt =
b− a

2

∫ 1

−1

g(x) dx, g(x) = f

(
1

2

(
(b − a)x+ (a+ b)

)
)

.

If f(t) is a polynomial then g(x) will be a polynomial of the same degree, since the
transformation is linear. Hence the order of accuracy of the formula is not affected.

Two other important cases of Gauss quadrature rules deal with infinite inter-

vals of integration. The generalized Laguerre polynomials L
(α)
n (x) are orthogonal

with respect to the weight function

w(x) = xαe−x, x ∈ [0,∞], α > −1.
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Setting α = 0, we get the Laguerre polynomials L
(0)
n (x) = Ln(x).

The Hermite polynomials are orthogonal with respect to the weight function

w(x) = e−x
2

, −∞ < x <∞.

Recall that weight functions and recurrence coefficients for the above monic orthog-
onal polynomials are given in Table 4.5.1.

Rather little is found in the literature on Numerical Analysis about densities
on infinite intervals, except the classical cases above. It follows form two classical
theorems of Hamburger in 1919 and M. Riesz in 1923, that the system of orthogonal
polynomials for the density w over the infinite interval [−∞,∞] is complete if, for
some β > 0,

∫ ∞

−∞
eβ|x|w(x) dx <∞,

see Freud [116, §II.4–5]. For densities on [0,∞], x is to be replaced by
√
x in

the above result. (Note that a density function on the positive real x-axis can be
mapped into an even density function on the whole real t-axis by the substitution
x = t2.

5.3.3 Gauss Quadrature with Preassigned Nodes

In many applications it is desirable to use Gauss-type quadrature where some nodes
are preassigned and the rest chosen to maximize the order of accuracy. In the most
common cases the preassigned nodes are at the endpoints of the interval. Consider
a quadrature rules of the form

∫ b

a

f(x)w(x) dx =

n∑

i=1

wif(xi) +

m∑

j=1

bjf(zj) +R(f) (5.3.16)

where zj, j = 1 : m, are fixed nodes in [a, b] and the xi, are determined so that the
interpolatory rule is exact for polynomials of order 2n+m− 1. By a generalization
of Theorem 5.3.4 the remainder term is given by the formula

R(f) =
f (2n+m)(ξ)

(2n)!

∫ b

a

m∏

i=1

(x− zi)
[ n∏

i=1

(x − xi)
]2

w(x) dx, a < ξ < b. (5.3.17)

In Gauss–Lobatto quadrature both endpoints are used as abscissas, z1 = a,
z2 = b and m = 2. For the standard interval [a, b] = [−1, 1] and the weight function
w(x) = 1, the quadrature formula has the form

∫ 1

−1

f(x) dx = w0f(−1) + wn+1f(1) +

n∑

i=1

wif(xi) + EL. (5.3.18)

The abscissas a < xi < b, are the zeros of the orthogonal polynomial φn correspond-
ing to the weight function w̃(x) = (1−x2), i.e., up to a constant factor equal to the
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Jacobi polynomial Jn(x, 1, 1) = P ′
n+1(x). The nodes lie symmetric with respect to

the origin. The corresponding weights satisfy wi = wn+1−i, and given by

w0 = wn+1 =
2

(n+ 2)(n+ 1)
, wi = w0/(Pn+1(xi))

2, i = 1 : n. (5.3.19)

The Lobatto rule (5.3.18) is exact for polynomials of order 2n + 1 and for f(x) ∈
C2m[−1, 1] the error term is given by

R(f) = − (n+ 2)(n+ 1)322n+3(n!)4

(2n+ 3)[(2n+ 2)!]3
f (2n+2)(ξ), ξ ∈ (−1, 1). (5.3.20)

Nodes and weights for Lobatto quadrature are found in Abramowitz–Stegun [1,
Table 25.6].

In Gauss–Radau quadrature rules m = 1 and one of the endpoints is taken
as abscissa, z1 = a or z1 = b. The remainder term (5.3.17) becomes

R(f) =
f (2n+1)(ξ)

(2n)!

∫ b

a

(x− z1)
[ n∏

i=1

(x− xi)
]2

w(x) dx, a < ξ < b. (5.3.21)

Therefore, if the derivative f (n+1)(x) has constant sign in [a, b], then the error in
the Gauss–Radau rule with z1 = b will have opposite sign to the Gauss–Radau rule
with z1 = a. Thus by evaluating both rules we obtain lower and upper bounds for
the true integral. This has many applications; see Golub [151].

For the standard interval [−1, 1] the Gauss–Radau quadrature formula with
z1 = 1 has the form

∫ 1

−1

f(x) dx = w0f(−1) +

n∑

i=1

wif(xi) + ER1. (5.3.22)

The n free abscissas are the zeros of

Pn(x) + Pn+1(x)

x− 1
,

where Pm(x) are the Legendre polynomials. The corresponding weights are given
by

w0 =
2

(n+ 1)2
, wi =

1

(n+ 1)2
1 − xi

(Pn(xi))2
, i = 1 : n. (5.3.23)

The Gauss–Radau quadrature rule is exact for polynomials of order 2n. If f(x) ∈
C2m−1[−1, 1] then the error term is given by

ER1(f) =
(n+ 1)22n+1

[(2n+ 1)!]3
(n!)4f (2n+1)(ξ1), ξ1 ∈ (−1, 1). (5.3.24)

A similar formula can be obtained with the fixed point +1 by making the substitu-
tion t = −x.

By modifying the proof of Theorem 5.3.3 it can be shown that the weights
in Gauss–Radau and Gauss–Lobatto quadrature rules are positive if the weight
function w(x) is nonnegative.
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Example 5.3.3.
The simplest Gauss–Lobatto rule is Simpson’s rule with n = 1 interior node.

Taking n = 2 the interior nodes are the zeros of φ2(x), where

∫ 1

−1

(1 − x2)φ2(x)p(x) dx = 0, ∀p ∈ P2.

Thus, φ2 is, up to a constant factor, the Jacobi polynomial J2(x, 1, 1) = (x2 − 1/5).
Hence the interior nodes are ±1/

√
5 and by symmetry the quadrature formula is

∫ 1

−1

f(x) dx = w0(f(−1) + f(1)) + w1(f(−1/
√

5) + f(1/
√

5)) +R(f), (5.3.25)

where R(f) = 0 for f ∈ P6. The weights are determined by exactness for f(x) = 1
and f(x) = x2. This gives 2w0 + 2w1 = 2, 2w0 + (2/5)w1 = 2/3, i.e. w0 = 1

6 ,
w1 = 5

6 .

A serious drawback with Gaussian rules is that, as we increase the order of
the formula, all interior abscissas change, except that at the origin. Thus function
values computed for the lower order formula are not used in the new formula. This is
in contrast to the Romberg’s method and Clenshaw–Curtis quadrature rules, where
all old function values are used also in the new rule when the number of points ar
doubled.

Let Gn be an n-point Gaussian quadrature rule

∫ b

a

f(x)w(x) dx ≈
n−1∑

i=0

aif(xi)

where xi, i = 0 : n−1 are the zeros of the nth degree orthogonal polynomial πn(x).
Kronrod [206, 207] considered extending Gn by finding a new quadrature rule

K2n+1 =

n−1∑

i=0

aif(xi) +

n∑

i=0

bif(yi). (5.3.26)

where the new n+ 1 abscissas yi are chosen such that the degree of the rule K2n+1

is equal to 3n + 1. The new nodes yi should then be selected as the zeros of a
polynomial pn+1(x) of degree n+ 1, satisfying the orthogonality conditions

∫ b

a

πn(x)pn+1(x)w(x) dx = 0. (5.3.27)

If the zeros are real and contained in the closed interval of integration [a, b] such a
rule is called a Kronrod extension of the Gaussian rule. The two rules (Gn,K2n+1)
are called a Gauss–Kronrod pair. Note that the number of new function evalua-
tions are the same as for the Gauss rule Gn+1.
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It has been proved that a Kronrod extension exists for the weight function
w(x) = (1 − x2)λ−1/2, λ ∈ [0, 2], and [a, b] = [−1, 1]. For this weight function the
new nodes interlace the original Gaussian nodes, i.e.

−1 ≤ y0 < x0 < y1 < x1 < y2 < · · ·xn−1 < yn < 1.

This interlacing property can be shown to imply that all weights are positive. Kro-
nrod considered extensions of Gauss–Legendre rules, i.e. w(x) = 1, and gives nodes
and weights in [207] for n ≤ 40.

It is not always the case that all weights are positive. For example, it has been
shown that Kronrod extensions of Gauss–Laguerre and Gauss–Hermite quadrature
rules with positive weights do not exist when n > 0 in the Laguerre case and n = 3
and n > 4 in the Hermite case. On the other hand, the Kronrod extensions of
Gauss–Legendre rules can be shown to exist and have positive weights.

Gauss–Kronrod rules are one of most effective methods for calculating inte-
grals. Often one takes n = 7 and uses the Gauss–Kronrod pair (G7,K15), together
with the realistic but still conservative error estimate (200|Gn − K2n+1|)1.5; see
Kahaner, Moler, and Nash [196, Sec. 5.5].

Kronrod extension of Gauss–Radau and Gauss–Lobatto rules can also be con-
structed. Kronrod extension of the Lobatto rule (5.3.25) are given by Gander and
Gautschi [121] and used in an adaptive Lobatto quadrature algorithm. The simplest
extension is the four point Lobatto–Kronrod rule

∫ 1

−1

f(x) dx =
11

210
(f(−1) + f(1)) +

72

245
(f(−

√

2/3) + f(
√

2/3))

+
125

294
(f(−1/

√
5) + f(1/

√
5)) +

16

35
f(0)) +R(f). (5.3.28)

This rule is exact for all f ∈ P10. Note that the Kronrod points ±
√

2/3 and 0
interlace the previous nodes.

5.3.4 Matrices, Moments, and Gauss Quadrature

We first collect some classical results of Gauss, Christoffel, Chebyshev, Stieltjes and
others, with a few modern aspects and a notations appropriate for our purpose.

Let {p1, p2, . . . , pn}, where pj is of exact degree j − 1, be a basis for the space
Pn of polynomials of degree n− 1. We introduce the row vector

π(x) = [p1(x), p1(x), . . . , pn(x)], (5.3.29)

containing these basis functions. The modified moments with respect to the basis
π(x) are

νk = (pk, 1) =

∫ b

a

pk(x)w(x) dx, k = 1 : n, (5.3.30)

We define the two symmetric matrices

G =

∫

π(x)T π(x)w(x) dx, Ĝ =

∫

xπ(x)T π(x)w(x) dx. (5.3.31)
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associated with the basis defined by π. These have elements

gij = (pi, pj) = (pj , pi), ĝij = (xpi, pj) = (xpj , pi),

respectively. Here

G =







(p1, p1) (p1, p2) . . . (p1, pn)
(p2, p1) (p2, p2) . . . (p2, pn)

...
...

. . .
...

(pn, p1) (pn, p2) . . . (pn, pn)






. (5.3.32)

is called the Gram matrix.
In particular, for the power basis

θ(x)(1, x, x2, . . . , xn−1), (5.3.33)

we have gij = (xi−1, xj−1) = µi+j−2, where µk = (xk, 1) =
∫ b

a x
kw(x) dx, are the

ordinary moments. In this case the matrices G and Ĝ are the Hankel matrices,

G =







µ0 µ1 · · · µn−1

µ1 µ2 · · · µn
...

... · · ·
...

µn−1 µn · · · µ2n−2






, Ĝ =







µ1 µ2 · · · µn
µ2 µ3 · · · µn+1

...
... · · ·

...
µn µn+1 · · · µ2n−1






.

In particular, for w(x) ≡ 1, and [a, b] = [0, 1] we have µk =
∫ 1

0 x
k−1 dx = 1/k and

G is the notoriously ill-conditioned Hilbert matrix.
Let u and v be two polynomials in Pn and set

u(x) = π(x)uπ , v(x) = π(x)vπ ,

where uπ, vπ, are column vectors with the coefficients in the representation of u
and v with respect to the basis defined by π(x). Then

(u, v) =

∫ b

a

uTππ(x)T π(x)vπw(x) dx = uTπGvπ .

For u = v 6= 0 we find that uTπGuπ = (u, u) > 0, i.e the Gram matrix G is positive
definite. (The matrix Ĝ is, however, usually indefinite.)

A polynomial of degree n that is orthogonal to all polynomials of degree less
than n can be written in the form

φn+1(x) = xpn(x) − π(x)cn, cn ∈ Rn, (5.3.34)

Here cn is determined by the linear equations

0 = (π(x)T , φn+1(x)) = (π(x)T , xpn(x)) − (π(x)T , π(x))cn,

or in matrix form
Gcn = ĝn, (5.3.35)
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where ĝn = Ĝen is the last column of the matrix Ĝ. Further, there are coefficients
ck,j depending on the basis only, such that

xpj(x) =

j+1
∑

k=1

ck,jpk(x), j = 1 : n− 1.

Together with (5.3.34) this can be summarized in the (row) vector equation

xπ(x) = π(x)C + φn+1(x)e
T
n , C = (C, cn).. (5.3.36)

Here eTn = (0, 0, . . . , 1) and C = (ck,j) ∈ Rn×(n−1] is an upper Hessenberg matrix.
Note that C depends on the basis only, while cn also depends on the weight function.

For the power basis pj(x) = xj−1, the matrix C is a shift matrix; the only
non-zero elements are ones in the first main subdiagonal. If the basis is some family
of orthogonal polynomials (possibly with respect to another weight function than w)
C is a tridiagonal matrix, obtained by means of the three-term recurrence relation
for this family.

After multiplication of (5.3.36) by π(x)Tw(x) and integration we obtain by
(5.3.31)

GC = Ĝ. (5.3.37)

where the last column of this matrix equation is the same as equation (5.3.35). Let
G∗, C∗ be defined like G, C, with n increased by one. Note that G and C are
principal submatrices of G∗ and C∗. Then Ĝ equals the n first rows of the product
G∗C∗. So no integrations are needed for gn, except for the Gram matrix G.

Theorem 5.3.6.
Denote by R the matrix of coefficients of the expansions of the general basis

functions π(x) = [p1(x), p1(x), . . . , pn(x)] into the orthonormal basis polynomials
with respect to the weight function w, i.e.

π(x) = ϕ(x)R, ϕ(x) = (φ1(x), φ2(x), . . . , φn(x)), (5.3.38)

(Conversely, the coefficients of the expansions of the orthogonal polynomials into
the original basis functions are found in the columns of R−1.) Then G = RTR,
i.e. R is the upper triangular Cholesky factor of the Gram matrix G. Note that up
to the mth row this factorization is the same for all n ≥ m. Further Ĝ = RTJR,
where J is a symmetric tridiagonal matrix.

Proof. R is evidently an upper triangular matrix. Further, we have

G =

∫

π(x)T π(x)w(x) dx =

∫

RTϕ(x)Tϕ(x)Rw(x) dx

= RT IR = RTR,

since the elements of ϕ(x) is an orthonormal system. This shows that R is the
Cholesky factor of G. We similarly find that

Ĝ = RTJR, J =

∫

xϕ(x)Tϕ(x)w(x) dx,
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so J clearly is a symmetrical matrix. J is a particular case of Ĝ and from (5.3.37)
and G = I it follows that J = C, a Hessenberg matrix. Hence J is a symmetric
tridiagonal matrix.

From (5.3.37) and Theorem 5.3.6 it follows that

Ĝ = RTJR = GC = RTRC,

Since R is nonsingular we have RC = JR, or

J = RCR−1. (5.3.39)

This shows that the spectrum of C equals the spectrum of J , for every choice of
basis. We shall see that it is equal to the set of zeros of the orthogonal polynomial
φn+1. For the power basis pj(x) = xj−1 (5.3.34) reads

φn+1(x) = xn −
n∑

k=1

cn,kx
k−1,

and hence

C =










0 cn,1
1 0 cn,2

1
. . .

...
. . . 0 cn,n−1

1 cn,n










∈ Rn×n.

This is the companion matrix of φn+1(x), and it can be shown that (see Sec. 6.5.2)

det(zI − C) = φn+1(x). (5.3.40)

Thus the eigenvalues λj, j = 1 : n, of C are the zeros of φn+1(x), and hence the
nodes for the Gauss–Christoffel quadrature formula.

It can be verified that the row eigenvector of G corresponding to λj is

θ(λj) = (1, λj , λ
2
j , . . . , λ

n−1
j ), (5.3.41)

i.e., it holds that
θ(λj)C = λjθ(λj), j = 1 : n. (5.3.42)

This yields a diagonalization of C, since, by the general theory of orthogonal poly-
nomials (see Theorem 5.3.3) the roots are simple roots, located in the interior of
the smallest interval that contains the weight distribution.

To summarize, we have shown that if C and the Gram matrix G are known,
then cn can be computed by performing the Cholesky decomposition G = RTR
and then solving RTRcn = ĝn for cn. The zeros of φn+1(x) are then equal to
the eigenvalues of C = (C, cn), or equivalently the eigenvalues of the symmetric
tridiagonal matrix J = RCR−1. This is true for any basis π(x). Note that J can
be computed by solving the matrix equation JR = RC or

RTJ = (RC)T . (5.3.43)
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Here RT is a lower triangular matrix and the right-hand side a lower Hessenberg
matrix. This and the tridiagonal structure of J considerably simplifies the calcu-
lation of J . In the next section we show how the theory developed here leads to a
stable and efficient algorithm for computing Gauss quadrature rules.

5.3.5 Jacobi Matrices and Gauss Quadrature

The computations are most straight forward for the power basis, θ(x), using the
moments of the weight function as the initial data. But the condition number of
the Gram matrix G, which in this case is a Hankel matrix, increases rapidly with n.
This is related to the by now familiar fact that, when n is large, xn can be accurately
approximated by a polynomial of lower degree. Thus the moments for the power
basis are not in general a good starting point for the numerical computation of the
matrix J .

For the orthonormal basis ϕ(x), we have G = I, and

C = Ĝ = J =










β1 γ1 0
γ1 β2 γ2

γ2
. . .

. . .
. . . γn−1

0 γn−1 βn










, (5.3.44)

is a symmetric tridiagonal matrix with nonzero off-diagonal elements. Such a tridi-
agonal matrix is called a Jacobi matrix and has n real distinct eigenvalues λj .
The row eigenvectors ϕ(λj) satisfy

ϕ(λj)J = λjϕ(λj), j = 1 : n. (5.3.45)

and mutually orthogonal. Setting

Φ = (ϕ(λ1)
T , . . . , ϕ(λn)T ), Λ = diag (λ1, . . . , λn),

we obtain by (5.3.45) and the symmetry of J the important matrix formula

JΦ = ΦΛ. (5.3.46)

It also follows from (5.3.36) that for all x

xϕ(x) = Jϕ(x) + γnφn+1(x)e
T
n , (5.3.47)

where γn is to be chosen so that ‖φn+1‖ = 1. The last column of this equation gives

(x− βn)φn(x) = γn−1φn−1(x) + γnφn+1(x), (5.3.48)

which is the three-term recurrence relation (4.5.36) for orthogonal polynomials.
Let V be an orthogonal matrix that diagonalizes J , i.e.

JV = V Λ, V TV = V V T = I,
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where Λ is the diagonal in (5.3.46). It follows that V = ΦD for some diagonal
matrix D = diag (di), and

V V T = ΦD2ΦT = I,

i.e.
n∑

k=1

d2
kφi(λk)φj(λk) = δij = (φi, φj), i, j = 1 : n.

This equality holds also for i = n + 1, because φn+1(λk) = 0, for all k, and
(φn+1, φj) = 0, j = 1 : k.

Since every polynomial p of degree less than 2n can be expressed as a linear
combination of polynomials of the form φiφj (in infinitely many ways) it follows
that

n∑

k=1

d2
kp(λk) =

∫

p(x)w(x) dx, (5.3.49)

for any polynomial p of degree less than 2n. This yields the Gauss–Christoffel
quadrature rule:

∫

f(x)w(x) dx =

n∑

k=1

d2
kf(λk) +R, (5.3.50)

where

R =

∫

(f(x) − p(x))w(x) dx,

for any polynomial p of degree less than 2n, such that p(λk) = f(λk), k = 1 : n.
The familiar form for the remainder term

R = knf
(2n)(ξ)/(2n)!, (5.3.51)

is obtained by choosing a Hermite interpolation polynomial for p and then applying
the mean value theorem. The constant kn is independent of f . The choice f(x) =
A2
nx

2n + · · · gives kn = A−2
n . A recurrence relation for the leading coefficient Aj is

obtained by (5.3.48). We obtain

A0 = µ
−1/2
0 , Ak+1 = Ak/γk. (5.3.52)

The mean value form for R may be inappropriate, when the interval is infinite.
Some other estimate of the above integral for R may then be more adequate, for
example, in terms of the best approximation of f by a polynomial in some weighted
Lp-norm.

A simple formula for the weights d2
k, due to Golub and Welsch is obtained by

matching the first rows of the equality V = ΦD. Since the elements in the first row

of Φ are all equal to the constant φ1 = µ
−1/2
0 , we obtain

eT1 V = µ
−1/2
0 dT , d2

k = µ0v
2
1,k, k = 1 : n. (5.3.53)

The well known fact that the weights are positive and their sum equals µ0, follows
immediately from this simple formula for the weights. We summarize these results
in the following theorem:
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When the three-term recurrence relation for the orthonormal polynomials as-
sociated with the weight function w(x) is known, or can be computed by the Stieltjes
procedure in Sec. 4.5.5, the Gauss–Christoffel rule can elegantly be obtained as fol-
lows. The nodes of the Gauss–Christoffel rule are the eigenvalues of the tridiagonal
matrix J and by (5.3.53) the weights equal the square of the first components of
the corresponding eigenvectors. These quantities can be computed in a stable and
efficient way by the QR-algorithm; see Volume II. In [150] this scheme is extended
to the computation of nodes and weights for Gauss–Radau and Gauss–Lobatto
quadrature rules.

When the coefficients in the three-term relation cannot be obtained by theo-
retical analysis or numerical computation, we consider the matrices C and G = RTR
as given data about the basis and weight function. Then J can then be computed
by means of (5.3.39) and the nodes and weights are computed according to the
previous case. Note that R and J can be determined simultaneously for all k ≤ n;
just take the submatrices of the largest ones.

The following concise and applicable result was found independently by Golub
and Meurant (see [153, Theorem3.4]) and the first named author (see [78, Theo-
rem2.2]).

Theorem 5.3.7.
Let J be the symmetric tridiagonal n× n matrix that contains the coefficients

in the three-term recurrence relation for the orthogonal polynomials associated with
a positive weight function w(x) (with any sequence of leading coefficients). Let
e1 = (1, 0, 0, . . . , 0)T and f be an analytic function in a domain that contains the
spectrum of J .

Then the following formula

1

µ0

∫

f(x)w(x) dx ≈ eT1 f(J)e1, (5.3.54)

is exact when f is a polynomial of degree less than 2n.

Proof. If J = V ΛV T is the spectral decomposition of J , then we have

f(J) = V Tdiag (f(λ1, . . . , f(λn)))V,

Let p be a polynomial of degree less than 2n. We obtain using (5.3.53),

eT1 V ΛV T eT1 = µ
−1/2
0 dT p(Λ)µ

−1/2
0 d = µ−1

0

n∑

j=1

p(λj)d
2
j = µ−1

0

∫

p(x)w(x) dx,

since Gauss–Christoffel quadrature is exact for p.

If f(J) is evaluated by means of the diagonalization of J , (5.3.54) becomes
exactly the Gauss–Christoffel rule, but it is noteworthy that eT1 V

T f(Λ)V e1 can
sometimes be evaluated without a diagonalization of J . The accuracy of the es-
timate of the integral still depends on how well f(z) can be approximated by a
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polynomial of degree less than twice the size of J in the weighted L1-norm with
weight function w(x).

In many important cases the weight function w(x) is symmetric about the
origin. Then the moments of odd order are zero, and the orthogonal polynomials
of odd (even) degree are odd (even) functions. By Theorem 4.5.19 the coefficients
βk = 0 for all k, i.e. the matrix J will have a zero diagonal. The eigenvalues of J
will then appear in pairs, ±λk. If n is odd, there is also a simple zero eigenvalue.
The weights are symmetric so that the weights corresponding to the two eigenvalues
±λi are the same.

We shall see that in the symmetric case the eigenvalue problem for the tridi-
agonal matrix J ∈ Rn×n can be reduced to a singular value problem for a smaller
bidiagonal matrix B, where

B ∈
{

Rn/2×n/2, if n even;
R(n+1)/2×(n−1)/2, if n odd.

We permute rows and columns in J , by an odd-even permutation, for example, if
n = 7 then (1, 2, 3, 4, 5, 6, 7) 7→ (1, 3, 5, 7, 2, 4, 6), and

J̃ = T−1JT =

(
0 B
BT 0

)

, B =






γ1 0 0
γ2 γ3 0
0 γ4 γ5

0 0 γ6




 ,

where T be the permutation matrix effecting the permutation. Then, J and J̃ have
the same eigenvalues. If the orthogonal matrix V diagonalizes J , i.e. J = V ΛV T ,
then Ṽ = T−1V , diagonalizes J̃ = T TJT , i.e. J̃ = T−1JT = T−1V λV TT . Note
that the first row of V is just a permutation of Ṽ . We can therefore substitute Ṽ
for V in equation (5.3.53) that gives the weights in the Gauss–Christoffel formula.

The following relationship between the SVD and a Hermitian eigenvalue prob-
lem, exploited by Lanczos [210, Chap. 3], can easily be verified.

Theorem 5.3.8.
Let the singular value decomposition of B ∈ Rm×n (m ≥ n) be B = PΣQT ,

where
Σ = diag (Σ1, 0), Σ1 = diag (σ1, σ2, . . . , σn),

and
P = (P1, P2) ∈ Cm×m, P1 ∈ Cm×n, Q ∈ Cn×n.

Then the symmetric matrix C ∈ R(m+n)×(m+n) has the eigendecomposition

C =

(
0 B
BT 0

)

= V





Σ1 0 0
0 0 0
0 0 −Σ1



V T , (5.3.55)

where V ∈ is orthogonal

V =
1√
2

(
P1

√
2P2 P1

Q 0 −Q

)T

. (5.3.56)
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Hence the eigenvalues of C are ±σ1,±σ2, . . . ,±σr, and zero repeated (m−n) times.

The QR-algorithm for symmetric tridiagonal matrices can be adopted to com-
pute the singular values σi and the first components of the matrix P = (P1, P2) of
left singular vectors of the bidiagonal matrix B; see Vol. II.

Example 5.3.4.
The monic Legendre polynomials are symmetric around the origin so βn = 0

for all n and µ0 = 2. According to (4.5.54) we have

γn =
n√

4n2 − 1
=

1√
4 − n−2

.

Algorithm 5.4. Gauss–Legendre Quadrature.

The following Matlab function computes the nodes and weights of the Gauss–
Legendre rule with n points by generating the bidiagonal matrix B and its SVD:

function [x,w] = legendre(n);

% LEGENDRE(n) computes the nodes and weights in the

% Gauss-Legendre quadrature rule with n+1 nodes (n > 1).

%

gamma = 1./sqrt(4 - [1:n].^(-2));

gamma(n+1) = 0;

b0(1) = gamma(1:2:n+1);

b1(k) = gamma(2:2:n);

B = diag(b0,0) + diag(b1,1);

[P,S,Q] = svd(B);

x = diag(S); [x,i] = sort(x);

w = P(1,i).^2;

if rem(n,2) == 0 w(1) = 2*w(1); end

For n = 6 the upper bidiagonal matrix becomes

B =






1/
√

3 2/
√

15
3/

√
35 4/

√
63

5/
√

99 6/
√

143
0




 ∈ R4×4.

and we obtain the nonnegative nodes (cf. Table 5.3.1): x1 = 0.

x2 = 0.40584515137740, x3 = 0.74153118559939 x4 = 0.94910791234276,

The first row of P = (P1 P2 ) is

−0.45714285714286, −0.61792398440675, 0.52887181007242, −0.35984019532130,
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where the first entry corresponds to node x1 = 0. Dividing the last three compo-
nents by

√
2, squaring and multiplying with µ0 = 2, gives the weights

w1 = 0.41795918367347, w2 = 0.38183005050512, w3 = 0.27970539148928,

w4 = 0.12948496616887,

We remark that the given program is inefficient in that the full matrices of
left and right singular vectors are computed. Unless n is very large the execution
time is negligible anyway.

In the computation of harmonic transforms used in spectral weather analysis,
Gauss–Legendre quadrature rules with values of n in excess of 1000 are required.
Methods for computing points and weights accurate to double precision for such
high values of n are discussed by Swarztrauber in [308].

Review Questions

3.1. What increase in order of accuracy can normally be achieved by a judicious
choice of the nodes in a quadrature formula.

3.2. What are orthogonal polynomials? Give a few examples of families of orthog-
onal polynomials together with the three-term recursion formula, which its
members satisfy.

3.3. Formulate and prove a theorem concerning the location of zeros of orthogonal
polynomials.

3.4. Give an account of Gauss quadrature formulas: accuracy, how the nodes
and weights are determined. What important properties are satisfied by the
weights?

3.5. What is the orthogonality property of the Legendre polynomials?

Problems and Computer Exercises

3.1. Prove that the three-point quadrature formula

∫ 1

−1

f(x) dx ≈ 1

9

(
5f(−

√

3/5) + 8f(0) + 5f(
√

3/5)
)
,

is exact for polynomials of degree 5. Apply it to the computation of

∫ 1

0

sinx

1 + x
dx,

and estimate the error in the result.
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3.2. (a) Calculate the Hermite polynomials Hn for n ≤ 4 using the recurrence
relation.

(b) Express, conversely, 1, x, x2, x3, x4 in terms of the Hermite polynomials.

3.3. Determine the orthogonal polynomials φn(x), n = 1, 2, 3, with leading coeffi-
cient 1, for the weight function w(x) = 1 + x2, x ∈ [−1, 1].

(b) Give a two-point Gaussian quadrature formula for integrals of the form
∫ 1

−1

f(x)(1 + x2) dx,

which is exact when f(x) is a polynomial of degree three.

Hint: Either use the method of undetermined coefficients taking advantage of
symmetry, or the three-term recurrence relation in Theorem 5.3.1.

3.4. (W. Gautschi) (a) Construct the quadratic polynomial φ2 orthogonal on [0,∞]
with respect to the weight function w(x) = e−x. Hint: Use

∫∞
0
tme−t dt = m!.

(b) Obtain the two-point Gauss–Laguerre quadrature formula
∫ ∞

0

f(x)e−x dx = w1f(x1) + w2f(x2) + E2(f),

including a representation for the remainder E2(f).

(c) Apply the formula in (b) to approximate

I =

∫ ∞

0

(x+ 1)−1e−x dx.

Use the remainder term to estimate the error, and compare your estimate with
the true error (I = 0.596347361 . . .).

3.5. Show that the formula
∫ 1

−1

f(x)(1 − x2)−1/2 dx =
π

n

n∑

k=1

f
(

cos
2k − 1

2n
π
)

is exact when f(x) is a polynomial of degree at most 2n− 1.

3.6. (a) Use the Matlab program in Example 5.3.4 to compute nodes and weights
for the Gauss–Hermite quadrature rule. Use it to compute a 10 point rule;
check the result using a table.

(b) Write a program for computing nodes and weights for Gauss quadrature
rules when w(x) is not symmetric. In Matlab use the function [v,d] =

eig(J) to solve the eigenvalue problems. Use the program to compute some
Gauss–Laguerre quadrature rules.

3.7. Derive the Gauss–Lobatto quadrature rule in Example 5.3.3, with two interior
points by using the Ansatz

∫ 1

−1

f(x) dx = w1(f(−1) + f(1)) + w2(f(−x1) + f(x1),

and requiring that it be exact for f(x) = 1, x2, x4.
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3.8. (a) Compute an approximate value of

∫ 1

−1

x4 sin2 πxdx = 2

∫ 1

0

x4 sin2 πxdx,

using a five point Gauss–Legendre quadrature rule on [0, 1] for the weight
function w(x) = 1. For nodes and weights see Table 5.3.1 or use the Matlab

function legendre(n) given in Example 5.3.4. (The true value of the integral
is 0.11407 77897 39689.)

3.9. (a) Determine exactly the Lobatto formulas with given nodes at −1 and 1,
(and the remaining nodes free), for the weight functions

w(x) = (1 − x2)−
1
2 , x ∈ [−1, 1].

Determine for this weight function also the nodes and weights for the Gauss
quadrature formula (i.e. when all nodes are free).

Hint: Set x = cosφ, and formulate equivalent problems on the unit circle.
Note that you obtain (at least) two different discrete orthogonality properties
of the Chebyshev polynomials this way.

(b) Lobatto–Kronrod pairs are useful when a long interval has been divided
into several shorter intervals (cf. Example 5.3.28). Determine Lobatto–
Kronrod pairs (exactly) for w(x) = (1 − x2)−1/2.

3.10. Apply the formulas in Problem 5.3.9 to the case w(x) = 1, x ∈ [−1, 1] and
some of the following functions:

(a) f(x) = ekx, k = 1, 2, 4, 8, . . . ; (b) f(x) = 1/(k + x), k = 1, 2, 1.1, 1.01;

(c) f(x) = k/(1 + k2x2), k = 1, 4, 16, 64.

Compare the actual errors with the error estimates.

3.11. For k = 1 the integral (5.2.24) in Example 5.2.8 is

∫ π/2

−π/2

cos t

t+ π + u(t+ π)
dt.

Compute this integral with at least ten digits accuracy, using a Gauss–Legendre
rule of sufficiently high order. Use the Matlab function legendre(n) given
in Example 5.3.4. to generate the nodes and weights.

3.12. Write a Matlab function for the evaluation of the Sievert178 integral,

S(x, θ) =

∫ θ

0

e−x/ cosφ dφ,

for any x ≥ 0, x ≤ θ ≤ 90◦, with at least six decimals relative accuracy. There
may be useful hints in Abramowitz–Stegun [1, § 27.4].

178Sievert was a Swedish radio-physicist, who was so great that doses of radiation are measured
in millisievert, or even microsievert, all over the world.
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5.4 Multivariate Integration

Numerical integration formulas in several dimensions, sometimes called numerical
cubature, are required in many applications. Several new difficulties are encoun-
tered in deriving and applying such rules.

In one dimension any finite interval of integration [a, b] can be mapped by an
affine transformation onto [−1, 1] (say). Quadrature rules need therefore only be de-
rived for this standard interval. The order of accuracy of the rule is preserved since
affine transformation preserve the degree of the polynomial. In d dimensions the
boundary of the region of integration has dimension d− 1, and can be complicated
manifold. For any dimension d ≥ 2 there are infinitely many connected regions in
Rd which cannot be mapped onto each other using affine transformations. Quadra-
ture rules with a certain polynomial accuracy designed for any of these regions is
fundamentally different than for any other region.

The number of function values needed to obtain an acceptable approximation
tends to increase exponentially in the number of dimensions d. That is, if n points
are required for an integral in one dimension, then nd points are required in d
dimensions. Thus, even for a modest number of dimensions, achieving an adequate
accuracy may be an intractable problem. This is often referred to as the curse of
dimensionality, a phrase coined by Richard Bellman179.

5.4.1 Analytic Techniques

It is advisable to try, if possible, to reduce the number of dimensions by applying
analytic techniques to parts of the task.

Example 5.4.1.
The following triple integral can be reduced to a single integral:

∫ ∞

0

∫ ∞

0

∫ ∞

0

e−(x+y+z) sin(xz) sin(yx) dxdydz

=

∫ ∞

0

e−x dx
∫ ∞

0

e−y sin(yx)dy

∫ ∞

0

e−z sin(zx) dz =

∫ ∞

0

( x

1 + x2

)2

e−x dx,

because ∫ ∞

0

e−z sin(zx)dz =

∫ ∞

0

e−y sin(yx)dz =
x

1 + x2
.

The remaining single integral is simply evaluated by the techniques previously stud-
ied.

Often a transformation of variable is needed for such a reduction Given a
region D in the (x, y)-plane, this is mapped onto a region D′ in the (u, v)-plane by
the variable transformation

x = φ(u, v), y = ψ(u, v). (5.4.1)

179Richard Ernest Bellman (1920–1984) was an American mathematician. During 1949–1965 he
worked at the Rand Corporation and made important contributions to operations research and
dynamic programming.
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If φ and ψ have continuous partial derivatives and the Jacobian

J(u, v) =

∣
∣
∣
∣

∂φ/∂u ∂φ∂u
∂ψ∂u ∂ψ∂u

∣
∣
∣
∣

(5.4.2)

does not vanish in D′ then

∫ ∫

D

f(x, y) dx dy =

∫ ∫

D′
f(φ(x, y), ψ(x, y))|J(u, v)| du dv (5.4.3)

It is important to take into account any symmetries that the integrand can have.
For example, the integration of a spherically symmetric function over a spherical
region, reduces in polar coordinates to a one-dimensional integral.

Example 5.4.2.
To evaluate the integral

I =

∫ ∫

D

y sin(ky)

x2 + y2
dx dy,

where D is the unit circle x2 + y2 ≤ 1, we introduce polar coordinates (r, ϕ),
x = r cosϕ, y = r sinϕ, dx dy = r dr dϕ. Then, after integrating in the r variable,
this integral is reduced to the single integral

I =
1

k

∫ 2π

0

[1 − cos (k sinϕ)] dϕ.

This integral is not expressible in finite terms of elementary functions. Its value is
in fact (1− J0(k))2π/k, where J0 is a Bessel function. Note that the integrand is a
periodic function of ϕ, whence the trapezoidal rule is very efficient (see Sec. 5.2.3).
This is a useful device for Bessel functions and many other transcendental functions
which have integral representations.

If the integral cannot be reduced then several approaches are possible:

(a) The use of tensor products of one-dimensional quadrature rules. These are
particularly suitable if the boundary of the region is composed of straight
lines. Otherwise numerical integration in one direction at a time can be used;
see Sec. 5.4.3.

(b) For more general boundaries an irregular triangular grid can be used; see
Sec. 5.4.4.

(c) Monte Carlo or Quasi-Monte Carlo methods, mainly for problems with com-
plicated boundaries and/or a large number of dimensions; see Sec. 5.4.5.
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5.4.2 Repeated One-Dimensional Integration

Consider a double integral (5.4.7) over a region D in the x-y plane such that lines
parallel with the x-axis have at most one segment in common with D (see Fig-
ure 5.4.1. Then J can be written in the form

I =

∫ b

a

(∫ d(x)

c(x)

f(x, y)dy
)

dx,

or

I =

∫ b

a

ϕ(x) dx, ϕ(x) =

∫ d(x)

c(x)

f(x, y)dy. (5.4.4)

The one-dimensional integral ϕ(x) can evaluated for the sequence of abscissas xi,
i = 1, . . . , n used in another one-dimensional quadrature rule for J . Note that if D
is a more general domain, it might be possible to decompose D into the union of
simpler domains on which these methods can be used.

Example 5.4.3.
Compute

I =

∫ ∫

D

sin2 y sin2 x(1 + x2 + y2)−1/2 dx dy,

where

D = {(x, y) | x2 + y2 ≤ 1} ∪ {(x, y) | 0 ≤ x ≤ 3, |y| ≤ 0.5}.

is a composite region (see Figure 5.4.1). Then

I =

∫ 3

−1

sin2 xϕ(x) dx, (5.4.5)

ϕ(x) =

∫ c(x)

−c(x)
sin2 y (1 + x2 + y2)−1/2dy, (5.4.6)

where

c(x) =

{
(1 − x2)1/2, x < 1

2

√
3;

1
2 , x ≥ 1

2

√
3.

Values of ϕ(x) were obtained by the application of Romberg’s method to (5.4.6)
and numerical integration applied to the integral (5.4.5) yielded the value of I =
0.13202± 10−5. Ninety-six values of x were needed, and for each value of x, twenty
function evaluations used, on the average. The grid is chosen so that x = 1

2

√
3,

where ϕ′(x) is discontinuous, is a grid point.
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Figure 5.4.1. Region D of integration.

5.4.3 Product Rules

In d = 2 dimensions, common boundaries are a rectangle, circle or triangle, or a
combination of these. Consider a double integral over a rectangular region

I =

∫ ∫

D

u(x, y) dxdy, D = {(x, y) | a ≤ x ≤ b, c ≤ y ≤ d}. (5.4.7)

Introduce an equidistant rectangular grid in the (x, y)-plane, with grid spacings
h and k in the x and y directions,

xi = a+ ih, yj = c+ jk, h = (b − a)/n, k = (d− c)/m,

and set uij = u(xi, yj). Then the following product rule for the double integral
generalizes the compound midpoint rule

I ≈ hk

m∑

i=1

n∑

j=1

ui−1/2,j−1/2, (5.4.8)

The product trapezoidal rule is

I ≈ hk

m∑

i=1

n∑

j=1

1

4
(ui−1,j−1 + ui−1,j + ui,j−1 + ui,j)

= hk
m∑

i=0

n∑

j=0

wijuij . (5.4.9)

Here wij = 1 for the interior grid points, i.e. when 0 < i < m, and 0 < j < n.
For the trapezoidal rule wij = 1

4 for the four corner points, while wij = 1
2 for

the other boundary points. Both formulas are exact for all bilinear functions
xiyj , 0 ≤ i, j ≤ 1. The error can be expanded in even powers of h and k so that
Romberg’s method can be used to get more accurate results. The generalization to
integrals over the hypercube [0, 1]d is straightforward.
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It is not necessary to use the same quadrature rule in both dimensions. Sup-
pose we have the two one-dimensional quadrature rules

∫ b

a

f(x) dx ≈
n∑

i=1

wif(xi) + (b − a)R1,

∫ d

c

g(y) dy ≈
m∑

j=1

vjg(yj) + (d− c)R2.

(5.4.10)
Combining these two rules over the rectangular region D gives the product rule

∫ b

a

∫ d

c

u(x, y) dx dy ≈
∫ b

a

( m∑

j=1

vju(x, yj) + (d− c)R2

)

dx

=

m∑

j=1

vj

∫ b

a

u(x, yj) dx +

∫ b

a

(d− c)R2 dx ≈
n∑

i=1

m∑

j=1

wivju(xi, yj) +R,

where

R = (d− c)

∫ b

a

R2 dx+ (b− a)

m∑

j=1

vjR1 ≈ (b− a)(d − c)(R1 +R2).

The following property of product rules follows easily:

Theorem 5.4.1.
If the two one-dimensional rules (5.4.10) integrates f(x) exactly over [a, b] and

g(y) exactly over [c, d] than the product rule (5.4.11) integrates u(x, y) = f(x)g(y)
exactly over the region [a, b] × [c, d].

If the one-dimensional rules are exact for polynomials of degree d1 and d2,
respectively, then the product rule will be exact for all bivariate polynomials xpyq,
where p ≤ d1 and q ≤ d2.

Example 5.4.4.
The product Simpson’s rule for the square |x| ≤ h, |y| ≤ h, has the form

∫ h

−h

∫ h

−h
u(x, y) dxdy = 4h2

1∑

j=−1

1∑

i=−1

wi,ju(xi, yj).

It uses 32 = 9 function values, with abscissas and weights given by

(xi, yj) (0,0) (±h,±h) (±h, 0) (0,±h)
wi,j 4/9 1/36 1/9 1/9

Of similar accuracy is the product rule obtained from a 2-point Gauss–Legendre
rule, which uses the four points

(xi, yi) =
(

± h√
3
,± h√

3

)

wi = 1/4.
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For both rules the error is O(h4). Note that for the corresponding composite rules,
the functions values at corner points and midpoints in the product Simpson’s rule
are shared with other subsquares. Effectively this rule also uses 4 function values
per subsquare.

Higher accuracy formulas can also be derived by operator techniques, based
on an operator formulation of Taylor’s expansion, see equation (4.8.2),

u(x0 + h, y0 + k) = e(hDx+kDy)u(x0, y0). (5.4.11)

For regions D, such as a square, cube, cylinder, etc., which are the Cartesian
product of lower dimensional regions, product integration rules can be developed
by multiplying together the lower dimensional rules. Product rules can be used on
non-rectangular regions, if these can be mapped into a rectangle. This can be done,
for example, for a triangle, but product rules derived in this way are often not very
efficient and are seldom used.

For non-rectangular regions, the rectangular grid may also be bordered by tri-
angles or “triangles” with one curved side, which may be treated with the techniques
outlined in the next section.

So far we have restricted ourselves to the two-dimensional case. But the
ideas are more general. Let (x1, . . . , xr) ∈ C, where C is a region in Rr and
(y1, . . . , ys) ∈ D, where D is a region in Rr. Let C × D denote the Cartesian
product of C and D, i.e. the region in Rr+s consisting of points (using vector
notations) (x,y) such that x ∈ C and y ∈ D.

Suppose we have two quadrature rules for the regions C and D,

∫

C

f(x) dx ≈
n∑

i=1

wif(xi),

∫

D

g(y) dy ≈
m∑

j=1

vig(yi). (5.4.12)

Then we can combine these two rules to give a product rule for the region C ×D,

∫

C×D
u(x,y) dx dy ≈

n∑

i=1

n∑

i=1

wivju(xi,yj). (5.4.13)

Product rules are not necessarily the most economical rules. More efficient
quadrature rules exist, which are not the result of applying one-dimensional rules
to several dimensions. We could try to determine such rules by selecting n nodes
and weights so that the rule integrates bivariate polynomials of as high degree as
possible. This is much more difficult in several dimensions than in one dimension,
where this approach led to Gaussian rules. The solution is in general not unique;
there may be several rules with different nodes and weights. For most regions it
is not known what the best rules are. Some progress has been made in developing
nonproduct quadrature rules of optimal order for triangles.

Some simple quadrature rules for circles, triangles, hexagons, spheres, and
cubes, are given in Abramowitz–Stegun [1, pp. 891–895]. For example the following
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quadrature rule for a double integral over a disk C = {(x, y) ∈ C | x2 + y2 ≤ h2}
∫ ∫

C

f(x, y) dxdy = πh2
4∑

i=1

wif(xi, yi) +O(h4),

where
(xi, yi) = (±h/2,±h/2), wi = 1/4, i = 1 : 4.

This four-point rule has the same order of accuracy as the four point Gaussian
product for the square given in Example 5.4.4. A seven-point O(h6) rule uses the
points (see Figure 5.4.2)

(x1, y1) = (0, 0), (xi, yi) = (±h
√

2/3, 0), i = 2, 3

(xi, yi) = (±h/
√

6,±h/
√

2), i = 4 : 7,

with weights w1 = 1/4, and wi = 1/8, i = 2 : 7.

Figure 5.4.2. A seven-point O(h6) rule for a circle.

Example 5.4.5.
We seek a quadrature rule

I =

∫ ∫

T

f(x, y) dxdy = A

n∑

i=1

wif(xi, yi) +R, (5.4.14)

where T is an equilateral triangle with sides of length h and area A = h2
√

3/4. We
use function values at the “center of mass” (x1, y1) = (0, h/(2

√
3)) of the triangle

and at the corner nodes

(xi, yi) = (±h/2, 0), i = 2, 3, and (x4, y4) = (0, h
√

3/2).

and Then, taking w1 = 3/4, and wi = 1/12, i = 2 : 4, we get a four-point rule with
error R = O(h3).

Adding nodes at the midpoint of the sides

(x5, y5) = (0, 0), and (xi, yi) = (±h/4, h
√

3/4), i = 6, 7,
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and using weights w1 = 9/20, and wi = 1/20, i = 2 : 4, wi = 2/15, i = 5 : 7, gives
a seven-point rule for which R = O(h4) in (5.4.14).

5.4.4 Irregular Triangular Grids

A grid of triangles of arbitrary form is a convenient means for approximating a
complicated plane region. It is fairly easy to program a computer to refine a coarse
triangular grid automatically; see Figure 5.4.3. It is also easy to adapt the density
of points to the behavior of the function.

Triangular grids are thus more flexible than rectangular ones. On the other
hand, the administration of a rectangular grid requires less storage and a simpler
program. Sometimes the approximation formulas are also a little simpler. Triangu-
lar grids are used, for example, in the finite element method (FEM) for problems
in continuum Mechanics and other applications of partial differential equations; see
[102].

Figure 5.4.3. Refinement of a triangular grid.

Let the points Pj , j = 1, 2, 3, with coordinates pj = (xj , yj), be the vertices
of a triangle T with area Y > 0. Then any point p = (x, y) in the plane can be
uniquely expressed by the vector equation

p = θ1p1 + θ2p2 + θ3p3, θ1 + θ2 + θ3 = 1. (5.4.15)

The θi, which are called homogeneous barycentric coordinates of P , are deter-
mined from the following nonsingular set of equations:

θ1x1 + θ2x2 + θ3x3 = x, (5.4.16)

θ1y1 + θ2y2 + θ3y3 = y,

θ1 + θ2 + θ3 = 1,

Barycentric coordinates were discovered by Möbius180 in 1827; see Coxeter [76,

180August Ferdinand Möbius (1790–1868) was a German astronomer and mathematician, pro-
fessor at Leipzig. His 1827 work Barycentric Calculus became a classic and played an important
role in the development of projective geometry.
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§ 13.7]. In engineering literature the barycentric coordinates for a triangle are often
called area coordinates; see Figure 5.4.4.

P
1

P
2

P
3

P
θ

2

θ
3

θ
1

.

Figure 5.4.4. Barycentric coordinates of a triangle.

The interior of the triangle is characterized by the inequalities θi > 0, i =
1, 2, 3. In this case P is the center of mass (centroid) of the three masses θ1, θ2, θ3
located at the vertices of the triangle. This explains the term “barycentric coor-
dinates”. The equation for the side P2P3 is θ1 = 0; similarly θ2 = 0 and θ3 = 0
describe the other two sides. Note that if θ and θ′ (i = 1, 2, 3) are the barycentric
coordinates of the points Pi and Pj , respectively, then the barycentric coordinates
of αP + (1 − α)P ′ are αθ + (1 − α)θ′.

Barycentric coordinates are useful also for d > 2 dimensions. By a simplex
in Rd we mean the convex hull of (d + 1) points pj = (p1j , p2j, . . . , pdj)

T ∈ Rd,
which are called the vertices of the simplex. We assume that the vertices are not
contained in a hyper-plane. This is the case if and only if the (d + 1) × (d + 1)
matrix

A =

(
p1 p2 · · · pd+1

1 1 · · · 1

)

(5.4.17)

is nonsingular. For d = 2 the simplex is a triangle and for d = 3 a tetrahedron.
The barycentric coordinates of a point p is the unique vector θ ∈ Rd+1, such

that

(p1. . . . , pd+1)θ = p, eT θ = 1. (5.4.18)

or equivalently, θ = A−1

(
p
1

)

. The center of gravity of the simplex is the point

with coordinates θi = 1/(d+ 1), i = 1 : d+ 1.
If u is a non-homogeneous linear function of p, i.e., if

u(p) = aT p+ b = (aT , b)

(
p
1

)

,
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then the reader can verify that

u(p) =
d+1∑

j=1

θju(pj), u(pj) = aT pj + b. (5.4.19)

This is a form of linear interpolation and shows that a linear function is uniquely
determined by its values at the vertices.

Using also the midpoints of the edges pij = 1
2 (pi+pj) a quadratic interpolation

formula can be obtained.

Theorem 5.4.2.
Define

∆′′
ij = u(pi) + u(pj) − 2u

(
1
2 (pi + pj)

)
, i < j. (5.4.20)

Then the interpolation formula

u(p) =
∑

j

θju(pj) − 2
∑

i<j

θiθj∆
′′
ij , (5.4.21)

where the summation indices i, j are assumed to take all values 1 : d + 1, unless
otherwise specified, is exact for all quadratic functions.

Proof. The right-hand is a quadratic function of p, since it follows from (5.4.16)
that the θi are (non-homogeneous) linear functions of the coordinates of p. It
remains to show that the right-hand side is equal to u(p) for p = pj, and p =
(pi + pj)/2, i, j = 1 : d+ 1.

For p = pj , θj = 1, θi = 0, i 6= j, hence the right-hand side equals ui. For
p = (pi+pj)/2, θi = θj = 1

2 , θk = 0, k 6= i, j, and hence the right-hand side becomes

1
2 (ui + uj) − 2 · 1

2

(

ui + uj − 2u
(

1
2 (pi + pj)

))

= u
(

1
2 (pi + pj)

)
.

The following theorem for triangles (d = 2) is equivalent to a rule which
has been used in mechanics for the computation of moments of inertia since the
nineteenth century:

Theorem 5.4.3.
Let T be a triangle with vertices p1, p2, p3 and area Y . Then the integration

formula
∫

T

u(x, y) dxdy =
Y

3

(

u
(

1
2 (p1 + p2)

)
+ u
(

1
2 (p1 + p3)

)
+ u
(

1
2 (p2 + p3)

))

(5.4.22)

is exact for all quadratic functions.

Proof. Using the interpolation formula (5.4.21) the integral equals
∫

T

u(x, y) dxdy =
∑

j

u(pj)

∫

T

θjdxdy − 2
∑

i<j

∆′′
ij

∫

T

θiθjdxdy.
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By symmetry,
∫

T
θi dxdy is the same for i = 1, 2, 3. Similarly

∫

T
θiθj dxdy is the

same for all i < j. Hence using (5.4.20)
∫

T

u(x, y) dxdy = a(u1 + u2 + u3) − 2b(∆′′
23 + ∆′′

13 + ∆′′
12)

= (a− 4b)(u1 + u2 + u3) (5.4.23)

+ 4b
(

u
(

1
2 (p1 + p2)

)
+ u
(

1
2 (p2 + p3)

)
+ u
(

1
2 (p3 + p1)

))

,

where

a =

∫

T

θ1 dxdy, b =

∫

T

θ1θ2 dxdy.

Using θ1, θ2 as new variables of integration, we get by (5.4.16) and the relation
θ3 = 1 − θ1 − θ2,

x = θ1(x1 − x3) + θ1(x1 − x3) + x3,

y = θ1(y1 − y3) + θ1(y1 − y3) + y3.

The functional determinant is equal to
∣
∣
∣
∣

x1 − x3 x2 − x3

y1 − y3 y2 − y3

∣
∣
∣
∣
= 2Y,

and (check the limits of integration!)

a =

∫ 1

θ1=0

∫ 1−θ1

θ2=0

2θ1dθ1dθ2 = 2Y

∫ 1

0

θ1(1 − θ1)dθ1 =
Y

3
,

b =

∫ 1

θ1=0

∫ 1−θ1

θ2=0

2θ1θ2dθ1dθ2 = 2A

∫ 1

0

θ1
(1 − θ1)

2

2
dθ1 =

Y

12
.

The results now follows by insertion of this into (5.4.23). A numerical method

P

Q

S R

Figure 5.4.5. Correction for curved boundary segment.

for a two-dimensional region can be based on Theorem 5.4.2, by covering the domain
D by triangles. For each curved boundary segment (Figure 5.4.5) the correction

4

3
f(S)A(PRQ) (5.4.24)
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is to be added, where A(PRQ) is the area of the triangle with vertices P,R,Q. The
error of the correction can be shown to be O(‖Q − P‖5) for each segment, if R is
close to the midpoint of the arc PQ. If the boundary is given in parametric form,
x = x(x), y = y(x), where x and y are twice differentiable on the arc PQ, then one
should choose tR = 1

2 (tP + tQ). Richardson extrapolation can be used to increase
the accuracy; see examples below.

Figure 5.4.6. The grids for I4 and I16.

Example 5.4.6.
Consider the integral

I =

∫ ∫

D

(x2 + y2)k dxdy

where the region D and the grids for I4 and I16 are shown in Figure 5.4.6 and
In denotes the result obtained with n triangles. Because of symmetry the error
has an expansion in even powers of h. Therefore we can use repeated Richardson
extrapolation and put

R′
n = I4n +

1

15
(I4n − In), R′′

n = R′
4n +

1

63
(R′

4n −R′
n).

The following results were obtained. In this case the work could be reduced by a
factor of 4, because of symmetry.

k I4 I16 I64 R′

4 R′

16 R′′

4 Correct

2 0.250000 0.307291 0.310872 0.311111 0.311111 0.311111 28/90

3 0.104167 0.161784 0.170741 0.165625 0.171338 0.171429 0.171429

4 0.046875 0.090678 0.104094 0.093598 0.104988 0.105169 0.105397

It is seen that R′-values have full accuracy for k = 2 and that the R′′-values
have high accuracy even for k = 4. In fact, it can be shown that R′-values are
exact for any fourth-degree polynomial and R′′-values are exact for any sixth-degree
polynomial, when the region is covered exactly by the triangles.
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Example 5.4.7.
The integral

a

∫ ∫

(a2 − y2)−1/2 dxdy,

over a quarter of the unit circle x2 + y2 ≤ 1, is computed with the grids shown in
Figure 5.4.6, and with boundary corrections according to (5.4.15). The following
results, using the notation of the previous example, were obtained and compared
with the exact values:

a I8 I32 R′

8 Correct

2 0.351995 0.352077 0.352082 0.352082

4 0.337492 0.337608 0.337615 0.337616

6 0.335084 0.335200 0.335207 0.335208

8 0.334259 0.334374 0.334382 0.334382

Note, however, that Richardson extrapolation may not always give improve-
ment, for example, when the rate of convergence of the basic method is more rapid
than usual.

5.4.5 Monte Carlo Methods

Multidimensional integrals arise frequently in physics, chemistry, and computational
economics181 and other branches of science. If a product rule is used to evaluate a
multivariate integral in d dimensions the work will increase exponentially with the
number of dimensions d. For example, the product rule of a 8 point one-dimensional
rule will require (8)8 = 224 ≈ 1.6 ·107 function evaluations in eight dimensions. This
means that the problem may quickly become intractable when d increases.

One important application of the Monte Carlo method described in Sec-
tion 1.4.2 is the numerical calculation of integrals of high dimension. For the Monte
Carlo method the accuracy achieved is always proportional to 1/

√
n, where n is the

number of function evaluations independent of the dimension d. Thus if approached
randomly multivariate integration becomes tractable! The Monte Carlo method can
be said to break “the curse of dimension” inherent in other methods. (For smooth
integrands the Monte Carlo method is. however, not of optimal complexity.)

We shall briefly describe some ideas used in integration by the Monte Carlo
method. For simplicity, we first consider integrals in one dimension, even though
the Monte Carlo method cannot really compete with traditional numerical methods
for this problem.

Let Ri, i = 1 : N , be a sequence of random numbers rectangularly distributed
on [0, 1], and set

I =

∫ 1

0

f(x) dx ≈ I1, I1 =
1

N

N∑

i=1

f(Ri).

181The valuation of financial derivatives can require computation of integrals in 360 dimensions!
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Then the expectation of the variable I1 is I and its standard deviation decreases as
N−1/2. I1 can be interpreted as a stochastic estimate of the mean value of f(x) in
the interval [0, 1]. This generalizes directly to multivariate integrals over the unit
hypercube. Let Ri ∈ Rd, i = 1 : N , be a sequence of random points uniformly
distributed on [0, 1]d. Then

I =

∫

[0,1]d
f(x) dx ≈ I1, I1 =

1

N

N∑

i=1

f(Ri). (5.4.25)

If the integral is to be taken over a subregion D ⊂ [0, 1]d, we can simply set f(x) = 0,
x /∈ D. In contrast to interpolatory quadrature methods smooth functions are not
integrated more efficiently than discontinuous function. According to the law of
large numbers, the convergence

IN (f) → vol(D)µ(f) as N → ∞,

where µ(f) is the mean value of f(X), where X is a continuous random variable
uniformly distributed in D ⊂ [0, 1]d,

A probabilistic error estimate can be obtained by estimating the standard
deviation of µ(f) by the empirical standard deviation sN (f), where

sN(f)2 =
1

N − 1

N∑

i=1

(
f(Ri) − IN (f))2. (5.4.26)

If the integral is over a subregion D ⊂ [0, 1]d, we should use the mean value over D,
that is neglect all points Ri /∈ D.

The standard deviation of the Monte-Carlo estimate in (5.4.25) decreases as
N−1/2. This is very slow even compared to the trapezoidal rule—for which the error
decreases as N−2. To get one extra decimal place of accuracy we must increase the
number of points by a factor of 100. To get three digit accuracy the order of one
million points may be required! But if we consider, for example, a six-dimensional
integral this is not exorbitant. Using a product rule with 10 subdivisions in each
dimension would also require 106 points.

The above Monte-Carlo estimate is a special case of a more general one. Sup-
pose Xi i = 1 : N , has density function g(x). Then

I2 =
1

N

N∑

i=1

f(Xi)

g(Xi)

has expected value I, since

E

(
f(Xi)

g(Xi)

)

=

∫ 1

0

f(x)

g(x)
f(x) dx =

∫ 1

0

f(x) dx = I.

If one can find a frequency function g(x) such that f(x)/g(x) fluctuates less than
f(x), then I2 will have smaller variance than I1. This procedure is called im-
portance sampling; it has proved very useful in particle-physics problems, where
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important phenomena (for example, dangerous radiation which penetrates a shield)
are associated with certain events of low probability.

We have previously mentioned the method of using a simple comparison
problem. The Monte Carlo variant of this method is called the control vari-
ate method. Suppose that ϕ(x) is a function whose integral has a known value
K, and suppose that f(x) − ϕ(x) fluctuates much less than f(x). Then

I = K +

∫ 1

0

(f(x) − ϕ(x)) dx.

where the integral to the right can be estimated by

I3 =
1

N

N∑

i=1

(f(Ri) − ϕ(Ri)),

which has less variance than I1.

5.4.6 Quasi-Monte Carlo and Lattice Methods

In Monte Carlo methods the integrand is evaluated at a sequence of points which are
supposed to be a sample of independent random variables. In Quasi-Monte Carlo
methods the accuracy is enhanced by using specially chosen deterministic points not
necessarily satisfying the statistical tests discussed in Sec. 1.5.4. These points are
constructed to be approximately equidistributed over the region of integration.

If the region of integration D is a subset of the d-dimensional unit cube Cn =
[0, 1]d we set f(x) ≡ 0, for x /∈ D. We can then always formulate the problem as
the approximation of an integral over the d-dimensional unit cube Cn = [0, 1]d

I[f ] =

∫

Cn

f(x1, . . . , xd) dx1 . . . dxd, (5.4.27)

An infinite sequence of vectors x1, x2, x3, . . . in Rd is said to be equidistributed
in the cube [0, 1]d if

I[f ] = lim
N→∞

QN (f), QN(f) =
1

N

N∑

i=1

f(xi), (5.4.28)

for all Riemann integrable functions f(x). The quadrature rules QN is similar
to that used in Monte-Carlo methods; this explains the name Quasi-Monte Carlo
methods.

In the average case setting the requirement that the worst case error is
smaller than ǫ is replaced by the weaker guarantee that the expected error is at
most ǫ. This means that we make some assumptions about the distribution of the
functions to be integrated. In this setting the complexity of multivariate integration
has been shown to be proportional to 1/ǫ, compared to (1/ǫ)2 for the Monte Carlo
method. Hence the Monte Carlo method is not optimal.
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The convergence of the quadrature rules QN in (5.4.28) depend on the vari-
ation of f and how the distribution of the sequence of points x1, . . . , xN . The
discrepancy of a finite sequence of points x1, x2, . . . , xN is a measure of how much
the distribution of the sequence deviates form an equidistributed sequence. The
deterministic set of points used in QMC are constructed from low discrepancy
sequences, which are, roughly speaking, uniformly spread as N → ∞; see Nieder-
reiter [246].

Let 0 < ai ≤ 1, i = 1 : d, and restrict f(x), x ∈ Rn, to the class of functions

f(x) =
{

1 if 0 ≤ xi ≤ ai;
0 otherwise.

We require the points to be such that for every QN (f) gives a good approximation
of the integral of f(x) over the hypercube [0, 1]d for all functions in this class.

Low discrepancy sequences are usually generated by algorithms from Number
Theory, a branch of mathematics seemingly far removed from analysis. Recall from
Sec. 2.2.1 that each integer i has a unique representation dk · · ·d2d1d0 with respect
to a integer basis b ≥ 2, The radical inverse function ϕb maps an integer i onto
the real number

ϕb(i) = 0.d0d1d2 · · · dk ∈ [0, 1).

The Van de Corput sequence (see [323]) with respect to the base b is the infinite
sequence defined by

xi = ϕb(i), i = 1, 2, 3, . . . .

These sequences can be shown to have an asymptotic optimal discrepancy. The
first few elements in the sequence for b = 2 are shown in the table below.

i ϕ2(i)

1 1 .1 0.5
2 10 .01 0.25
3 11 .11 0.75
4 100 .001 0.125
5 101 .101 0.625
6 110 .011 0.375
7 111 .111 0.875

Halton sequences (see [165]) are multidimensional extensions of Van der
Corput sequences.

Definition 5.4.4.
Let the bases b1, b2, . . . , bd, be pairwise relative prime. Then the Halton se-

quence xi ∈ [0, 1]d, with respect to these bases is defined by

xi = (ϕb1(i), ϕb2 (i), . . . , ϕbd
(i))T , i = 0, 1, 2, . . . (5.4.29)

where ϕbk
(i) is the radical inverse function with respect the basis bk, k = 1 : d.
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Figure 5.4.7. Hammersley points in [0, 1]2.

The Hammersley sequences [167] are similar to Halton sequences but are
finite and differ in the definition of the first component. The N -point Hammersley
sequence with respect to the bases b1, b2, . . . , bd−1, is the sequence of points xi ∈
[0, 1]d, defined by

xi =
(

i/N, ϕb1(i), ϕb2(i), . . . , ϕbd−1
(i)
)T

, i = 0 : N − 1. (5.4.30)

The following Matlab program generates N Hammersley points in the two
dimensional square [0, 1]2 for b1 = 2.

[x,y] = Hammersley(N);

n = ceil(log2(N));

for i = 1:N

x(i) = (i-1)/N;

j = i-1;

for p = 1:n

j = j/2; d(p) = 0;

if j > floor(j)

d(p) = 1; j = floor(j);

end;

end;

phi = d(n)/2;

for p = n-1:-1:1

phi = (phi + d(p))/2;

end;

y(i) = phi;

end;
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The Hammersley points in [0, 1]2 for N = 512 and b1 = 2 are shown in
Figure 5.4.7.

Wozniakowski [339] showed that the Hammersley points are optimal sampling
points for multivariate integration. With n function evaluations a worst case error
of Quasi-Monte Carlo methods is bounded by a multiple of (log n)d/n, which can
be compared to n−1/2 for Monte Carlo methods.

Using harmonic analysis it was shown in Sec. 5.2.3 that the composite trape-
zoidal rule can be very accurate for periodic integrands. These results can be
extended to multivariate integration of periodic integrands. A lattice rule for the
numerical integration over the d-dimensional unit cube Cn = [0, 1]d is an equal
weight rule

QN(f) =
1

N

N−1∑

j=0

f(xi), (5.4.31)

where the sampling points xi, i = 0 : N − 1, are points of an integration lattice
in the cube [0, 1]d, A multivariate extension of the compound trapezoidal rule is
obtained by taking

xi = fraction

(
i

Np

)

,

where fraction(x) returns the fractional part of x. Lattice rules can be studied by
expanding the integrand in a Fourier series. The “curse of dimension” can be lifted
by using a class of randomly shifted lattice rules introduced by Ian H. Sloane.

Review Questions

4.1. What is meant by a product integration rule for computing a multivariate
integral? What is the drawback with such rules for high dimensions?

4.2. Give the generalization of the composite trapezoidal and midpoint rules for a
two-dimensional rectangular grid.

4.3. Define barycentric coordinates in two dimensions. Give a formula for linear
interpolation on a triangular grid.

4.4. For high dimensional integrals and difficult boundaries Monte Carlo methods
are often used. How does the accuracy of such methods depend on the number
n of evaluations of the integrand.

4.5. How does quasi-Monte Carlo methods differ from Monte Carlo methods?

Problems

4.1. Let E be the ellipse {(x, y) | (x/a)2 + (y/b)2 ≤ 1}. Transform

I =

∫ ∫

E

f(x, y) dxdy
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into an integral over a rectangle in the (r, t)-plane with the transformation
x = a r cos t, y = b r sin t.

4.2. Consider the integral I of u(x, y, z) over the cube |x| ≤ h, |y| ≤ h, |z| ≤ h.
Show that the rule

I ≈ 4

3
h3

6∑

i=1

f(xi, yi, zi)

where (xi, yi, zi) = (±h, 0, 0), (0,±h, 0), (0, 0,±h), is exact for all monomials
xiyj , 0 ≤ i, j ≤ 1.

4.3. (a) In one dimension Simpson’s rule can be obtained by taking the linear
combination S(h) = (T (h) + 2M(h))/3 of the trapezoidal and midpoint rule.
Derive a quadrature rule

∫ h

−h

∫ h

−h
f(x, y) dxdy =

4h2

6
(f1,0 + f0,1 + f−1,0 + f0,−1 + 2f0,0)

for the square [−h, h]2, by taking the same linear combination of the product
trapezoidal and midpoint rules. Note that this rule is not equivalent to the
product Simpson’s rule.

(b) Show that the rule in (a) is exact for all cubic polynomials. Compare its
error term with that of the product Simpson’s rule.

(c) Generalize the midpoint and trapezoidal rules to the cube [−h, h]3. Then
derive a higher order quadrature rule using the idea in (a).

4.4. Is a quadratic polynomial uniquely determined, given six functions values at
the vertices and midpoints of the sides of a triangle?

4.5. Show that the boundary correction of (5.4.15) is exact if f ≡ 1, and if the arc
is a parabola where the tangent at R is parallel to PQ.

4.6. Formulate generalizations to several dimensions of the integral formula of The-
orem 5.4.2, and convince yourself of their validity.

Hint: The formula is most simply expressed in terms of the values in the
vertices and in the centroid of a simplex.

4.7. (a) Write a program which uses the Monte Carlo method to compute
∫ 1

0
ex dx.

Take 25, 100, 225, 400 and 635 points. Plot the error on a loglog-scale. How
does the error depend (approximately) on the number of points?

(b) Compute the integral in (a) using the control variate method. Take ϕ(x) =
1 + x+ x2/2. Use the same number of points as in (a).

4.8. Use the Monte-Carlo method to estimate the multiple integral

I =

∫

[0,1]n

∏

|xk − 1/3|1/2 ≈ 0.49n,

for n = 6. What accuracy is attained using N = 103 random points uniformly
distributed in 6 dimensions?
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4.9. Write a program to generate Halton points in two dimensions. For b1 = 2 and
b2 = 5. Then plot the first 200 points in the unit square.

Hint: For extracting the digits to form xi, see Algorithm 2.2.1. You can also
use TOMS Algorithm 247; see [166].

Notes and Further References

Numerical integration is a mature and well-understood subject. There are several
comprehensive monographs devoted to this area, in particular Davis and Rabi-
nowitz [82] and Engels [101]. Examples of integrals arising in practice and their
solution are found in [82, Appendix 1]. Newton–Cotes’ and other quadrature rules
can be derived using computer algebra systems, see [122]. A collection of numerical
quadrature rules are given in [1, Sec. 25].

The idea of adaptive Simpson quadrature is old and treated fully by Ly-
ness [224]. Further schemes, computer programs and examples are given in [82].
A recent discussion of error estimates and reliability of different codes is given by
Espelid [104].

Many algorithms and codes for generating integration rules have appeared
in the public domain. In [82, Appendix 2,3] several useful Fortran programs are
listed and a bibliography of Algol and Fortran programs published before 1984
given. Kautsky and Elhay [199] have developed algorithms and a collection of
Fortran subroutines called IQPACK [99], for computing weights of interpolatory
quadratures. QUADPACK is a collection of Fortran 77 and 90 subroutines for
integration of functions available at www.netlib.org. It is described in the book
by R. Piessens et al. [260].

The literature on Gauss–Christoffel quadrature and its computational aspects
is extensive. Gauss–Legendre quadrature was derived by Gauss in 1814 using a
continued fraction expansion. In 1826 Jacobi showed that the nodes were the zeros of
the Legendre polynomials and they were real, simple and in [−1, 1]. The convergence
of Gaussian quadrature methods was first studied by Stieltjes in 1884. More on the
history can be found in Gautschi [132]. Recent results by Trefethen [320] suggest
that the Clenshaw–Curtis rule may be as accurate as Gauss–Legendre quadrature
with an equal number of nodes.

The importance of the eigenvalues and eigenvectors of the Jacobi matrices for
computing Gauss’ quadrature rules was first elaborated by Golub and Welsch [156].
The generalization to Radau and Lobatto quadrature was outlined in Golub [150]
and further generalized by Golub and Kautsky [152].

The presentation in Sec. 5.3.4 was developed in Dahlquist [78] and inspired also
by the work of Gautschi [129, 135]. Related ideas can be traced to Mysovskih [244].
The encyclopedic book by Gautschi [137] describes the current state-of-the-art of
orthogonal polynomials and Gauss–Christoffel quadrature computation; see also the
survey by Laurie [212].

There is an abundance of tables giving abscissas and weights for various
quadrature rules. Abramowitz and Stegun [1, Sec. 25] give tables for Newton–Cotes’
and several Gauss–Christoffel rules. Many Gaussian quadrature formulas with var-
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ious weight functions are tabulated in Stroud and Secrest [307]. A survey of other
tables are given in [82, Appendix 4].

A software package in the public domain by Gautschi [134] includes routines
for generating Gauss-type for arbitrary weight functions. A package QPQ consist-
ing of Matlab programs for generating orthogonal polynomials as well as dealing
with applications is available at www.cs.purdue.edu/archives/2002/wxg/codes.
Part of these programs are described in Gautschi [139]. Maple programs for Gauss
quadrature rules are given by von Matt [234]. An overview of results related to
Gauss–Kronrod rules is given by Monegato [241]. The calculation of Gauss–Kronrod
rules is dealt with in [211] and [55].

Gaussian product rules for integration over the n-dimensional cube, sphere,
surface of a sphere, and tetrahedron are derived in Stroud and Secrest [307, Ch. 3].
Some simple formulas of various accuracy are tabulated in [1, Sec. 25]. The deriva-
tion of such formulas are treated by Engels [101]. Nonproduct rules for multidimen-
sional integration are treated in the book by Stroud [306].

A good introduction to multidimensional integration formulas and Monte
Carlo methods is given by Ueberhuber [322, Chap. 12]. Construction of fully sym-
metric numerical multidimensional integration formulas over the hypercube [−h, h]d
using a rectangular grid is treated by J. MacNamee and F. Stenger [235]. For a
survey of recent results on sparse grids and breaking “the curse of dimensional-
ity”, see Bungartz and Griebel [53]. The efficiency of Quasi-Monte Carlo methods
are discussed in [293]. Lattice rules are treated in the monograph by Sloan and
Joe [292]. For an introduction see also [322, Sec. 12.4.5].
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Chapter 6

Solving Scalar Nonlinear

Equations

6.1 Some Basic Concepts and Methods

6.1.1 Introduction

In this chapter we study numerical methods for computing accurate approximations
to the roots of a scalar nonlinear equation

f(x) = 0, (6.1.1)

where f(x) is a real-valued function of one variable. This problem has occupied
mathematicians for many centuries and many of the basic methods date back a long
time. In general the roots of (6.1.1) cannot be expressed in closed form. Even when
an explicit solution is available (as, for example, for the reduced cubic equation),
this is often so complicated that using Newton’s method, is more practical; see
Problem 2.3.8.

Numerical methods are iterative in nature. Starting from one or more initial
approximations, they produce a sequence of approximations, which presumably
converges to the desired root. Note that it suffices that the function f(x), and
preferably some of its derivatives, can be evaluated for given numerical values of x
for numerical methods to be applicable.

It is not uncommon in applications that each function value is obtained by a
complicated computation, for example, by the numerical solution of a differential
equation. The object is then to use as few function evaluations as possible in order
to approximate the root with a prescribed accuracy.

Iterative methods have to be truncated after a finite number of steps and
therefore can yield only approximations to the desired roots. Further, the roundoff
errors that occur in the evaluation of f(x) will limit the accuracy attainable by any
numerical method. The effect of such rounding errors depends on the conditioning
of the roots and is discussed in Section 6.1.3.

With certain methods it is sufficient for convergence to know an initial interval
[a, b], which contains the desired root (and no other root). An important example

613
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is the bisection method described in Section 6.1.2. It is often suitable to use a
hybrid method in which the bisection method is used to roughly locate the root. A
more rapidly convergent method is then used to refine this approximation. These
latter methods make use of more regularity assumptions about f(x), and usually
also require an initial approximation close to the desired root.

The theory of fixed point iteration methods is treated in Sec. 6.1.4 and the
concepts of convergence order and efficiency introduced in Sec. 6.1.5. The secant
method, and other methods based on interpolation are described in Sec. 6.2. In
Sec. 6.4 we briefly consider methods for solving the related problem of finding the
minimum or maximum of a real-valued function g(x). Newton’s method and other
methods of higher order are analyzed in Sections 6.3. A classical problem is that of
determining all real or complex roots of a algebraic equation. Special features and
methods for this problem are taken up in Section 6.5.

Many of the methods for a single equation, such as Newton’s method, are easily
generalized for systems of nonlinear equations. But unless good approximations to
the roots are known, several modifications of the basic methods are required, see
Vol. II, Chapter 11.

6.1.2 The Bisection Method

It is often advisable to start with collecting some qualitative information about the
roots to be computed. One should try to determine how many roots there are and
their approximate location. Such information can often be obtained by graphing
the function f(x). This can be a useful tool for determining the number of roots
and intervals containing each root.

Example 6.1.1.
Consider the equation

f(x) = (x/2)2 − sinx = 0.

In Figure 6.1.1 the graphs of y = (x/2)2 and y = sinx are shown. Observing the
intersection of these we find that the unique positive root lies in the interval (1.8, 2),
probably close to α ≈ x0 = 1.9.

The following intermediate-value theorem can be used to infer that an
interval [a, b] contains at least one root of f(x) = 0.

Theorem 6.1.1 (Intermediate-Value Theorem).

Assume that the function f(x) is continuous for a ≤ x ≤ b, f(a) 6= f(b), and
k is between f(a) and f(b). Then there is a point ξ ∈ (a, b), such that f(ξ) = k. In
particular, if f(a)f(b) < 0 then the equation f(x) = 0 has at least one root in the
interval (a, b).

A systematic use of the intermediate-value theorem is made in the bisec-
tion method. Assume that f(x) is continuous in the interval (a0, b0) and that
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Figure 6.1.1. Graph of curves y = (x/2)2 and sinx.

f(a0)f(b0) < 0. We shall determine a nested sequence of intervals Ik = (ak, bk),
k = 1, 2, 3, . . ., such that

(a0, b0) ⊃ (a1, b1) ⊃ (a2, b2) ⊃ · · ·

and which all contain a root of the equation f(x) = 0. The intervals are determined
recursively as follows. Given Ik = (ak, bk) compute the midpoint

mk =
1

2
(ak + bk) = ak + 1

2 (bk − ak).. (6.1.2)

and f(mk). The latter expression has the advantage that using this to compute
the midpoint no rounding error occurs in the subtraction (see Theorem 2.2.2 and
Example 6.1.3).

We can assume that f(mk) 6= 0, since otherwise we have found a root. The
new interval Ik+1 = (ak+1, bk+1) is then determined by the rule

(ak+1, bk+1) =

{
(mk, bk), if f(mk)f(ak) > 0;
(ak,mk), if f(mk)f(ak) < 0.

(6.1.3)

From the construction it follows immediately that f(ak+1)f(bk+1) < 0 (see also
Figure 6.1.1) and therefore the interval Ik+1 also contains a root of f(x) = 0.

After n bisection steps we have contained a root in the interval (an, bn) of
length 2−n(b0 − a0). If we take mn as an estimate of the root α, we have the error
estimate

|α−mn| < 2−(n+1)(b0 − a0). (6.1.4)

At each step we gain one binary digit in accuracy or, since 10−1 ≈ 2−3.3, on the
average one decimal digit per 3.3 steps. To find an interval of length δ which includes
a root will require about log2((b − a)/δ) evaluations of f . Note that the bisection
algorithm makes no quantitative use of the magnitude of computed function values.
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Figure 6.1.2. The bisection method.

Example 6.1.2.
The bisection method applied to the equation (x/2)2 − sinx = 0, with I0 =

(1.8, 2) gives the sequence of intervals [an, bn], where:

k ak bk mk f(mk)

1 1.8 2 1.9 <0
2 1.9 2 1.95 >0
3 1.9 1.95 1.925 <0
4 1.925 1.95 1.9375 >0
5 1.925 1.9375 1.93125 <0
6 1.93125 1.9375 1.934375 >0

Here after six function evaluations we have α ∈ (1.93125, 1.934375), an interval of
length 0.2 · 2−6 = 0.003125 (see also Figure 6.1.2).

Example 6.1.3.
The inequalities a ≤ 1

2 (a + b) ≤ b, where a and b are floating-point numbers
with a ≤ b can be violated in base 10 arithmetic. For example, assume that floating-
point arithmetic with six decimal digits is used. Taking a = 0.742531 and b =
0.742533 we obtain fl(a+ b) = 1.48506 (rounded) and 1

2 (a+ b) = 0.742530. On the
other hand the inequalities a ≤ a+ 1

2 (b − a) ≤ b are true in base β arithmetic, for
any β. With a and b as given we get the correct value 0.742532.

An algorithmic description of the bisection method is given below. Let f be
a given function and I = [a, b] an interval such that b > a and f(a)f(b) ≤ 0. The
algorithm bisect attempts to compute an approximation to a rootm ∈ I of f(x) = 0,
with an error less than a specified tolerance τ > 0. Note that the given tolerance τ
is increased by the amount umax(|a|, |b|), where u is the machine precision. This



“dqbjV
2007/5/28
page 617

6.1. Some Basic Concepts and Methods 617

is to guard against the possibility that δ has been chosen smaller than the spacing
between the floating-point numbers between a and b.

Algorithm 6.1. Bisection.

The function bisect computes an approximation r to a local root of a given
function in the intervalI = [a, b], with an error less than a specified tolerance
τ + umax(|a|, |a|) where u is the unit roundoff.

function r = bisect(fname,a,b,tau);

%

fa = feval(fname,a);

fb = feval(fname,b);

d = b - a;

while abs(d) > tau + eps*max(abs(a),abs(b)); &

a <= mid & mid <= b,

mid = a + (b - a)/2;

fm = feval(fname,mid);

if sign(fm) ~= sign(fa)

b = mid; fb = fm; % Keep left endpoint a

else

a = mid; fa = fm; % Keep right endpoint b

end;

root = a + (b - a)/2;

end;

The time required by the bisection algorithm is typically proportional to the
number of function evaluations, other arithmetic operations being insignificant. The
correct subinterval will be chosen in the algorithm as long as the sign of the com-
puted function value f(m) is correctly determined. If the tolerance τ is taken too
“small” or the root is ill-conditioned this may fail to be true in the later steps. Even
then the computed midpoints will stay within a certain domain of uncertainty. Due
to rounding errors there is a limiting accuracy, with which a root can be determined
from approximate function values; see in Section 6.1.3.

The bisection method is optimal for the class of functions that changes sign
on [a, b] in the sense that it minimizes the maximum number of steps over all such
functions. The convergence is rather slow, but independent of the regularity of
f(x). For other classes of functions, for example, functions that are continuously
differentiable on [a, b], methods like Newton’s method, which assume some regularity
of f(x) can achieve significantly faster convergence.

If f(a)f(b) < 0 then by the intermediate value theorem the interval (a, b)
contains at least one root of f(x) = 0. If the interval (a, b) contains several roots of
f(x) = 0, then the bisection method will converge to just one of these. (Note that
there may be one or several roots in (a, b), also in case f(a)f(b) > 0.)

If we only know (say) a lower bound a < α for the root to be determined we
can proceed as follows. We choose an initial steplength h and in the first hunting
phase compute successively function values f(a+ h), f(a+2h), f(a+4h), . . ., i.e.,
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we double the step, until a function value is found such that f(a)f(a + 2kh) < 0.
At this point we have bracketed a root and can initiate the bisection algorithm.

In the bisection method the interval of interest is in each step split into two
subintervals. An obvious generalization is to partition instead into k subintervals,
for p ≥ 2. In such a multi-section method of order p the interval I = [a, b] is
divided into k subintervals Ii = [xi, xi+1], where

xi = a+ i [(b− a)/p], i = 0 : p.

If there exists only one root in the interval I and we wish to compute it with an
absolute error ǫ, then it is necessary to perform

nk = log2

(b− a

2ǫ

)/

log2(p)

multi-sections of order p. Thus, the efficiency of multi-section of order p compared
to bisection (p = 2) is

n2/(pnp) = log2(p)/p.

Hence if there is a single root in the interval bisection is always preferable. If there
are several roots in the interval multi-section may perform better if the subintervals
can be processed in parallel.

There are several other applications of the bisection algorithm. For example,
in Section 4.4.5 we considered evaluating the nonzero B-splines for a given argument
x. Then we first have to search an ordered sequence of knots τ0, . . . , τm to find the
interval such that τj ≤ x < τj+1. This can be achieved by a slight modification of
the bisection method.

A similar problem, important in computer science, is searching in an ordered
register, for example, a register of employees ordered according to increasing Social
Security number. If the nth number in the register is denoted by f(n), then search-
ing for a certain number a means that an equation f(n) = a is to be solved (here
f is an increasing, discontinuous function). The bisection method can also be used
in searching an alphabetically ordered register.

In later sections we will study methods for solving a nonlinear equation, which
make more efficient use of computed function values than the bisection method and
possibly also use values of derivatives of f(x). If f(x) is sufficiently regular such
methods can achieve significantly faster convergence.

6.1.3 Attainable Accuracy and Termination Criteria

In the following we denote by f(x) the limited-precision approximation obtained
when f(x) is evaluated in floating-point arithmetic. When a monotone function
f(x) is evaluated in floating-point arithmetic the resulting approximation f(x) is
not in general monotone. The effect of rounding errors,in evaluating a certain
polynomial of fifth degree with a simple zero at x = 1,is illustrated in Figure 6.1.3.
Note the loss of monotonicity caused by rounding errors. This figure also shows
that even if f(a)f(b) < 0, the true equation f(x) = 0 may not have a zero in [a, b]!
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Figure 6.1.3. Limited-precision approximation of a continuous function.

Even if the true function value |f(xn)| is “small” one cannot deduce that xn
is close to a zero of f(x) without some assumption about the size of the deriva-
tive of f . We recall some basic results from analysis; for proofs see, for example,
Ostrowski [250, Chapter 2].

Theorem 6.1.2.
Let f(x) be continuous and differentiable in the interval J = [xn − η, xn + η]

for some η > 0. If |f ′(x)| ≥ m1 for all x ∈ J and |f(xn)| ≤ ηm1 then f(x) has
exactly one zero in J .

A root α of f(x) = 0 is said to be simple root if f ′(α) 6= 0. We now derive
an error estimate for a simple root α of f(x), which takes into account errors in the
computed values of f(x). Assume that

f(x) = f(x) + δ(x), |δ(x)| ≤ δ, x ∈ J, (6.1.5)

where δ is an upper bound for rounding and other errors in computed function
values of f(x). Using Theorem 6.1.2 we obtain

|xn − α| ≤ η, η = (|f(xn)| + δ)/m1, |f ′(x)| ≥ m1, x ∈ J. (6.1.6)

Obviously the best we can hope for is to find an approximation xn such that the
computed function value f(xn) = 0. It follows that for any numerical method,
δ/m1 is an approximate limit for the accuracy with which a simple zero α can be
determined. If f ′(x) does not vary much near xn = α, then we have the approximate
error bound

|xn − α| ≤ δ/m1 ≈ ǫα, ǫα = δ/|f ′(α)|. (6.1.7)

Since this is the best error bound for any method, we call ǫα, the attainable
accuracy for the simple root α, and the interval [α − ǫα, α + ǫα] the domain of
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uncertainty for the root α. If |f ′(α)| is small, then ǫα is large and the problem of
computing the root α is ill-conditioned (see again Figure 6.1.3).

Example 6.1.4.
Suppose we have computed the approximation x = 1.93375 to the positive

root to the equation f(x) = sinx− (x/2)2. Now f ′(x) = cosx− x/2 and it is easily
verified that

|f ′(x)| > 1.31 = m1, x ∈ [1.93, 1.94].

Further, using six decimals we get sin 1.93375 = 0.934852±0.5 ·10−6, and (x/2)2 =
0.9668752 = 0.934847± 0.5 · 10−6. Then (6.1.6) gives the strict error estimate

|x− α| < 6 · 10−6/1.31 < 5.6 · 10−6.

Using the following theorem, an analogous result can be shown for zeros of a
complex function f(z) of a complex variable z.

Theorem 6.1.3.
Let f(z) be analytic in the disc K = {z | |z − z0| ≤ η} for some η > 0.

If |f ′(z)| ≥ m1 in K and |f(z0)| ≤ ηm1 then f(z) has a zero inside K.

The multiplicity of a root is defined as follows:

Definition 6.1.4.
Suppose that f(x) is q times continuously differentiable in a neighborhood of

a root α to the equation f(x) = 0. Then α is said to have multiplicity q if

0 6= lim
x→α

|f(x)/(x − α)q| <∞. (6.1.8)

If a root α has multiplicity q then by (6.1.8) f (j)(α) = 0, j < q and from
Taylor’s formula

f(x) =
1

q!
(x− α)qf (q)(ξ), ξ ∈ int(x, α). (6.1.9)

Assuming that |f (q)(x)| ≥ mq, x ∈ J , and proceeding as before, we find that the
attainable accuracy for a root of multiplicity q is given by

|xn − α| ≤ (q! δ/mq)
1/q ≈ ǫα, ǫα = (q! δ/|f (q)(α)|)1/q . (6.1.10)

Comparing this with (6.1.7), we see that because of the exponent 1/q multiple roots
are in general very ill-conditioned. A similar behavior can be expected also when
there are several distinct but “close” roots. An instructive example is the Wilkinson
polynomial, studied in Sec. 6.5.2.
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Example 6.1.5.
The equation f(x) = (x − 2)x + 1 = 0 has a double root x = 1. The (exact)

value of the function at x = 1 + ǫ is

f(1 + ǫ) = (ǫ− 1)(1 + ǫ) + 1 = −(1 − ǫ2) + 1 = ǫ2.

Now, suppose that we use a floating-point arithmetic with eight decimal digits in
the mantissa. Then

fl(1 − ǫ2) = 1, |ǫ| < 1

2

√
2· 10−4,

and for 0.99992929 ≤ x ≤ 1.0000707, the computed value of f(x) will be zero when
f(x) is evaluated using Horner’s rule. Hence the root can only be computed with
about four correct digits, i.e., with a relative error equal to the square root of the
machine precision.

A practically important question concerning iterative methods, is how to stop
it. There are a few different termination criteria in practical use. The simplest
is to stop after a preset number of iterations. This is in general too crude, but it
is advisable always to specify the maximum number of iterations allowed, to guard
against unforeseen problems. For example, programming errors could otherwise
lead to an infinite loop being executed.

If the iteration method produces a sequence of bracketing intervals [ak, bk] the
iterations can be terminated when

|bk − ak| ≤ tol, tol = τ + 2u|xn|, (6.1.11)

where τ > 0 is a user specified absolute tolerance and u is the rounding unit (see
Section 2.2). The second term assures that the iterations are terminated when the
roundoff level of the floating point arithmetic is reached.

If for a simple root a lower bound for |f ′(α)| is known, the iterations can be
terminated on the basis of the error estimate (6.1.7). But it is usually more effective
to iterate a few extra times, rather than make the effort to use a special formula
for error estimation.

The termination criteria must be able to deal with the possibility that the
user specified tolerance is too small (or the root too ill-conditioned) and cannot be
attained. In this case from some step onwards rounding errors will dominate in
the evaluation of f(xn) and the computed values of f(x) may vary quasi-randomly
in the interval (−δ, δ) of attainable accuracy. If we are using a bracketing method
like the bisection method, the iterations will continue until the criterion (6.1.11) is
satisfied. This, of course, does not ensure that the root actually has been determined
to this precision!

For iterative methods with fast convergence (like Newton’s method) the fol-
lowing termination criterion can often be used: Stop when for the first time the
approximation xn satisfies the two conditions

|xn+1 − xn| ≥ |xn − xn−1|, |xn − xn−1| ≤ tol. (6.1.12)

Here tol is a coarse tolerance, used only to prevent the iterations from being termi-
nated before xn even has come close to α. When (6.1.12) is satisfied the attainable



“dqbjV
2007/5/28
page 622

622 Chapter 6. Solving Scalar Nonlinear Equations

accuracy has been reached and the quantity |xn+1 − xn| usually is a good estimate
of the error |xn − α|. Using this criterion the risk of never terminating the itera-
tions for an ill-conditioned root is quite small. Note also that iteration methods of
superlinear convergence ultimately converge so fast that the cost of always iterating
until the attainable accuracy is obtained may be small, even if the user specified
tolerance is much larger than ǫα.

6.1.4 Fixed-Point Iteration

We now introduce a very general class of iteration methods, which includes many
important root finding methods as special cases.

Let φ be a continuous function and {xn} the sequence generated by

xn+1 = φ(xn), n = 0, 1, 2, . . . . (6.1.13)

for some initial value x0. Assuming that limn→∞ xn = α, it follows that

α = lim
n→∞

xn = lim
n→∞

φ(xn) = φ(α), (6.1.14)

i.e. the limiting value α is a root of the equation x = φ(x). We call α a fixed point
of the mapping x→ φ(x) and the iteration (6.1.13) a fixed point iteration.

An iterative method for solving an equation f(x) = 0 can be constructed
by rewriting it in the equivalent form x = φ(x), which then defines a fixed point
iteration (6.1.13). Clearly this can be done in many ways. For example, let g(x) be
any function such that g(α) 6= 0 and set

φ(x) = x− f(x)g(x). (6.1.15)

Then α is a solution to f(x) = 0 if, and only if, α is a fixed point of φ

Example 6.1.6.
The equation x+ lnx = 0 can, for example, be written as:

(i) x = − lnx; (ii) x = e−x; (iii) x = (x+ e−x)/2.

Each of these give rise to a different fixed point iteration. Results from the first
eight iterations

xn+1 = e−xn , x0 = 0.3,

are pictured in Figure 6.1.4. The convergence is slow and we get x9 = 0.5641
(correct value 0.567143).

As was shown already in Section 1.2, the iteration (6.1.13) may not converge
even if the initial value x0 is chosen arbitrarily close to a root. If limn→∞ xn = α
for all x0 in a sufficiently close neighborhood of α the α is called a point of attrac-
tion otherwise α is a point of repulsion. The case |φ′(α)| = 1. is indeterminate;
the fixed point iteration xn+1 = φ(xn) can either converge or diverge; see Prob-
lem 6.1.10.

We shall see that under certain conditions the fixed-point problem has a unique
solution and that the iteration defined by (6.1.13) converges to this solution. The
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Figure 6.1.4. The fixed point iteration xk+1 = e−xk, x0 = 0.3.

following important theorem not only provides a solid basis for iterative numerical
techniques, but also is an important tool in theoretical analysis. Note that, the
existence of a fixed point is not assumed a priori.

Theorem 6.1.5 (Contraction Mapping Theorem).

Let x0 be a starting point, and consider the iteration xn+1 = φ(xn), n =
1, 2, . . . . Let

Jρ = {x | |x− x0| < ρ}
be an open interval of length ρ around x0 and assume that x→ φ(x) is a contrac-
tion mapping, i.e., for arbitrary points s and t in Jρ.

|φ(s) − φ(t)| ≤ L|s− t|, 0 ≤ L < 1. (6.1.16)

Then if
|x0 − x1| ≤ (1 − L)ρ, (6.1.17)

the equation x = φ(x) has a unique solution α in the closed interval |x − x0| ≤ ρ.
This solution can be obtained by the convergent iteration process xk+1 = φ(xk),
k = 0, 1, . . .. We have the error estimate

|xk − α| ≤ |xk − xk−1|
L

1 − L
≤ |x1 − x0|

Lk

1 − L
. (6.1.18)

Proof. We first prove the uniqueness. If there were two solutions x′ and x′′, we
would get x′ − x′′ = φ(x′) − φ(x′′) so that

|x′ − x′′| = |φ(x′) − φ(x′′)| ≤ L|x′ − x′′|.
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Since L < 1, it follows that |x′ − x′′| = 0, i.e. x′ = x′′.
By (6.1.17) we have |x1 − x0| = |φ(x0) − x0| ≤ (1 − L)r, and hence x1 ∈ Jρ.

We now use induction to prove that xn ∈ Jρ for n < j, and that

|xj − xj−1| ≤ Lj−1(1 − L)ρ, |xj − x0| ≤ (1 − Lj)ρ.

We already know that these estimates are true for j = 1. Using the triangle in-
equality and (6.1.16) we get

|xj+1 − xj | = |φ(xj) − φ(xj−1)| ≤ L|xj − xj−1| ≤ Lj(1 − L)ρ,

|xj+1 − x0| ≤ |xj+1 − xj | + |xj − x0| ≤ Lj(1 − L)ρ+ (1 − Lj)ρ

= (1 − Lj+1)ρ.

This proves the induction step, and it follows that the sequence {xk}∞k=0 stays in
Jρ. We also have for p > 0

|xj+p − xj | ≤ |xj+p − xj+p−1| + · · · + |xj+1 − xj |
≤ (Lj+p−1 + . . .+ Lj)(1 − L)ρ ≤ Lj(1 − Lp)ρ ≤ Ljρ,

and hence limj→∞ |xj+p − xj | = 0. The sequence {xk}∞k=0 therefore is a Cauchy
sequence, and since Rn is complete has a limit α. Since xj ∈ Jρ for all j it follows
that α ∈ {x | |x− x0| ≤ ρ}.

Finally, by (6.1.16) φ is continuous, and it follows that limk→∞ φ(xk) = φ(α) =
α. The demonstration of the error estimates (6.1.18) is left as exercises to the reader.

There is an analogue of Theorem 6.1.5 for complex functions φ(z) analytic in
a circle K = {z | |z − α| ≤ ρ} containing the initial approximation z0. Indeed,
Theorem 6.1.5 holds in a much more general setting, where φ : Sr → B, and B
is a Banach space.182 The proof goes through with simple modifications. In this
form the theorem can be used to prove existence and uniqueness for initial value
problems for ordinary differential equations.

An estimate of the error in xn, which depends only on x0, x1 and the Lipschitz
constant m, may be derived as follows. For arbitrary positive integers m and n we
have

xm+n − xn = (xm+n − xm+n−1) + · · · (xn+2 − xn+1) + (xn+1 − xn).

From the Lipschitz condition we conclude that |xi+1 − xi| ≤ Ci|x1 − x0|, and hence

|xm+n − xn| ≤ (Cm−1 + · · · + C + 1)|xn+1 − xn|.

Summing the geometric series and letting m→ ∞ we obtain

|α− xn| ≤
1

1 − C
|xn+1 − xn| ≤

Cn

1 − C
|x1 − x0|. (6.1.19)

182Recall that a Banach space is a normed vector space which is complete, i.e. every Cauchy
sequence converges to a point in B, see also Dieudeonné [90, ].
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Note that if C is close to unity, then the error in xn can be much larger than
|xn+1−xn|. Clearly it is not always safe to terminate the iterations when |xn+1−xn|
is less than the required tolerance!

For a linearly convergent fixed point iteration the sequence {xj −α} approxi-
mately forms a geometric series. Then, as seen in Sec. 3.4.2, a more rapidly conver-
gent sequence {x′j} can be obtained by Aitken extrapolation,

x′j = xj − (∇xj)2/∇2xj . (6.1.20)

(Note that if the convergence is not linear, then the sequence {x′n} will usually
converge slower than {xn}!)

Example 6.1.7.
Let φ(x) = 1 − 1

2x
2, and consider the fixed point iteration xn+1 = φ(xn),

with x0 = 0.8, n = 0, 1, 2, . . . . In this example the theoretical criterion (3.4.2) is
satisfied, since one can show that xn → a =

√
3 − 1 ≈ 0.73205,

∇xn/∇xn−1 → φ′(a) = −a, n→ ∞.

(See the discussion of iteration in Sec. 1.1.2.)
We obtain x1 = 0.68, x2 = 0.7688, and x′2 = 0.7688 − (0.0888)2/0.2088 =

0.73103. The error in x′2 is only about 3% of the error in x2. Iterated Aitken yields,
with u = 2−53 = 1.1·10−16 the results x′2 = 0.73103 . . ., x′′4 = 0.73211, etc., and the
errors

e′2 = −10 · 10−3, e′′4 = 5.6 · 10−5, e′′′6 = 7.8 · 10−7, e
(4)
8 = −2.8 · 10−9,

after 2, 4, 6, 8 evaluations of the function φ, respectively. We shall see (Prob-
lem 6.1.13) that the accelerated sequence may converge, even if the basic iteration
xn+1 = φ(xn) diverges!

When the basic sequence {xn}, as in the above example, is produced by a
convergent iterative process, one can apply Aitken acceleration in a different, usually
more efficient way. This can be called active Aitken acceleration, since the result
of an acceleration is actively used in the basic iterative process. It is better known
as Steffensen’s method. We start as before by computing x1 = φ(x0), x2 = φ(x1)
and apply the formula (6.3.30) to compute x′2. Next we continue the iterations from
x′2, i.e., compute x3 = φ(x′2), x4 = φ(x3). We can now extrapolate from x′2, x3 and
x4 to get x′4, etc. It is easily verified that the sequence zn = x′2n is generated by
the fixed-point iteration

zn+1 = ψ(zn), ψ(z) = z − (φ(z) − z)2

(φ(φ(z)) − φ(z)) − (φ(z) − z)
. (6.1.21)

This is repeated, until some termination criterion is satisfied.
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6.1.5 Convergence Order and Efficiency

In general we will be given an equation f(x) = 0 to solve and want to construct
a rapidly converging fixed point iteration. Basic concepts to quantify the rate of
convergence will now be introduced.

Definition 6.1.6.
Consider a sequence {xn}∞0 with limn→∞ xn = α, and xn 6= α for n <∞. The

sequence is said to have convergence order equal to q ≥ 1 if for some constant
0 < C <∞,

lim
n→∞

|xn+1 − α|
|xn − α|q = C. (6.1.22)

where q need not be an integer. C is called the asymptotic error constant.
If q = 1 then we require that C < 1 and then {xn} is said to converge linearly

and C is the rate of linear convergence. For q = 2, 3 the convergence is called
quadratic, and cubic, but

More precisely, the order q in Theorem 6.1.6 is called the Q-order of con-
vergence, where Q stands for quotient. The same definitions can be used also for
vector-valued sequences. Then absolute values in (6.1.22) are replaced by a vector
norm.

There are types of convergence that are not covered by the above definition
of order. A sequence may converge more slowly than linear so that (6.1.22) holds
with q = 1 and C = 1. Then convergence is called sublinear. If (6.1.22) holds
with q = 1 and C = 0, then convergence is called superlinear.

Example 6.1.8.
Examples of sublinear, linear and superlinear convergence are

xn = 1/n, xn = 2−n, and xn = n−n,

respectively.

Alternative definitions of convergence order are considered by Ortega and
Rheinboldt [249, Chap. 9] and Brent [38, Sec. 3.2]. For example, if

lim
n→∞

inf(− log |xn − α|)1/n = q, (6.1.23)

then q is called the weak order of convergence for xn, since (6.1.22) implies (6.1.23),
but not vice versa. For example, the sequence xn = exp(−pn)(2+(−1)n) converges
to 0 with weak order p. But the limit in (6.1.22) does not exist if q = p, is zero if
q < p and infinite if q > p.

Consider a fixed point iteration xn+1 = φ(xn). Assume that φ′(x) exists and
is continuous in a neighborhood α. It then follows from the proof of Theorem 6.1.5,
that if 0 < |φ′(α)| < 1 and x0 is chosen sufficiently close to α, then the sequence xn
generated by xn+1 = φ(xn) satisfies (6.1.22) with q = 1 and C = |φ′(α)|.

The number of accurate decimal places in the approximation xn equals δn =
− log10 |xn − α|. Equation (6.1.22) implies that
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δn+1 ≈ qδn − log10 |C|.
Hence for linear convergence (q = 1) as n → ∞ each iteration gives a fixed (frac-
tional) number of additional decimal places. For a method with convergence of
order q > 1 each iteration increases the number of correct decimal places q-fold as
n→ ∞. This shows that eventually a method with larger order of convergence will
converge faster.

Example 6.1.9.
Consider a sequence xn with quadratic convergence with C = 1. Set ǫn =

|xn − α| and assume that ǫ0 = 0.9. From ǫn+1 ≤ Cǫ2n, it follows that ǫn, for
n = 2, 3, . . . , is bounded by

0.81, 0.66, 0.43, 0.19, 0.034, 0.0012, 1.4 · 10−6, 1.9 · 10−12, . . . ,

respectively. For n ≥ 6 the number of significant digits is approximately doubled
at each iteration!

Consider an iteration method with convergence order q ≥ 1. If each iteration
requires m units of work (usually the work involved in computing a function value
or a value of one of its derivatives) then the efficiency index of the iteration is
defined as

E = q1/m. (6.1.24)

The efficiency index gives a basis for comparing the efficiency of iterative methods
of different order of superlinear convergence. Assuming that the cost of evaluating
f(xn) and f ′(xn) is two units the efficiency index for Newton’s method is E =
21/2 =

√
2. (Methods that converge linearly all have E = 1.)

The order of the fixed-point iteration xn+1 = φ(xn) can be determined if φ(x)
is sufficiently many times continuously differentiable in a neighborhood of α.

Theorem 6.1.7.
Assume that φ(x) is p times continuously differentiable. Then the iteration

method xn+1 = φ(xn) is of order p for the root α if and only if

φ(j)(α) = 0, j = 1 : p− 1, φ(p)(α) 6= 0. (6.1.25)

Proof. If equation (6.1.25) holds, then according to Taylor’s theorem we have

xn+1 = φ(xn) = α+
1

p!
φ(p)(ζn)(xn − α)p, ζn ∈ int(xn, α).

Hence for a convergent sequence xn the error ǫn = xn − α satisfies

lim
n→∞

|ǫn+1|/|ǫn|p = |φ(p)(α)|/p! 6= 0,

and the order of convergence equals p. It also follows that if φ(j)(α) 6= 0 for some
j, 1 ≤ j < p, or if φ(p)(α) = 0, then the iteration cannot be of order p.
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Example 6.1.10.
We remarked before that to compute a root α of f(x) = 0, we can use a fixed

point iteration with φ(x) = x− f(x)g(x), where g(x) is an arbitrary function such
that g(α) 6= 0. we evaluate the derivative

φ′(x) = 1 − f ′(x)g(x) − f(x)g′(x).

To achieve quadratic convergence we take g(x) = 1/f ′(x). Assuming that f ′(α) 6= 0
we find, using f(α) = 0, that φ′(α) = 1 − f ′(α)g(α) = 0, Hence the iteration

xn+1 = xn − f(xn)/f
′(xn), (6.1.26)

achieves quadratic convergence. This is Newton’s method, which will be treated at
length in Sec. 6.3

Review Questions

1.1. What does limit the final accuracy of a root computed by the bisection algo-
rithm? Discuss suitable termination criteria.

1.2. (a) Given a nonlinear scalar equation f(x) = 0 with a simple root α. How can
a fixed point iteration xn+1 = φ(xn) be constructed, which converges to α?

(b) Assuming that a fixed point α exists for the mapping x = φ(x). Give
sufficient conditions for convergence of the sequence generated by xn+1 =
φ(xn).

(c) How can the conditions in (b) be modified so that the existence of a fixed
point can be proved?

1.3. (a) Define the concepts order of convergence and asymptotic error constant
for a convergent sequence {xn} with limn→∞ xn = α.

(b) What is meant by sublinear and superlinear convergence? Give examples
of sequences with sublinear and superlinear convergence.

1.4. (a) Define the efficiency index of a given iterative method of order p and
asymptotic error constant C 6= 0.

(b) Determine the order of a new iterative method consisting of m consecutive
steps of the method in (a). What is the order and error constant of this new
method? Show that it has the same efficiency index as the first method.

1.5. (a) When can (passive) Aitken extrapolation be applied to speed up the con-
vergence of sequence.

(b) Describe the difference between active and passive Aitken extrapolation?

1.6. What two quantities determines the attainable accuracy of a simple root α to
the equation f(x) = 0. Give an example of an ill-conditioned root.

1.7. Discuss the choice of termination criteria for iterative methods.
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Problems and Computer Exercises

1.1. Use graphic representation to determine the zeros of the following functions
to one correct decimal:

(a) 4 sinx+ 1 − x; (b) 1 − x− e−2x; (c) (x+ 1)ex−1 − 1;

(d) x4 − 4x3 + 2x2 − 8; (e) ex + x2 + x; (f) ex − x2 − 2x− 2;

(g) 3x2 + tanx.

1.2. Show analytically that the equation xe−x = γ has exactly two real roots when
γ < e−1.

1.3. Plot the functions f(x) = coshx and g(x) = 1/ cosx and deduce that the equa-
tion coshx cosx = 1 has its smallest positive root in the interval (3π/2, 2π).
Determine this root using the bisection method.

1.4. The following equations all have a root in the interval (0, 1.6) Determine these
with an error less than 10−8 using the bisection method.

(a) x cosx = lnx; (b) 2x = e−x; (c) e−2x = 1 − x.

1.5. Locate the real root of the equation

ex(x− 1) = e−x(x+ 1),

by graphing both sides. Then compute the root with an error less than 10−8

using bisection. How many bisection steps are needed?

1.6. Let k be a given non-negative number and consider the equation sinx =
−k cosx. This equation has infinitely many roots. Separate the roots, i.e.,
partition the real axis into intervals which contain exactly one root.

1.7. The choice of mk as the arithmetic mean of ak−1 and bk−1 in the bisection
method minimizes the worst case maximum absolute error. If in the case that
ab > 0 we take instead the geometric mean

mk =
√

akbk.

Then the worst case relative error is minimized. Do Example 6.1.2 using this
variation of the bisection method!

1.8. In Example 6.1.6 three different fixed point iterations were suggested for solv-
ing the equation x+ lnx = 0. (a) Which of the formulas can be used?

(b) Which of the formulas should be used? (c) Give an even better formula!

1.9. Investigate if and to what limit the iteration xn+1 = 2xn−1 sequence converges
for various choices of x0.

1.10. (L. Wittmeyer-Koch) (a) Show that the iteration xn+1 = φ(xn), where φ(x) =
x+(x−1)2, has a fixed point α = 1, and |φ′(α)| = 1. Then verify by graphing
the iteration for x0 = 0.6, that it converges.

(b) Show that for the iteration in (a) if xn = 1 − ǫ, then

|xn+1 − 1|
|xn − 1| = 1 − ǫ,
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i.e. the asymptotic rate of convergence is sublinear.

1.11. (a) Consider the fixed point iteration xn+1 = φ(xn), where φ(x) = x+(x−1)2.
Show that this has a fixed point for α = 1 and that φ′(α) = 1.

(b) Show that the iteration in (a) is convergent for x0 < 1.

1.12. Consider the iteration xn+1 = 1−λx2
n. Illustrate graphically how the iteration

for λ = 0.7, 0.9, 2. (For λ = 2 the iteration is chaotic.)

1.13. Apply active Aitken acceleration to the iteration formula sn+1 = φ(sn), where
φ(s) = 1 − 1

2s
2, until either you have 10 correct decimals, or there are clear

indications that the process is divergent.

(a) with s0 = 0.8; (b) with s0 = −2.7.

6.2 Methods Based on Interpolation

6.2.1 Method of False Position

Assume that we have two initial approximations a0 = a and b0 = b such that
f(a)f(b) < 0. As in the bisection method we generate a nested sequence of intervals
(a0, b0) ⊃ (a1, b1) ⊃ (a2, b2) ⊃ · · · such that f(an)f(bn) < 0, n = 0, 1, 2, . . . .
Given (an, bn), we take xn+1 to be the intersection of the secant through the point
(an, f(an)) and (bn, f(bn)). Then by Newton’s interpolation formula xn+1 satisfies

0 = f(an) + (xn+1 − an)
f(an) − f(bn)

an − bn

giving

xn+1 = an − f(an)
an − bn

f(an) − f(bn)
. (6.2.1)

If f(xn+1)f(an) > 0, set an+1 = xn+1 and bn+1 = bn; otherwise set bn+1 = xn+1

and an+1 = an. As for bisection, convergence to a root is guaranteed (in exact
arithmetic) for a continuous function f(x). This is the false-position method or
in Latin regula falsi.183

Note that if f(x) is linear we obtain the root in just one step, but sometimes
the rate of convergence can be much slower than for bisection.

Suppose now that f(x) is convex on [a, b], f(a) < 0, and f(b) > 0, as in
Figure 6.2.1. Then the secant through x = a and x = b will lie above the curve and
hence intersect the x-axis to the left of α. The same is true for all subsequent secants
and therefore the right endpoint b will be kept. The approximations x1, x2, x3, . . .
will all lie on the convex side of the curve and cannot go beyond the root α. A
similar behavior, with monotone convergence and one of the points a or b fixed, will
occur whenever f ′′(x) exists and has constant sign on [a, b].

183Regula falsi is a very old method that originated in 5th century Indian texts and was used in
medieval Arabic mathematics. It got its current name from the Italian mathematician Leonardo
Pisano, also known as Leonardo Fibonacci (c:a 1170–1250). He is considered to be one of the most
talented mathematicians of the middle ages.
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Figure 6.2.1. The false-position method.

Example 6.2.1.
We apply the method of false position to the f(x) = (x/2)2 − sinx = 0 from

Example 6.1.2 with initial approximations a0 = 1.5, b1 = 2. We have f(1.5) =
−0.434995 < 0 and f(2.0) = +0.090703 > 0 and successive iterates are

n xn f(xn) hn

1 1.913731 221035 −0.026180060742 −0.019322989205

2 1.933054 210240 −0.000924399645 −0.000675397892

3 1.933729 608132 −0.000031930094 −0.000023321005

4 1.933752 929137 −0.000001102069 −0.000000804916

5 1.933753 734053

Note that f(xn) < 0 for all n ≥ 0 and consequently bn = 2 is fixed. In the limit
convergence is linear with rate approximately equal to C ≈ 0.034.

If f is twice continuously differentiable and f ′′(α) 6= 0, then eventually an
interval will be reached on which f ′′(x) does not change sign. Then, as in the
example above, one of the endpoints (say b) will be retained and an = xn in all
future steps. By (6.2.1) the successive iterations are

xn+1 = xn − f(xn)
xn − b

f(xn) − f(b)
.

To determine the speed of convergence subtract α and divide by ǫn = xn−α to get

ǫn+1

ǫn
= 1 − f(xn)

xn − α

xn − b

f(xn) − f(b)
.

Since limn→∞ xn = α and f(α) = 0, it follows that

lim
n→∞

ǫn+1

ǫn
= C = 1 − (b − α)

f ′(α)

f(b)
, (6.2.2)
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which shows that convergence is linear. Convergence will be very slow if f(x) is
very flat near the root α, f(b) is large, and α near b since then (b−α)f ′(α) ≪ f(b)
and C ≈ 1.

6.2.2 The Secant Method

A serious drawback with the method of false position is that ultimately one endpoint
of the sequence of bracketing intervals will become fixed and therefore the length
(bn − an) will not tend to zero. This can be avoided and convergence substantially
improved by always using the secant through the last two points (xn−1, f(xn−1))
and (xn, f(xn)). The next approximation xn+1 is determined as the abscissa of the
point of intersection between this secant and the x-axis; see Figure 6.2.2.

Given initial approximations x−1 = a and x0 = b, approximations x1, x2, , x3, . . .
are computed by

xn+1 = xn + hn, hn = −f(xn)
xn − xn−1

f(xn) − f(xn−1)
, n ≥ 1, (6.2.3)

assuming that f(xn) 6= f(xn−1). This is the secant method, which historically
predates Newton’s method.
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Figure 6.2.2. The secant method.

Notice that although regula falsi and the secant method require two initial
approximations to the root, only one function evaluation per step is needed. The
iteration, which is of the form xn+1 = φ(xn;xn−1), is not a fixed point iteration as
defined in Section 6.1.4. Sometimes methods of this form, which use old information
at points xn−k, k ≥ 1, are called fixed point iterations with memory.

When the secant method converges |xn − xn−1| will eventually become small.
The quotient (xn−xn−1)/(f(xn)−f(xn−1)) will then be determined with poor rela-
tive accuracy. If xn and xn−1 both are very close to the root α and not bracketing α,
then the resulting rounding error in xn+1 can then become very large. Fortunately,
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from the error analysis below it follows that the approximations in general are such
that |xn − xn−1| ≫ |xn − α| and the dominant contribution to the round-off error
in xn+1 comes from the error in f(xn). Note that (6.2.3) should not be rewritten
in the form

xn+1 =
xn−1f(xn) − xnf(xn−1)

f(xn) − f(xn−1)
,

since this formula can give rise to severe difficulties with cancellation when xn ≈
xn−1 and f(xn)f(xn−1) > 0. Even (6.2.3) is not always safe to use. We must take
care to avoid overflow or division by zero. Without restriction we can assume that
|f(xn−1)| ≥ |f(xn)| > 0 (otherwise renumber the two points). Then, sn can be
computed without risk of overflow from

xn+1 = xn +
sn

1 − sn
(xn − xn−1), sn =

f(xn)

f(xn−1)
. (6.2.4)

where the division with 1 − sn is only carried out if 1 − sn is large enough.

Example 6.2.2.
To illustrate the improved convergence of the secant method we consider once

again the equation f(x) = (x/2)2 − sinx = 0 with initial approximations x0 = 1.5,
x1 = 2. The result is:

n xn f(xn) hn

-1 1.5 −0.434994 986604

0 2.0 +0.090702 573174 −0.086268 778965

1 1.913731 221035 −0.026180 060742 +0.019322 989205

2 1.933054 210240 −0.000924 399645 +0.000707 253882

3 1.933761 464122 +0.000010 180519 −0.000007 704220

4 1.933753 759902 −0.000000 003867 +0.000000 002925

5 1.933753 762827

Note that the approximations x1 and x2 are the same as for the false position.
method, but here x4 is correct to eight decimals and x5 to twelve decimals. The
rapid convergence is partly because x1 = 2 is quite a good initial approximation.
But note that although the root is bracketed by the initial intervals [x0, x1] and
[x1, x2] it lies outside the interval [x2, x3].

Assume that f is twice continuously differentiable. Then according to New-
ton’s interpolation formula with error term (Theorem 4.3.1) we have

f(x) = f(xn) + (x− xn)[xn−1, xn]f + (x− xn−1)(x− xn)
f ′′(ζn)

2
, (6.2.5)

where ζn ∈ int(x, xn−1, xn), and

[xn−1, xn]f =
f(xn) − f(xn−1)

xn − xn−1
.
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To derive an asymptotic formula for the secant method we put x = α in (6.2.5) and
subtract the secant equation 0 = f(xn) + (xn+1 − xn)[xn−1, xn]f . Since f(α) = 0
we get

(α− xn+1)[xn−1, xn]f + (α− xn−1)(α− xn)f ′′(ζn)/2 = 0,

where ζn ∈ int(α, xn−1, xn). According to the mean-value theorem, we have

[xn−1, xn]f = f ′(ζ′n), ζ′n ∈ int(xn−1, xn),

and it follows that

ǫn+1 = −1

2

f ′′(ζn)

f ′(ζ′n)
ǫnǫn−1. (6.2.6)

Example 6.2.3.
The ratios ǫn+1/(ǫnǫn−1) in Example 6.2.2 are equal to 0.697, 0.527, 0.550,

n = 1 : 3, which compares well with the limiting value 0.543 of 1
2f

′′(α)/f ′(α).

From (6.2.6) it can be deduced that the secant method always converges from
starting values x0, x1 sufficiently close to α. For this to be true it suffices that the
first derivative f ′(x) is continuous, since then

ǫn+1 =

(

1 − f ′(ξn)

f ′(ζn)

)

ǫn, ξn ∈ int(xn−1, α), ζn ∈ int(xn, xn−1).

But in the secant method there is no guarantee that the computed sequence of ap-
proximations stay in the initial interval [x0, x1]. Unlike the steady convergence of
the bisection method things can go seriously wrong using the secant method! A
remedy will be discussed in Sec. 6.2.4.

The following theorem gives the order of convergence for the secant method.

Theorem 6.2.1.
Suppose that f(x) is twice continuously differentiable and that in a neighbor-

hood I of the root α, containing x0, x1, x2, . . . , xn, we have

1

2

∣
∣
∣
∣

f ′′(y)
f ′(x)

∣
∣
∣
∣
≤M, x, y ∈ I.

Denote by ǫn the error in the nth iterate of the secant iteration Let q be the unique
positive root of the equation µ2 − µ− 1 = 0 and set

K = max
(
M |ǫ0|, (M |ǫ1|)1/q

)
. (6.2.7)

Then it holds that

|ǫn| ≤
1

M
Kqn

, n = 0, 1, 2, . . . , (6.2.8)

i.e. the secant iteration has convergence order equal to q = (1 +
√

5)/2 = 1.618 . . ..
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Proof. The proof is by induction. From the choice of K it follows that (6.2.8) is
trivially true for n = 0, 1. Suppose that (6.2.8) holds for n and n − 1. Then since
q2 = q + 1 it follows using the assumption and (6.2.6) that

|ǫn+1| ≤M |ǫn| |ǫn−1| ≤
1

M
Kqn

Kqn−1

=
1

M
Kqn+qn−1

=
1

M
Kqn+1

. (6.2.9)

To compare the efficiency of the secant method and Newton’s method, which
is quadratically convergent, we use the efficiency index introduced in Section 6.1.5.
Assume that the work to compute f ′(x) is θ times the amount of work required
to compute f(x). Then, with the same amount of work we can perform k(1 + θ)
iterations with the secant method and k iterations with Newton’s method. Equating

the errors we get (mǫ0)
2k

= (mǫ0)
pk(1+θ)

, where q = 1.618 . . .. Hence the errors are
the same for both methods when pk(1+θ) = 2k or

(1 + θ) log
(

1
2 (1 +

√
5)
)

= log 2,

which gives θ = 0.4404 . . .. Thus, from this analysis we conclude that if θ > 0.44,
then the secant method is asymptotically more efficient than Newton’s method.

In Example 6.2.2 we can observe that the error ǫn = xn − αn changes sign at
every third step. Hence, in this example,

α ∈ int(xn+1 − xn), n = 0, 1, 3, 4, . . . .

i.e., the root α is bracketed by xn and xn+1 except for every third step. We shall
show that this is no coincidence. Assume that xn ∈ (a, b), n = 0, 1, 2, . . ., and that
f ′(x) 6= 0 and f ′′(x) does not change sign in (a, b). Then from (6.2.6) it follows
that the ration

ǫn+1

ǫnǫn−1

will have constant sign for all n. Then if α ∈ int(x0, x1) and ǫ0ǫ1 < 0, and it follows
that the sign of ǫn must change every third step according to one of the following
two schemes (verify this!):

· · · + − + + − + + − + + · · ·
· · · + −− + −− + −− + · · ·

Hence convergence for the secant method, if it occurs, will take place in a waltz
rhythm! This means that at every third step the last two iterates xn−1 and xn will
not always bracket the root.

6.2.3 Higher Order Interpolating Methods

In the secant method linear interpolation through (xn−1,fn−1) and (xn, fn) is used
to determine the next approximation to the root. A natural generalization is to use
an interpolating method of higher order. Let xn−r , . . . , xn−1, xn be r + 1 distinct
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approximations and determine the (unique) polynomial p(x) of degree r interpolat-
ing (xn−j , f(xn−j)), j = 0 : r. By Newton’s interpolation formula (Sec. 4.2.1) the
interpolating polynomial is

p(x) = fn + [xn, xn−1]f · (x− xn) +

r∑

j=2

[xn, xn−1, . . . , xn−j ]f Φj(x),

where
Φj(x) = (x− xn)(x − xn−1) · · · (x − xn−j).

The next approximation xn+1 is taken as the real root to the equation p(x) = 0
closest to xn and xn−r is deleted. Suppose the interpolation points lie in an interval
J , which contains the root α and in which f ′(x) 6= 0. It can be shown that if there
is at least one interpolation point on each side of α then p(x) = 0 has a real root
in J . Further the following formula for the error holds (Traub [315, pp. 67–75])

ǫn+1 = − f (r+1)(ζn)

(r + 1)!p′(ηn)

r∏

i=0

ǫn−i, (6.2.10)

where ζn ∈ int (α, xn−1, xn) and ηn ∈ int (α, xn+1). (Recall that by int (a, b, . . . , w)
we denote the smallest interval that contains the points a, b, . . . , w.) In the special
case r = 2 we get the quadratic equation

p(x) = fn + (x − xn)[xn, xn−1]f + (x− xn)(x− xn−1)[xn, xn−1, xn−2]f. (6.2.11)

We assume that [xn, xn−1, xn−2]f 6= 0 since otherwise the method degenerates into
the secant method. Setting hn = (x−xn) and writing (x−xn−1) = hn+(xn−xn−1),
this equation becomes

h2
n[xn, xn−1, xn−2]f + ωhn + fn = 0, (6.2.12)

where
ω = [xn, xn−1]f + (xn − xn−1)[xn, xn−1, xn−2]f. (6.2.13)

The root closest to xn corresponds to the root hn of smallest absolute value to the
equation (6.2.12). To express this root in a numerically stable way the standard
formula for the roots of a quadratic equation should be multiplied by its conjugate
quantity (see Example 2.3.3). Using this formula we get

xn+1 = xn + hn, hn = − 2fn

ω ±
√

ω2 − 4fn [xn, xn−1, xn−2]f
, (6.2.14)

where the sign in the denominator should be chosen so as to minimize |hn|. This is
the Muller–Traub method.

A drawback is that the equation (6.2.12) may not have a real root even if a
real zero is being sought. On the other hand, this means that the Muller–Traub
method has the useful property that complex roots may be found from real starting
approximations.
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By (6.2.10) it follows that

ǫn+1 = − f ′′′(ζn)

3! p′(ηn)
ǫnǫn−1ǫn. (6.2.15)

It can be shown that the convergence order for the Muller–Traub method is at
least q = 1.839 . . ., which equals the largest root of the equation µ3 − µ2 − µ −
1 = 0 (cf.Theorem 6.2.1). Hence this method does not quite achieve quadratic
convergence. In fact, it can be shown under very weak restrictions that no iterative
method using only one function evaluation can have q ≥ 2.

For r > 2 there are no useful explicit formulas for determining the zeros of
the interpolating polynomial p(x). Then we can proceed as follows. We write the
equation p(x) = 0 in the form x = xn + F (x), where

F (x) ≡
−fn −∑r

j=2[xn, xn−1, . . . xn−j ]f Φj(x)

[xn, xn−1]f

(cf. Sec. 4.3.3). Then a fixed point iteration can be used to solve for x. To get the
first guess x0 we ignore the sum (this means using the secant method) and then
iterate, xi = xn + F (xi−1), i = 1, 2, . . . until xi and xi−1 are close enough.

Suppose that xn−j−xn = O(h), j = 1 : r, where h is some small parameter in
the context (usually some step size). Then Φj(x) = O(hj), Φ′

j(x) = O(hj−1). The
divided differences are O(1), and we assume that [xn, xn−1]f is bounded away from
zero. Then the terms of the sum decrease like hj. The convergence ratio F ′(x) is
here approximately

Φ′
2(x)[xn, xn−1, xn−2]f

[xn, xn−1]f
= O(h).

So, if h is small enough, the iterations converge rapidly.
A different way to extend the secant method is to use inverse interpolation.

Assume that yn, yn−1, . . . , yn−r are distinct and let q(y) be the unique polynomial
in y interpolating the values xn, xn−1, . . . , xn−r. Reversing the rule of x and y and
using Newton’s interpolation formula this interpolating polynomial is

q(y) = xn + [yn, yn−1]g · (y − yn) +

r∑

j=2

[yn, yn−1, . . . , yn−j]f Ψj(y),

where g(yn−j) = xn−j , j = 0 : r.

Ψj(y) = (y − yn)(y − yn−1) · · · (y − yn−j).

The next approximation is then taken to be xn+1 = q(0), i.e.

xn+1 = xn − yn [yn, yn−1]g +

r∑

j=2

[yn, yn−1, . . . , yn−j]gΨj(0),

For r = 1 there is no difference between direct and inverse interpolation and we
recover the secant method. For r > 1 inverse interpolation as a rule gives different
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results. Inverse interpolation has the advantage of not requiring the solution of a
polynomial equation. (For other ways of avoiding this see Problems 6.2.3 and 6.2.4.)
The case r = 2 corresponds to inverse quadratic interpolation

xn+1 = xn − yn [yn, yn−1]g + ynyn−1 [yn, yn−1, yn−2]g, (6.2.16)

This method has the same order of convergence as the Muller–Traub method.
Note that this method requires that yn, yn−1, and yn−2 are distinct. Even if

this is the case it is not always safe to compute xn+1 from (6.2.16). Care has to be
taken in order to avoid overflow and possibly division by zero. If we assume that
0 6= |yn| ≤ |yn−1| ≤ |yn−2| then it is safe to compute

sn = yn/yn−1, sn−1 = yn−1/yn−2, rn = yn/yn−2 = snsn−1.

We can rewrite (6.2.16) in the form xn+1 = xn + pn/qn, where

pn = sn[(1 − rn)(xn − xn−1) − sn−1(sn−1 − rn)(xn − xn−2)],

qn = (1 − sn)(1 − sn−1)(1 − rn).

The final division pn/qn is only carried out if the correction is sufficiently small.

6.2.4 A Robust Hybrid Method

Efficient and robust root finders can be constructed by combining the secant method
(or some higher order interpolation method) with bisection, A particularly elegant
combination of bisection and the secant method was developed in the 1960s by van
Wijngaarden, Dekker and others at the Mathematical Center in Amsterdam. A
related algorithm, called zeroin, which combines bisection, the secant method and
inverse quadratic interpolation, was developed by Brent [38]. The Matlab function
fzero, which finds a zero near a given approximation x0, is based on zeroin. A
discussion of a slightly simplified version of fzero is given in Moler [240, Ch. 4.7].

We now outline the basic ideas used in zeroin. Start with a and b such that
f(a)f(b) < 0 and use a secant step to get c in (a, b). We then repeat the following
steps until |b− a| < tol or f(b) = 0:

• Arrange a, b, and c so that f(a) and f(b) have opposite sign, |f(b)| ≤ |f(a)|,
and c is the value of b in the previous step.

• If c 6= a compute the step using inverse quadratic interpolation; otherwise
compute a secant step.

• If the computed step gives an approximation in [a, b] take it; otherwise take a
bisection step.

Review Questions

2.1. Sketch a function f(x) with a root in (a, b), such that regula falsi converges
very slowly.
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2.2. Outline how the secant method can be safeguarded by combining it with the
bisection method.

2.3. What property should the function f(x) have to be unimodal on the interval
[a, b]?

2.4. Discuss root finding methods based on quadratic interpolation (Muller–Traub’s
method) and inverse quadratic interpolation. What are the merits of these two
approaches?

Problems and Computer Exercises

2.1. Use the secant method to determine the roots of the following equations to
six correct decimals

(a) 2x = e−x; (b) tanx+ coshx = 0.

2.2. Assume that we have fnfn−1 < 0, and have computed xn+1. If fn+1fn < 0
then in the next step we compute xn+2 by a secant step otherwise we use
a line through (xn+1, fn+1) and (xn−1, θfn−1), where 0 < θ < 1. Clearly,
θ = 1 corresponds to a step with the method of false position and will usually
give fn+2fn+1 > 0. On the other hand, θ = 0 gives xn+1 = xn, and thus
fn+1fn < 0. Hence a suitable choice of θ will always give fn+2fn+1 < 0.
Show that in a modified step ǫn+1 ≈ −ǫn when θ = 0.5. Deduce that the
resulting algorithm gives cubic convergence with three function evaluations
and hence has efficiency index E = 31/3 = 1.4422 . . .. 184

2.3. Another modification of the secant method can be derived by estimating
f ′(xn) in Newton’s method by quadratic interpolation through the points
xn, xn−1, xn−2. Show that the resulting method can be written xn+1 =
xn − f(xn)/ω, where

ω = f [xn, xn−1] + (xn − xn−1)f [xn, xn−1, xn−2].

2.4. The Muller–Traub method uses three points to determine the coefficient of an
interpolating parabola. The same points can also be interpolated by a rational
function of the form

g(x) =
x− a

bx+ c
.

An iterative method is derived by taking xn+1 equal to the root a of g(x) = 0.

(a) Show that this is equivalent to calculating xn+1 from the ”modified secant
formula”

xn+1 = xn − fn
xn − xn−2

fn − f̃n−2

, f̃n−2 = fn−2
f [xn, xn−1]

f [xn−1, xn−2]
.

184The resulting modified rule of false position is often called after its origin the Illinois method.
It is due originally to the staff of the computer center at the University of Illinois in the early 1950’s.
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Hint: Use a theorem in projective geometry, according to which the cross ratio
of any four values of x is equal to the cross ratio of the corresponding values
of g(x) (see Householder [185, p. 159]). Hence

(0 − fn)/(0 − fn−2)

(yn−1 − fn)/(yn−1 − fn−2)
=

(xn+1 − xn)/(xn+1 − xn−2)

(xn−1 − xn)/(xn−1 − xn−2)
.

(b) Use the result in (a) to show that xn−1 ∈ int(xn−2, xn) if

sign(yn) = −sign(yn−2), sign(y[xn, xn−1]) = sign(y[xn−1, xn−2]).

2.5. The result in Problem 6.2.4 suggests that the Illinois method in Problem 6.2.2
should be modified by taking

β = f [xn+1, xn]/f [xn, xn−1], θ =

{
β, if β > 0;
1
2 , if β ≤ 0.

.

Implement this modified method. Compare it with the unmodified Illinois
method and with the safeguarded secant algorithm. As test equations use the
following:

(a) A curve with one inflection point on [0, 1]:

f(x) = x2 − (1 − x)n, a = 25, b = 1, n = 2, 5, 10.

(b) A family of curves which lie increasingly close to the x-axis for large n:

f(x) = e−nx(x− 1) + xn, a = 0.25, b = 1, n = 5, 10, 15.

(c) A family of curves with the y-axis asymptotic:

f(x) = (nx− 1)/((n− 1)x), a = 0.01, b = 1, n = 2, 5, 10.

6.3 Methods Using Derivatives

6.3.1 Newton’s Method

In Newton’s method for solving an equation f(x) = 0 the curve y = f(x) is approxi-
mated by its tangent at the point (xn, f(xn)), where xn is the current approximation
to the root. Assuming that f ′(xn) 6= 0, the next approximation xn+1 is then de-
termined as the abscissa of the point of intersection of the tangent with the x-axis
(see Figure 1.1.3).

When f ′(x) is available then Newton’s method is usually the method of
choice. It is equivalent to replacing the equation f(x) = 0 by

f(xn) + (x− xn)f ′(xn) = 0, (6.3.1)

which is obtained by taking the linear part of the Taylor expansion of f(x) at xn.
Hence if f ′(xn) 6= 0, then

xn+1 = xn + hn, hn = −f(xn)/f
′(xn). (6.3.2)

Clearly Newton’s method can also be viewed as the limit of the secant method when
the two interpolation points coalesce,
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Example 6.3.1.
We want to compute the unique positive root of the equation f(x) = (x/2)2−

sinx = 0 (cf. Example 6.2.2) for which f ′(x) = x/2 − cosx. The following Newton
iterates, starting from x0 = 1.8, are given in the table below (correct digits in xn
shown in bold):

n xn f(xn) f ′(xn) hn

0 1.8 −0.163847 630878 1.127202 094693 −0.145357 812631

1 1.945357 812631 0.015436 106659 1.338543 359427 0.011532 018406

2 1.933825 794225 0.000095 223283 1.322020 778469 0.000072 028582

3 1.933753 765643 0.000000 003722 1.3219174 29113 0.000000 002816

4 1.933753 762827

The number of correct digits approximately double in each iteration until the
limiting precision is reached. Although the initial approximation is not very good,
already x4 is correct to twelve decimals!

If the iterations are broken off when |hn| < δ it can be shown (see the error
analysis below) that the truncation error is less than δ, provided that |Khn| ≤ 1/2,
where K is an upper bound for |f ′′/f ′| in the neighborhood of the root. This re-
striction is seldom of practical importance. But rounding errors made in computing
hn must also be taken into account.

Note that when the root is approached, the relative precision in the computed
values of f(xn) usually decreases. Since f ′(xn) is only used for computing hn it
need not be computed to much greater relative precision than f(xn), In the above
example we could have used f ′(x2) instead of f ′(xn) instead for n > 2 without much
affecting the accuracy. Such a simplification is of great importance when Newton’s
method is used on systems of nonlinear equations.

We now consider the local convergence of Newton’s method, i.e. the conver-
gence in a neighborhood of a simple root α.

Theorem 6.3.1.
Assume that α is a simple root of the equation f(x) = 0, i.e. f ′(α) 6= 0. If

f ′ exists and is continuous in a neighborhood of α, then the convergence order of
Newton’s method is at least equal to two.

Proof. A Taylor expansion of f yields

0 = f(α) = f(xn) + (α− xn)f ′(xn) +
1

2
(α− xn)2f ′′(ζn), ζn ∈ int(xn, α).

Subtracting f(xn)+ (xn+1 − xn)f ′(xn) = 0 and solving for ǫn+1 = xn+1 −α we get

ǫn+1 =
1

2
ǫ2n
f ′′(ζn)
f ′(xn)

, ζn ∈ int(xn, α). (6.3.3)

Provided that f ′(α) 6= 0, it follows that (6.1.22) is satisfied with p = 2 and the
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asymptotic error constant is

C =
1

2

∣
∣
∣
∣

f ′′(α)

f ′(α)

∣
∣
∣
∣
. (6.3.4)

If f ′′(α) 6= 0, then C > 0 and the rate of convergence is quadratic.

The following classical theorem gives rigorous conditions for the quadratic
convergence of Newton’s method. In particular, it is not necessary to assume the
existence of a solution.

Theorem 6.3.2 (Ostrowski [250, Theorem7.1]).

Let f(x) be a real function, f(x0)f
′(x0) 6= 0, and put h0 = f(x0)/f

′(x0).
Assume that f ′′(x) exists in J0 = int [x0, x0 + 2h0], and that

2M |h0| ≤ |f ′(x0)|, M = sup
x∈J0

|f ′′(x)|. (6.3.5)

Let the sequence xk, k = 1, 2, . . . be generated by Newton’s method

xk+1 = xk − f(xk)/f
′(xk), k = 0, 1, . . . . (6.3.6)

Then xk ∈ J0, and we have limk→∞ xk = α, where α is the only zero of f(x) in J0.
Unless α = x0 + 2h0, α is a simple zero.185 Further it holds that

|xk+1 − xk| ≤
M

2|f ′(xk)|
|xk − xk−1|2, k = 1, 2, . . . , (6.3.7)

|α− xk+1| ≤
M

2|f ′(xk)|
|xk − xk−1|2, k = 1, 2, . . . , (6.3.8)

Proof. We have by (6.3.5) that |f ′(x) − f ′(x0)| ≤ |x− x0|M , and

|f ′(x1) − f ′(x0)| ≤ |h0|M ≤ 1
2 |f ′(x0)|.

It follows that

|f ′(x1)| ≥ |f ′(x0)| − |f ′(x1) − f ′(x0)| ≥ 1
2 |f ′(x0)|. (6.3.9)

Integrating by parts we have

∫ x1

x0

(x1 − x)f ′′(x) dx = −(x1 − x0)f
′(x0) + f(x1) − f(x0) = f(x1).

Introducing a new variable by x = x0 + th, this becomes

f(x1) = h2
0

∫ 1

0

(1 − t)f ′′(x0 + th) dt,

185It can be proved that if α = x0 + 2h0, then f(x) is a quadratic polynomial with the double
root α; see [250, Chapter 40]
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and it now follows

|f(x1)| = |h0|2
∫ 1

0

(1−t)|f ′′(x0+th)| dt ≤M |h0|2
∫ 1

0

(1−t) dt = 1
2M |h0|2. (6.3.10)

Using (6.3.9) and (6.3.10) gives

|h1| ≤
M |h0|2
|f ′(x0)|

, (6.3.11)

and applying (6.3.10) gives

2M |h1|
|f ′(x1)|

≤ 2(M |h0|)2
|f ′(x0)||f ′(x1)|

≤
(

(2M |h0|)
|f ′(x0)|

)2

.

By (6.3.5) the expression in parenthesis is ≤ 1 and hence

2M |h1| ≤ |f ′(x1)|, |h1| ≤ 1
2 |h0|. (6.3.12)

This shows that the point x2 will not get beyond the distance 1
2 |h0| from x1 and

will remain in J0, and int [x1, x1 + 2h1] ∈ J0.
We can now use induction to prove that the intervals Jk = int [xk, xk + 2hk],

k = 1, 2, . . . lie in J0, that Jk+1 ∈ Jk, and that the length of Jk+1 is at most half of
the length of Jk. Since J0 is closed it follows that

lim
k→∞

xk = α ∈ J0.

To show that α is a root of f(x) we note that from (6.3.6) it follows that f ′(xk)(xk−
xk+1) = f(xk). Taking the limit it follows that limk→∞ f(xk) = f(α) = 0.

By (6.3.5) we have for all x ∈ J0

|f ′(x) − f ′(x0)| ≤ |x− x0|M ≤ 2M |h0|.

Assume that |x− x0| < |h0|, i.e. x0 lies in the interior of J0. ¿Then

|f ′(x) − f ′(x0)| < 2M |h0| ≤ |f ′(x0)|,

so that f ′(x) 6= 0 for all x in the interior of J0. Therefore α must be a simple root
if it lies in the interior of J0. Further, since f ′(x) does not vanish in J0, f(x) is
strictly monotonic in J0 and thus has only one root.

The assertion (6.3.8) is equivalent to

|hk| ≤
M |hk−1|2
2|f ′(xk)|

.

Since our starting assumption (6.3.5) is true for all k ≥ 0, we have |f(xk)| ≤
1
2M |hk−1|2, and hence the assertion follows using (6.3.6). To prove (6.3.8) we
notice that α lies in an interval with center xk+1 and radius |hk|, and use (6.3.8).
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Note that the relation (6.3.8) between the errors holds only as long as the
round-off errors in the calculations can be ignored. As pointed out in Section 6.1.3,
the accuracy which can be achieved in calculating the root, is always limited by the
accuracy in the computed values of f(x).

So far we have assumed that α is a simple root. Suppose now that α is a root
of multiplicity q > 1. Then by Taylor’s formula we have (cf. (6.1.9))

f ′(x) =
1

(q − 1)!
(x− α)q−1f (q)(ξ′), ξ′ ∈ int(x, α).

It follows that if xn is close to α, then the Newton correction will satisfy

hn =
f(xn)

f ′(xn)
≈ 1

q
(xn − α) =

1

q
ǫn.

For the corresponding errors we have

ǫn+1 = ǫn − ǫn/q = (1 − 1/q)ǫn,

which shows that for a root of multiplicity q > 1 Newton’s method only converges
linearly with rate C = 1 − 1/q. (The same is true of other methods which have
quadratic or higher rate of convergence for simple roots.) For q > 2 this is much
slower even than for the bisection method! For a root of multiplicity q > 1 conver-
gence is linear with rate 1 − 1/q. For q = 20 it will take 45 iterations to gain one
more decimal digit.

Note also that when xn → α both f(xn) → 0 and f ′(xn) → 0. Therefore
rounding errors may seriously affect the Newton correction when evaluated close
to α, This clearly is related to the lower attainable accuracy for multiple roots as
given by (6.1.10).

When the multiplicity q of a root is known a priori the modified Newton’s
method

xn+1 = xn − q
f(xn)

f ′(xn)
, (6.3.13)

is easily shown to have quadratic convergence. For a root of unknown multiplicity
we can use the following observation. From (6.1.9) it follows that if the equation
f(x) = 0 has a multiple root at x = α, then α is a simple root of the equation

u(x) = 0, u(x) = f(x)/f ′(x). (6.3.14)

Hence if Newton’s method applied to this equation will have quadratic rate of
convergence independent of the multiplicity of α as a root to f(x) = 0. The Newton
iteration for u(x) = 0 becomes

xn+1 = xn − f(xn)

f ′(xn) − f(xn)f ′′(xn)/f ′(xn)
, (6.3.15)

and thus requires the evaluation also of f ′′(xn).
Under certain regularity assumptions Newton’s method is locally conver-

gent from a sufficiently good initial approximation. But in general Newton’s
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method is not globally convergent, i.e., it does not converge from an arbitrary
starting point. This is not surprising since it is based on a series of local approxi-
mations.

It is easy to construct examples where Newton’s method converges very slowly
or not at all.

Example 6.3.2.
The equation f(x) = sinx = 0, has exactly one root α = 0 in the interval

|x| < π/2. Newton’s method becomes

xn+1 = xn − tanxn, n = 0, 1, 2, . . . .

If we choose the initial value x0 = z such that tan z = 2z, then x1 = −x0, x2 =
−x1 = x0. Hence the successive approximations show a cyclic behavior!

Newton’s method will converge for any starting value such that |x0| < z. The
critical value can be shown to be x0 = 1.16556 . . ..

Example 6.3.3.
In Example 5.2.8 we encountered the function u(x) defined for x ≥ 0 by

x = u lnu. (6.3.16)

The function u(x) is related to Lambert’s W -function w(x) (see Problem 3.1.12 (d)
and [327]), which is the inverse of the function x(w) = wew. Clearly u(x) = ew(x).
It can be shown that u(x) is a smooth and slowly varying function x.

0 0.5 1 1.5 2 2.5 3 3.5
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

u

x

Figure 6.3.1. The function x = u lnu.

In Figure 6.3.2 we show a plot of the function x = u lnu. For the inverse
function u(x) we have upr(x) = 1/(1 + lnu(x)). Clearly u(0) = 1, u′(0) = 1, and
for x > 0 u′(x), is positive and decreasing, while u′′(x), is negative and decreasing
in absolute value.
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To compute u(x) to high accuracy for a given value of x > 0,’ we can use
Newton’s method to solve the equation

f(u) = u lnu− x = 0.

This takes the form

uk+1 =
uk + x

1 + lnuk
, k = 0, 1, 2, . . . .

For x > 10, we use as starting value u0 the asymptotic approximation u(x) ∼
x/ lnx = u0, x→ ∞. For 0 < x ≤ 10 the approximation

u0 = 1.0125+ 0.8577x− 0.129013x2 + 0.208645x3− 0.00176148x4 + 0.000057941x5,

derived by Gautschi from a truncated Chebyshev expansion of u(x), has a maximum
error of about 1%. It is left to Problem 3.6 to investigate how efficient the outlined
Newton method is for computing u(x).

Global Convergence

In some simple cases the global convergence of Newton’s method may be easy to
verify. Two examples are given in the following theorems.

Theorem 6.3.3.
Suppose that f ′(x)f ′′(x) 6= 0 in an interval [a, b], where f ′′(x) is continuous

and f(a)f(b) < 0. Then if

∣
∣
∣
∣

f(a)

f ′(a)

∣
∣
∣
∣
< b− a,

∣
∣
∣
∣

f(b)

f ′(b)

∣
∣
∣
∣
< b− a,

Newton’s method converges from an arbitrary x0 ∈ [a, b].

Proof. The theorem follows easily by inspecting Figure 6.3.3.

Lemma 6.3.4.
Let [a, b] be an interval such that f(a)f(b) < 0. Assume that the so-called

Fourier conditions are satisfied, i.e.

f ′(x)f ′′(x) 6= 0 x ∈ [a, b], (6.3.17)

with f ′′(x) continuous and f(x0)f
′′(x0) > 0, for x0 ∈ [a, b]. Then the sequence

{x0, x1, x2, . . .} generated by Newton’s method converges monotonically to a root
α ∈ [a, b].

Proof. We can assume that f ′′(x) > 0; otherwise consider the equation −f(x) = 0.
Assume first that f ′(x) < 0 in the interval. Since by assumption f(x0) ≥ 0, this
corresponds to the situation in Figure 6.3.3, with b = x0 > α. Clearly it holds that
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Figure 6.3.2. A situation where Newton’s method converges from any x0 ∈ [a, b].

x1 > x0 and since the curve lies to the left of the tangent in x0 we also have x1 > α.
The case when f ′(x) < 0 can be treated similarly. The theorem now follows by
induction.

Newton’s method can be safeguarded by taking a bisection step whenever a
Newton step “fails” in some sense. Assume that initially a < b and f(a)f(b) < 0
and x is either equal to a or b. At each step a new approximation x′ is computed
and a, b are updated to a′, b′ as follows:

• If the Newton iterate x′ = x−f(x)/f ′(x) lies in (a, b), then accept x′; otherwise
take a bisection step, i.e., set x′ = (a+ b)/2.

• Set either a′ = x, b′ = b or a′ = a, b′ = x, where the choice is made so that
f(a′)f(b′) ≤ 0.

This ensures that at each step the interval [a′, b′] contains a root.
When checking if z ∈ (a, b), it is important to avoid division by f ′(x), since

this may cause overflow or division by zero. Hence, we note z ∈ (a, b) if and only if

b− z = b− x+ f(x)/f ′(x) > 0 and z − a = x− a− f(x)/f ′(x) ≥ 0.

If f ′(x) > 0 these two inequalities are equivalent to

(b− x)f ′(x) > −f(x) and (x− a)f ′(x) > f(x).

The case when f ′(x) < 0 is analyzed similarly, giving

(b− x)f ′(x) < −f(x) and (x− a)f ′(x) < f(x).

In either case only one of the inequalities will be nontrivial depending on whether
f(x) > 0 or not.
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6.3.2 Newton’s Method for Complex Roots

Newton’s method is based on approximating f with the linear part of its Taylor
expansion. Taylor’s theorem is valid for a complex function f(z) around a point
of analyticity (see Sec. 3.1.2). Thus Newton’s method applies also to an equation
f(z) = 0, where f(z) is a complex function, analytic in a neighborhood of a root α.
An important example is when f is a polynomial; see Sec. 6.5.

The geometry of the complex Newton iteration has been studied by Yao and
Ben-Israel [343]. Let z = x+ iy, f(z) = u(x, y)+ iv(x, y), and consider the absolute
value of f(z)

φ(x, y) = |f(x+ iy)| =
√

u(x, y)2 + v(x, y)2.

This is a differentiable function as a function of (x, y), except where f(z) = 0. The
gradient of φ(x, y) is

gradφ = (φx, φy) =
1

φ
(uux + vvx, uuy + vvy) (6.3.18)

where ux = ∂u/∂x, uy = ∂u/∂y, etc. Using the Cauchy–Riemann equations ux =
vy, uy = −vx, we calculate (see Henrici [177, §6.1.4]).

f(z)

f ′(z)
=

u+ iv

ux + ivx
=

(uux + vvx) + i(uuy + vvy)

u2
x + v2

x

,

A comparison with (6.3.18) shows that the Newton step

zk+1 = zk − f(zk)/f
′(zk), k = 0, 1, . . . , (6.3.19)

is in the direction of the negative gradient of |f(zk)|, i.e., in the direction of strongest
decrease of |f(z)|.

Theorem 6.3.5.
Let the function f(z) = f(x + iy) be analytic and zk = xk + iyk be a point

such that f(zk)f
′(zk) 6= 0. Let zk+1 be the next iterate of Newton’s method (6.3.19).

Then zk+1 − zk is in the direction of the negative gradient of φ(x, y) = |f(x + iy)|
and therefore orthogonal to the level set of |f | at (xk, yk). If Tk is the tangent plane
of φ(x, y) at (xk, yk) and Lk is the line of intersection of Tk with the xy-plane then
(xk+1, yk+1) is the point on Lk closest to (xk, yk).

Proof. See [343].

Newton’s method is very efficient if started from an initial approximation
sufficiently close to a simple zero. If this is not the case Newton’s method may
converge slowly or even diverge. In general, there is no guarantee that zn+1 is
closer to the root than zn, and if f ′(zn) = 0 the next iterate is not even defined.

It is straightforward to generalize the results in Theorem 6.3.2 to the complex
case. In case of a complex function f(x) of a complex the interval I0 = int [x0, x0 +
2h0] can be replaced by by a disk K0 : |z − z1| ≤ |h0|.
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Theorem 6.3.6.
Let f(z) be a complex function of a complex variable. Let f(z0)f

′(z0) 6= 0
and set h0 = −f(z0)/f

′(z0), x1 = x0 + h0. Assume that f(z) is twice continuously
differentiable in the disk K0 : |z − z1| ≤ |h0|, and that

2 |h0|M2 ≤ |f ′(z0)|, M2 = max
z∈K0

|f ′′(x)|. (6.3.20)

Let zk be generated by Newton’s method

zk+1 = zk −
f(zk)

f ′(zk)
, k = 1, 2, . . . .

Then zk ∈ K0 and we have limk→∞ zk = ζ, where ζ is the only zero of f(z) in
K0. Unless ζ lies on the boundary of K0, ζ is a simple zero. Further we have the
relations

|ζ − zk+1| ≤
M2

2|f ′(zk)|
|zk − zk−1|2, k = 1, 2, . . . . (6.3.21)

A generalization of Theorem 11.1.7 to the case of the multivariate Newton’s
method is the famous Newton–Kantorovich Theorem.

Since the Newton step is in the direction of the negative gradient of |f(z)|
at z = zk, it will necessarily give a decrease in |f(zk)| if a short enough step in
this direction is taken. A modified Newton method based on the descent property
and switching to standard Newton when the condition (6.3.20) is satisfied, will be
described in Sec. 6.5.5.

6.3.3 An Interval Newton Method

Sometimes it is desired to compute a tiny interval that is guaranteed to enclose a
real simple root x∗ of f(x), even when rounding errors are taken into account. This
can be done using an adaptation of Newton’s method to interval arithmetic method
due to Moore [242].

Suppose that the function f(x) is continuously differentiable. Using the nota-
tion in Sec. 2.5.3, let f ′([x0]) denote an interval containing f ′(x) for all x in a finite
interval [x0] := [a, b]. Define the Newton operator on N [x] by

N([x]) := m− f(m)

f ′([x])
, (6.3.22)

where m = mid ([x]) = 1
2 (a+ b).

Theorem 6.3.7.
If α ∈ [x] is a zero of f(x), then α ∈ N([x]). If N([x]) ⊆ [x], then f(x) has

one and only one zero in N([x]).

Proof. Suppose α is a zero of f(x) in [x]. If 0 ∈ f ′([x]) then N([x]) = [−∞,∞].
Otherwise, by the mean value theorem

0 = f(α) = f(m) + f ′(ξ)(α −m), ξ ∈ int [α,m] ⊆ [x].
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This implies that α = m− f(m)/f ′(ξ) ⊆ N([x]), which proves the first statement.
If N([x]) ⊆ [x] then f ′([x]) 6= 0 on [x]. Then by the mean value theory there

are ξ1 and ξ2 in [x] such that

(m− f(m)/f ′(ξ1)) − a = −f(a)/f ′(ξ1),

b− (m− f(m)/f ′(ξ2)) = f(b)/f ′(ξ2).

Because N([x]) ⊆ [a, b], the product of the left sides is positive. But since f ′(ξ1)
and f ′(ξ2) have the same sign this means that f(a)f(b) < 0 and f has therefore a
zero in [x].

Finally, there cannot be two or more zeros in [x], because then we would have
f ′(c) = 0 for some c ∈ [x].

In the interval Newton method, a starting interval [x0] is chosen, and we
compute for k = 0, 1, 2, . . . a sequence of intervals [xk+1] given by

N([xk]) = mid ([xk]) −
f(mid [xk])

f ′([xk])
.

If N([xk]) ⊂ [xk] we set [xk+1] = N([xk]) ∩ [xk]. Otherwise, if N([xk]) ∩ [xk] is
empty, we know that [xk] does not contain a root and stop. In neither condition
holds we stop, subdivide the initial interval and start again. It can be shown that
if [x0] does not contain a root then after a finite number of steps the iteration will
stop with an empty interval.

If we are close enough to a zero, then the length of the intervals [xk] will
converge quadratically to zero, just as the standard Newton method.

Example 6.3.4.
Take f(x) = x2 − 2 and [x0] = [1, 2]. Using interval Newton method

N([xk]) = mid ([xk]) −
(mid [xk])

2 − 2

2 [xk]
, [xk+1] = N([xk]) ∩ [xk].

we obtain the sequence of intervals

[x1] = N([x0]) = 1.5 − 2.25 − 2

2[1, 2]
= [22/16, 23/16] = [1.375, 1.4375] ,

[x2] = N([x1]) =
45

32
− (45/32)2 − 2

2[22/16, 23/16]
=

45

32
− (45)2 − 2(32)2

128 [22, 23]
⊂ [1.41406, 1.41442].

The quadratic convergence of the radius of the intervals is evident:

0.5, 0.03125, 0.00036, . . . .

The interval Newton method, is well suited to determine all zeros in a given
interval. Divide the given interval into subintervals and for each subinterval [x]
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check whether the condition N([x]) ⊆ [x] in Theorem 6.3.7 holds. If this is the case,
we continue the interval Newton iterations, and if we are close enough the iterations
converge towards a root. If the condition is not satisfied but N([x]) ∩ [x] is empty
then there is no zero in the subinterval and this can be discarded. If the condition
fails but N([x]) ∩ [x] is not empty, then subdivide the interval and try again. The
calculations can be organized so that we have a queue of intervals waiting to be
precessed. Intervals may be added or removed form the queue. When the queue is
empty we are done.

The above procedure may not always work. Its performance will depend
among other things on the sharpness of the inclusion of the derivative f ′([x]). Things
will go wrong, for example, in case of multiple roots where N([x]) = [−∞,∞].

6.3.4 Higher Order Methods

Newton’s method has quadratic convergence, which means that the number of sig-
nificant digits approximately doubles in each iteration. Although there is rarely
any practical need for methods of higher order of convergence such methods may
be useful in special applications, for example, when higher order derivatives are
easily computed. For the following discussion we assume that α is a simple zero of
f and that f has a sufficient number of continuous derivatives in a neighborhood
of α.

We first briefly derive some famous methods with cubic convergence for simple
roots of f(x) = 0. Newton’s method was derived by approximating the function
f(x) with its linear Taylor approximation. Higher order iteration methods can be
constructed by including more terms from the Taylor expansion. The quadratic
Taylor approximation of the equation f(xn + h) = 0 is

f(xn) + hf ′(xn) +
h2

2
f ′′(xn) = 0, h = x− xn. (6.3.23)

Assuming that f ′(xn)2 ≥ 2f(xn)f
′′(xn), the solutions of this quadratic equation

are real and equal to

hn = − f ′(xn)

f ′′(xn)

(

1 ±
√

1 − 2
f(xn)f ′′(xn)

(f ′(xn))2

)

.

Rearranging and taking the solution of smallest absolute value we get

xn+1 = xn − u(xn) · 2

1 +
√

1 − 2t(xn)
, (6.3.24)

where we have introduced the notations

u(x) =
f(x)

f ′(x)
, t(x) =

f(xn)f ′′(xn)

(f ′(xn))2
= u(x)

f ′′(x)
f ′(x)

. (6.3.25)

The iteration (6.3.24) is Euler’s iteration method.



“dqbjV
2007/5/28
page 652

652 Chapter 6. Solving Scalar Nonlinear Equations

Assuming that |t(xn)| ≪ 1 and using the approximation

2

1 +
√

1 − 2t(xn)
≈ 1 + 1

2 t(xn), (6.3.26)

valid for |t| ≪ 1, we obtain another third order iteration method usually also at-
tributed to Euler

xn+1 = xn − u(xn)
(
1 + 1

2 t(xn)
)
. (6.3.27)

A different method of cubic convergence is obtained by using a rational approxima-
tion of (6.3.26)

xn+1 = xn − · u(xn)

1 − 1
2 t(xn)

(6.3.28)

This is Halley’s186 iteration method [164], which according to Traub [315] has the
distinction of being the most frequently rediscovered iteration method. Halley’s
method has a simple geometric interpretation. Consider a hyperbola

h(x) = b+ a/(x− c),

where a, b, c are determined so that h(x) is tangent to the curve f(x) at the point
x = xn, and has the same curvature there. Then xn+1 is the intersection of this
hyperbola with the x-axis.

The methods (6.3.27) and (6.3.28) correspond to the (1,0) and (0,1) Padé
approximations of Euler’s method. We now show that both are of third order for
simple zeros. Following Gander [119] we consider an iteration function of the general
form

φ(x) = x− u(x)H(t(x)), (6.3.29)

where u(x) and t(x) are defined by (6.3.25). Differentiating (6.3.29) and using
u′(x) = 1 − t(x) we get

φ′(x) = 1 − (1 − t(x))H(t) − u(x)H ′(t)t′(x).

Since u(α) = t(α) = 0 it follows that φ′(α) = 1 − H(0). Hence if H(0) = 1 then
φ′(α) = 0 and the iteration function (6.3.29) is at least of second order. Differenti-
ating once more and putting x = α we get

φ′′(α) = t′(α)H(0) − 2u′(α)H ′(0) t′(α) = t′(α)(H(0) − 2H ′(0)).

Hence φ′(α) = φ′′(α) = 0 and the method (6.3.29) yields convergence of at least of
third order if

H(0) = 1, H ′(0) = 1/2. (6.3.30)

For Euler’s and Halley’s method we have

H(t) = 2
(
1 +

√
1 − 2t

)−1
, H(t) = (1 − 1

2 t)
−1,

186Edmund Halley (1656–1742), English astronomer, who predicted the periodic reappearance
(c:a 75 years) of a comet named after him.
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respectively, and both these methods satisfy (6.3.30). (Verify this!)
It is not very difficult to construct iteration methods of arbitrarily high order

for solving f(x) = 0. It can be shown ([315, Theorem5.3]) that any iteration
function of order pmust depend explicitly on the first p−1 derivatives of f . Consider
the Taylor expansion at xn

0 = f(xn + h) = f(xn) + hf ′(xn) +

p−1
∑

k=2

hk

k!
f (k)(xn) +O(hp). (6.3.31)

Neglecting the O(hp)-term this is a polynomial equation of degree p−1 in h. Assum-
ing that f ′(xn) 6= 0 we could solve this by the fixed point iteration hi = F (hi−1),
where

F (h) = −f(xn) +
∑p−1

k=2 h
kf (k)(xn)/k!

f ′(xn)
,

taking h0 to be the Newton correction.
To get an explicit method of order p we set u = f(xn)/f ′(xn), and write

u = −h−
p−1
∑

k=2

akh
k, ak =

f (k)(xn)

k!f ′(xn)
, k = 2 : p− 1. (6.3.32)

This can be interpreted as a formal power series in h (cf. Sec. 3.1.5). Reversing this
series we can express h as a formal power series in u

h = −u−
p−1
∑

k=2

cku
k + · · · , (6.3.33)

where the first few coefficients are

c2 = a2, c3 = 2a2
2 − a3, c4 = 5a3

2 − 5a2a3 + a4, (6.3.34)

c5 = 14a4
2 − 21a2

2a3 + 6a2a4 + 3a2
3 − a5, . . . .

More coefficients can easily be determined; see Problem 3.1.12. This leads to the
family of Schröder methods(E. Schröder [281]). If f is analytic it can be shown
that the method

xn+1 = xn − u(xn) −
p−1
∑

k=2

ck(xn)uk(xn), p ≥ 2, (6.3.35)

yields convergence order p for simple roots (see Henrici [177, p. 529]). Setting p = 2
gives Newton’s method and for p = 3 we get the third order method of Euler
(6.3.27).

The Schröder methods makes use of polynomials in u. As for the case p = 3,
there are methods which instead use rational expressions in u. These can be derived
from Padé approximants of the Schröder polynomials; see Traub [315, Sec. 5.2].
There are indications that methods which use rational approximations with about
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equal degree of nominator and denominator are best. For example, for p = 4, the
rational approximation

1 + c2u+ c3u
2 =

c2 + (c22 − c3)u

c2 − c3u
+ O(u3)

can be used to derive an alternative method of order 4.

Example 6.3.5.
A kth order iteration method (k odd) for the square root of c is

xn+1 = xn
xk−1
n +

(
k
2

)
xk−3
n c+ · · · + kc(n−1)/2

(
k
1

)
xk−1
n +

(
k
3

)
xk−3
n c+ · · · + c(n−1)/2

, (6.3.36)

where the sums end in a natural way with zero binomial coefficients. For k = 5 we
obtain the iteration

xn+1 =
x2
n + 10c+ 5(c/xn)

2

5x2
n + 10c+ (c/xn)2

xn n = 0, 1, 2, . . . . (6.3.37)

with order of convergence equal to five. For k = 3 we obtain Halley’s method

xn+1 =
xn + 3c/xn
3xn + c/xn

xn, n = 0, 1, 2, . . . . (6.3.38)

which has cubic rate of convergence.
Using Halley’s method with c = 3/4 and the initial approximation x0 =

(
√

2 + 2)/4 (obtained by linear interpolation at 1/2 and 1) we obtain the following
result (correct digits in boldface):

x0 = 0.85355339059327, x1 = 0.86602474293290, x2 = 0.86602540378444.

Already two iterations give a result correct to 14 digits. Compared to Newton’s
method (see Example 1.1.1) we have gained one iteration. Since each iteration is
more costly there is no improvement in efficiency.

We now introduce a rational family of iteration methods of arbitrary order,
which is very convenient to use. First note that alternative derivation of Halley’s
method is as follows. Starting from (6.3.23) we get

hn = −f(xn)
/(

f ′(xn) +
hn
2
f ′′(xn)

)

.

Replacing hn in the denominator by the Newton correction −f(xn)/f
′(xn), does

not change the order of the method and leads to (6.3.28). We note that this can be
written

xn+1 = xn +B2(xn),

where

B2(x) = −f(x)
f ′(x)

det

(

f ′(x) f ′′(x)
2!

f(x) f ′(x)

) .
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This method belongs to a rational family of iteration function of arbitrary order
which we now present. Set Dp(x) = det(Fp), where

Fp(x) =













f ′(x) f ′′(x)
2! . . . f(p−1)(x)

(p−1)!
f(p)(x)

(p)!

f(x) f ′(x)
. . .

. . . f(p−1)(x)
(p−1)!

0 f(x)
. . .

. . .
...

...
...

. . .
. . . f ′′(x)

2!
0 0 . . . f(x) f ′(x)













∈ Rp×p, (6.3.39)

is a Toeplitz matrix of upper Hessenberg form defined whose elements are the nor-
malized derivatives of f(x). (Recall that a square matrix is called Toeplitz if its
elements are identical along each diagonal.) The iteration

xn+1 = xn +Bp(xn), Bp(x) = −f(x)
det(Fp−2(x))

det(Fp−1(x))
(6.3.40)

can be shown to be of order p for simple roots. Notice that for f(x) = x2 − c the
matrix Fp becomes tridiagonal, which gives a simple iteration method of arbitrarily
high order for the square root.

The determinant formula (6.3.40) is attractive since it leads to a simple im-
plementation. Use Gaussian elimination without pivoting to compute the LU fac-
torization Fp(xn) = LpUp, where

diag (Up) = (u11, u22, . . . , upp).

Since Lp is unit lower triangular and Up upper triangular (see Sec. 1.3.2) we have
det(Fp) = u11u22 . . . upp. Hence the ratio

det(Fp(x))/ det(Fp−1(x))

simply equals the last diagonal element upp in Up. It follows that

x
(k)
n+1 = xn − f(xn)/ukk(xn), k = 1 : p, (6.3.41)

gives the result of one iteration step using a sequence of iteration formulas of order
k = 2 : p+ 1.

Note that the Gaussian elimination is simplified by the fact that Fp(xn) is a
Hessenberg matrix. Only the p − 1 subdiagonal elements need to be eliminated,
which requires 1

2p
2 flops. Further, it is possible to implement the computation of

diag (Up) using only two row vectors; see Problem 6.3.16.
Methods using high order derivatives are useful, in particular, when seeking

zeros of a function satisfying a differential equation (usually of second order). Then
higher order derivatives can be calculated by differentiating the differential equation.
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Example 6.3.6.
The Bessel functions of the first kind Jν(x) satisfies the differential equation

x2y′′ + xy′ + (x2 − ν2)y = 0.

The smallest zero ξ of J0(x) is close to x0 = 2.40, and

J0(x0) = 0.00250 76832 9724, J ′
0(x0) = −J1(x0) = −0.52018 52681 8193.

Differentiating the differential equation for J0(x) we get

xy(k+1) + ky(k) + xy(k−1) + (k − 1)y = 0, k ≥ 1,

which gives a recursion for computing higher derivatives. Taking p = 5 we compute

y′′(x0)/2! = 0.10711 80892 2261, y′′′(x0)/3! = 0.05676 83752 3951,

yiv(x0)/4! = −0.00860 46362 1903,

and form the Toeplitz matrix F4. Computing the diagonal elements of U in its
LU factorization, we obtain using (6.3.41) the following sequence of approximations
to ξ:

2.4048207503 2.4048255406 2.40482555767553, 2.40482555769573.

Correct digits are shown in boldface. Hence the fifth order method gives close to
full IEEE double precision accuracy!

Review Questions

3.1. (a) Under what assumptions is convergence of Newton’s method quadratic?

(b) Construct an example where Newton’s method diverges, even though the
equation has real roots.

3.2. Describe an iteration for the division-free computation of the reciprocal of a
positive number c. Determine the largest set of starting values x0 such that
the iterates converge to 1/c.

3.3. The equation f(x) = sinx = 0 has one trivial root x = 0 in the interval
(−π/2, π/2). Show that for an initial approximation x0 chosen so that tanx0 =
2x0 Newton’s method cycles, and x2k = x0 for all k ≥ 0!

3.4. (a) Assume that f is continuously differentiable in a neighborhood of a double
root α of the equation f(x) = 0. Describe how the equation can be converted
to one with a simple root α.

(b) Discuss the case when f(x) = 0 has two distinct roots which nearly coin-
cide.
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Problems and Computer Exercises

3.1. (a) Compute ǫn+1/ǫ
2
n for n = 0, 1, 2, and the limit, as n → ∞, in Exam-

ple 6.3.1.

(b) Treat the equation in Example 6.3.1 using f ′(x2) as a fixed approximation
to f ′(xn) for n > 2. Compare the convergence of this simplified method with
the true Newton method.

3.2. The equation x3−2x−5 = 0 is of historical interest because it was the one used
by Wallis187 to present Newton’s method to the French Academy. Determine
the roots of this equation.

Hint: It has one real and two complex roots.

3.3. Use Newton’s method to determine the positive root of the equation to six
correct decimals: (a) x = 1 − e−2x; (b) x lnx− 1 = 0

3.4. Determine the unique positive real root of the equation xq − x − 1 = 0 for
q = 2 : 8.

3.5. (a) Consider the Newton iteration used in Example 6.3.5 for computing square
root. Show that the iterations satisfy

xn+1 −
√
c =

1

2xn
(xn −√

c)2.

Use this relation to show that, for all x0 > 0, convergence is monotone x1 ≥
x2 ≥ x3 ≥ · · · ≥ √

c and limn→∞ =
√
c (compare Figure 1.1.2).

(b) In Example 6.3.5 Newton’s method was used to compute
√
c for 1/2 ≤

c ≤ 1. Determine the maximum error of the linear initial approximation used
there. Then use the expression for the error in (a) to determine the number
of iterations that suffices to give

√
c with an error less than 10−14 for all c in

[1/2, 1] using this initial approximation. Show that the influence of rounding
errors is negligible.

3.6. (a) Investigate how many Newton iterations are required to compute u(x)
the inverse function u(x) of x = u lnu, to 12 digits accuracy in the interval
0 < x ≤ 20. Use the starting approximations given in Example 6.3.3.

(b) Lambert’s W -function equals w(x) = lnu(x), where u(x) is the inverse
function in (a). Compute and plot the function w(x) for 0 < x ≤ 20.

3.7. Determine p, q and r so that the order of the iterative method

xn+1 = pxn + qc/x2
n + rc2/x5

n

for computing 3
√
c becomes as high as possible. For this choice of p, q and r,

give a relation between the error in xn+1 and the error in xn.

3.8. (A. Ben Israel) The function f(x) = xe−x has a unique zero α = 0. Show that
for any x0 > 1 the Newton iterates move away from the zero.

187John Wallis (1616–1703) the most influential English mathematician before Newton.
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3.9. The Cartesian coordinates of a planet in elliptic orbit at time t are equal to
ea(sin(x), cos(x)), where a is the semi-major axis, and e the eccentricity of
the ellipse. Using Kepler’s laws of planetary motion it can be shown that the
angle x, called the eccentric anomaly, satisfies Kepler’s equation

x− e sinx = M, 0 < |e| < 1,

where M = 2πt/T is the mean anomaly and T the orbital period.

(a) Newton used his method to solve Kepler’s equation. Show that for each e,
M there is one unique real solution x = α, such that M − |e| ≤ α < M + |e|.
(b) Show that the simple fixed-point iteration method

xn+1 = e sinxn +M, x0 = 0,

is convergent.

(c) Study the convergence of Newton’s method

xn+1 = xn +
e sinxn − xn +M

1 − e cosxn
.

3.10. Determine the multiple root α = 1 of the equation p(x) = (1− x)5 = 0, when
the function is evaluated using Horner’s scheme

p(x) = ((((x − 5)x+ 10)x− 10)x+ 5)x− 1 = 0.

(a) Use bisection (cf. Algorithm 6.1.1) with initial interval (0.9, 1.1) and tol-
erance τ = 10−8. What final accuracy is achieved?

(b) Use Newton’s method, starting from x0 = 1.1 and evaluating p′(x) using
Horner’s scheme. Terminate the iterations when for the first time |xn+1−1| >
|xn−1|. How many iterations are performed before termination? Repeat with
a couple of other starting values!

(c) Same as (b), but perform one step of the modified Newton’s method
(6.3.13) with x0 = 1.1 and q = 5. How do you explain that the achieved
accuracy is much better than predicted by (6.1.10)?

3.11. Show that if Newton’s method applied to the equation u(x) = 0, where u(x) =
f(x)/f ′(x), then

xn+1 = xn − u(xn)

1 − t(xn)
, t(xn) =

f(xn)f ′′(xn)

(f ′(xn))2
. (6.3.42)

This transformation is most useful if an analytical simplification can be done
such that u(x) can be evaluated accurately also in a neighborhood of α.

3.12. (a) Show that Halley’s method can also be derived by applying Newton’s
method to the equation f(x)(f ′(x))−1/2 = 0.

(b) What is the efficiency index of Newton’s and Halley’s method, respectively,
if it is assumed that evaluating each of f , f ′ and f ′′ takes one unit of work.
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(c) Show that Halley’s method applied to f(x) = x2 − c = 0, c > 0, gives rise
to the iteration

xn+1 = xn
x2
n + 3c

3x2
n + c

= xn − 2xn(x
2
n − c)

3x2
n + c

.

Apply Halley’s method to f(x) = xk − c = 0, c > 0.

3.13. (A. Ben Israel) Consider the quasi-Halley method

xn+1 = xn − f(xk)

f ′(xk) −
f ′(xk) − f ′(xk−1)

2(xk − xk−1)f ′(xk)
f(xk)

where the second derivative f ′′(xk) has been approximated by a divided dif-
ference. Show that if f ′′ is Lipschitz continuous near a root α then

|α− xk+1| = O(|α − xk|γ ,
where γ satisfies the quadratic equation γ2 − 2γ − 1 = 0. Conclude that
the order of this method is approximately 2.41 as compared to 3 for Halley’s
method.

3.14. (Bailey et al. [11]) In 1976 Brent and Salamin independently discovered the
following iteration, which generates a sequence {pk} converging quadratically
to π:
Set a0 = 1, b0 = 1/

√
2, and s0 = 1/2. For k = 1, 2, 3, . . . compute

ak = (ak−1 + bk−1)/2, bk =
√

ak−1bk−1,

ck = a2
k − b2k, sk = sk−1 − 2kck, pk = 2a2

k/sk.

Perform this iteration in IEEE 754 double precision. Verify the quadratic
convergence by listing the errors in |pk − π| in successive iterations. How
many iterations can you do before the error starts to grow? What is the best
accuracy achieved?

3.15. In Example 6.3.4 the first two steps in the interval Newton method for solving
the equation x2 − 2 = 0 are shown. Implement this method and carry out the
iterations until convergence.

3.16. (a) Compute det(Fp(x)) in (6.3.39) for p = 3 and write down the corresponding
rational fourth order iteration method in terms of u, a2, a3 in (6.3.34).

(b) Implement in Matlab the iteration method (6.3.40) for arbitrary order p.
Input should be an approximation xn to the root, f(xn) and the row vector
of scaled derivatives

(

f ′(x),
f ′′(x)

2!
, . . . ,

f (p−1)(x)

(p− 1)!
,
f (p)(x)

p!

)

evaluated at x = xn. Output should be the diagonal elements of Up in the
LU factorization of Fp(xn) and the sequence of approximations xn+1,k =
xn + f(xn)/ukk(xn), k = 1 : p. Try to economize on memory requirement.
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3.17. Write a program that computes the inverse of the error function erf(x) by
solving the equation erf(x) − y = 0, 0 ≤ y < 1. Use Newton’s method and
the series expansion given in Example 1.3.4 to compute values of erf(x) and
its derivative. Note that erf(x) ≈ 1 − 1/(

√
πx) for large values of x.

6.4 Finding a Minimum of a Function

6.4.1 Introduction

In this section we consider the problem of finding the minimum (maximum) of a
real-valued function

min g(x), x ∈ I = [a, b], (6.4.1)

which is closely related to that of solving a scalar equation.
Probably the most common use of unidimensional minimization is in “line-

search” procedures in multi-dimensional minimization of a function φ(z) of n vari-
ables, z ∈ Rn. For example, if zk is the current approximation to the optimal point,
the next approximation is often found by minimizing a function

g(λ) = φ(xk + λdk),

where dk is a search direction, and the step length λ is to be determined. In this
application, however, the minimization is rarely performed accurately.

Most algorithms for minimizing a nonlinear function of one (or more) variables
find at best a local minimum. For a function with several local minima, there is no
guarantee that the global minimum (i.e. the lowest local minimum) in [a, b] will
be found. One obvious remedy is to try several different starting points and hope
that the lowest of the local minima found is also the global minimum. However,
this approach is neither efficient or safe.

Suppose we want to find a local minimum of g(x) in a given interval [a, b]. If g
is differentiable in [a, b], a necessary condition for an interior point of τ ∈ I to be
a local minimum is that g′(τ) = 0. If g′ does not change sign on I it is also possible
that the minimum is at a or b. If this is checked for separately, then it is possible
to reduce the problem to finding the zeros of g′(x) in I. Since g′ also vanishes at
a point of maximum and inflection, it is however necessary to check, for example,
the second derivative, to see if the point found really is a minimum.

6.4.2 Unimodal Functions and Golden Section Search

A condition which ensures that a function g has a unique global minimum τ in [a, b]
is that g(x) is strictly decreasing for a ≤ x < τ and strictly increasing for τ < x ≤ b.
Such a function is called unimodal.

Definition 6.4.1.
The function g(x) is unimodal on [a, b] if there exists a unique τ ∈ [a, b] such

that, given any c, d ∈ [a, b] for which c < d

d < τ ⇒ g(c) > g(d); c > τ ⇒ g(c) < g(d). (6.4.2)
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This condition does not assume that g is differentiable or even continuous on
[a, b]. For example, |x| is unimodal on [−1, 1].

We now describe an interval reduction method for finding the local min-
imum of a unimodal function, which only uses function values of g. It is based on
the following lemma.

Lemma 6.4.2.
Suppose that g is unimodal on [a, b], and τ is the point in Definition 6.4.1.

Let c and d be points such that a ≤ c < d ≤ b. If g(c) ≤ g(d) then τ ≤ d, and if
g(c) ≥ g(d) then τ ≥ c.

Proof. If d < τ then g(c) > g(d). Thus, if g(c) ≤ g(d) then τ ≤ d. The other part
follows similarly.

Assume that g is unimodal in [a, b]. Then using Lemma 6.4.2 it is possible to
find a reduced interval on which g is unimodal by evaluating g(x) at two interior
points c and d such that c < d. Setting

[a′, b′] =

{
[c, b], if g(c) > g(d);
[a, d], if g(c) < g(d).

we can enclose x∗ in an interval of length at most equal to max(b − c, d − a). (If
g(c) = g(d) then τ ∈ [c, d], but we ignore this possibility.) To minimize this length
one should take c and d so that b− c = d−a. Hence c+d = a+ b, and we can write

c = a+ t(b − a), d = b− t(b− a), 0 < t < 1/2.

Then d− a = b− c = (1 − t)(b− a), and by choosing t ≈ 1/2 we can almost reduce
the length of the interval by a factor 1/2. But d− c = (1 − 2t)(b − a) must not be
too small for the available precision in evaluating g(x).

If we only consider one step the above choice would be optimal. Note that this
step requires two function evaluations. A clever way to save function evaluations
is to arrange it so that if [c, b] is the new interval then d can be used as one of the
points in the next step; similarly if [a, d] is the new interval then c can be used at the
next step. Suppose this can be achieved with a fixed value of t. Since c+ d = a+ b
the points lie symmetric with respect to the midpoint 1

2 (a + b) and we need only
consider the first case. Then t must satisfy the following relation (cf. above and
Figure 6.4.1)

d− c = (1 − 2t)(b− a) = (1 − t)t(b− a).

Hence t should equal the root in the interval (0, 1/2) of the quadratic equation
1− 3t+ t2 = 0, which is t = (3−

√
5)/2. With this choice the length of the interval

will be reduced by the factor

1 − t = 2/(
√

5 + 1) = 0.618034 . . .

at each step, which is the golden section ratio. For example, 20 steps gives a
reduction of the interval with a factor (0.618034 . . .)20 ≈ 0.661 · 10−5.
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Figure 6.4.1. One step of interval reduction, g(ck) ≥ g(dk).

Algorithm 6.2. Golden Section Search.

The function goldsec computes an approximation m ∈ I to a local minimum of a
given function in an intervalI = [a, b], with an error less than a specified tolerance τ .

function xmin = goldsec(fname,a,b,delta);

%

t = 2/(3 + sqrt(5));

c = a + t*(b - a);

d = b - t*(b - a);

fc = feval(fname,c);

fd = feval(fname,d);

while (d - c) > delta*max(abs(c),abs(d))

if fc >= fd % Keep right endpoint b

a = c;

c = d;

fc = fd;

d = b - t*(b - a);

fd = feval(fname, d);

else % Keep left endpoint a

b = d;

d = c;

fd = fc;

c = a + t*(b - a);

fc = feval(fname, c);

end;

end;

xmin = (c + d)/2;
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Rounding errors will interfere when determining the minimum of a scalar
function g(x). Because of rounding errors the computed approximation fl(g(x)) of
a unimodal function g(x) is not in general unimodal. Therefore we assume that in
Definition 6.4.1 the points c and d satisfy |c− d| > tol, where

tol = ǫ|x| + τ,

is chosen as a combination of absolute and relative tolerance. Then the condition
(6.4.2) will hold also for the computed function. For any method using only com-
puted values of g there is a fundamental limitation in the accuracy of the computed
location of the minimum point τ in [a, b]. The best we can hope for is to find
xk ∈ [a, b] such that

g(xk) ≤ g(x∗) + δ,

where δ is an upper bound of rounding and other errors in the computed function
values ḡ(x) = fl (g(x)); If g is twice differentiable in a neighborhood of a minimum
point τ then by Taylor’s theorem

g(τ + h) ≈ g(τ) + 1
2h

2g′′(τ).

This means that there is no difference in the floating-point representation of g(τ+h)
unless h is of the order of

√
u. Hence we can not expect τ to be determined with

an error less than
ǫα =

√

2 δ/|g′′(x∗)|, (6.4.3)

unless we can also use values of g′ or the function has some special form.

6.4.3 Minimization by Interpolation

For finding the minimum of a unimodal function g golden section search method has
the advantage that linear convergence is guaranteed. In that respect it corresponds
to the bisection method for finding a zero of a function. If the function is sufficiently
smooth and we have a good initial approximation, then a process with superlinear
convergence will be much faster. Such methods can be devised using interpolation by
a polynomial or rational function, chosen so that its minimum is easy to determine.
Since these methods do not always converge they should be combined with golden
section search. There is a close analogy with robust methods for solving a nonlinear
equation, where a combination of inverse interpolation and bisection can be used;
see Section 6.2.4.

Since a linear function in general has no minimum the simplest choice is to
use a second degree polynomial (a parabola). Suppose that at step n we have three
distinct points in u, v and w. The quadratic polynomial interpolating g(x) at these
points is (cf. (6.2.11))

p(x) = g(v) + (x− v)[u, v]g + (x− v)(x− u)[u, v, w]g.

Setting the derivative of p(x) equal to zero gives

0 = [u, v]g + (v − u)[u, v, w]g + 2(x− v)[u, v, w]g.
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and solving for x

x = v + d, d = − [u, v]g + (v − u)[u, v, w]g

2[u, v, w]g
. (6.4.4)

This is a minimum point of p(x) if [u, v, w]g > 0. We assume that of all the points
where g has been evaluated v is the one with least function value. Therefore d should
be small, so the effect of rounding errors in computing d is minimized. Initially we
can take u = a, w = b, and if g(c) < g(d) then v = c otherwise v = d, where c and
d are the two golden section points.

Multiplying the nominator and denominator of d by (v − u)(w− v)(w − u), a
short calculation shows that d = −s1/s2, where

r1 = (w − v)(g(v) − g(u)), r2 = (v − u)(g(w) − g(v)),

s1 = (w − v)r1 + (v − u)r2, s2 = 2(r2 − r1). (6.4.5)

Consider parabolic interpolation at the points xi−2, xi−1, xi, i = 2, 3, . . . and
let ǫi = xi − τ . Assuming that g(x) is sufficiently smooth in a neighborhood of τ it
can be shown that asymptotically the relation

ǫi+1 ∼ c3
2c2

ǫi−1ǫi−2, cr =
1

k!
g(k)(ζr), (6.4.6)

holds between successive errors. Hence the convergence order equals the real root
p = 1.3247 . . . of the equation x3 − x− 1 = 0.

If two or more of the points u, v, w coincide, or if the parabola degenerates
into a straight line, then s2 = 0. The parabolic interpolation step is only taken if
the following inequalities are true:

|d| < 1
2 |e|, s2 6= 0, v + d ∈ [a, b],

where e is the value of the second last cycle. Otherwise a golden section step is
taken, i.e.

x =

{
(1 − t)v + ta, if v ≥ 1

2 (a+ b);
(1 − t)v + tb, if v < 1

2 (a+ b),

where 1 − t = 2/(
√

5 + 1).
The combination of inverse quadratic interpolation and golden section search

has been suggested by Brent [38, ,Ch. 5],where the many delicate points to con-
sider in an implementation are discussed. At a typical step there are six significant
points a, b, u, v, w and x, not all distinct. The positions of these points are updated
at each step. Initially [a, b] is an interval known to contain a local minimum point.
At a later point in the algorithm they have the following significance: A local min-
imum lies in [a, b]; of all the points at which g has been evaluated v is the one with
the least value of g; w is the point with the next lowest value of g; u is the previous
value of w, and x is the last point at which g has been evaluated.

Review Questions
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4.1. How many steps are needed in golden section search to reduce an initial interval
[a, b] by a factor of 10−6?

4.2. Suppose the twice differentiable function f(x) has a local minimum at a point
x∗. What approximate limiting accuracy can you expect in a method for
computing x∗ which uses only function values?

4.3. The algorithm FMIN is a standard method for finding the minimum of a
function. It uses a combination of two methods. Which?

Problems and Computer Exercises

4.1. Use the algorithm goldsec to find the minimum of the quadratic function
f(x) = (x− 1/2)2 starting from a = 0.25, b = 1. Plot the successive inclusion
intervals.

4.2. Modify the algorithm goldsec to use parabolic interpolation instead of golden
section if this gives a point within the interval.

4.3. (a) Plot the function

g(x) =
1

(x− 0.3)2 + 0.01
+

1

(x − 0.9)2 + 0.04
,

and show that it has a local minimum in each of the intervals [0.2, 0.4] and
[0.8, 1.0].

(b) Use your algorithm from Problem 6.4.2 to determine the location of the
two minima of g(x) in (a).

(c) Matlab includes a function fminbnd, that also uses a combination of
golden section search and parabolic interpolation to find a local minimum.
Compare the result using this function with the result from (b).

4.4. (Brent [38, Sec. 5.6]) The function

g(x) =

20∑

i=1

(
2i− 5

x− i2

)2

,

has poles at x = 12, 22, . . . , 202. Restricted to the open interval (i2, (i+ 1)2),
i = 1 : 19, it is unimodal. Determine the minimum points in these intervals
and the corresponding values of g(x).

6.5 Algebraic Equations

6.5.1 Some Elementary Results

The problem of solving an algebraic equation

p(z) = a0z
n + a1z

n−1 + · · · + an = 0, (a0 6= 0), (6.5.1)
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has played a major role in the development of mathematical concepts for many
centuries. Even the “high school formula” for solving a quadratic equation requires
the introduction of irrational and complex numbers. There is a long history of
investigations into algebraic expressions for the zeros of equations of higher degree.
In the 16th century Cardano published formulas for the roots of a cubic equation
(see Problem 2.3.8). Formulas for the roots when n = 4 are also known. In 1826
Abel proved that it is not possible to find algebraic expressions for the roots for
the class of algebraic equations of degree n > 4. But even the existing formulas
for n ≤ 4 are not in general suitable for numerical evaluation of the roots. In
Section 2.3.2, it was shown that care must be taken to avoid cancellation even in
the case of a quadratic equation.

Despite the absence of closed solution formulas, the Fundamental Theo-
rem of Algebra states that every algebraic equation has at least one root. More
precisely, if a polynomial vanishes nowhere in the complex plane, then it is identi-
cally constant. The Remainder Theorem states that when a polynomial p(z) is
divided by z − r the remainder is p(r), i.e.

p(z) = (z − r)p1(z) + p(r). (6.5.2)

It follows that r1 is a zero of p(z) if and only if z − r1 divides p(z). If p(z) is of
degree n and p(r1) = 0, then p1(z) in (6.5.2) is of degree n− 1. But if n > 1, then
p1(z) must vanish for some r2, and hence has a linear factor z− r2. Continuing, we
find that an algebraic equation p(z) = 0 of degree n has exactly n roots, counting
multiplicities, and it holds that188

p(z) = a0(z − r1)(z − r2) · · · (z − rn). (6.5.3)

By this representation it also follows that if the coefficients a0, a1, . . . , an are real,
then eventual complex roots must occur in conjugate pairs. Hence if p(z) has the
complex zero s+ it it also has the zero s− it and therefore contains the quadratic
factor (z − s)2 + t2 which is positive for all real values of z.

Solving algebraic equations of high degree does not play a central role in
scientific computing. Usually the applications involve only equations of moderate
degree, say 10–20, for which acceptable subroutines exist. Algebraic equations of
high degree (n > 100) occur in computer algebra. Such problems in general require
symbolic, or high multiple precision computations. Algorithms for such problems
are still a subject of research.

Let p(z) be the polynomial (6.5.3) with roots r1, r2, . . . .rn, not necessarily
equal. Comparing with the coefficients of zn−k in the representations (6.5.1) we find
that (−1)kak/a0 is the sum of the products of the roots ri taken k at a time. Thus
we obtain the following relations between the coefficients and zeros of a polynomial

∑

i

ri = −a1

a0
,

∑

i<j

rirj =
a2

a0
,

∑

i<j<k

rirjrk = −a3

a0
,

· · · , r1r2 · · · rn = (−1)n
an
a0
. (6.5.4)

188Note the corollary that if a polynomial p(z) of degree at most n vanishes in n + 1 distinct
points, it must be identically zero, a result used repeatedly in Chapters 3 and 4.
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The functions on the left sides of (6.5.4) are called elementary symmetric func-
tions of the variables r1, r2, . . . , rn, since interchanging any of the variables will not
change the functions. A classical results says that any symmetric polynomial in the
roots r1, r2, . . . , rn can be expressed as a polynomial in the elementary symmetric
functions in (6.5.4).

Other commonly used symmetric functions are the power sums

Sk =

n∑

i=1

rki , k = ±1,±2, . . . . (6.5.5)

The Newton formulas give the connection between the coefficients of the polyno-
mial p(z) (with a0 = 1), and the power sums:

S1 + a1 = 0,

S2 + a1S1 + 2a1 = 0,

S3 + a1S2 + a2S1 + 3a3 = 0, (6.5.6)

...

Sn−1 + a1Sn−2 + · · · + an−2S1 + (n− 1)an−1 = 0.

For a proof see Householder [185, Sec. 1.3].
If an 6= 0, setting z = 1/y in p(z) gives the reciprocal polynomial

q(y) = ynp(1/y) = any
n + · · · + a1y + a0. (6.5.7)

The zeros of the reciprocal polynomial are 1/r1, 1/r2, . . . , 1/rn and from (6.5.4),
giving the Newton formulas,

∑

i

1/ri = −an−1/an, etc..

Function values of the polynomial p(z) in (6.5.1) at a (real or complex) point
w can conveniently be computed by repeated synthetic division of p(z) with z −w;
cf. Section 1.3.1. If we set

p(z) = (z − w)q(z) + bn, (6.5.8)

q(z) = b0z
n−1 + b1z

n−2 + . . .+ bn−1,

then the sequence {bi}ni=0 is satisfies the recursion

b0 = a0, bi = bi−1w + ai, i = 1 : n. (6.5.9)

Here p(w) = bn is the remainder and q(z) is the quotient polynomial when dividing
p(z) with (z − w). Differentiating (6.5.8) we get

p′(z) = (z − w)q′(z) + q(z), (6.5.10)
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and setting z = w we find that p′(w) = q(w). We can form q(w) by synthetic
division of q(z) with (z − w),

q(z) = (z − w)r(z) + cn−1,

r(z) = c0z
n−2 + c1z

n−3 + . . .+ cn−2.

Now p′(w) = q(w) = cn−1, where

c0 = b0, ci = ci−1w + bi, i = 1 : n− 1.

Higher derivatives can be computed in the same fashion. Differentiating once
more gives

p′′(z) = (z − w)q′′(z) + 2q′(z),

and so 1
2p

′′(w) = q′(w) = dn−2, where

d0 = c0, di = di−1w + ci, i = 1 : n− 2.

To compute p(i)(w) using these formulas requires n−i additions and multiplications.
In the important special case where all the coefficients a0, a1, . . . , an are real,

the above formulas are somewhat inefficient, and one can save operations by per-
forming synthetic division with the quadratic factor

(z − w)(z − w̄) = z2 − 2zRe(w) + |w|2,

which has real coefficients (see Problem 6.5.2 (b)).
Synthetic division can also be used to shift the origin of a polynomial p(z).

Given a0, a1, . . . , an and s, we then want to find coefficients c0, c1, . . . , cn so that

p(w + s) = q(s) = c0s
n + c1s

n−1 + · · · + cn. (6.5.11)

Clearly this is the Taylor expansion of p(z) at z = w. It follows that

cn = p(w), cn−1 = p′(w), cn−1 =
1

2
p′′(w), . . . , c0 =

1

n!
p(n)(w),

and the coefficients ci can be computed by repeated synthetic division of p(z) by
(z − w) as described above in about n2/2 multiplications.

It is often desirable to obtain some preliminary information as to where the
zeros of a polynomial p(z) are located. Some information about the location of real
roots can be obtained from a simple examination of the sign of the coefficients of
the polynomial.

A simple observation is that if ai > 0, i = 1 : n, then p(x) can have no
real positive zero. A generalization of this result, known as Descartes’ rule of
sign,189 states that the number of positive roots is either given by the number of
variations in sign in the sequence a0, a1, . . . , an, or is less than that by an even
number. (Multiple roots are counted with their multiplicity.) By considering the

189René Descartes (1596–1650) French philosopher and mathematician.
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sign variations for the polynomial p(−z) we similarly get an upper bound on the
number of negative roots. By shifting the origin, we can get bounds on the number
of roots larger and smaller than a given number. In Sec. 6.5.6 we give a method to
obtain precise information about the number of real roots in any given interval.

Many classical results are known about the number of real or complex roots
in a disk or half plane. For these we refer to surveys in the literature.

6.5.2 The Condition of Algebraic Equations

Let a = (a1, a2, . . . , an)
T ∈ Cn be the coefficient vector of a monic polynomial p(z)

(a0 = 1) and denote the set of zeros of p by Z(p) = {z1, z2, . . . , zn}. In general, the
best we can expect from any numerical zero-finding algorithm is that it computes the
zeros of a nearby polynomial p̂(z) with slightly perturbed coefficients â. Following
Trefethen [319] we define the ǫ-pseudo zero set of p(z) by

Zǫ = {z ∈ C | z ∈ Z(p̂) for some p̂ with ‖â− a‖ ≤ ǫ}. (6.5.12)

These sets describe the conditioning of the zero-finding problem. Depending on the
chosen norm they correspond to a coefficient-wise or normwise perturbation of the
coefficient vector a. The shape of these sets is studied in [314].

The sensitivity of polynomial zeros to perturbations in the coefficients was
illustrated in a famous example by Wilkinson190 in the early 1960s; The paper [335]
contains an extensive discussion of numerical problems in determining roots of poly-
nomial equations. Wilkinson considered the polynomial

p(z) = (z − 1)(z − 2) · · · (z − 20) = z20 − 210z19 + . . .+ 20!,

with zeros 1, 2, . . . , 20. Let p̄(z) be the polynomial which is obtained when the
coefficient a1 = −210 in p(z) is replaced by

−(210 + 2−23) = −210.000000119 . . . ,

while the rest of the coefficients remain unchanged. Even though the relative per-
turbation in a1 is of order 10−10, many of the zeros of the perturbed polynomial
p̄(z) deviate greatly from those of p(z). In fact, correct to nine decimal places, the

190James Hardy Wilkinson (1919–1986) English mathematician From 1946 Wilkinson worked on
the group that built the Pilot ACE computer at National Physical Laboratory, first as Turing’s
assistant and later as manager of the group. He later contributed greatly to the development
of reliable software for matrix computations. Wilkinson received the Chauvenet Prize of the
Mathematical Association of America 1987 for this exposition of the ill-conditioning of polynomial
zeros.
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perturbed zeroes are

1.000000000 10.095266145± 0.643500904i
2.000000000
3.000000000 11.793633881± 1.652329728i
4.000000000
4.999999928 13.992358137± 2.518830070i
6.000006944
6.999697234 16.730737466± 2.812624894i
8.007267603
8.917250249 19.502439400± 1.940330347i

20.846908101

For example, the two zeros 16, 17 have not only changed substantially, but have
become a complex pair. It should be emphasized that this behavior is quite typical
of polynomials with real coefficients and real roots. Indeed, many polynomials which
arise in practice behave much worse than this.

If we assume that the coefficients ai of a polynomial are given with full machine
accuracy, then the error δ in computed values of p(x) (for real x) is bounded by

δ < 1.06u
n∑

i=0

|(2i+ 1)an−ix
i| < γ2n+1

n∑

i=0

|an−i||x|i,

see Section 2.4. Hence by (6.1.7) the attainable accuracy of a zero α is equal to

ǫα =
δ

|p′(α)| =

∑n
i=0 |(2i+ 1)an−iαi|

|p′(α)| .

In particular for the root α = 14 in the above example we get ǫα = 1.89 · 1016. But
the changes in this example are so large that this linearized perturbation theory does
not apply! For a more detailed discussion of the conditioning of algebraic equations
in general and the Wilkinson polynomial, we refer to Gautschi [133, Sec. 4]

It should be emphasized that although a problem may be given in the form
(6.5.1), it is often the case that the coefficients of p(z) are not the original data.
Then it may be better to avoid computing them. An important case is when the
polynomial is the characteristic polynomial of a matrix A ∈ Rn×n,

pA(z) = det(zI −A) =

∣
∣
∣
∣
∣
∣
∣
∣
∣

z − a11 −a12 · · · −a1n

−a21 z − a22 · · · −a2n

...
. . .

...
...

−an1 −an2 · · · z − ann

∣
∣
∣
∣
∣
∣
∣
∣
∣

(6.5.13)

The n roots of pA(z) = 0 are the eigenvalues of A, and the problem is an eigenvalue
problem in disguise. Then the original data are the elements of the matrix A and
numerical values of pA(z) can then be evaluated much more accurately directly
from (6.5.13). It is important to realize that, even when the roots (eigenvalues) are
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well determined by the elements of A and well separated, they can be extraordinary
sensitive to small relative perturbations in the coefficients of pA(z).

In classical (before 1960) methods of linear algebra, the eigenvalues of a matrix
is often found by first computing the coefficients of the characteristic polynomial.
This is not in general a good idea and one of the highly developed modern eigenvalue
algorithms should be used (consult Volume II, and references therein)! Note also
that if the coefficients of the characteristic polynomial det(zI − A) are required,
these are often best computed by first computing the eigenvalues λi of A and then
forming

p(z) =
n∏

i=1

(z − λi). (6.5.14)

Example 6.5.1.
Another example where computing the coefficents of the polynomial should be

avoided is the following. Suppose the largest positive root of the algebraic equation

p(x) = (x + 2)(x2 − 1)6 − 3 · 10−6 · x11 = 0

is to be computed. Here p(z) is a polynomial of degree 13. If the coefficients
are computed using decimal floating-point arithmetic with seven digits, then the
coefficient of x11 which is (12 − 3 · 10−6) will be rounded to 12.00000. Thus the
machine will treat the equation (x+2)(x2 − 1)6 = 0, whose exact positive root is 1.

This is a poor result. However, by writing the equation in the form

x = φ(x), φ(x) = 1 +
0.1

x+ 1

(
3x11

x+ 2

)1/6

,

and solving this by the iteration x0 = 1, xk+1 = φ(xk) one can get the root α =
1.053416973823 to full accuracy.

Turning the tables, a polynomial zero-finding problem can be transformed
into an eigenvalue problem. The companion matrix (or Frobenius matrix) to the
polynomial p(z) in (6.5.1), normalized so that a0 = 1, is defined as

C =









−a1 −a2 · · · −an−1 −an
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0









. (6.5.15)

(Sometimes the companion matrix is defined slightly differently, for example, with
the coefficients of the polynomial in the last column.) Using the definition (1.6.4)
it can be verified that the characteristic polynomial of C equals

pC(z) = det(zI − C) = zn + a1z
n−1 + · · · + an−1z + an.
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Thus the roots of p(z) = 0 can be computed by applying an eigenvalue algorithm
to C. This trick is used in several of the zero-finding algorithms in current use; see
Sec. 6.5.5. For example, in Matlab the function roots(p) computes the roots of
a polynomial p(z) using the QR algorithm to solve the eigenvalue problem for the
companion matrix. Although the operation count for this QR algorithm is O(n3)
and the storage requirement 1.5n2 experiments suggest that for small and moderate
values of n it is as fast as competing algorithms and can be more accurate. Further
problems with overflow or underflow are avoided.

If the coefficients are known (and stored) exactly, then by using multiple pre-
cision arithmetic the accuracy in the zeros can be increased. It is generally true
that the solution of polynomial equations of high degree requires the use of multiple
precision floating-point arithmetic in order to achieve high accuracy.

6.5.3 Three Classical Methods

In this section we describe three classical methods which are mainly of theoretical
interest, but may be useful in special situations.

The idea in Graeffe’s method is to replace the equation (6.5.1) by an equa-
tion whose roots are the square of the roots of (6.5.1). By iterating this procedure
roots which are of unequal magnitude become more and more separated and there-
fore, as we shall see, more easily determined.

If the monic polynomial p1(z) = zn+ a1z
n−1 + · · ·+ an has zeros zi, i = 1 : n,

then
p1(z) = (z − z1)(z − z2) · · · (z − zn).

Setting y = z2, it follows that

p2(y) = (−1)np1(z)p1(−z) = (y − z2
1)(y − z2

2) · · · (y − z2
n),

i.e. p2(y) is a polynomial of degree n whose zeros equal the square of the zeros of
p1(z). The coefficients of

p2(y) = yn + b1y
n−1 + · · · + bn,

are obtained by convolution of the coefficients of p1(z) and p1(−z); see Theo-
rem 3.1.6. This gives

b0 = a2
0, (−1)kbk = a2

k +
k∑

j=1

(−1)j2ak−jak+j , k = 1 : n. (6.5.16)

Assume now that after repeated squaring we have obtained an equation

pm+1(w) = wn + c1w
n−1 + · · · + cn,

with zeros |αj | = |zj |2
m

, such that |α1| ≫ |α2| ≫ · · · ≫ |αn|. Then we can use the
relations (6.5.4) between the coefficients and zeros of a polynomial to deduce that

c1 = −
∑

i

αi ≈ −α1, c2 =
∑

i<j

αiαj ≈ α1α2, c3 =
∑

i<j<k

αiαjαk ≈ α1α2α3, . . . ,
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and therefore

|z1| ≈ (−c1)1/2
m

, |z2| ≈ (−c2/c1)r1/2
m

, |z3| ≈ (−c3/c2)1/2
m

, . . . .

Example 6.5.2.
Squaring the polynomial p1(z) = z3 − 8z2 + 17z − 10 three times gives

p4(w) = w3 − 390, 882w2 + 100, 390, 881w− 108.

We have 2m = 8 and approximations to the roots are

|z1| ≈ 8
√

390882 = 5.00041,

|z2| ≈ 8
√

100390881/390882 = 2.00081,

|z3| ≈ 8
√

108/100390881 = 0.999512.

The exact roots are 5, 2, and 1.

In Bernoulli’s method for obtaining the zeros of

p(z) ≡ zn + a1z
n−1 + · · · + an = 0,

one considers the related difference equation

yn+k + a1yn+k−1 + · · · + anyk = 0, (6.5.17)

which has p(z) as its characteristic equation. If p(z) only has simple roots z1, . . . , zn,
then by Theorem 3.3.11 the general solution of (6.5.17) is given by

yk =

n∑

j=1

cjz
k
j ,

where c1, c2, . . . , cn are constants which depend on the initial conditions.
We assume in the following that the roots are ordered in magnitude so that

|z1| > |z2| ≥ · · · ≥ |zn|.

where the root of largest magnitude z1 is distinct. We say that z1 is a dominant
root. Assuming that the initial conditions are chosen so that c1 6= 0, we have

yk = c1z
k
1

[

1 +
n∑

j=2

cj
c1

(zj
z1

)k
]

= c1z
k
1

[

1 +O
( |z2|
|z1|

)k
]

.

If z1 is real it follows that

lim
n→∞

yk
yk−1

= z1

[

1 +O
( |z2|
|z1|

)]

. (6.5.18)
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Note that the rate of convergence is linear and depends on the ratio |z2/z1|. In prac-
tice measures to avoid overflow or underflow must be included. By initially applying
a few steps of Graeffe’s root-squaring method, convergence can be improved.

The relation (6.5.18) holds also if z1 is a real multiple root. However, if the
root of largest magnitude is complex the method needs to be modified. It is difficult
to safeguard against all possible cases.

Bernoulli’s method is closely related to the power method for computing
approximate eigenvalues and eigenvectors of a matrix. In this application a powerful
modification is to shift all the eigenvalues so that the desired eigenvalue is close to
zero. If we then apply the power method to the inverse matrix rapid convergence
is assured.

In Laguerre’s method191 the polynomial p(z) of degree n is approximated
in the neighborhood of the point zk by a special polynomial of the form

r(z) = a(z − w1)(z − w2)
n−1,

where the parameters a,w1 and w2 are determined so that

p(zk) = r(zk), p′(zk) = r′(zk), p′′(zk) = r′′(zk). (6.5.19)

If zk is an approximation to a simple zero α, then the simple zero w1 of r(z) is
taken as the new approximation zk+1 of α. Laguerre’s method has very good global
convergence properties for polynomial equations, and with cubic convergence for
simple roots (real or complex). For multiple roots convergence is only linear.

In order to derive Laguerre’s method we note that the logarithmic derivative
of p(z) = (z − α1) · · · (z − αn) is

S1(z) =
p′(z)
p(z)

=

n∑

i=1

1

z − αi
.

Taking the derivative of this expression we obtain

−dS1(z)

dz
= S2(z) =

(
p′(z)
p(z)

)2

− p′′(z)
p(z)

=

n∑

i=1

1

(z − αi)2
.

Using (6.5.19) to determine the parameters of the approximating polynomial r(z)
we obtain the equations

S1(zk) =
1

zk − w1
+

(n− 1)

zk − w2
, S2(zk) =

1

(zk − w1)2
+

(n− 1)

(zk − w2)2
.

Eliminating zk−w2 gives a quadratic equation for the correction zk−w1 = zk−zk+1.
After some algebra we obtain (check this!)

zk+1 = zk −
np(zk)

p′(zk) ±
√

H(zk)
, (6.5.20)

191Edmund Nicolas Laguerre, 1834–1886, French mathematician at École Polytechnique, Paris
and best known for his work on orthogonal polynomials.
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where
H(zk) = (n− 1)2[p′(zk)]

2 − n(n− 1)p(zk)p
′′(zk).

The sign in the denominator in (6.5.20) should be chosen so that the magnitude of
the correction |zk+1 − zk| becomes as small as possible.

For polynomial equations with only real roots, Laguerre’s method is globally
convergent, i.e., it converges for every choice of real initial estimate z0. Suppose the
roots are ordered such that α1 ≤ α2 ≤ · · · ≤ αn. If z0 ∈ (αj−1, αj), j = 2 : n, then
Laguerre’s method converges to one of the roots αj−1, αj ; if z0 < α1 or z0 > αn
then convergence is to α1 or αn respectively.

For polynomial equations with complex roots, Laguerre’s method no longer
converges for every choice of initial estimate. But experience has shown that the
global convergence properties are good also in this case. In particular, if we take z0 =
0, then Laguerre’s method will usually converge to the root of smallest modulus.
We finally remark that, as might be expected, for multiple roots convergence of
Laguerre’s method is only linear.

Consider the polynomial equation p(z) = 0 and assume that an 6= 0 so that
α = 0 is not a root. Now suppose that an−2an−1 6= 0, and take z0 = 0 in Laguerre’s
method. A simple calculation gives

z1 =
−nan

an−1 ±
√

H(z0)
, H(z0) = (n− 1)2a2

n−1 − 2n(n− 1)anan−2, (6.5.21)

where the sign is to be chosen so the |z1| is minimized. In particular, for n = 2,
H(z0) is the discriminant of p(z) and z1 is the root of smallest modulus.

Example 6.5.3.
If there are complex roots, then there may be several distinct roots of smallest

modulus. For example, the equation

p(z) = z3 − 2z2 + z − 2,

has roots ±i and 2. Using the above formula (6.5.21) for z1 with n = 3, we get

z1 =
6

1 ± 2i
√

11
=

2

15
± i

4
√

11

15
= 0.06666666667± 0.88443327743i.

Continuing the iterations with Newton’s method we get convergence to one of the
two roots ±i,

z2 = −0.00849761051+ 1.01435422762i, z3 = −0.00011503062+ 1.00018804502i

z4 = −0.00000002143+ 1.00000003279i, z5 = −0.00000000000+ 1.00000000000i

6.5.4 Deflation and Simultaneous Determination of Roots

Suppose we have found a root α to the equation p(z) = 0. Then taking zk = α in
(6.5.9)–(6.5.8) we have bn = p(α) = 0 and the remaining roots of p(z) are also roots



“dqbjV
2007/5/28
page 676

676 Chapter 6. Solving Scalar Nonlinear Equations

of the polynomial equation

q(z) =
p(z)

z − α
= 0

Hence we can continue the iterations with the quotient polynomial q(z) of degree
n − 1. This process is called deflation and can be repeated; as soon as a root
has been found it is factored out. Proceeding like this, all roots are eventually
found. Since we work with polynomials of lower and lower degree, deflation saves
arithmetic operations. More important is that it prevents the iterations to converge
to the same simple root more than once.

So far we have ignored that roots which are factored out are only known with
finite accuracy. Also rounding errors occur in the computation of the coefficients of
the quotient polynomial q(x). Clearly there is a risk that both these types of errors
can have the effect that the zeros of the successive quotient polynomials deviate
more and more from those of p(z). Indeed, deflation is not unconditionally a stable
numerical process. A closer analysis performed by Wilkinson [335, ] shows that
if the coefficients of the quotient polynomials are computed by the recursion (6.5.9),
then errors resulting from deflation are negligible provided that:

1. the roots are determined in order of increasing magnitude;

2. each root is determined to its limiting accuracy.

Note that if the above procedure is applied to the reciprocal polynomial
znp(1/z) we obtain the zeros of p(z) in order of decreasing magnitude.

With Laguerre’s method it is quite probable that we get convergence to the
root of smallest magnitude from the initial value z0 = 0. But this cannot be
guaranteed and therefore one often proceeds in two steps. First, all n roots are
determined using deflation in the process. Next, each root found in the first step
is refined by doing one or several Newton iterations using the original polynomial
p(z).

Deflation can be avoided by using a zero suppression technique suggested
by Maehly [228]. He notes that the derivative of the reduced polynomial q(z) =
p(z)/(z − ξ1) can be expressed as

q′(z) =
p′(z)
z − ξ1

− p(z)

(z − ξ1)2
.

More generally, assume that we have determined approximations ξ1, . . . , ξj to j
roots of p(z) = 0. Then the first derivative of the reduced polynomial qj(z) =
p(z)/[(z − ξ1) · · · (z − ξj)] can be expressed as

q′j(z) =
p′(z)

(z − ξ1) · · · (z − ξj)
− p(z)

(z − ξ1) · · · (z − ξj)

j
∑

i=1

1

z − ξi
.

Hence Newton’s method applied to qj(z) can be written

zk+1 = zk −
p(zk)

p′(zk) −
∑j

i=1 p(zk)/(zk − ξi)
, (6.5.22)



“dqbjV
2007/5/28
page 677

6.5. Algebraic Equations 677

which is the Newton–Maehly method. This iteration has the advantage that it
is not sensitive to the accuracy in the approximations to the previous roots ξ1, . . . , ξj .
Indeed, the iteration (6.5.22) is locally quadratically convergent to simple zeros of
p(z) for arbitrary values of ξ1, . . . , ξj .

For the removal of a linear factor by deflation it is necessary that the zero
has been computed to full working accuracy, since otherwise the remaining approx-
imative zeros can be meaningless. This is a disadvantage if only low accuracy is
required. An alternative to deflation is to use an iterative method that, under ap-
propriate separation assumptions, allows for the simultaneous determination of all

the roots of a polynomial equation. Suppose that the numbers ξ
(k)
i , i = 1 : n are

a set of n distinct approximations to the of p(z). A new set of approximations are
then computed from

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )
/[

a0

n∏

j=1
j 6=i

(ξ
(k)
i − ξ

(k)
j )
]

, i = 1 : n. (6.5.23)

This is Weierstrass’ method, introduced in 1891 in connection with a new con-
structive proof of the fundamental theorem of algebra. The method was rediscovered
and analyzed in the 1960s by Durand and is also known as the Durand–Kerner
method.

With q(z) = (z − ξ
(k)
1 )(z − ξ

(k)
2 ) · · · (z − ξ

(k)
n ) the formula may also be written

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )/q′(ξ(k)i ),

which shows that to first approximation the method is identical to Newton’s method.
This relation can be used to prove that for simple (real or complex) zeros the
asymptotic order of convergence of the Weierstrass method equals 2. (For multiple
zeros the method will only converge linearly.) The relation

n∑

i=1

ξ
(k)
i =

n∑

i=1

αi = −a1, k ≥ 1,

which holds independent of the initial approximations, can be used as a control; see
Kjellberg [201].

It is possible to accelerate Weierstrass method by using the new approxima-
tions of the roots in (6.5.23) as they become available. This leads to the iteration

ξ
(k+1)
i = ξ

(k)
i − p(ξ

(k)
i )
/[

a0

∏

j<i

(ξ
(k)
i − ξ

(k+1)
j )

∏

j>i

(ξ
(k)
i − ξ

(k)
j )
]

, i = 1 : n.

This serial version of the Weierstrass method can be shown to have an order of
convergence at least 1 + σn, where 1 < σn < 2 is the unique positive root to
σn − σ − 1 = 0.

If no a priori information about the roots is available then the initial approx-

imations ξ
(0)
i can be chosen equidistantly on a circle |z| = ρ, centered at the origin,
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which encloses all the zeros of p(z). Such a circle can be found by using the result
that all the roots of the polynomial p(z) lie in the disk |z| ≤ ρ, where

ρ = max
1≤k≤n

2

( |ak|
|a0|

)1/k

.

Note that this is (6.5.25) applied to the reciprocal polynomial.
The zeros zi, i = 1 : n, of a polynomial of degree n

p(z) = b0 + b1z + · · · + bnz
n (b0bn 6= 0). (6.5.24)

are the poles of the rational function r(z) = 1/p(z). Hence the progressive form of
the qd algorithm, described in Sec. 3.5.5 can be used to simultaneously determine
the zeros. This method can be considered as a modern more powerful version of
Bernoulli’s method.

In the qd scheme for r(z) the values in the first two rows can be expressed in
terms of the coefficients of p(z) as

q
(0)
1 = −b1/b0, q

(1−k)
k = 0, k > 1,

e
(1−k)
k = bk−1/bk, k = 1 : n− 1.

Further since r has a zero of order n at infinity,

e(m)
n = 0, m ≥ −n.

Thus the qd scheme is flanked on both sides by a column of zeros. This allows the
extended qd scheme for r(z) to be constructed row by row. It can be shown that
a sufficient condition for the qd scheme to exist is that the zeros are positive and
simple. Then the kth q-column tends to z−1

k . By reversing the order of the coeffi-
cients, i.e. by considering the polynomial zkp(z−1) instead we can also construct a
scheme where the q-columns tends to the zeros zm.

Example 6.5.4.
The Laguerre polynomial of degree 4 is

L4(z) =
1

24
(24 − 96z + 72z2 − 16z3 + z4).

The corresponding qd scheme is shown in Table 6.5.1.
The zeros of L4(z) are correctly rounded to 8 decimals

9.39507091, 4.53662030, 1.74576110, 0.32254769.

Note that the convergence of e
(n)
i is linear with rate (zi+1/zi), i = 1 : 3, and can be

accelerated with Aitken extrapolation.
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Table 6.5.1. The qd scheme for computing the zeros of Ly(z),

16.00000000 0 0 0
0 −4.50000000 −1.33333333 −0.25000000 0

11.50000000 3.16666667 1.08333333 0.25000000
0 −1.23913043 −0.45614035 −0.05769231 0

10.26086957 3.94965675 1.48178138 0.30769231
0 −0.47697126 −0.17112886 −0.01197982 0

9.78389831 4.25549915 1.64093042 0.31967213
0 −0.20745829 −0.06598769 −0.00233381 0

9.57644002 4.39696974 1.70458430 0.32200594
0 −0.09525333 −0.02558161 −0.00044087 0

9.48118669 4.46664146 1.72972504 0.32244681
...

...
...

...
9.39507749 4.53661379 1.74576103 0.32254769

0 −0.00000340 −0.00000004 0.00000000 0
9.39507409 4.53661715 1.74576108 0.32254769

6.5.5 A Modified Newton Method

There are three competing methods in current use for determining all zeros of a
given polynomial. The Jenkins–Traub method [190], used in the IMSL library, is
equivalent to a so-called variable-shift Rayleigh quotient iteration for finding the
eigenvalues and eigenvectors of the companion matrix. By taking advantage of the
matrix structure the work per iteration can be reduced to O(n). A three stage
procedure is used, each stage being characterized by the type of shift used. The
code CPOLY (see [191]) is available via Netlib; see Appendix C.7. For a description
of the Jenkins–Traub method we refer to Ralston and Rabinowitz [264, Sec. 8.11].

The Matlab zero finding code roots applies the QR algorithm, which is a
standard method for solving eigenvalue problem, to a balanced companion matrix.
The balancing involves a diagonal similarity transformation

Ã = DAD−1, D = diag (d1, d2, . . . , dn)

which preserves the eigenvalues. The aim is to reduce the norm of A and thereby
reduce the condition number of its eigenvalue problem. The balancing algorithm
used is that of Parlett and Reinsch [256].

Another excellent algorithm is the modified Newton algorithm PA16, due to
Madsen and Reid [226, 227], used by NAG Library. In its first stage it uses the
Newton formula to find a search direction for minimizing |p(z)|. Once the iterates
are close to a zero it enters stage 2 and switches to standard Newton. This will be
described in more detail below.

A theoretical and experimental comparisons of the three algorithms above is
given in [314]. It is shown that the Jenkin’s–Traub, Madson–Reid and the QR
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algorithms all have roughly the same stability properties. The highest accuracy
is typically achieved by PA16 and the next best by roots. A possible drawback
with the QR algorithm is that it requires O(n3) work and O(n2) memory. Both
the Madsen–Reid and Jenkins–Traub require only O(n2) work O(n) memory. Since
one is rarely interested in solving polynomial equations of high degree this usually
is not important.

We now describe the modified Newton method due to Madsen [226]. By
including a one-dimensional search along the Newton direction this method achieves
good global convergence properties and is effective also for multiple roots.

To initialize let z0 = 0,

δz0 =

{

−p(0)/p′(0) = −an/an−1, if an−1 6= 0
1 otherwise,

and take

z1 =
1

2ρ

δz0
|δz0|

, ρ = max
1≤k≤n

( |an−k|
|an|

)1/k

. (6.5.25)

This assures that |z1| is less than the modulus of any zero of p(z) (see [185, Exercise
2.2.11]). Further, if p′(0) 6= 0, it is in the direction of steepest descent of |p(z)| from
the origin (see Sec. 6.3.2). This choice makes it likely that convergence will take
place to a root of near minimal modulus.

The general idea of the algorithm is that given zk, a tentative step hk is
computed by Newton’s method. The next iterate is found by taking the best point
(in terms of minimizing |f(z)|) found by a short search along the line through zk
and zk + hk. When the search yields no better value than at zk we take zk+1 = zk
and make sure that the next search is shorter and in a different direction. Since
the line searches will be wasteful if we are near a simple root, we then switch to the
standard Newton’s method.

In the first stage of the algorithm, when searches are being performed, new
iterates zk+1 are computed as follows:

1. If the last iteration was successful (zk 6= zk−1) then the Newton correction

hk = −p(zk)/p′(zk), (6.5.26)

is computed. The next tentative step is taken as

δzk =

{
hk, if |hk| ≤ 3|zk − zk−1|;
3|zk − zk−1|eiθhk/|hk| otherwise,

where θ is chosen rather arbitrarily as arctan(3/4). This change of direction is
included because if a saddle point is being approached, the direction hk may
be a bad choice.

2. If the last step was unsuccessful (zk = zk−1) the search direction is changed
and the step size reduced. In this case the tentative step is chosen to be

δzk = − 1
2e
iθδzk−1.

Repeated use of this is sure to yield a good search direction.
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3. Once the tentative step δzk has been found the inequality
|p(zk + δzk)| < |p(zk)| is tested. If this is satisfied the numbers

|p(zk + p δzk)|, p = 1, 2, . . . , n,

are calculated as long as these are strictly decreasing. Note that, if we are
close to a multiple root of multiplicity m we will find the estimate zk +mhk,
which gives quadratic convergence to this root. A similar situation will hold if
we are at a fair distance from a cluster of m zeros and other zeros are further
away.

If |p(zk + δzk)| ≥ |p(zk)|, we calculate the numbers

|p(zk + 2−pδzk)|, p = 0, 1, 2,

again continuing until the sequence ceases to decrease.

A switch to standard Newton is made if in the previous iteration a standard
Newton step zk+1 = zk + hk was taken and Theorem 6.3.3 ensures the convergence
of Newton’s method with initial value zk+1, i.e., when f(zk)f

′(zk) 6= 0 and

2 |f(zk)| max
z∈Kk

|f ′′(z)| ≤ |f ′(zk)|2, Kk : |z − zk| ≤ |hk|,

is satisfied, cf. (6.3.20). This inequality can be approximated using already com-
puted quantities by

2 |f(zk)||f ′(zk) − f ′(zk−1)| ≤ |f ′(zk)|2|zk−1 − zk|. (6.5.27)

The iterations are terminated and zk+1 accepted as a root whenever zk+1 6= zk
and

|zk+1 − zk| < u|zk|,
holds, where u is the unit roundoff. The iterations are also terminated if

|p(zk+1)| = |p(zk)| < 16nu|an|,

where the right-hand side is a generous overestimate of the final roundoff made
in computing p(z) at the root of the smallest magnitude. The polynomial is then
deflated as described in the previous section.

More details about this algorithm and methods for computing error bounds
can be found in [226] and [227].

6.5.6 Sturm Sequences

Precise information about the number of real zeros of a polynomial p(z) in an
interval [a, b], −∞ ≤ a < b ≤ ∞ can be obtained from a Sturm sequence192 for
p(z).

192J. C. F. Sturm (1803–1855) a Swiss mathematician best known for his theorem on Sturm se-
quences, discovered in 1829 and his theory of Sturm–Liouville differential equations. He succeeded
Poisson in the chair of mechanics at the École Polytechnique in Paris 1839.
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Definition 6.5.1.
A sequence of real polynomials p0(x), p1(x), . . . , pm(x) is a strict Sturm se-

quence for p(x) = p0(x) on the interval [a, b] if the following conditions hold:

(i) No two consecutive polynomials in the sequence vanish simultaneously on the
interval [a, b].

(ii) If pj(r) = 0 for some j < m, then pj−1(r)pj+1(r) < 0.

(iii) Throughout the interval [a, b], pm(x) 6= 0.

(iv) If p0(r) = 0, then p′0(r)p1(r) > 0.

Given a polynomial p1(x) of degree not greater than that of p0(x) a Sturm
sequence can be constructed by the Euclidean algorithm as follows. Let q1(x) be
the quotient polynomial and −p2(x) the remainder in the quotient p0(x)/p1(x), i.e.
p0(x) = q1(x)p1(x) − p2(x), where the degree of p2(x) is strictly less than that of
p1(x). Continuing in this way, we compute p2(x),. . . , pm(x) by

pk+1(x) = qk(x)pk(x) − pk−1(x), k = 1 : m− 1, (6.5.28)

where qk(x) is the quotient and −pk+1 the remainder in the quotient pk−1(x)/pk(x).
We stop when pm(x) nowhere vanishes on the interval [a, b]. Clearly, if pj(r) = 0,
then pj+1(r) = −pj−1(r) < 0, so condition (ii) is satisfied.

Let V (x) denote the number of variations in sign in the Sturm sequence at x.
If p0(x) and p1(x) have only simple zeros that separate each other, then it can be
shown that the number of zeros of p0(x) on [a, b] is equal to |V (a) − V (b)|.

Theorem 6.5.2.
Take p1(x) = p′0(x) and define p2(x), . . . , pm(x) by (6.5.28), where pm(x) has

a fixed sign on the interval [a, b] (p0(a) 6= 0 and p0(b) 6= 0). Let V(r) denote the
number of variations of sign in the sequence of values

p0(r), p1(r), . . . , pm(r),

vanishing terms not being counted. Then the number of roots of p0(x) in [a, b], each
multiple root being counted once, is exactly equal to |V (a) − V (b)|.

Note that if all real zeros of p0(x) are simple and p1(x) = p′0(x), then (6.5.28)
generates a Sturm sequence. If p0(x) has multiple zeros, then p0(x) and p′0(x) have
a common divisor, which divides every pi(x) in the sequence, and this will not affect
V (r).

Example 6.5.5.
The equation p(x) = p0 = x5 − 3x− 1 = 0 has three real roots z1 = −1.21465,

z2 = −0.33473, and z3 = 1.38879 and two complex roots. The derivative equals
p′(x) = p1 = 5x4 − 3, and the rest of the Sturm chain is given by

p2 =
12

5
x+ 1, p3 =

59083

20736
.
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Table 6.5.2. Left: Sign variations in the Sturm sequence. Right: Intervals
[lk, uk] containing the zero xk.

x p0 p1 p2 p3 δ
−2 − + − + 3
+2 + + + + 0

0 − − + + 1
−1 + + − + 2

1 − + + + 1

l1 u1 l2 u2 l3 u3

−2 2 −2 2 −2 2
0 0 0

−1 −1
1

Here p2 is a polynomial of degree one and the Sturm chain ends with s = 3 < n.
We denote by [lk, uk] an interval containing the zero xk. Evaluating the sign

changes of the Sturm sequence at x = −2 and x = 2 shows that there are 3− 0 = 3
roots xk, k = 1, 2, 3, in the interval [−2, 2] Counting the number of sign changes
at the midpoint x = 0 allows us to deduce that uk = 0, k = 1, 2 and l3 = 0;
see Table 6.5.2. The interval [−2, 0] contains two roots so we determine next the
number of sign changes at the midpoint x = −1.

At this point we have determined three disjoint intervals [−2,−1], [−1, 0], and
[0, 2], which each contain one root. We continue bisecting each of these intervals,
which can be performed in parallel.

Methods based on Sturm sequences can can be competitive, when only a
relatively small number of real roots in an given interval are of interest. Consider a
real symmetric tridiagonal matrix,

A =









α1 β2

β2 α2 β3

. . .
. . .

. . .

βn−1 αn−1 βn
βn αn









,

such that βk 6= 0, k = 2 : n has only simple eigenvalues. Let pk(λ) be the character-
istic polynomial of the kth leading principal minor of (A − λI). Define p0(λ) = 1,
and pk(λ) by the three-term recursion

p1(λ) = α1 − λ, pk(λ) = (αk − λ)pk−1(λ) − β2
kpk−2(λ), k = 2 : n. (6.5.29)

Then the sequence
1, p0(λ), . . . , pn(λ) = det(A− λI)

is known to form a Sturm sequence. Combined with the bisection method, this
recursion can be used to develop an efficient numerical method for determining the
eigenvalues of a symmetric tridiagonal matrix A in a given interval [a, b] without
reference to any of the others. It can also be used for determining the singular
values of a bidiagonal matrix in a given interval; see Volume II.
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Figure 6.5.1. Suspect squares computed by Weyl’s quadtree method. Their
centers (marked by ×) approximate the five zeros marked by ∗.

The Sturm sequence algorithm only works when f(x) is a real function of a
real variable. To determine complex zeros an algorithm that performs a search and
exclusion of the complex plane can be used. The quadtree exclusion algorithm, due
to H. Weyl [329], and illustrated in Figure 6.5.1, is such a “two-dimensional bisection
algorithm”.193 It was one of the first algorithms with guaranteed convergence to
all n zeros of a polynomial of degree n. The algorithm is based on an exclusion
test applied to squares in the complex plane. Assume that f(z) is analytic in K
and that

|f ′(z)| ≤M ∀ z ∈ K.

Then if |f(z0)| > ηM there can be no zero of f(z) in K. Any square that does not
pass this exclusion test may contain a root and is called suspect. (Note that it is
not required that a suspect square actually contains a root.)

The computations begin with an initial suspect square S containing all the
zeros of p(x). This square can be found from an upper bound on the absolute value
of the zeros of p(x). In the algorithm, as soon as we have a suspect square, this
is partitioned into four congruent sub-squares. At the center of each of them a
test estimating the distance to the closest zero of p(x) is performed. (A relative
error within, say, 40% will suffice.) If the test guarantees that this distance exceeds
half of the length of the diagonal of the square then the square cannot contain any
zero and is discarded. Each remaining suspect square undergoes the same recursive
partitioning into four sub-squares and the test. The zeros lying in a suspect square
are approximated by its center with errors bounded by half the length of its diagonal.
Each iteration step decreases the diagonal of the remaining squares by a factor of
two so the errors will decrease by a factor of 1/2.

193In general a quadtree is a tree where each node is split along d dimensions giving 2d children.
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6.5.7 Finding Greatest Common Divisors

A problems that arises in many applications, including computer graphics, geomet-
ric modelling and control theory. is the computation of the greatest common
divisor (GCD) of two polynomials

p(z) = a0

m∏

j=1

(z − αi) = a0z
n + a1z

n−1 + · · · + an, a0 6= 0,

q(z) = b0

m∏

j=1

(z − βj) = b0z
m + b1z

n−1 + · · · + bm, b0 6= 0.

The GCD can in principle be determined by Euclid’s algorithm; see Problem 1.2.6.
Assume that n > m and perform the divisions

p(z) = q(z)s(z) + r1(z),

q(z) = r1(z)s1(z) + r2(z),

q(z) = r1(z)s1(z) + r2(z), (6.5.30)

...

rs−2(z) = rs−1(z)ss−1(z) + rs(z).

The degrees of the polynomials ri, i = 1 : s, decrease at each step and we stop
when rs is a constant. If p(z) and q(z) have a common factor, then that factor is a
divisor of ri, i = 1 : s as well. This means that if rs 6= 0, then p(z) and q(z) have
no common divisor; otherwise rs−1 is the greatest common divisor.

From the representation of rs(z) in (6.5.30) it follows that if p(z) and q(z) are
two polynomials, then there always exist polynomials x(z) and y(z) such that xp−yq
equals a constant. If p(z) and q(z) have a common divisor, then xp(z)− yq(z) = 0.

The Euclidian algorithm is suitable for symbolic computation, but not effec-
tive in finite precision arithmetic because of roundoff. We now describe a suitable
algorithm for determining the GCD when the coefficients of p(z) and q(z) are given
as floating-point numbers. Note that in this case we can only hope to determine
“almost common factors”.

Consider the product of the mn factors

R̄(p, q) =

n∏

i=1

m∏

j=1

(βj − αi). (6.5.31)

of all possible differences between the two sets of roots. This is a symmetric function
of the α’s and β’s and hence expressible as a polynomial in the quotients ai/a0 and
bj/b0. Clearly R̄(p, q) is zero if and only if p(z) and q(z) have a common zero,
and no polynomial of lower degree in the α’s and β’s can have this property. The
polynomial R(p, q) = am0 b

n
0 R̄(p, q), is called the resultant of p(z) and q(z) and can

also be expressed as

R(p, q) = am0 b
n
0 R̄(p, q) ≡ am0

n∏

i=1

q(αi) ≡ bn0

m∏

j=1

p(βj). (6.5.32)
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From the coefficients of p(z) and p(z) we form the Sylvester matrix

S(p, q) =

(
Tm(p)
Tn(q)

)

∈ R(m+n)×(m+n) (6.5.33)

where

Tm(p) =








a0 a1 · · · an−1 an
a0 a1 · · · an−1 an

. . .
. . .

. . .
. . .

a0 a1 · · · an−1 an








∈ Rm×(m+n),

Tn(q) =








b0 b1 · · · bm−1 bm
b0 b1 · · · bm−1 bm

. . .
. . .

. . .
. . .

b0 b1 · · · bm−1 bm








∈ Rn×(m+n).

Note the Toeplitz structure of the two block of rows. It can be shown that the
resultant R(p, q) equals the determinant of S(p, q) except for a possible multiplier
−1. Thus p(z) and q(z) have a common zero if and only if the Sylvester matrix is
singular.

If we form m + n polynomials of degree less than or equal to m + n − 1 by
multiplying p(z) with zk, k = 1 : m, and multiplying q(z) with zk, k = 1 : n, this
can be written in matrix notation as

S(p, q) ( zm+n−1 · · · z 1 )
T

=

(
fp
fq

)

.

where

fp = p(z) ( zm−1 · · · z 1 )
T
, fq = q(z) ( zn−1 · · · z 1 )

T
.

If γ is a common root to the two polynomials p(z) and q(z) then

S(p, q)(γm+n−1, . . . , γ, 1)T = 0.

In other words this vector belongs to the nullspace of S(p, q). The degree of the
greatest common divisor (GCD) of p(z) and q(z), equals the dimension of the
nullspace the Sylvester matrix, i.e.

deg (gcd (p, q)) = m+ n− r, r = rank (S(p, q)).

The best way to estimating the rank is by computing the SVD of the Sylvester
matrix; see Theorem 1.3.4. The coefficients of the GCD can also be obtained from
the factorization.

Review Questions

5.1. Describe the method of iterated successive synthetic division for computing
function values and derivatives of a polynomial.
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5.2. Consider the polynomial p(z) = z4 − 2z3 − 4z2 + z + 1. Using Descartes’ rule
of sign what can you deduce about the number of real positive roots?

5.3. Suppose that all roots of a polynomial equation are to be determined. Describe
two methods to avoid the problem of repeatedly converging to roots already
found.

5.4. Discuss the ill-conditioning of roots of polynomial equations. What famous
polynomial did J. H. Wilkinson use as an example?

5.5. (a) What is the companion matrix of a polynomial p(x) = xn+a1x
n−1 + · · ·+

an−1x+ an?

(b) One approach to computing the eigenvalues of a matrix A is to find the
coefficients of the characteristic polynomial pA(λ) = det(λI − A), and then
solve the algebraic equation pA(λ) = 0. Why should such a method usually
be avoided?

5.6. What properties are satisfied by a Sturm sequence of real polynomials p0(x),
p1(x), . . . , pm(x)? Describe one way of generating a Sturm sequence using the
Euclidian algorithm.

Problems and Computer Exercises

5.1. Apply Newton’s method to determine one of the complex roots of the equation
z2 + 1 = 0. Start with z0 = 1 + i.

5.2. Consider a polynomial with real coefficients

p(z) = a0z
n + a1z

n−1 + · · · + an, ai 6= 0, i = 0 : n.

(a) Count the number of (real) additions and multiplications needed to com-
pute a value p(z0) by synthetic division of p(z) by (z − z0), when z0 is a real
and complex number, respectively.

(b) For a complex number z0 = x0 + iy0, p(z0) can also be computed by
performing the synthetic division of p(z) with the real quadratic factor

d(z) = (z − z0)(z − z̄0) = z2 − 2x0z + (x2
0 + y2

0).

Derive a recursion for computing the quotient polynomial q(z) and p(z0) =
bn−1z0 + bn, where

q(z) = b0z
n−2 + b1z

n−3 + . . .+ bn−2,

p(z) = q(z)d(z) + bn−1z + bn.

Count the number of real additions and multiplications needed to compute
p(z0) and also show how to compute p′(z0).
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5.3. (a) Using the Cardano–Tartaglia formula the real root α to the equation x3 =
x+ 4 can be written in the form

α =
3

√

2 +
1

9

√
321 +

3

√

2 − 1

9

√
321.

Use this expression to compute α. Discuss the loss of accuracy due to cancel-
lation.

(b) Compute α to the same accuracy by Newton’s method using the initial
approximation x0 = 2.

5.4. Let C be the companion matrix of p(x). Show that in Bernoulli’s method
the vector sequence mn = (yn+k, . . . , yn+1, yn)

T can be generated by forming
successive matrix-vector products mn = Cmn−1. Conclude that mk = Ckm0.

5.5. (a) Assume that the zeros of a polynomial satisfy the stronger conditions
|u1| > |u2| > |u3| ≥ · · · ≥ |uk|, where u1 and u2 are real and simple. Show
that in Bernoulli’s method

lim
n→∞

Dn/Dn−1 = u1u2, Dn =

∣
∣
∣
∣

yn yn+1

∆yn ∆yn+1

∣
∣
∣
∣
. (6.5.34)

(b) The result in (a) can be combined with (6.5.18) to compute also u2. What
is the rate of convergence in this process?

(c) Apply Bernoulli’s method to the polynomial p4 in Example 6.5.2 to improve
the approximations computed by Graeffe’s method.

5.6. (a) Use the Matlab command x = roots(poly(1:20)) to compute the roots

of the classical Wilkinson polynomial
∏20
k=1(x−k). Use IEEE double precision.

What is the maximum error in the roots?

(b) Using the command poly(x) to compute the coefficients of the polynomial
with the erroneous roots from (a). What is the maximum error in these
coefficients?

5.7. (a) Generate the coefficients of the Legendre polynomials Pn(x), n = 2 : 24,
using the three-term recursion P0(x) = 1, P1(x) = x,

Pn+1(x) =
2n+ 1

n+ 1
xPn(x) − n

n+ 1
Pn−1(x), n ≥ 1,

where the recursion coefficients are exact rational numbers. Compute using
IEEE double precision the roots of P24(x) as in Problem 5.6. Verify that the
error in some computed roots λ∗k close to 1 exceed 106u, where u = 1.11 10−16

is the unit roundoff.

(b) Compute the coefficients of the polynomial
∏24
k=1(x− λ∗). Show that the

relative error in the computed coefficients are all less than 16u.

5.8. Consider the iteration zn+1 = z2
n + c, where c = p + iq is a fixed complex

number. For a given z0 the sequence of iterates zn = xn + iyn, n = 0, 1, 2, . . .
may either converge to one of the two roots of the quadratic equation z2−z+
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c = 0 or diverge to infinity. Consider z0 chosen, for example, in the unit square
of the complex plane. The boundary separating the region of convergence from
other points in the plane is a very complex fractal curve known as the Julia
set. The Mandelbrot set is obtained by fixing z0 = 0 and sweeping over
values of c in a region of the complex plane.

(a) Picture the Julia set as follows. Set c = 0.27334 + 0.000742i. Sweep over
points of z0 in the region −1 ≤ ℜz0 ≤ 1, −1.3 ≤ ℑz0 ≤ 1.3. If |zN | < R, for
N = 100 and R = 10 color the point z0 black; otherwise color the point from
hot (red) to cool (blue) according to how fast the iteration is diverging, i.e.,
according to how fast the inequality |zn| > R becomes satisfied.

(b) Picture the Mandelbrot set in a similar way. Sweep over values of c in the
region −2.25 ≤ ℜc ≤ 0.75, −1.5 ≤ ℑc ≤ 1.5.

5.9. The following Matlab function sylvester generates the Sylvester matrix of
two polynomials whose coefficients are given in the row vectors a and b:

function S = sylvest(a,b);

% SYLVEST computes

n = length(a) - 1;

m = length(b) - 1;

r = [a,zeros(1,m-1)];

c = [a(1),zeros(1,m-1)];

T1 = toeplitz(c,r);

r = [b,zeros(1,n-1)];

c = [b(1),zeros(1,n-1)];

T2 = toeplitz(c,r);

S = [T1; T2];

Generate S(p, q) for the two polynomials

p(x) = x5 + x4 + x3 + x2 + x+ 1,

q(x) = x4 − 2x3 + 3x2 − x− 71,

The GCD of these polynomials is x + 1. How is this revealed by the SVD of
S(p, q)?

(b) Try some more difficult examples with several common zeros.

Notes and References

The general idea of solving an equation by repeatedly improving an estimate of
the solution has been used in many cultures for thousands of years Examples, are
ancient Greek and Babylonian methods as well as methods of Arabic algebraists
from the 11th century.

An interesting historical account of Newton’s method is given in Ypma [344].
Newton’s method is contained in his book “Method of Fluxions” written 1671, but
not published until 1736. Joseph Raphson was allowed to see Newton’s work and
Newton’s method first was first published in a book by Raphson 1690. This is why
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the method in English literature is often called the Newton–Raphson method. The
first to give a modern description of Newton’s method using derivatives seems to
have been Thomas Simpson 1740. Edmund Halley was contemporary with Isaac
Newton and his third order method was published more than 300 years ago [164].

Halley’s method has been rediscovered by J. H. Lambert [208] and numerous
other people; see Traub [315, Sec. 5.22]. A nice exposition of this and other third
order methods is given by Gander [119]. Families of iteration methods of arbitrary
order ar studied in a remarkable paper by Schröder [281]. An English translation
of this paper is given by G. W. Stewart [282]. The determinant family of iteration
functions Bp(x) is a special case of a parametrized family of iteration functions for
polynomials given by Traub [317]; see also [185, Sec. 4.4]. This family was derived
independently by Kalantari et al. [197].

One of the best algorithms to combine bisection and interpolation was devel-
oped by van Wijngaarden and Dekker at Mathematical Center in Amsterdam in the
1960s; see [54]. It was taken up and improved by Brent [38]; see also [113, Section
7.2]. in contrast to Dekker’s algorithm, Brent’s new algorithm never converges much
more slowly than bisection. Fortran and C versions of some of the zero-finding and
minimization routines given in [38] are available from Netlib. The Matlab function
fminbnd is based on the Fortran implementation FMIN of Brent’s algorithm given
in Forsythe, Malcolm, and Moler [113, pp.184–187].

Several comprehensive monographs dealing with methods for solving scalar
nonlinear equations are available. Traub [315] gives an exhaustive enumeration
of iteration methods with and without memory, with their order of convergence
and efficiency index. Much classical material is also found in Ostrowski [250, 1973].
The recently reprinted book by Brent [38] deals exclusively with methods which only
use function values for finding zeros and minima of functions of a single variable.
It is unique in its careful treatment of algorithmic details that are crucial when
developing reliable computer codes.

There is a vast literature on methods for the classical problem of solving
algebraic equations. Indeed, the non-existence of an algebraic formula for equations
of fifth and higher degree gave rise to modern algebra. Householder [185] gives
an elegant treatment and is an excellent source of information of classical results.
Detailed surveys are found also in Durand [92] (in French) and Sendov et al. [285].
Numerical polynomial algebra is an emerging area that falls between numerical
analysis and computer algebra. A comprehensive survey of this area is given by
Stetter [299].

Further studies of the speed and accuracy of computing polynomial zeros by
the Matlab method of solving the eigenvalue problem for the companion matrix
are given in [145] and [94].

The theory of Sturm sequences are treated in [185, Sec. 2.5]. The quadtree
method was used by Weyl [329] to give a constructive proof of the fundamental
theorem of algebra. An interesting analysis of the efficient implementation of this
method is given by Pan [253], who also gives a brief account of the history of
algorithms for solving polynomial equations. Some background to algorithm for
computing the GCD is found in [2]. The Sylvester matrix appeared in [309].
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Introduction to Matrix

Computations

A.1 Vectors and Matrices

A.1.1 Linear Vector Spaces

In this section we recall basic elements of finite dimensional linear vector spaces and
related matrix algebra, and introduce some notations to be used in the rest of the
text. The exposition is brief and meant as a convenient reference.

We will be concerned with the vector spaces Rn and Cn, that is the set
of real or complex n-tuples with 1 ≤ n < ∞. Let v1, v2, . . . , vk be vectors and
α1, α2, . . . , αk scalars. The vectors are said to be linearly independent if none of
them is a linear combination of the others, that is

k∑

i=1

αivi = 0 ⇒ αi = 0, i = 1 : k.

Otherwise, if a nontrivial linear combination of v1, . . . , vk is zero, the vectors are said
to be linearly dependent. Then at least one vector vi will be a linear combination
of the rest.

A basis in a vector space V is a set of linearly independent vectors v1, v2, . . . , vn ∈
V such that all vectors v ∈ V can be expressed as a linear combination

v =

n∑

i=1

ξivi.

The scalars ξi are called the components or coordinates of v with respect to the
basis {vi}. If the vector space V has a basis of n vectors, then every system of
linearly independent vectors of V has at most k elements and any other basis of V
has the same number k of elements. The number k is called the dimension of V
and denoted by dim(V).

The linear space of column vectors x = (x1, x2, . . . , xn)T , where xi ∈ R, is
denoted Rn; if xi ∈ C then it is denoted Cn. The dimension of this space is n, and

691
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the unit vectors e1, e2, ..., en, where

e1 = (1, 0, . . . , 0)T , e2 = (0, 1, . . . , 0)T , . . . , en = (0, 0, . . . , 1)T ,

constitute the standard basis. Note that the components x1, x2, . . . , xn are the
coordinates, when the vector x is expressed as a linear combination of the standard
basis. We shall use the same name for a vector as for its coordinate representation
by a column vector with respect to the standard basis.

An arbitrary basis can be characterized by the non-singular matrix V =
(v1, v2, . . . , vn) composed of the basis vectors. The coordinate transformation reads
x = V ξ. The standard basis itself is characterized by the unit matrix

I = (e1, e2, . . . , en).

If W ⊂ V is a vector space then W is called a vector subspace of V . The
set of all linear combinations of v1, . . . , vk ∈ V form a vector subspace denoted by

span {v1, . . . , vk} =

k∑

i=1

αivi, i = 1 : k.

where αi are real or complex scalars. If S1, . . . ,Sk are vector subspaces of V then
their sum defined by

S = {v1 + · · · + vk| vi ∈ Si, i = 1 : k}

is also a vector subspace. The intersection T of a set of vector subspaces is also a
subspace,

T = S1 ∩ S2 · · · ∩ Sk.
(The union of vector spaces is generally not a vector space.) If the intersection of
the subspaces are empty, Si ∩Sj = 0, i 6= j, then the sum of the subspaces is called
their direct sum and denoted by

S = S1 ⊕ S2 · · · ⊕ Sk.

A function F from one linear space to another (or the same) linear space is
said to be linear if

F (αu + βv) = αF (u) + βF (v)

for all vectors u, v ∈ V and all scalars α, β. Note that this terminology excludes
non-homogeneous functions like αu + β, which are called affine functions. Linear
functions are often expressed in the form Au, where A is called a linear operator.

A vector space for which an inner product is defined is called an inner prod-
uct space. For the vector space Rn the Euclidean inner product is

(x, y) =

n∑

i=1

xiyi. (A.1.1)
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Similarly Cn is an inner product space with the inner product

(x, y) =
n∑

k=1

x̄kyk, (A.1.2)

where x̄k denotes the complex conjugate of xk.
Two vectors v and w in Rn are said to be orthogonal if (v, w) = 0. A set

of vectors v1, . . . , vk in Rn is called orthogonal with respect to the Euclidean inner
product if

(vi, vj) = 0, i 6= j,

and orthonormal if also (vi, vi) = 1, i = 1 : k. An orthogonal set of vectors is
linearly independent.

The orthogonal complement S⊥ of a subspace S ∈ Rn is the subspace
defined by

S⊥ = {y ∈ Rn| (y, x) = 0, x ∈ S}.
More generally, the subspaces S1, . . . , Sk of Rn are mutually orthogonal if, for all
1 ≤ i, j ≤ k, i 6= j,

x ∈ Si, y ∈ Sj , ⇒ (x, y) = 0.

The vectors q1, . . . , qk form an orthonormal basis for a subspace S ⊂ Rn if they are
orthonormal and span {q1, . . . , qk} = S.

A.1.2 Matrix and Vector Algebra

A matrix A is a collection of m × n real or complex numbers ordered in m rows
and n columns

A = (aij) =







a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
. . .

...
am1 am2 . . . amn






.

We write A ∈ Rm×n, where Rm×n denotes the set of all real m× n matrices. For
some problems it is more relevant and convenient to work with complex vectors and
matrices; Cm× denotes the set of m × n matrices whose components are complex
numbers.194 If m = n, then the matrix A is said to be square and of order n. If
m 6= n, then A is said to be rectangular.

A matrix A ∈ Rm×n can be interpreted as representing a linear transforma-
tions on finite-dimensional vector spaces over Rn or Cn. Consider a linear function
u = F (v), v ∈ Cn, u ∈ Cm. Let x and y be the column vectors representing the
vectors v and F (v), respectively, using the standard basis of the two spaces. Then
there is a unique matrix A ∈ Cm×n representing this map such that

y = Ax.

This gives a link between linear maps and matrices.

194In Matlab the only data type used is a matrix with either real or complex elements.
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We will follow a convention introduced by Householder195 and use capital
letters (e.g. A,B) to denote matrices. The corresponding lower case letters with
subscripts ij then refer to the (i, j) component of the matrix (e.g. aij , bij). Greek
letters α, β, . . . are usually used to denote scalars. Column vectors are usually
denoted by lower case letters (e.g. x, y).

Two matrices in Rm×n are said to be equal, A = B, if

aij = bij , i = 1 : m, j = 1 : n.

The basic operations with matrices are defined as follows. The product of a matrix
A with a scalar α is

B = αA, bij = αaij .

The sum of two matrices A and B in Rm×n is

C = A+B, cij = aij + bij . (A.1.3)

The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A ∈ Rm×n and B ∈ Rn×p then

C = AB ∈ Rm×p, cij =

n∑

k=1

aikbkj , (A.1.4)

and can be computed with 2mnp flops. The product BA is only defined if m = n.
Matrix multiplication satisfies the distributive rules

A(BC) = (AB)C, A(B + C) = AB + AC. (A.1.5)

Note, however, that the number of arithmetic operations required to compute, re-
spectively, the left- and right-hand sides of these equations can be very different!
Matrix multiplication is, however, not commutative. Even when both products are
defined AB 6= BA, in general. In the special case that AB = BA the matrices are
said to commute.

The transpose AT of a matrix A = (aij) is the matrix whose rows are the
columns of A, i.e., if C = AT then cij = aji. For the transpose of a product we
have

(AB)T = BTAT , (A.1.6)

i.e., the product of the transposed matrices in reverse order. For a complex matrix
AH denotes the complex conjugate transpose of A

A = (aij), AH = (āji),

and it holds that (AB)H = BHAH .

195A. S. Householder (1904–1993), at Oak Ridge National Laboratory and University of Ten-
nessee, was a pioneer in the use of matrix factorization and orthogonal transformations in numer-
ical linear algebra.
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A column vector is a matrix consisting of just one column and we write
x ∈ Rn instead of x ∈ Rn×1. Note that the Euclidean inner product (A.1.1) can
be written as

(x, y) = xT y.

If A ∈ Rm×n, x ∈ Rn then

y = Ax ∈ Rm, yi =
n∑

j=1

aijxj , i = 1 : m.

A row vector is a matrix consisting of just one row and is obtained by transposing
a column vector (e.g. xT ).

It is useful to define array operations, which are carried out element-by-
element on vectors and matrices. Let A = (aij) and B = (bij) be two matrices of
the same dimensions. Then the Hadamard product is defined by

C = A . ∗B ⇔ cij = aij · bij . (A.1.7)

Similarly A ./B is a matrix with elements aij/bij . For the operations + and − the
array operations coincides with matrix operations so no distinction is necessary.

A.1.3 Rank and Linear Systems

For a matrix A ∈ Rm×n the maximum number of independent row vectors is always
equal to the maximum number of independent column vectors. This number r is
called the rank of A and thus we have r ≤ min(m,n). If rank (A) = n, A is said to
have full column rank; if rank (A) = m, A is said to have full row rank.

The outer product of two vectors x ∈ Rm and y ∈ Rn is the matrix

xyT =






x1y1 . . . x1yn
...

...
xmy1 . . . xmyn




 ∈ Rm×n. (A.1.8)

Clearly this matrix has rank equal to one.
A square matrix is nonsingular and invertible if there exists an inverse

matrix denoted by A−1 with the property that

A−1A = AA−1 = I.

This is the case if and only if A has full row (column) rank. The inverse of a product
of two matrices is

(AB)−1 = B−1A−1,

i.e. it equals the product of the inverse matrices taken in reverse order.
The operations of taking transpose and inverse commutes, i.e. (A−1)T =

(AT )−1. Therefore we can denote the resulting matrix by A−T .
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The range and the nullspace of a matrix A ∈ Rm×n are

R(A) = {z ∈ Rm| z = Ax, x ∈ Rn}, (A.1.9)

N (A) = {y ∈ Rn| Ay = 0}. (A.1.10)

A square matrix A ∈ Rn×n is nonsingular if and only if N (A) = {0}.
A linear system Ax = b, A ∈ Rm×n is said to be consistent if b ∈ R(A),

or equivalently if rank (A, b) = rank (A). A consistent linear system always has
at least one solution x. If b 6∈ R(A), or, equivalently, rank (A, b) > rank (A), the
system is inconsistent and has no solution. If m > n there are always right hand
sides b such that Ax = b is inconsistent.

A.1.4 Special Matrices

A matrix formed by the elements at the intersection of a set of rows and columns
of a matrix A is called a submatrix. For example, the matrices

(
a22 a24

a42 a44

)

,

(
a22 a23

a32 a33

)

are submatrices of A. The second submatrix is called a contiguous submatrix since
it is formed by contiguous elements of A.

Definition A.1.1.
A submatrix of A = (aij) ∈ Rm×n, is a matrix

B =








ai1j1 ai1j2 · · · ai1jq
ai2j1 ai2j2 · · · ai2jq

...
...

. . .
...

aipj1 aipj2 · · · aipjq








∈ Rp×q,

formed by selecting p rows and q columns of A, where

1 ≤ i1 ≤ i2 ≤ · · · ≤ ip ≤ m, 1 ≤ j1 ≤ j2 ≤ · · · ≤ jq ≤ n.

If p = q and ik = jk, k = 1 : p, then B is a principal submatrix of A. If
ik = jk = k, k = 1 : p, then B is a leading principal submatrix of A.

Any matrix D for which dij = 0 if i 6= j is called a diagonal matrix. If
x ∈ Rn is a vector then D = diag (x) ∈ Rn×n is the diagonal matrix formed by the
elements of x. For a matrix A ∈ Rn×n the elements aii, i = 1 : n, form the main
diagonal of A, and we write

diag (A) = diag (a11, a22, . . . , ann).

For k = 1 : n − 1 the elements ai,i+k (ai+k,i), i = 1 : n − k form the kth super-
diagonal (subdiagonal) of A. The elements ai,n−i+1, i = 1 : n form the (main)
anti-diagonal of A.
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The unit matrix I = In ∈ Rn×n is defined by

In = diag (1, 1, . . . , 1) = (e1, e2, . . . , en),

and the kth column of In is denoted by ek. We have that In = (δij), where δij is
the Kronecker symbol δij = 0, i 6= j, and δij = 1, i = j. For all square matrices
of order n it holds AI = IA = A. If desirable, we set the size of the unit matrix as
a subscript of I, e.g., In.

A matrix A for which all nonzero elements are located in consecutive diagonals
is called a band matrix. A is said to have upper bandwidth r if r is the smallest
integer such that

aij = 0, j > i+ r,

and similarly lower bandwidth s if s is the smallest integer such that

aij = 0, i > j + s.

The number of nonzero elements in each row of A is then at most equal to w =
r + s + 1, which is the bandwidth of A. For a matrix A ∈ Rm×n which is not
square we define the bandwidth as

w = max
1≤i≤m

{j − k + 1 | aijaik 6= 0}.

Several classes of band matrices that occur frequently have special names.
Thus, a matrix for which r = s = 1 is called tridiagonal, if r = 0, s = 1 (r = 1,
s = 0) it is called lower (upper) bidiagonal etc. A matrix with s = 1 (r = 1) is
called an upper (lower) Hessenberg matrix.

An upper triangular matrix is a matrix R for which rij = 0 whenever i > j.
A square upper triangular matrix has the form

R =







r11 r12 . . . r1n
0 r22 . . . r2n
...

...
. . .

...
0 0 . . . rnn






.

If also rij = 0 when i = j then R is strictly upper triangular. Similarly a matrix L
is lower triangular if lij = 0, i < j, and strictly lower triangular if lij = 0, i ≤ j.
Sums, products and inverses of square upper (lower) triangular matrices are again
triangular matrices of the same type.

A square matrix A is called symmetric if its elements are symmetric about
its main diagonal, i.e. aij = aji, or equivalently AT = A. The product of
two symmetric matrices is symmetric if and only if A and B commute, that is,
AB = BA. If AT = −A, then A is called skew-symmetric.

For any square nonsingular matrix A there is a unique adjoint matrix A∗,
such that

(x,A∗y) = (Ax, y).
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The matrix A ∈ Cn×n is called self-adjoint if A∗ = A. In particular, for A ∈ Rn×n

with the standard inner product we have

(Ax, y) = (Ax)T y = xTAT y.

Hence A∗ = AT , the transpose of A, and A is self-adjoint if it is symmetric. A
symmetric matrix A is called positive definite if

xTAx > 0, ∀x ∈ Rn, x 6= 0, (A.1.11)

and positive semidefinite if xTAx ≥ 0, for all x ∈ Rn. Otherwise it is called
indefinite.

Similarly, A ∈ Cn×n is self-adjoint or Hermitian if A = AH , the conjugate
transpose of A. A Hermitian matrix has analogous properties to a real symmetric
matrix. If A is Hermitian, then (xHAx)H = xHAx is real, and A is positive
definite if

xHAx > 0, ∀x ∈ Cn, x 6= 0. (A.1.12)

Any matrix A ∈ Cn×n can be written as the sum of its Hermitian and a skew-
Hermitian part, A = H(A) + S(A), where

H(A) =
1

2
(A+AH), S(A) =

1

2
(A−AH).

A is Hermitian if and only if S(A) = 0. It is easily seen that A is positive definite
if and only if its symmetric part H(A) is positive definite. For the vector space Rn

(Cn) any inner product can be written as

(x, y) = yTGx ((x, y) = yHGx),

where the matrix G is positive definite.
Let q1, . . . , qn ∈ Rm be orthonormal and form the matrix

Q = (q1, . . . , qn) ∈ Rm×n, m ≥ n.

Then Q is called an orthogonal matrix and QTQ = In. If Q is square (m = n),
then it also holds that Q−1 = QT , QQT = In. Further, using (A.1.17),

det(QTQ) = det(QT ) det(Q) = (det(Q))2 = det(I) = 1,

and hence | det(Q)| = 1.
Two vectors x and y in Cn are called orthogonal if xHy = 0. A square matrix

U for which UHU = I is called unitary, and from (A.1.2) we find that

(Ux)HUy = xHUHUy = xHy.
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A.1.5 Permutations and Determinants

The classical definition of the determinant196 requires some elementary facts about
permutations, which we now state. Let

α = {α1, α2, . . . , αn}
be a permutation of the integers {1, 2, . . . , n}. The pair αr, αs, r < s is said to
form an inversion in the permutation if αr > αs. For example, in the permutation
{2, . . . , n, 1} there are n − 1 inversions (2, 1), (3, 1), . . . , (n, 1). A permutation α is
said to be even and sign (α) = 1 if it contains an even number of inversions; otherwise
the permutation is odd and sign (α) = −1. The product of two permutations σ
and τ is the composition στ defined by

στ(i) = σ[τ(i)], i = 1 : n.

A transposition τ is a permutation which only interchanges two elements.
Any permutation can be decomposed into a sequence of transpositions, but this
decomposition is not unique. We now show that a transposition τ of a permutation
will change the number of inversions in the permutation by an odd number and
thus sign (τ) = −1.

If τ interchanges two adjacent elements αr and αr+1 in the permutation
{α1, α2, . . . , αn}, this will not affect inversions in other elements. Hence the number
of inversions increases by 1 if αr < αr+1 and decreases by 1 otherwise. Suppose
now that τ interchanges αr and αr+q. This can be achieved by first successively
interchanging αr with αr+1, then with αr+2, and finally with αr+q. This takes q
steps. Next the element αr+q is moved in q − 1 steps to the position which αr
previously had. In all it takes an odd number 2q − 1 of transpositions of adjacent
elements, in each of which the sign of the permutation changes.

The determinant of a square matrix A is denoted by det(A) and defined by

det(A) =
∑

α∈Sn

sign (α) a1,α1a2,α2 · · ·an,αn
, (A.1.13)

where the sum is over all permutations of the set {1, . . . , n} and sign (α) is ±1
according to whether α is an even or odd permutation. (Note that each term in
(A.1.13) contains exactly one factor from each row and each column in A.) If
det(A) 6= 0 then the matrix A is nonsingular and the solution of the linear system
Ax = b can be expressed as

xi = det(Aj)/ det(A), j = 1 : n, (A.1.14)

where Aj is the matrix A where the jth column has been replaced by the right hand
side b. This expression is known as Cramer’s rule.197 Cramer’s rule is useful for
numerical computation only in very special cases, for example, if n = 2.

196Determinants were first introduced by Leibniz (1693) and Cayley (1841). Determinants arise
in many parts of mathematics, such as combinatorial enumeration, graph theory, representation
theory, statistics, and theoretical computer science. The theory of determinants is covered in a
monumental five volume work “The Theory of Determinants in the Historical Order of Develop-
ment” by Thomas Muir (1844–1934).
197Named after the Swiss mathematician Gabriel Cramer (1704–1752).
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By the definition (A.1.13) the determinant depends linearly on each element.
Thus det(A) can be expanded in terms of its ith row as

det(A) = ai1Ai1 + ai2Ai2 + · · · + ainAin. (A.1.15)

Here Aij is called the cofactor of the element aij . It holds that

Aij = (−1)i+j det(Mij),

where Mij is the submatrix obtained by striking out the ith row and jth column.
Using the definition (A.1.13) to evaluate det(A) would require n ·n! flops. By

the following three rules det(A) can be computed much more efficiently:

(i) The value of the determinant is unchanged if a row (column) multiplied by a
scalar is added to another row (column).

(ii) The determinant of a triangular matrix equals the product of the elements in
the main diagonal, i.e., if R is upper triangular

det(R) = r11r22 · · · rnn. (A.1.16)

(iii) If two rows (columns) are interchanged the value of the determinant is multi-
plied by (−1).

Obviously det(αA) = αn det(A). The following rules are also valid:

det(AT ) = det(A), det(AB) = det(A) det(B). (A.1.17)

Clearly a square triangular matrix is nonsingular if and only if all its diagonal
elements are nonzero. But any square matrix can be transformed into a triangular
matrix by operations that does not change the absolute value of its determinant.
Therefore by (A.1.16) a matrix is nonsingular if and only if det(A) 6= 0.

A.2 Partitioning and Block Matrices

It is often convenient to think of a matrix (vector) as being built up of contiguous
submatrices (subvectors) of lower dimensions. This can be achieved by partition-
ing the matrix or vector into blocks. We write, e.g.,

A =








q1 q2 . . . qN

p1 { A11 A12 . . . A1N

p2 { A21 A22 . . . A2N

...
...

...
. . .

...
pM { AM1 AM2 . . . AMN







, x =








p1 { x1

p2 { x2

...
...

pM { xM







, (A.2.1)

where AIJ is a matrix of dimension pI×qJ . We call such a matrix a block matrix.
The partitioning can be carried out in many ways, and is often suggested by the
structure of the underlying problem. For square matrices the most important case
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is when M = N and pI = qI , I = 1 : N . Then the diagonal blocks AII , I = 1 : N ,
are square matrices.

The great convenience of block matrices lies in the fact that the operations
of addition and multiplication can be performed by treating the blocks Aij as non-
commuting scalars and applying the definitions (A.1.3) and (A.1.4). Of course
the dimensions of the blocks must correspond in such a way that the operations
can be performed. When this is the case, the matrices are said to be partitioned
conformally.

Let A = (Aik) and B = (Bkj) be block matrices of block dimensions m × n
and n × p respectively, where the partitioning corresponding to the index k is the
same for each matrix. Then we have C = AB = (Cij), where

Cij =

n∑

k=1

AikBkj , 1 ≤ i ≤ m, 1 ≤ j ≤ p. (A.2.2)

Be careful to note that since matrix multiplication is not commutative the order of
the factors in the products cannot be changed!

A.2.1 Block two-by-two Matrices

Partitioning a matrix into a block 2 × 2 matrix is particularly useful. This can be
repeated recursively in order to obtain a finer partitioning. For this case we have

(
A11 A12

A21 A22

)(
B11 B12

B21 B22

)

=

(
A11B11 +A12B21 A11B12 +A12B22

A21B11 +A22B21 A21B12 +A22B22

)

.

Note the order! In case of block upper triangular matrices this reduces to

(
R11 R12

0 R22

)(
S11 S12

0 S22

)

=

(
R11S11 R11S12 +R12S22

0 R22S22

)

. (A.2.3)

The product is again block upper triangular and its block diagonal simply equals
the products of the diagonal blocks of the factors.

Let

L =

(
L11 0
L21 L22

)

, U =

(
U11 U12

0 U22

)

. (A.2.4)

be 2 × 2 block lower and block upper triangular matrices. We assume that the
diagonal blocks are square, but not necessarily triangular. Generalizing (A.1.16) it
then holds that

det(L) = det(L11) det(L22), det(U) = det(U11) det(U22). (A.2.5)

Hence L and U are nonsingular if and only if the diagonal blocks are nonsingular.
If they are nonsingular their inverses are given by

L−1 =

(
L−1

11 0
−L−1

22 L21L
−1
11 L−1

22

)

, U−1 =

(
U−1

11 −U−1
11 U12U

−1
22

0 U−1
22

)

. (A.2.6)
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This can be verified by forming the products L−1L and U−1U using the rule for
multiplying partitioned matrices.

We now give some formulas for the inverse of a block 2 × 2 matrix

M =

(
A B
C D

)

, (A.2.7)

where A and D are square matrices. If A is nonsingular, we can factor M in a
product of a block lower and a block upper triangular matrix

M =

(
I 0

CA−1 I

)(
A B
0 S

)

, S = D − CA−1B. (A.2.8)

This identity, which is equivalent to block Gaussian elimination can be verified
directly. The matrix S is the Schur complement of A in M .198

From M−1 = (LU)−1 = U−1L−1 using the formulas (A.2.6) for the inverses
of 2 × 2 block triangular matrices we get the Banachiewicz inversion formula199

M−1 =

(
A−1 −A−1BS−1

0 S−1

)(
I 0

−CA−1 I

)

=

(
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

)

. (A.2.9)

Similarly, assuming that D is nonsingular, we can factor M into a product of a
block upper and a block lower triangular matrix

M =

(
I BD−1

0 I

)(
T 0
C D

)

, T = A−BD−1C, (A.2.10)

where T is the Schur complement of D in M . (This is equivalent to block Gaussian
elimination in reverse order.) From this factorization an alternative expression of
M−1 can be derived,

M−1 =

(
T−1 −T−1BD−1

−D−1CT−1 D−1 +D−1CT−1BD−1

)

. (A.2.11)

If A and D are nonsingular the two triangular factorizations (A.2.8) and (A.2.10)
both exist.

A.2.2 The Inverse of a Modified Matrix

Let A and D be square nonsingular matrices and let B and C be matrices of
appropriate dimensions such that A − BD−1C exists and is nonsingular. Then

198Issai Schur (1875–1941) was born in Russia but studied at the University of Berlin, where he
became full professor in 1919. Schur is mainly known for his fundamental work on the theory of
groups but he also worked in the field of matrices.
199Tadeusz Banachiewicz (1882–1954) Polish astronomer and mathematician. In 1919 he became

the director Cracow Observatory. He developed in 1925 a special kind of matrix algebra for
“cracovians”, which brought him international recognition.
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equating the (1, 1) blocks in the inverse M−1 in (A.2.9) and (A.2.11) we obtain the
Woodbury formula

(A−BD−1C)−1 = A−1 +A−1B(D − CA−1B)−1CA−1. (A.2.12)

This gives an expression for the inverse of a matrix A after it has been modified by
a matrix of rank p, a very useful result in situations where p≪ n.

If we specialize the Woodbury formula to the case where D is a scalar and

M =

(
A u
vT 1/σ

)

,

we get the well known Sherman–Morrison formula

(A− σuvT )−1 = A−1 + α(A−1u)(vTA−1), α =
σ

1 − σvTA−1u
. (A.2.13)

It follows that A−σuvT is nonsingular if and only if σ 6= 1/vTA−1u. The Sherman–
Morrison formula can be used to compute the new inverse when a matrix A is
modified by a matrix of rank one.

Frequently it is required to solve a linear problem where the matrix has been
modified by a correction of low rank. Consider first a linear system Ax = b where
A is modified by a correction of rank one,

(A− σuvT )x̂ = b. (A.2.14)

Using the Sherman–Morrison formula the solution can be written

(A− σuvT )−1b = A−1b+ α(A−1u)(vTA−1b), α = 1/(σ−1 − vTA−1u).

Here x = A−1b is the solution to the original system and vTA−1b = vTx is a scalar.
Hence

x̂ = x+ βw, β = vTx/(σ−1 − vTw), w = A−1u, (A.2.15)

which shows that the solution x̂ can be obtained from x by solving the system
Aw = u. Note that computing A−1 can be avoided.

We caution that the updating formulas given here can not be expected to be
numerically stable in all cases. This is related to the fact that pivoting is necessary
in Gaussian elimination.

A.3 Eigenvalues and Norms of Matrices

A.3.1 The Characteristic Equation

Of central importance in the study of matrices are the special vectors whose direc-
tions are not changed when multiplied by A. A complex scalar λ such that

Ax = λx, x 6= 0, (A.3.1)
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is called an eigenvalue of A and x is an eigenvector of A. Eigenvalues and
eigenvectors give information about the behavior of evolving systems governed by
a matrix or operator and are fundamental tools in the mathematical sciences and
in scientific computing.

From (A.3.1) it follows that λ is an eigenvalue if and only if the linear homo-
geneous system (A−λI)x = 0 has a nontrivial solution x 6= 0, or equivalently if and
only if A−λI is singular. It follows that the eigenvalues satisfy the characteristic
equation

p(λ) = det(A− λI) = 0. (A.3.2)

Obviously, if x is an eigenvector so is αx for any scalar α 6= 0.
The polynomial p(λ) = det(A−λI) is the characteristic polynomial of the

matrix A. Expanding the determinant in (A.3.2) it follows that p(λ) has the form

p(λ) = (a11 − λ)(a22 − λ) · · · (ann − λ) + q(λ), (A.3.3)

where q(λ) has degree at most n−2. Hence p(λ) is a polynomial of degree n in λ with
leading term (−1)nλn. By the fundamental theorem of algebra the matrix A has
exactly n (possibly complex) eigenvalues λi, i = 1, 2, . . . n, counting multiple roots
according to their multiplicities, The set of eigenvalues of A is called the spectrum
of A. The largest modulus of an eigenvalue is called the spectral radius and
denoted by

ρ(A) = max
i

|λi(A)|. (A.3.4)

Putting λ = 0 in p(λ) = (λ1 − λ)(λ2 − λ) · · · (λn − λ) and (A.3.2) it follows
that

p(0) = λ1λ2 · · ·λn = det(A). (A.3.5)

The trace of a square matrix of order n is the sum of its diagonal elements

trace (A) =
n∑

i=1

aii =
n∑

i=1

λi. (A.3.6)

The last equality follows by using the relation between the coefficients and roots
of the characteristic equation. Hence the trace of the matrix is invariant under
similarity transformations.

Consider the linear transformation y = Ax, where A ∈ Rn×n. Let V be
nonsingular and suppose we change the basis by setting x = V ξ, y = V η. The
column vectors ξ and η then represent the vectors x and y with respect to the basis
V = (v1, . . . , vn). Now V η = AV ξ, and hence η = V −1AV ξ. This shows that the
matrix

B = V −1AV

represents the operator A in the new basis. The mapping A → B = V −1AV is
called a similarity transformation. If Ax = λx then

V −1AV y = By = λy, y = V −1x,
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which shows the important facts that B has the same eigenvalues as A and the
eigenvectors of B can be easily computed from those of A. In other words: eigen-
values and eigenvectors are properties of the operator itself, and are independent of
the basis used for its representation by a matrix.

A.3.2 The Schur Normal Form

Given A ∈ Cn×n there exists a unitary matrix U ∈ Cn×n such that

UHAU = T =







λ1 t12 . . . t1n
λ2 . . . t2n

. . .
...
λn






,

where T is upper triangular. This is the Schur normal form of A. (A proof will
be given in Chapter 9, Volume II.) Since

det(T − λI) = (λ1 − λ)(λ2 − λ) · · · (λn − λ),

the diagonal elements λ1, · · · , λn of T are the eigenvalues of A.
Each distinct eigenvalue λi has at least one eigenvector vi. Let V = (v1, . . . , vk)

be eigenvectors corresponding to the eigenvalues Λ = diag (λ1, . . . , λk) of a matrix
A. Then, we can write

AV = V Λ.

If there are n linearly independent eigenvectors then V = (v1, . . . , vn) is nonsingular
and

A = V ΛV −1, Λ = V −1AV.

Then A is said to be diagonalizable.
A matrix A ∈ Cn×n is said to be normal if AHA = AAH . For a normal

matrix the upper triangular matrix T in the Schur normal form is also normal, i.e.

THT = TTH.

It can be shown that this relation implies that all nondiagonal elements in T van-
ishes, i.e. T = Λ. Then we have AU = UT = UΛ, where Λ = diag (λi), or with
U = (u1, . . . , un),

Aui = λiui, i = i : n.

This shows the important result that a normal matrix always has a set of mutually
unitary (orthogonal) eigenvectors.

Important classes of normal matrices are Hermitian (A = AH), skew-Hermitian
(AH = −A)and unitary (A−1 = AH). Hermitian matrices have real eigenvalues,
skew-Hermitian matrices have imaginary eigenvalues, and unitary matrices have
eigenvalues on the unit circle (see Chapter 9, Volume II).
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An example of a non-diagonalizable matrix is

Jm(λ) =








λ 1

λ
. . .
. . . 1

λ








∈ Cm×m.

The matrix Jm(λ) is called a Jordan block. It has one eigenvalue λ of multiplicity
m to which corresponds only one eigenvector,

Jm(λ)e1 = λe1, e1 = (1, 0, . . . , 0)T .

A.3.3 Norms of Vectors and Matrices

In many applications it is useful to have a measure of the size of a vector or a
matrix. An example is the quantitative discussion of errors in matrix computation.
Such measures are provided by vector and matrix norms, which can be regarded as
generalizations of the absolute value function on R.

A norm on the vector space Cn is a function Cn → R denoted by ‖ · ‖ that
satisfies the following three conditions:

1. ‖x‖ > 0, ∀x ∈ Cn, x 6= 0 (definiteness)

2. ‖αx‖ = |α| ‖x‖, ∀α ∈ C, x ∈ Cn (homogeneity)

3. ‖x+ y‖ ≤ ‖x‖ + ‖y‖ ∀x, y ∈ Cn (triangle inequality)

The triangle inequality is often used in the form (see Problem 11)

‖x± y‖ ≥
∣
∣ ‖x‖ − ‖y‖

∣
∣.

The most common vector norms are special cases of the family of Hölder norms
or p-norms

‖x‖p = (|x1|p + |x2|p + · · · + |xn|p)1/p, 1 ≤ p <∞. (A.3.7)

The p-norms have the property that ‖x‖p = ‖ |x| ‖p. Vector norms with this prop-
erty are said to be absolute. The three most important particular cases are p = 1
(the 1-norm), p = 2 (the Euclidean norm) and the limit when p→ ∞ (the maximum
norm):

‖x‖1 = |x1| + · · · + |xn|,
‖x‖2 = (|x1|2 + · · · + |xn|2)1/2 = (xHx)1/2, (A.3.8)

‖x‖∞ = max
1≤i≤n

|xi|.

The Euclidean norm is invariant under unitary (orthogonal) transformations since

‖Qx‖2
2 = xHQHQx = xHx = ‖x‖2

2
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if Q is unitary.
The proof that the triangle inequality is satisfied for the p-norms depends on

the following inequality. Let p > 1 and q satisfy 1/p+ 1/q = 1. Then it holds that

αβ ≤ αp

p
+
βp

q
.

Indeed, let x and y be any real number and λ satisfy 0 < λ < 1. Then by the
convexity of the exponential function it holds that

eλx+(1−λ)y ≤ λex + (1 − λ)ey .

We obtain the desired result by setting λ = 1/p, x = p logα and x = q log β.
Another important property of the p-norms is the Hölder inequality

|xHy| ≤ ‖x‖p‖y‖q,
1

p
+

1

q
= 1, p ≥ 1. (A.3.9)

For p = q = 2 this becomes the Cauchy–Schwarz inequality

|xHy| ≤ ‖x‖2‖y‖2.

Norms can be obtained from inner products by taking

‖x‖2 = (x, x) = xHGx,

where G is Hermitian and positive definite. It can be shown that the unit ball
{x : ‖x‖ ≤ 1} corresponding to this norm is an ellipsoid, and hence they are also
called elliptic norms. A special useful case is the scaled p-norms defined by

‖x‖p,D = ‖Dx‖p, D = diag (d1, . . . , dn), di 6= 0, i = 1 : n. (A.3.10)

All norms on Cn are equivalent in the following sense: For each pair of norms
‖ · ‖ and ‖ · ‖′ there are positive constants c and c′ such that

1

c
‖x‖′ ≤ ‖x‖ ≤ c′‖x‖′, ∀x ∈ Cn. (A.3.11)

In particular it can be shown that for the p-norms we have

‖x‖q ≤ ‖x‖p ≤ n( 1
p
− 1

q )‖x‖q, 1 ≤ p ≤ q ≤ ∞. (A.3.12)

We now consider matrix norms. We can construct a matrix norm from a
vector norm by defining

‖A‖ = sup
x 6=0

‖Ax‖
‖x‖ = sup

‖x‖=1

‖Ax‖. (A.3.13)

This norm is called the operator norm, or the matrix norm subordinate to the
vector norm. From this definition it follows directly that

‖Ax‖ ≤ ‖A‖ ‖x‖, x ∈ Cn.
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Whenever this inequality holds, we say that the matrix norm is consistent with
the vector norm.

It is an easy exercise to show that operator norms are submultiplicative,
i.e., whenever the product AB is defined it satisfies the condition

4. ‖AB‖ ≤ ‖A‖ ‖B‖.

The matrix norms

‖A‖p = sup
‖x‖=1

‖Ax‖p, p = 1, 2,∞,

subordinate to the vector p-norms are especially important. For these it holds that
‖In‖p = 1. The 1-norm and ∞-norm are easily computable from

‖A‖1 = max
1≤j≤n

m∑

i=1

|aij |, ‖A‖∞ = max
1≤i≤m

n∑

j=1

|aij |, (A.3.14)

respectively. Note that the 1-norm equals the maximal column sum and the ∞-
norm equals the maximal row sum of the magnitude of the elements. Consequently
‖A‖1 = ‖AH‖∞.

The 2-norm is also called the spectral norm,

‖A‖2 = sup
‖x‖=1

(xHAHAx)1/2 = σ1(A), (A.3.15)

where σ1(A) is the largest singular value of A. Its major drawback is that it is
expensive to compute. Since the nonzero eigenvalues of AHA and AAH are the
same it follows that ‖A‖2 = ‖AH‖2. A useful upper bound for the matrix 2-norm
is

‖A‖2 ≤ (‖A‖1‖A‖∞)1/2. (A.3.16)

The proof of this bound is left as an exercise.
Another way to proceed in defining norms for matrices is to regard Cm×n as

an mn-dimensional vector space and apply a vector norm over that space. With
the exception of the Frobenius norm 200 derived from the vector 2-norm

‖A‖F =
( m∑

i=1

n∑

j=1

|aij |2
)1/2

, (A.3.17)

such norms are not much used. Note that ‖AH‖F = ‖A‖F . Useful alternative
characterizations of the Frobenius norm are

‖A‖2
F = trace (AHA) =

k∑

i=1

σ2
i (A), k = min(m,n), (A.3.18)

200Ferdinand George Frobenius (1849–1917) German mathematician, professor at ETH Zürich
(1875–1892) before he succeeded Weierstrass at Berlin University.
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where σi(A) are the nonzero singular values of A. The Frobenius norm is submulti-
plicative. However, it is often larger than necessary; e.g., ‖In‖F = n1/2. This tends
to make bounds derived in terms of the Frobenius norm not as sharp as they might
be. From (A.3.15) and (A.3.18) we also get lower and upper bounds for the matrix
2-norm

1√
k
‖A‖F ≤ ‖A‖2 ≤ ‖A‖F , k = min(m,n).

An important property of the Frobenius norm and the 2-norm is that both are
invariant with respect to unitary (real orthogonal) transformations.

Lemma A.3.1. For all unitary (real orthogonal) matrices U and V (UHU = I
and V HV = I) of appropriate dimensions it holds

‖UAV ‖ = ‖A‖ (A.3.19)

for the Frobenius and the 2-norm.

We finally remark that the 1-, ∞- and the Frobenius norm satisfy

‖ |A| ‖ = ‖A‖, |A| = (|aij |),

but for the 2-norm the best result is that ‖ |A| ‖2 ≤ n1/2‖A‖2.
One use of norms is the study of limits of sequences of vectors and matrices

(see Sec. 9.2.4). Consider an infinite sequence x1, x2, . . . of elements of a vector
space V and let ‖ · ‖ be a norm on V . The sequence is said to converge (strongly if
V is infinite dimensional) to a limit x ∈ V , and so we write limk→∞ xk = x, if

lim
k→∞

‖xk − x‖ = 0.

For a finite dimensional vector space the equivalence of norms (A.3.11) shows that
convergence is independent of the choice of norm. The particular choice ‖·‖∞ shows
that convergence of vectors in Cn is equivalent to convergence of the n sequences of
scalars formed by the components of the vectors. By considering matrices in Cm×n

as vectors in Cmn the same conclusion holds for matrices.

Review Questions

A.1. Define the concepts:

(i) Real symmetric matrix. (ii) Real orthogonal matrix.

(iii) Real skew-symmetric matrix. (iv) Triangular matrix.

(v) Hessenberg matrix.

A.2. (a) Give conditions for a matrix P to be the orthogonal projector onto a
subspace S ⊂ Rn.

(b) Define the orthogonal complement of the subspace S ⊂ Rn.
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A.3. (a) What is the Schur normal form of a matrix A ∈ Cn×n?

(b) What is meant by a normal matrix? How does the Schur form simplify
for a normal matrix?

A.4. Define the matrix subordinate norm to a given vector norm.

A.5. Define the p norm of a vector x. Give explicit expressions for the matrix p
norms for p = 1, 2,∞. Show that

‖x‖1 ≤ √
n‖x‖2 ≤ n‖x‖∞.

which are special cases of (A.3.12).

Problems

A.1. Let A ∈ Rm×n have rows aTi , i.e., AT = (a1, . . . , am). Show that

ATA =

m∑

i=1

aia
T
i .

If A is instead partitioned into columns, what is the corresponding expression
for ATA?

A.2. (a) If A and B are square upper triangular matrices show that AB is upper
triangular, and that A−1 is upper triangular if it exists. Is the same true for
lower triangular matrices?
(b) Let A,B ∈ Rn×n have lower bandwidth r and s respectively. Show that
the product AB has lower bandwidth r + s.

(c) An upper Hessenberg matrix H is a matrix with lower bandwidth r = 1.
Using the result in (a) deduce that the product of H and an upper triangular
matrix is again an upper Hessenberg matrix.

(d) Show that if R ∈ Rn×n is strictly upper triangular, then Rn = 0.

A.3. Use row operations to verify that the Vandermonde determinant is
∣
∣
∣
∣
∣
∣

1 x1 x2
1

1 x2 x2
2

1 x3 x2
3

∣
∣
∣
∣
∣
∣

= (x2 − x1)(x3 − x1)(x3 − x2).

A.4. To solve a linear system Ax = b, A ∈ Rn×n, by Cramer’s rule (A.1.14)
requires the evaluation of n+1 determinants of order n. Estimate the number
of multiplications needed for n = 50 if the determinants are evaluated in
the naive way. Estimate the time it will take on a computer performing 109

floating point operations per second!

A.5. Consider an upper block triangular matrix

R =

(
R11 R12

0 R22

)

,
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and suppose that R11 and R22 are nonsingular. Show that R is nonsingular
and give an expression for R−1 in terms of its blocks.

A.6. (a) Show that if w ∈ Rn and wTw = 1, then the matrix P (w) = I − 2wwT is
both symmetric and orthogonal.

(b) Let x, y ∈ Rn, x 6= y, be two given vectors with ‖x‖2 = ‖y‖2. Show that
P (w)x = y, if w = (y − x)/‖y − x‖2.

A.7. Show that for any matrix norm there exists a consistent vector norm.

Hint: Take ‖x‖ = ‖xyT ‖ for any vector y ∈ Rn, y 6= 0.

A.8. Derive the formula for ‖A‖∞ given in (A.3.14).

A.9. Show that ‖A‖2 = ‖PAQ‖2, if A ∈ Rm×n and P and Q are orthogonal
matrices of appropriate dimensions.

A.10. Use the result ‖A‖2
2 = ρ(ATA) ≤ ‖ATA‖, valid for any matrix operator norm

‖ · ‖, where ρ(ATA) denotes the spectral radius of ATA, to deduce the upper
bound in (A.3.16).

A.11. (a) Let T be a nonsingular matrix, and let ‖ · ‖ be a given vector norm. Show
that the function N(x) = ‖Tx‖ is a vector norm.

(b) What is the matrix norm subordinate to N(x)?

(c) If N(x) = maxi |kixi|, what is the subordinate matrix norm?
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[80] Germund Dahlquist and Åke Björck. Numerical Methods. Prentice-Hall, Englewood
Cliffs, NJ., 1974. (Cited on p. 48.)

[81] G. Danielson and Cornelius Lanczos. Some improvements in practical Fourier analy-
sis and their applications to X-ray scattering from liquids. J. Franklin Inst., 233:365–
380, 435–452, 1942. (Cited on pp. 506, 507.)

[82] P. J. Davis and Philip Rabinowitz. Methods of Numerical Integration. Academic
Press, Orlando, FL, second edition, 1984. (Cited on pp. 539, 611, 611, 611, 611,
612.)

[83] Philip J. Davis. Interpolation and Approximation. Blaisdell, New York, 1963. (Cited
on pp. 448, 456, 462, 463, 463, 465.)

[84] Carl de Boor and Allan Pinkus. Backward error analysis for totally positive linear
systems. Numer. Math., 27:485–490, 1977. (Cited on p. 439.)

[85] James W. Demmel. Underflow and the reliability of numerical software. SIAM J.
Sci. Stat. Comput., 5(4):887–919, 1984. (Cited on p. 100.)

[86] Peter Deuflhard and Andreas Hohmann. Numerical Analysis in Modern Scientific
Computing. Springer, Berlin, second edition, 2003. (Cited on p. 260.)



“dqbjV
2007/5/28
page 718

718 Bibliography

[87] P. Dierckx. FITPACK User Guide Part I: Curve fitting routines. TW Report 89,
Department of Computer Science, Katholieke Universiteit, Leuven, Belgium, 1987.
(Cited on p. 521.)

[88] P. Dierckx. FITPACK User Guide Part II: Surface fitting routines. TW Report 122,
Department of Computer Science, Katholieke Universiteit, Leuven, Belgium, 1989.
(Cited on p. 521.)

[89] P. Dierckx. Curve and Surface Fitting with Splines. Oxford University Press, New
York, 1993. (Cited on p. 441.)
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[252] H. Padé. Sur la représentation approcheée d’un fonction par des fraction rationelles.
Thesis Anal. Ecole Norm. Sup.., 3:1–93, supplement, 1892. (Cited on p. 351.)

[253] Victor Y. Pan. Solving a polynomial equation: Some history and recent progress.
SIAM Review, 39:187–220, 1997. (Cited on p. 690.)

[254] S. K. Park and K. W. Miller. Random number generators: good ones are hard to
find. Comm. Assoc. Comput. Mach., 22:1192–1201, 1988. (Cited on p. 67.)



“dqbjV
2007/5/28
page 727

Bibliography 727

[255] Beresford N. Parlett. The new qd algorithm. Acta Numerica, 4:459–491, 1995.
(Cited on p. 352.)

[256] Beresford N. Parlett and Christian Reinsch. Balancing a matrix for calculation of
eigenvalues and eigenvectors. Numer. Math., 13:293–304, 1969. (Cited on p. 679.)

[257] K. Pearson. On the criterion that a given system of deviations from the probable in
the case of a correlated system of variables is such that it can be reasonably supposed
to have arisen from random sampling. Phil. Mag. Series 5, 50:157–175, 1900. (Cited
on p. 68.)

[258] R. Penrose. A generalized inverse for matrices. Proc. Cambridge Philos. Soc., 51:406–
413, 1955. (Cited on p. 43.)

[259] O. Perron. Die Lehre von den Kettenbrüchen. Volume II. Teubner, Stuttgart, third
edition, 1957. (Cited on p. 328.)

[260] R. Piessens, E. de Doncker, C. W. Überhuber, and David K. Kahaner. QUADPACK,
A Subroutine Package for Automatic Integration. Springer-Verlag, Berlin, 1983.
(Cited on p. 611.)

[261] Allan Pinkus. Weierstrass and approximation theory. J. Approx. Theory, 107:1–66,
2000. (Cited on p. 455.)

[262] M. J. D. Powell. Approximation Theory and Methods. Cambridge University Press,
Cambridge, UK, 1981. (Cited on p. 435.)

[263] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in Fortran 77. The Art of Scientific Computing. Cambridge Uni-
versity Press, Cambridge, UK, second edition, 1992. (Cited on pp. 67, 75, 75, 82,
82, 104, 218, 270, 350, 352, 482, 516, 517.)

[264] Anthony Ralston and Philip Rabinowitz. A First Course in Numerical Analysis.
McGraw-Hill, New York, second edition, 1978. Republished in 2001 by Dover, Mi-
neola, NY. (Cited on p. 679.)

[265] Lothar Reichel. On polynomial approximation in the uniform norm by the discrete
least squares method. BIT, 26(2):349–366, 1986. (Cited on p. 478.)

[266] Lothar Reichel. Newton interpolation at Leja points. BIT, 30(2):332–346, 1990.
(Cited on p. 521.)

[267] John R. Rice. A theory of condition. SIAM J. Numer. Anal., 3(2):287–310, 1966.
(Cited on p. 157.)

[268] Lewis F. Richardson. The approximate arithmetical solution by finite differences of
physical problems involving differential equations, with application to the stress in
a masonry dam. Philos. Trans. Roy. Soc., A210:307–357, 1910. (Cited on p. 45.)

[269] Hans Riesel. Prime Numbers and Computer Methods for Factorization. Progr. Math.
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unnormalized floating-point, 146

array operations, 697
arrowhead system, 429
asymptotic

error estimate, 233–234
series, 213

asymptotic series, 213
attainable accuracy

multiple root, 620
simple root, 619

attenuation factors, 492

B-spline, 431–441
basis, 436
definition, 434
evaluation, 438
exterior knots, 432
hat function, 432
multiple knots, 436
properties, 434
recurrence relation, 436

Bézier
curve, 417–421
polygon, 418

Babbage difference engine, 245
back-substitution, 29
backward error

analysis, 112
component-wise, 138
norm-wise, 138

backward stability, 138
Banach space, 447, 624
Banachiewicz’ formula, 704
band matrix, 44, 252, 699
band-limited function, 499
barycentric coordinates, 599

732
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barycentric rational interpolation, 398
Bauer–Skeel condition number, 136
BDF method, 236
bell sum, 207, 208, 217, 269, 321
Bernštein polynomial, 415–417

derivative, 419
Bernštein’s approximation theorem, 200
Bernoulli

function, 298
numbers, 171, 187, 295, 301
polynomial, 298, 311

Bernoulli’s method, 674, 689
Bessel function, 217, 218, 271

modified, 209
Bessel’s inequality, 462
Bickley’s table, 230
bidiagonal matrix, 699
bilinear interpolation, 413
binary

number system, 92
point, 93
system, 92

biographical note
Adams, 265
Aitken, 274
Banach, 447
Bellman, 592
Bernštein, 288
Bernoulli, 170
Buffon, 76
Cauchy, 189
Chebyshev, 196
Cholesky, 36
Christoffel, 572
Cotes, 525
Descartes, 669
Euler, 51, 295
Fourier, 483
Gauss, 28
Gram, 472
Gregory, 545
Halley, 652
Hankel, 339
Hausdorff, 288
Heaviside, 238
Hermite, 383
Jacobi, 469
Kahan, 97
Klein, 326
Kummer, 170

Lagrange, 166
Laguerre, 674
Lambert, 188
Laplace, 14
Lebesgue, 190
Leibniz, 6, 436
Möbius, 600
Maclaurin, 164
Maxwell, 314
Newton, 6
Padé, 332
Peano, 237
Poisson, 13
Richardson, 10
Riemann, 190
Romberg, 546
Runge, 55, 380
Seidel, 327
Sievert, 591
Simpson, 528
Stieltjes, 286, 331
Stirling, 243
Sturm, 682
Taylor, 164
Todd, 257
Toeplitz, 178
Ulam, 61
Vandermonde, 354
von Neumann, 61
Wallis, 657
Weierstrass, 455
Wilkinson, 670

bisection method, 614–618
Björck–Pereyra’s algorithm, 378
BLAS, 47, 114
BLUE, 476
boundary value problem, 216
bounded variation, 190, 286
branch cut, 103, 330, 389
butterfly relations, 507

c.m., see completely monotonic
criteria, 291
function, 296

CAD, see computer aided design
cancellation, 13

of errors, 146
of terms, 119–121

Cardano–Tartaglia formula, 688
cardinal basis, 357
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Cauchy
product, 166
sequence, 446

Cauchy–FFT method, 191–196
Cauchy–Schwarz inequality, 457, 709
ceiling of number, 20
centered difference, 11
characteristic equation, 706
characteristic equation (polynomial)

of difference equation, 253
characteristic polynomial, 706
Chebyshev

expansion, 196–201
interpolation, 360, 372, 379, 380, 391,

473
points, 197, 359, 380
polynomial, 196–201, 467

minimax property, 198
support coefficients, 372
system, 358

chi-square distribution, 75
Cholesky factorization, 36, 139, 582
Christoffel–Darboux formula, 465
circulant matrix, 512
circular arithmetic, 151
Clenshaw’s algorithm, 474, 482
Clenshaw–Curtis quadrature, 538–540
cofactor, 702
column rank, 697
companion

matrix, 671
companion matrix, 583, 672
compensated summation, 114–115
complete space, 446
completely monotonic sequences, 285–294
complex

analysis, 389–411
arithmetic, 111

computer aided design, 415
condition number

Bauer–Skeel, 136
of matrix, 133
of problem, 125–134

continued fraction, 395
continued fractions, 323–331
contraction mapping, 623
contraction mapping theorem, 623
control points, 417
convergence

cubic, 652

linear, 626
of vectors and matrices, 711
order of, 626
sublinear, 626, 630
superlinear, 626

convergence acceleration, 272–311
conversion

between number systems, 93
convex

hull, 385
set, 385

convolution, 166, 498
discrete, 511

coordinates
barycentric, 599

correct decimals, 90
correlation, 505
covariance matrix, 63
Cramer’s rule, 701
cubic convergence

methods of, 651–654
cubic spline

‘not a knot’ condition, 427
complete interpolant, 426
interpolation, 268
natural interpolant, 426
periodic boundary conditions, 427,

429
tridiagonal system, 425

curse of dimensionality, 604
cut (in the complex plane), 189

d.c.m., see completely monotonic
de Casteljau’s algorithm, 420
deflation, 17, 676–677
delta function, 504
density function, 63
Descartes’ rule of sign, 669
determinant, 34, 701
DFT, see discrete Fourier Transform
DFT matrix, 506
diagonally dominant, 428
difference

approximation, 10–14
centered, 11
checks, 221
equation, 19

frozen coefficients, 259
linear, 251–256
nonhomogeneous, 255



“dqbjV
2007/5/28
page 735

Index 735

of product, 224
operator, 219–256

backward, 220
forward, 219

scheme, 13, 220
differential equation, 22
differentiation

algorithmic, 177
automatic, 177
formula

backwards, 234
forwards, 236
higher derivatives, 246

numerical, 235, 245–248
symbolic, 177

differentiation of matrices, 136
discrete

cosine transform (DCT-1), 515
Fourier transform (DFT), 491
sine transform (DST-1), 515

discrete distributions, 71
discrete Fourier Transform, 192
discretization error, 11
distance, 445
distribution function, 63
divergent series, 210–213
divide-and-conquer strategy, 20–21
divided difference, 362

inverse, 396
reciprocal, 396
table, 364

domain of uncertainty, 620
dominant root, 674
double

rounding, 97
double precision

simulating, 115
drafting spline, 421

efficiency index, 627, 635
eigenvalue, 706
eigenvector, 706
elementary

functions, 101–103
symmetric functions, 667

epsilon algorithm, 279, 338–341, 551, 559
equivalence transformation, 325
erf(x), see error function
error

absolute, 88

bound, 88, 128
function, 167, 208
human, 86
maximal, 130
propagation, 127–155

general formula, 130
random, 85
relative, 88
rounding, 86, 112–114
sources of, 85–88
standard, 116, 131
systematic, 85
truncation, 86

error analysis, 137–142
backward, 137
forward, 137
running, 145

error bounds
a posteriori, 138

error estimate
asymptotic, 250

error estimates, 88
error function, 217
Euclid’s algorithm, 686
Euclidean

inner product, 697
Euclidean algorithm, 24
Euclidean norm, 448, 708

algorithm, 118
weighted, 448

Euler numbers, 172, 295, 322
Euler’s

constant, 318
formulas, 484
function, 211
iteration method, 652
method, 52, 53, 308
transformation, 211, 279–285

generalized, 281
optimal, 290

Euler–Maclaurin’s formula, 294–304, 546,
548

experimental perturbations, 147
exponent, 95

overflow, 118
underflow, 118

exponential distribution, 72
exponential integral, 331

false position method, 630–632
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Fast Fourier Transform, 192, 505–519
Fejér’s quadrature rules, 537
FEM, see finite element method
FFT, 249, 268

Cooley–Tukey, 511
Gentleman–Sande, 511

Fibonacci sequence, 268, 313
Filon’s formula, 556
finite element method, 599
five-point operator, 14
fixed point, 622

iteration, 622
with memory, 632

fixed point iteration, 2
floating-point

number, 95
representation, 95
standard arithmetic, 97–101

floor of number, 20
forward difference, 11
forward stability, 138
forward-substitution, 29
Fourier, 483

analysis
continuous case, 486
discrete case, 490

coefficients, 460, 485
matrix, 506
series, 188–191, 483
transform, 546

fractal curve, 689
Frobenius norm, 710
frozen coefficients, 271
function

aliased, 502
analytic, 389–411
band-limited, 499
spaces, 446

functionals, 227
Fundamental Theorem of Algebra, 667
fused multiply-add, 107

gamma function, 167, 205, 303, 318
incomplete, 75, 167, 331, 350

Gauss quadrature, 567–589
Hermite, 576
Jacobi, 575
Laguerre, 576
Legendre, 575
remainder in, 573

Gauss–Kronrod quadrature, 579
Gauss–Markov theorem, 477
Gaussian elimination, 30–36
GCA, see Gustafson’s Chebyshev accel-

eration
generating function, 256
geometric series, 168

comparison with, 161
Gibbs’ phenomenon, 488
golden section

ratio, 662
search, 662

gradual underflow, 100
Graeffe’s method, 673
Gram

matrix, 580
polynomials, 472

greatest common divisor, 685
Green’s function, 269
Gregory’s quadrature formula, 545

grid
irregular triangular, 599–604
rectangular, 595

guard digits, 100
Gustafson’s Chebyshev acceleration, 294

Hölder

norm, 708
Hölder inequality, 709
Hadamard product, 697
Halley’s method, 652
Halton sequences, 607
Hankel

determinant, 342
matrix, 339, 341–347, 571, 581

Hermite interpolation, 383–389, 573
Hermite polynomials, 471, 576, 590
Hermitian matrix, 700
Heron’s formula, 123
Heron’s rule, 4
Hessenberg

matrix, 655
Hessenberg matrix, 50, 699
Hilbert

matrix, 135, 336
space, 457

Hilbert matrix, 581
Horner’s rule, 17
hypergeometric function, 170, 330
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idempotent
operator, 459

IEEE 754 standard, 97–101
ill-conditioned

multiple roots, 620
polynomial roots, 670–671
problem, 134
series, 204–210

Illinois method, 639
importance sampling, 79, 606
inner product

accurate, 114
error analysis, 113
Euclidian, 694
space, 456–460

input data, 125
integral

algebraic singularity, 551
over infinite interval, 554
with singularity, 530–532

integral domain, 183
integration by parts, 530

repeated, 191, 212
intermediate-value theorem, 614
interpolation

Birkhoff, 385
broken line, 423
condition number, 358
error in linear, 366
formulas, 242
Hermite, 383–389
inverse, 391–392
iterative linear, 374–375
lacunary, 385
Lagrange, 357

barycentric form, 370
linear, 8
Newton, 362
osculatory, 383–389
piecewise cubic, 425
polynomial, 389–391
rational, 392–398
remainder term, 364
trigonometric, 490
two variables, 399–402
with derivatives, 383–389

interpolatory quadrature formula, 524
interval

arithmetic
operational definitions, 149

complex, 150
inclusion monotonic operations, 149
infimum-supremum representation,

148
midpoint-radius representation, 149–

151
Newton’s method, 649–651
reduction method, 661

INTLAB, 155
inverse

divided difference, 396
interpolation, 391–392, 637
matrix, 697

irregular errors, 223
iteration

fixed point, 2
iteration method

Euler’s, 652
Halley’s, 652, 659
Laguerre’s, 674–676
Newton’s, 640–649
Newton–Maehly’s, 677
Newton–Raphson’s, 640
Schröder’s, 654

J. C. P. Miller formula, 188
Jacobi matrix, 584
Jacobi polynomials, 469, 470, 575
Jacobian matrix, 8, 132
Julia set, 689

kernel polynomial, 465
Kronecker symbol, 699
Kronrod quadrature, 579
Kummer’s

first identity, 208
hypergeometric function, 170

Lagrange
barycentric interpolation, 369–374
interpolation, 357

two variables, 399
polynomial, 356

generalized, 388
Lagrange’s

remainder formula, 166
Lagrange’s formula

two variables, 400
Laguerre polynomials, 470, 576
Laguerre’s method, 674–676
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Lambert’s W -function, 560, 645, 658
Lanczos σ-factor, 489
Laplace transform, 256, 287
Laplace–Stieltjes transform, 286, 287
Laurent series, 188–191, 200
least squares, 357

approximation, 357–358
characterization of solution, 38–40
data fitting, 473
general problem, 43
principle of, 37–40
problem, 37
statistical aspects, 476–479

Lebesgue constant, 359
Legendre polynomials, 469, 575
Leibniz’ formula, 437
Leja ordering, 369
Lin–Segel’s balancing procedure, 202
line search, 661–665
linear

approximation, 447
difference equation, 251–256
functional, 226
interpolation, 8
operator, 226
space, 446

linear congruential generator, 66
linear interpolation

on triangular grid, 601
linear system

consistent, 698
overdetermined, 37, 357

linearization, 7
linearly independent vectors, 693
logarithmic potential, 403
low discrepancy sequences, 606
LU factorization, 32–34, 139

machine epsilon, 96
magnitude of interval, 148, 154
Mandelbrot set, 689
mantissa, 95
matrix

adjoint, 699
band, 699
bidiagonal, 699
block, 702
companion, 671
diagonalizable, 707
diagonally dominant, 428

eigenvalue of, 706
eigenvector of, 706
Hankel, 339
Hermitian, 700
Hessenberg, 50, 655, 699
ill-conditioned, 135
indefinite, 700
inverse, 697
nilpotent, 178
non-negative definite, 700
nonsingular, 702
normal, 707
orthogonal, 700
positive definite, 38, 700
semicirculant, 178
shift, 178
spectral radius of, 706
symmetric, 699
Toeplitz, 178, 655
totally nonnegative, 439
tridiagonal, 44, 699
unitary, 700

matrix multiplication, 26–28
error bound, 114

maximal error, 130
maximum

norm, 448, 708
maximum modulus, 166, 192

theorem, 195
maximum norm, 448, 710
Mersenne twister, 68
method of undetermined coefficients, 569
metric space, 445
midpoint rule

composite, 527
mignitude

of interval, 148
minimax property, 198
minimization

one-dimensional, 661–665
mixed congruential method, 66
moment, 524

modified, 580
sequence, 287

Monte Carlo Method, 60–81
Moore–Penrose inverse, 43
Muller–Traub’s method, 636
Mulprec, 104
multi-section method, 618
multi-valued function, 169, 176, 189
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multiple recursive generator, 66
multiplicity

of interpolation point, 384
of root, 620

multivariate
integration, 592–606

multivariate interpolation, 398–402

Neville’s algorithm, 308, 374–375
Newton polynomials, 356
Newton’s formulas, 668
Newton’s interpolation formula, 362

two variables, 400
Newton’s method, 6, 640–649

complex case, 648
convergence of, 641–649
interval, 153, 649–651
modified, 680

Newton–Cotes’
9-point formula, 544
quadrature rule, 532–540, 550

Newton–Maehly’s method, 677
Newton–Raphson’s method, 640
node polynomial, 568, 569, 571
norm, 447

Lp, 448
lp, 448
absolute, 708
consistent, 710
Frobenius, 710
Hölder, 708
matrix, 709
of matrix, 131
of operator, 450–451
of vector, 131
operator, 709
scaled, 709
spectral, 710
submultiplicative, 710
subordinate, 709
vector, 708
weighted, 709

norm and distance formula, 451–454
normal deviates, 73
normal distribution function, 73, 331
normal equations, 38, 460
null space

numerical, 42
of matrix, 38

number system

binary, 92
floating-point, 95
hexadecimal, 92
octal, 92
position, 91–93

numerical
cubature, 592
instability, 19
method, 126
null space, 42
problem, 125
quadrature

Newton–Cotes’, 550
trapezoidal rule, 9

rank, 42
simulation, 50, 52

numerical differentiation, 235, 245–248
Numerov’s method, 259, 308, 320
Nyquist critical frequency, 500

Oettli–Prager error bounds, 138
operation count, 28
operator

averaging, 225
calculus of, 224–250
central difference, 225
commutative, 226
differentiation, 225
expansions, 219–256
linear, 226
norm, 450–451
positive definite, 459
self-adjoint, 459

order of accuracy, 524
orthogonal, 695

coefficients, 460
complement, 695
expansion, 461
function, 458
matrix, 700
polynomials, 464–472, 567–589

construction, 465
projector, 40
system, 456–460

orthonormal, 695
orthonormal system, 458
oscillating integrand, 554–560
osculating polynomial, 384
osculatory interpolation, 383–389
outer product, 697
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output data, 125

Padé
approximation

of exponential function, 332
table, 331–338

parametric curve, 415
parametric spline, 429
Parseval’s identity, 462, 486
partial

pivoting, 35
partitioning

conformal, 703
of matrix, 702

Pascal matrix, 24, 264
Peano kernel, 237, 434, 435
Penrose conditions, 44
permutation

bit-reversal, 509, 510
even, 701
odd, 701
perfect shuffle, 510
sign of, 701

perturbation
component-wise bound, 136
expansion, 201–204

regular, 201
experimental, 147
of linear systems, 134–137
singular, 202

pivot element, 31
point of

attraction, 4, 622
repulsion, 4, 622

Poisson
distribution, 207, 331
equation, 13
process, 75
summation formula, 273, 546, 553

polar algorithm, 73
polynomial

reciprocal, 668, 677
roots

simultaneous determination, 677–
679

shift of origin, 669
position system, 91–93
positive definite, 36

matrix, 38
power

method, 674
power basis, 354

truncated, 432
power series, 164–185

composite, 176
composite function, 181
division., 170
expansion, 21–23
inverse function, 181
reversion, 181

precision, 89
double, 98
single, 98

problem
ill-conditioned, 134
well-conditioned, 134

projection operator, 459
projector

orthogonal, 40
pseudo-inverse, 43

solution, 43
pseudo-random numbers, 64–75
pseudoinverse solution, 40
Pythagoras’ theorem, 458
Pythagorean sum, 118

qd algorithm, 341–347, 678
qd scheme, 341
quadratic interpolation

on triangular grid, 601
quadrature

Gauss–Christoffel, 567–589
Gauss–Lobatto, 577
Gauss–Radau, 577
Monte Carlo methods, 604–606
successive one-dimensional, 594

quadrature rule
adaptive, 560–564
closed, 527
midpoint, 527
Newton–Cotes’, 532–540
open, 527
product, 595–599
Simpson’s, 528–530
trapezoidal, 526

quadtree algorithm, 684
quasi-Monte Carlo methods, 606–609
quicksort, 21

radical inverse function, 607



“dqbjV
2007/5/28
page 741

Index 741

radix, 95
random

normal deviates, 73
numbers, 64–75

antithetic sequence of, 77
generating, 65
uniformly distributed, 65

variable, 63
mean, 63
variance, 63

variables
uncorrelated, 63

range of matrix, 38
range reduction, 101
rational interpolation, 392–398

Neville-type, 397
reciprocity relations, 500
rectangle-wedge-tail method, 75
rectangular grid, 14
rectangular wave, 488
recurrence

backward, 252
forward, 252
relation, 17–19

reduction of variance, 75–79
regula falsi, see false-position method
rejection method, 75
relative error, 88
remainder formula

Lagrange’s, 166
remainder term

in series, 163
interpolation, 364

repeated averaging, 279
residual vector, 37
resultant, 686

of polynomials, 687
rhombus rules, 342
Richardson

iteration, 45
Richardson correction, 305
Richardson extrapolation, 10, 54, 304–

311, 546
repeated , 304

Riemann–Lebesgue theorem, 190
RNG, see random number generator
Rodrigues’ formula, 464, 469
Romberg’s method, 10, 304, 546–551

error bound, 547
root condition, 256

rounding, 90
chopping, 90
error, 86

row rank, 697
Runge’s

2nd order method, 56, 308
phenomenon, 379–381, 402–411

sampling theorem, 499–500
scalar of operator, 229
scale factors (fixed-point), 94
scaling and squaring, 172
Scheutz, 245
Schoenberg–Whitney condition, 439
Schröder methods, 654
Schur

complement, 704
normal form, 707

Scylla and Charybdis, 193, 195, 250
secant method, 8, 268, 632–635

modified, 639
rate of convergence, 634
waltz rhythm, 635

seed, 251
Seidel’s theorem, 327
self-adjoint operator, 459
semi-norm, 457
semicirculant matrix, 178
semiconvergent series, 210–213
series

alternating, 163
asymptotic, 213
convergence acceleration, 272–311
divergent, 210–213
geometric, 168
ill-conditioned, 204–210
semiconvergent, 210–213, 217
tail of, 160
Taylor, 164
with positive terms, 210, 273, 294

Shanks’ sequence transformation, 339
Shannon’s sampling theorem, 499–500
Sherman–Morrison formula, 705
shift

matrix, 178, 583
operator, 219

sign, 162
significant digits, 90
similarity transformation, 706
simple root, 619
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Simpson’s formula, 541
with end correction, 542

single precision, 98
singular value, 41
singular value decomposition, 41–44
singular vector, 41
smoothing, 357
sparse matrix, 44
spectral

analysis, 484
norm, 710
radius, 706

spectrum (of matrix), 706
spline

best approximation property, 427
function, 423–441

definition, 423
interpolation, 421–439

closed curves, 429
least squares, 440–441
parametric, 429
truncated power basis, 432

splitting technique, 79
square root

Heron’s rule, 4
Schröder’s method, 654

square wave
Fourier expansion, 488

stability of algorithm, 137–142
standard

basis, 694
deviation, 63

standard error, 116, 131
Stieltjes

integral, 286
procedure, 475

Stirling’s formula, 205, 302
Sturm sequences, 682–685
subdistributivity, 149
sublinear convergence, 626, 630
submatrix, 698

principal, 698
subspaces

dimension, 693
intersection of, 694
sum of, 694

subtabulation, 266
successive approximation, 2
summation

algorithms, 272–311

by parts, 224
repeated, 262

compensated, 114–115
superlinear convergence, 626
superposition principle, 221
support coefficients, 370
SVD, see singular value decomposition
Sylvester matrix, 687
symmetric matrix, 699
synthetic division, 17, 668

with quadratic factor, 669
Szegő polynomials, 472

tablemaker’s dilemma, 91
tail of a series, 160
Taylor series, 164

symbolic form of, 228
Taylor’s formula

integral form of remainder, 165
termination criteria, 160, 621–622
Thiele’s reciprocal differences, 397
thinned sequence, 277
thinning, 277–285

geometric, 277
three-term recurrence, 474
titanium data, 440
Toeplitz matrix, 141, 178, 512, 655

method, 178
total differential, 129
totally positive matrix, 379
transform

z, 256
Fourier, 192, 546
Laplace, 256
Laplace–Stieltjes, 286

translation operator, 219
transpose (of matrix), 696
transposition, 701
trapezoidal

error, 304
trapezoidal rule, 9

composite, 526
superconvergence, 552, 553
superconvergence of, 552–554

triangle
family of polynomials, 354–355
inequality, 457, 458

triangular
matrix, 699
systems of equations, 28–30
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triangular grid
linear interpolation on, 601
quadratic interpolation on, 601
refinement of, 599

tridiagonal
matrix, 252, 699
system

algorithm for, 44
trigonometric

interpolation, 490
polynomial, 484

truncation error, 86, 160
global, 526
local, 526

ulp, 97
unattainable point, 394
unbiased estimator, 476
uniform convergence, 449
unimodal function, 661
unit matrix, 694
unit roundoff, 96
unitary operator, 481

Van der Corput sequence, 607
Vandermonde

determinant, 227, 262
matrix, 227, 354, 571

complex, 506
confluent, 384
inverse, 373

systems, 376–379
Vandermonde-like systems, 379
variance, 63

reduction of, 75–79
vector

conjugate even, 514
conjugate odd, 514
norm, 708
orthogonal, 695
orthonormal, 695
space, 446

Weierstrass’
approximation theorem, 455
method, 678

weight function, 524
weighted quadrature rule, 524
well-conditioned problem, 134
Wiberg, 245

wobbling, 96
Woodbury formula, 705
word-length, 94
wrapping effect, 153

z-transform, 256
zero suppression, 677
ziggurat algorithm, 74


