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Preface

In 1974 the book by Dahlquist and Bjorck, “Numerical Methods” was published
in the Prentice-Hall Series in Automatic Computation, edited by George Forsythe.
It was an extended and updated English translation of a Swedish undergraduate
textbook used at the Royal Institute of Technology (KTH) in Stockholm. This
book became one of the most successful titles at Prentice-Hall. It was translated
into several other languages and as late as 1990 a Chinese edition appeared. It was
reprinted in 2003 by Dover Publications.

In 1984 the authors were invited by Prentice-Hall to prepare a new edition
of the book. After some attempts it soon became apparent that, because of the
rapid development of the field, one volume would no longer suffice to cover the
topics treated in the 1974 book. Thus a large part of the new book would have
to be written more or less from scratch. This meant more work than we initially
envisaged. Other commitments inevitably interfered, sometimes for years, and the
project was delayed. The present volume is the result of several revisions worked
out during the last ten years.

Tragically my mentor, friend and coauthor Germund Dahlquist died on Febru-
ary 8, 2005, before even the first volume was finished. Fortunately the gaps left in
Germund’s part of the manuscript were relatively few. Encouraged by his family I
decided to carry on and I have tried to my best ability to fill in the missing parts.
It is sad that he could never enjoy the fruits of his toil.

Today mathematics is used in one form or another within most of the areas of
science and industry. Although there has always been a close interaction between
mathematics on the one hand and science and technology on the other this has
increased tremendously during the last decades. Advanced mathematical models
and methods are now used more and more also within areas such as medicine,
economics and social sciences.

The increased use of numerical methods has been caused not only by the
continuing advent of faster and larger computers. Gain in problem solving capa-
bilities through better mathematical algorithms have played an important role. In
modern scientific computing one can today treat more complex and less simplified
problems through massive amounts of numerical calculations. It is fair to say that
today experiment and theory, the two classical elements of scientific method, are
supplemented in many areas by computations as an equally important component.

This volume is suitable for use in a basic introductory course in a graduate
program in Numerical Analysis. Numerical Linear Algebra as well as Differential

XV

2007/
page :
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Equations will be treated in later volumes. Much of the material in the book
is derived from graduate courses given by the first author at KTH and Stanford
University and by the second author at Linkoping University, mainly during the
1980s and 90s. The book will also be of interest to researchers in applied sciences
working in scientific computing. We also expect the book to be used as a reference.

We have aimed to make the book as self contained as possible. The level of
presentation ranges from elementary in the first chapter to fairly sophisticated in
some later parts. For most parts the necessary prerequisites are Calculus and Linear
Algebra. For some of the more advanced sections some knowledge of Complex Anal-
ysis and Functional Analysis is helpful, although all concepts used are explained.
The choice of topics inevitably reflects our own interests. We have included many
methods that are important in large-scale computing and the design of algorithms.
But the emphasis is on traditional and well-developed topics in numerical analysis.
Our experience from the 1974 book is that the most up-to-date topics in that book
became out of date first.

Chapter 1 is on a more elementary level than the rest of the book. It is used to
introduce a few general and powerful concepts and ideas, that will be used repeat-
edly. An introduction is given to some basic methods in the numerical solution of
linear equations and least squares problems, including the important singular value
decomposition. Basic techniques for the numerical solution of initial value problems
for ordinary differential equations is illustrated. An introduction to Monte-Carlo
methods, including a survey of pseudo-random number generators and variance
reduction techniques ends this chapter.

Chapter 2 treats floating point number systems and estimation and control
of errors. It is modelled after the same chapter in the 1974 book, but the IEEE
floating point standard has made possible a much more satisfactory treatment. We
are aware of the fact that this aspect of computing is considered by many to be
boring. But when things go wrong (and they do!), then some understanding of
floating point arithmetic and condition numbers may be essential. A new feature
is a section on interval arithmetic, a topic which recently has seen a revival, partly
because the directed rounding incorporated in the IEEE standard simplifies the
efficient implementation.

More than any other chapter, Chapter 3 reflects Dahlquist’s interest in an-
alytic function theory. In this chapter different uses of infinite power series for
numerical computations are studied, including ill-conditioned and semi-convergent
series. Various algorithms for computing the coefficients of power series are given.
The concept of formal power series and their manipulation using triangular Toeplitz
matrices are described.

Difference operators are handy tools for the derivation, analysis, and practical
application of numerical methods for many tasks such as interpolation, differentia-
tion, and quadrature. A more rigorous treatment of operator series expansions and
the use of the Cauchy formula and the Fast Fourier Transform (FFT) to derive the
expansions, are original features of this part of the chapter.

Several methods for convergence acceleration of series (sequences) are de-
scribed. For oscillating sequences (alternating series or series in a complex variable).
Aitken, repeated averages, and Fuler’s transformation, are the most important.
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Variants of Aitken acceleration, Euler-Maclaurin and Richardson, work primarily
on monotonic sequences. A new and more rigorous theoretical analysis is given for
completely monotonic sequences. Although not intended for the novice, it has been
included partly because it illustrates some more advanced techniques from analysis
that are of more general interest.

An exposition of continued fractions, Padé approximation, that transform a
power series into a sequence of rational functions ends this chapter. This leads to
the e-algorithm, the most important nonlinear convergence acceleration method.

Chapter 4 treats several topics related to interpolation and approximation.
Polynomial interpolation is used as a basic means of approximation in nearly all
areas of numerical analysis. Different bases for interpolation and related interpo-
lation formulas are discussed. The advantages of the barycentric form of Lagrange
interpolation formula is stressed. Multivariate interpolation formulas are briefly
surveyed.

Piecewise polynomials have become ubiquitous in computer aided design and
computer aided manufacturing. We describe how parametric Bézier curves are
constructed from piecewise Bernstein polynomials. A comprehensive treatment of
splines is given. The famous recurrence relation for B-splines is derived. The use of
B-splines for representing curves and surfaces with given differentiability conditions
is illustrated. A new analysis of the effect of boundary conditions is featured.

Function space concepts are introduced in this chapter. The concepts of linear
operator and operator norm are extended to general infinite dimensional vector
spaces. The norm and distance formula, which gives a convenient error bound for
general approximation problems is presented. Inner product spaces, orthogonal
systems and the least squares approximation problem are treated next. We stress
the importance of the three-term recurrence formula satisfied by orthogonal systems
of polynomials and its use for numerical calculations.

Basic Formulas and Theorems for Fourier series and Fourier Transforms are
discussed. Periodic continuation, sampled data and aliasing are treated. In appli-
cations such as digital signal and image processing, time-series analysis, the FFT
algorithm (already used in Chapter 3) has caused a complete change of attitude to-
ward what can be done. A separate section is therefore devoted to a matrix oriented
treatment of the FFT, including Fast Trigonometric Transforms.

The last section treats interpolation of an analytic function from the point
of view of Complex Analysis, including an analysis of the Runge phenomenon.
Interpolation at an infinite equidistant point set and its relation to the Shannon
sampling theorem. This section is more advanced than the rest of the chapter and
can be skipped in a first reading.

In Chapter 5 the classical Newton—Cotes’ and Clenshaw—Curtis’ interpolatory
rules for numerical integration are treated first. Next Romberg’s method and the
use of the e-algorithm for acceleration in more difficult cases are described. The
superconvergence of the trapezoidal rule in special cases and special techniques for
oscillating integrands are discussed. A short section on adaptive quadrature comes
next.
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Quadrature rules with both free and prescribed nodes are important in many
contexts. A general technique of deriving formulas using the method of undeter-
mined coefficients is given first. Next Gauss—Christoffel quadrature rules and their
properties are treated. A more advanced exposition of relations between moments,
tridiagonal matrices and Gauss quadrature is included, but this can be skipped at
first reading.

Multivariate integration formulas using product rules are simple generaliza-
tions of univariate rules. For more general domains integration using irregular
triangular grids are suitable. The basic linear and quadratic interpolation formulas
on such grids are derived. Together with a simple correction for curved boundaries
these are formulas are suitable for use in the Finite Element Method. Finally we
discuss the advantages of Monte Carlo and Quasi-Monte Carlo methods for high
dimensional integration.

Chapter 6 starts with a description of bisection and fixed point iteration.
Next the contraction mapping theorem is proved and a discussion of convergence
order given. Newton’s method also for complex valued equations are treated and
an interval Newton method given. A discussion of higher order methods, including
the Schroder family of methods, are other features of this chapter.

Because of their importance for the matrix eigenproblem, algebraic equations
are treated at length. The frequent ill-conditioning of roots is illustrated. Several
classical methods are described, as well as an efficient and robust modified Newton
method. We describe the progressive qd-algorithm, from which the QR algorithm
for the eigenvalue problem was developed. Sturm sequence methods, which also are
of interest for the tridiagonal eigenproblem, are also treated.

Appendix A is a compact survey of notations and some frequently used con-
cepts in numerical linear algebra. This is included here because the full treatment of
this topic comes in Volume II. Two more Appendices are available from the home-
page of the book. Appendix B describes Mulprec, a collection of MATLAB m-files
for (almost) unlimited high precision calculation. This package, can also be down-
loaded from the homepage of the book. Appendix C is a guide to literature, where
advice is given on general textbooks in Numerical Analysis as well as to handbooks,
encyclopedia, tables, software, and journals.

An important feature of the book is the large collection of problems and com-
puter exercises included. This draws from the authors 40+ year of experience in
teaching courses in numerical analysis. It is highly recommended that a modern
interactive system such as MATLAB is available to the reader for working out these
assignments. The 1974 book also contained answers and solutions to most prob-
lems. It has not been possible to retain this feature because of the much greater
number and complexity of the problems in the present book.

We have aimed to make the book and the bibliography as comprehensive
and up-to-date as possible. A section Notes and References containing histori-
cal comments and additional references concludes each chapter. To remind the
readers of the fact that much of the theory and many methods date one or sev-
eral hundred years back in time, we have included more than 60 short biograph-
ical notes on mathematicians, who have made significant contributions. These
notes have been compiled with the invaluable help of the biographies compiled
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at the School of Mathematics and Statistics, University of St Andrews, Scotland
(www-history.mcs.st.andrews.ac.uk). Many of these full biographies are fasci-
nating to read.

Ake Bjorck
Linkoping, November 2006
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Conventions

Besides the generally accepted mathematical abbreviations and notations (see
e.g., James and James, Mathematics Dictionary [1985, pp. 467-471]), the following
notations are used in the book:

MATLAB has been used for this book in testing algorithms. We also will use
its notations for array operations and the convenient colon notation.

A . x B element-by-element product A(4,5)B(i, )

./ element-by-element division A(¢,j)/B(i,5)
ik same as 4,7+ 1,...,k and empty if i > k;
1:7:k same as ©,%1 + J,i + 27,...,k;
A(:, k) is the kth column of A4;
A(i,:) is the ith row of A;
Al : k) same as A7), A(i +1),..., A(k)

x| floor, i.e. the largest integer < z.

[x

)

roof, i.e. the smallest integer > x.

e® and exp(z) both denote the exponential function
fl(z+y) floating-point operations, see 2.2.3

{370 denotes the set {zg, z1,...,2n}

[a, b] closed interval (a <z < b)

(a,b) open interval (a < z <b), or

sign () +1,if x > 0, else —1.

int (a,b,¢,...,w) the least interval which contains a, b, c, ..., w

f(z) =0(g(x)), = — a |f(z)/g(x)| is bounded as z — a

(a can be finite, 400, or —o0).

f(x) =o(g(x)), x —a  limy_q f(z)/g(x) = 0.

f(@) ~g(x), r—a limg—q f(z)/g(x) = 1.

k<i,j<n means k <i<nand k<j<n

P the set of polynomials of degree less than k.

(f,9) scalar product of functions f and g

Il lp p-norm in a linear vector or function space;
see Sec. 4.5.1-4.5.3 and Appendix A.3.3

E.(f) dist(f, Pn)oc,[a,b); see Corollary 3.2.10.

The notations ~, <, <, O, o are defined in Sec.2.1.1. Vectors and matrices are
in general denoted by Roman letters A and b. AT and b7 denote the transpose
of the matrix A and the vector b respectively. (A, B) means a partitioned matrix,
see Appendix A.2. Notation for Matrix computation can be found in Appendix A.
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Notations for differences and difference operators, e.g. A2y, [vo, 71, 72]f, 5%y are
defined in Chapter 3 and 4.
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Chapter 1

Principles of Numerical
Calculations

Commit your blunders on a small scale and make your
profits on a large scale.
—Leo Hendrik Baekeland

1.1 Common ldeas and Concepts
1.1.1 Introduction

Although numerical mathematics has been used for centuries in one form or another
within many areas of science and industry,! modern scientific computing using elec-
tronic computers has its origin in research and developments during the second
world war. In the late 1940s and early 1950s the foundation of numerical analysis
was laid as a separate discipline of mathematics. The new capabilities of perform-
ing millions of operations led to new classes of algorithms, which needed a careful
analysis to ensure their accuracy and stability.

As a rule, applications lead to mathematical problems which in their complete
form cannot be conveniently solved with exact formulas, unless one restricts one-
self to special cases or simplified models. In many cases, one thereby reduces the
problem to a linear problem—for example, a linear system of differential equations.
Such an approach can quite often lead to concepts and points of view which, at
least qualitatively, can be used even in the unreduced problems.

Recent hardware development has increased enormously the scope for using
numerical methods. Not only has this been caused by the continuing advent of faster
computers with larger memories. Gains in problem solving capabilities through
better mathematical algorithms have in many cases played an equally important
role! Today one can treat much more complex and less simplified problems through

!'The Greek mathematician Archimedes (287-212 B.C.), Isaac Newton (1642-1727), English
mathematician, astronomer and physicist, and Carl Friedrich Gauss (1777-1883) gave pioneering
contributions to numerical mathematics.
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2 Chapter 1. Principles of Numerical Calculations

massive amounts of numerical calculations. Through this development the always
close interaction, between mathematics on the one hand and science and technol-
ogy on the other, has increased tremendously during the last decades. Advanced
mathematical models and methods are now used more and more also in areas like
medicine, economics and social sciences. It is fair to say that today experiment and
theory, the two classical elements of scientific method, in many fields of science and
engineering are supplemented by computations as an equally important component.

In most numerical methods one applies a small number of general and rela-
tively simple ideas. These are then combined in an inventive way with one another
and with such knowledge of the given problem as one can obtain in other ways—
for example, with the methods of mathematical analysis. Some knowledge of the
background of the problem is also of value; among other things, one should take
into account the orders of magnitude of certain numerical data of the problem.

In this chapter we shall illustrate the use of some general ideas behind nu-
merical methods on some simple problems. These may occur as subproblems or
computational details of larger problems, though as a rule they occur in a less pure
form and on a larger scale than they do here. When we present and analyze numer-
ical methods, we use to some degree the same approach which was mentioned first
above: we study in detail special cases and simplified situations, with the aim of
uncovering more generally applicable concepts and points of view which can guide
in more difficult problems.

It is important to have in mind that the success of the methods presented
depends on the smoothness properties of the functions involved. In this first survey
we shall tacitly assume that the functions have as many well-behaved derivatives as
is needed.

1.1.2 Fixed Point lteration

One of the most frequently occurring ideas in numerical calculations is iteration
(from the Latin iterare, “to plow once again) or successive approximation. Taken
generally, iteration means the repetition of a pattern of action or process. Itera-
tion in this sense occurs, for example, in the repeated application of a numerical
process—perhaps very complicated and itself containing many instances of the use
of iteration in the somewhat narrower sense to be described below—in order to
improve previous results. To illustrate a more specific use of the idea of iteration,
we consider the problem of solving a (usually) nonlinear equation of the form

x = F(z), (1.1.1)

where F' is assumed to be a differentiable function whose value can be computed for
any given value of a real variable x, within a certain interval. Using the method of
iteration, one starts with an initial approximation xg, and computes the sequence

I :F(LL'Q), xI9 ZF(LL'l), I3 ZF(,TQ), (112)

Each computation of the type z,+1 = F(x,). n = 0,1,2,..., is called a fixed
point iteration. As n grows, we would like the numbers x,, to be better and
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better estimates of the desired root. If the sequence {x,} converges to a limiting
value o then we have

lim F(z,) = F(«a),

a= lim xz,41 =
n—oo n—oo

so x = « satisfies the equation x = F(z). One can then stop the iterations when
the desired accuracy has been attained.

1 1
y=X y=X
0.8 0.8
+
y=F()
06r y=F(x) 0.6
I <
0.4 I 0.4 [ I
Lo [ I
Lo [ [ I
02 \ Lo 02 [ [ I
D4 X, X! b KX X, X
0 R ‘ 0 . 10, 124,38 1
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8 1
0<F(x) <1 -1<F(x)<0
1 1
y=F(x) y=X
0.8 0.8
y=X
0.6 0.6
0.4 0.4 (| I
/s ARSI\
0.2 L 1 0.2 L | |
&, X X X KX X X
0« 12,40 ‘ 0 .4 120 41,3
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
F(x)>1 F(x)<-1

Figure 1.1.1. (a)—(d) Geometric interpretation of iteration xpt1 = F ().

A geometric interpretation of fixed point iteration is shown in Figurel.1.1.
A root of Equation (1.1.1) is given by the abscissa (and ordinate) of an intersect-
ing point of the curve y = F(z) and the line y = z. Starting from zy the point
x1 = F(zp) on the z-axis is obtained by first drawing a horizontal line from the
point (xo, F'(zo)) = (zo,x1) until it intersects the line y = z in the point (z1,z1);
from there we draw a vertical line to (z1, F(x1)) = (21, z2) and so on in a “staircase”
pattern. In Figure1.1.1a it is obvious that the sequence {z, } converges monoton-
ically to the root . Figurel.1.1b shows a case where F' is a decreasing function.
There we also have convergence but not monotone convergence; the successive it-
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erates x, lie alternately to the right and to the left of the root . In this case the
root is bracketed by any two successive iterates.

There are also two divergent cases, exemplified by Figs. 1.1.1c and 1.1.1d. One
can see geometrically that the quantity, which determines the rate of convergence
(or divergence), is the slope of the curve y = F'(x) in the neighborhood of the root.
Indeed, from the mean value theorem of Calculus we have

Tnp1—a F(z,) — F(a) _ (e

Ty —Q Ty —Q

where &, lies between z,, and a. We see that, if 2y is chosen sufficiently close to
the root (yet xo # «), the iteration will converge if |F’(«)| < 1. In this case « is
called a point of attraction. The convergence is faster the smaller |F’(«)]| is.

If |F'(«)] > 1 then « is a point of repulsion and the iteration diverges.

2.5¢

1.5¢

X
0.5 1 15 2 25
Figure 1.1.2. The fized point iteration x, = (xn + ¢/x,)/2, ¢ = 2, kg = 0.75.
Example 1.1.1.

The square root of ¢ > 0 satisfies the equation x* = ¢, which also can be
written = ¢/x or = $(z + ¢/x). This suggests the fixed point iteration

2

1
Tpy1 = §(xn+c/:vn), n=1,2..., (1.1.3)
which is the widely used Heron’s rule?. The curve y = F(x) is in this case a
hyperbola (see Figure1.1.2).
From (1.1.3) follows

(n £ V/c)?

1
Tyl £V/C= B (a:n :|:2\/E+c/:17n) =

2Heron made important contributions to geometry and mechanics. He is believed to have lived
in Alexandria, Egypt during the 1st century AD.
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1.1. Common Ideas and Concepts 5
that is )
L e U R (1.1.4)
Tn41 + \/E Tn + \/E ' o
We can take e, = i";‘ﬁ to be a measure of the error in x,,. Then (1.1.4) reads

eny1 = €2 and it follows that e, = e€3". If |xg — v/c| # |zo + v/c|, then eg < 1 and
x,, converges to a square root of ¢ when n — co. Note that the iteration (1.1.3) can
also be used for complex values of c.
For ¢ = 2, and 2o = 1.5, we get ;1 = (1.5 +2/1.5) = 13 = 1.4166666.. . .,
and
T2 = 1.414215 686274, r3 = 1.414213 562375,

(correct digits shown in boldface). This can be compared with the exact value
V2 = 1.414213562373.... As can be seen from Figure1.1.2 a rough value for z
suffices. The rapid convergence is due to the fact that for a = /¢ we have

F'(a) = (1—-c/a?)/2=0.

One can in fact show that

[Tn1 — Vel _

A [Tn — Vo2 c.
for some constant 0 < C' < oo, which is an example of what is known as quadratic
convergence. Roughly, if z,, has t correct digits, then z,; will have at least 2t —1
correct digits.
The above iteration method is used quite generally on both pocket calculators
and computers for calculating square roots.

Iteration is one of the most important aids for the practical as well as theoreti-
cal treatment of both linear and nonlinear problems. One very common application
of iteration is to the solution of systems of equations. In this case {x, } is a sequence
of vectors, and F' is a vector-valued function. When iteration is applied to differen-
tial equations {r,} means a sequence of functions, and F'(x) means an expression in
which integration or other operations on functions may be involved. A number of
other variations on the very general idea of iteration will be given in later chapters.

The form of equation (1.1.1) is frequently called the fixed point form, since
the root « is a fixed point of the mapping F. An equation may not be given
originally in this form. One has a certain amount of choice in the rewriting of an
equation f(z) = 0 in fixed point form, and the rate of convergence depends very
much on this choice. The equation z? = ¢ can also be written, for example, as
x = c¢/x. The iteration formula x,11 = c¢/z, gives a sequence which alternates
between z( (for even n) and ¢/xo (for odd n)—the sequence does not converge for

any xo # \/c!

1.1.3 Newton’s Method
Let an equation be given in the form f(z) =0, and for any k # 0, set
F(z)=x+kf(x).
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6 Chapter 1. Principles of Numerical Calculations

Then the equation 2 = F(x) is equivalent to the equation f(z) = 0. Since F'(a) =
1+ kf'(a), we obtain the fastest convergence for k = —1/f’(a). Because « is not
known, this cannot be applied literally. But if we use z,, as an approximation this
leads to the choice F'(z) = — f(x)/f'(x), or the iteration

Tnt+l = Tn — fl((E )
n

(1.1.5)

This is the celebrated Newton’s method.®> We shall derive it in another way
below.

The equation * = ¢ can be written in the form f(z) =«
method for this equation becomes

2 2

— ¢ =0. Newton’s

2 —c 1 c
n =z, + — =0,1,2,.... 1.1.
e ) e

Tpn+1 = Tn —

which is the fast method in Example 1.1.1. More generally Newton’s method applied
to the equation f(x) = 2P — ¢ = 0 can be used to compute c'/?, p = +1,42, ..,
from the iteration

b —c
Tpil = Tp — —.
+1 px?l 1
This can be written as
1 c Tn
Tptl = — p—lxn—l——_):— 1—p)—cz,?] 1.1.7
a=s(-vo+ ) = Ela-p -l )

It is convenient to use the first expression in (1.1.7) when p > 0 and the second
when p < 0. With p = 2,3, and —2 respectively this iteration formula is used for
calculating /¢, /¢, and 1/+/c. Also 1/¢, (p = —1) can be computed by the iteration

Tnt1 = Tn + Tp(l — cxp) = 20 (2 — czp),

using only multiplications and addition. In some early computers, which lacked
division in hardware, this iteration was used to implement division, i.e. b/c was
computed as b(1/c).

Example 1.1.2.

We want to construct an algorithm based on Newton’s method for the efficient
calculation of the square root of any given floating point number a. If we first shift
the mantissa so that the exponent becomes even, a = c¢-22¢ and 1/2 < ¢ < 2, then

Va=c2°

We need only consider the reduced range 1/2 < ¢ < 1 since for 1 < ¢ < 2 we can
compute 1/1/c and invert.*

3Isaac Newton (1642-1727), English mathematician, astronomer and physicist, invented, inde-
pendently of the German mathematician and philosopher Gottfried W. von Leibniz (1646-1716),
the infinitesimal calculus.

4Since division usually is much slower than addition and multiplication, this may not be optimal!
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1.1. Common Ideas and Concepts 7

To find an initial approximation zq to start the Newton iterations when 1/2 <
¢ < 1, we can use linear interpolation of 2 = y/c between the endpoints 1/2, 1, giving

zo(c) = V2(1 —¢) + 2(c — 1/2)

(v/2 is precomputed). The iteration then proceeds using (1.1.6).
For ¢ = 3/4 (y/c = 0.86602540378444) the result is 29 = (v/2 + 2)/4 and
(correct digits in boldface)

o = 0.85355339059327, z1 = 0.86611652351682,
2 = 0.86602540857756, z3 = 0.86602540378444,

The quadratic rate of convergence is apparent. Three iterations suffice to give about
16 digits accuracy for all z € [1/2,1].

1.1.4 Linearization and Extrapolation

Another often recurring idea is that of linearization. This means that one locally,
i.e. in a small neighborhood of a point, approximates a more complicated function
with a linear function. We shall first illustrate the use of this idea in the solution of
the equation f(z) = 0. Geometrically, this means that we are seeking the intersec-
tion point between the z-axis and the curve y = f(z); see Figure 1.1.3. Assume that

Figure 1.1.3. Geometric interpretation of Newton’s method.

we have an approximating value xy to the root. We then approximate the curve
with its tangent at the point (xo, f(zo)). Let z1 be the abscissa of the point of
intersection between the z-axis and the tangent. Since the equation for the tangent
reads

y — f(zo) = f'(z0)(z — x0),

we obtain by setting y = 0, the approximation

T = xo — f(xo)/f/(flfo)-

In many cases x; will have about twice as many correct digits as xg. But if zg is
a poor approximation and f(z) far from linear, then it is possible that 21 will be a
worse approximation than zg.
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8 Chapter 1. Principles of Numerical Calculations

If we combine the ideas of iteration and linearization, that is, we substitute
xy, for ¢ and x,, 41 for 1, we rediscover Newton’s method mentioned earlier. If xg
is close enough to « the iterations will converge rapidly; see Figure 1.1.3, but there
are also cases of divergence.

Figure 1.1.4. Geometric interpretation of the secant method.

Another way, instead of drawing the tangent, to approximate a curve locally
with a linear function, is to choose two neighboring points on the curve and to
approximate the curve with the secant which joins the two points; see Figure1.1.4.
The secant method for the solution of nonlinear equations is based on this ap-
proximation. This method, which preceded Newton’s method, is discussed more
closely in Sec.6.3.1.

Newton’s method can be generalized to yield a method for solving a system
of nonlinear equations

fi('rlvav'-'axn):O, i=1:n.

We can write this as f(x) = 0, where f and x are vectors in R". Given an approxi-
mate solution x,, the next iterate x,4; is determined as the solution to the system
of linear equations

f'(xn) (Xns1 — xn) = —F(xn), (1.1.8)
where of of
Oxq e Oxy,
f'(x) = : : cR™", (1.1.9)
Ofn Ofn
o1 e Oxy,

is the matrix of partial derivatives of f with respect to x. This matrix is called
the Jacobian of f and often denoted by J(x). Systems of nonlinear equations
arise in many different contexts in scientific computing. Important examples are
the solution of differential equations and optimization problems. We shall several
times, in later chapters, return to this fundamental concept.

The secant approximation is useful in many other contexts, for instance, it
is generally used when one “reads between the lines” or interpolates in a table of
numerical values. In this case the secant approximation is called linear interpo-
lation. When the secant approximation is used in numerical integration, i.e. in
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1.1. Common Ideas and Concepts 9

Yo

Figure 1.1.5. Numerical integration by the trapezoidal rule (n = 4).

the approximate calculation of a definite integral,

1= /by(x) dz, (1.1.10)

(see Figurel.1.5) it is called the trapezoidal rule. With this method, the area
between the curve y = y(x) and the z-axis is approximated with the sum T'(h) of
the areas of a series of parallel trapezoids. Using the notation of Figurel.1.5, we
have

1 — b—a
= h= i+ Ui h= ) 1.1.11
2 Zo Yi + Yit1) - ( )

(In the figure, n = 4.) We shall show in a later chapter that the error is very nearly
proportional to h2 when h is small. One can then, in principle, attain arbitrary high
accuracy by choosing h sufficiently small. But the computational work involved is
roughly proportional to the number of points where y(x) must be computed, and
thus inversely proportional to h. Hence the computational work grows rapidly as
one demands higher accuracy (smaller h).

Numerical integration is a fairly common problem because quite seldom can
the “primitive” function be analytically calculated in a finite expression containing
only elementary functions. It is not possible, for such simple functions as e or
(sinz)/xz. In order to obtain higher accuracy with significant less work than the
trapezoidal rule requires, one can use one of the following two important ideas:

(a) Local approximation of the integrand with a polynomial of higher degree,
or with a function of some other class, for which one knows the primitive
function.

(b) Computation with the trapezoidal rule for several values of h and then ex-
trapolation to h = 0, so-called Richardson extrapolation®or the deferred

5Lewis Fry Richardson (1881-1953) studied mathematics, physics, chemistry, botany and zo-
ology. He graduated from King’s College, Cambridge 1903. He was the first (1922) to attempt to
apply the method of finite differences to weather prediction, long before the computer age!
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10 Chapter 1. Principles of Numerical Calculations

approach to the limit, with the use of general results concerning the de-
pendence of the error on h.

The technical details for the various ways of approximating a function with
a polynomial, among others Taylor expansions, interpolation, and the method of
least squares, are treated in later chapters.

The extrapolation to the limit can easily be applied to numerical integration
with the trapezoidal rule. As was mentioned previously, the trapezoidal approxima-
tion (1.1.11) to the integral has an error approximately proportional to the square
of the step size. Thus, using two step sizes, h and 2h, one has:

T(h) — I ~kh*  T(2h)—1I=k(2h)?
and hence 4(T'(h) — I) = T(2h) — I, from which it follows that

I~ $(4T(h) — T(2h)) = T(h) + £(T(h) — T(2h)).

Thus, by adding the corrective term %(T'(h) —T'(2h)) to T'(h), one should get an es-
timate of I which typically is far more accurate than T'(h). In Sec. 3.4.6 we shall see
that the improvement is in most cases quite striking. The result of the Richardson
extrapolation is in this case equivalent to the classical Simpson’s rule for numer-
ical integration, which we shall encounter many times in this volume. It can be
derived in several different ways. Sec. 3.6 also contains application of extrapolation
to other problems than numerical integration, as well as a further development of the
extrapolation idea, namely repeated Richardson extrapolation. In numerical
integration this is also known as Romberg’s method; see Sec. 5.2.2.

Knowledge of the behavior of the error can, together with the idea of extrap-
olation, lead to a powerful method for improving results. Such a line of reasoning is
useful not only for the common problem of numerical integration, but also in many
other types of problems.

Example 1.1.3.

The integral
12

f(z)dx
10
is computed for f(z) = z3 by the trapezoidal method. With h = 1 we obtain
T(h) = 2695, T(2h) = 2728, and extrapolation gives T' = 2684, equal to the exact
result.
Similarly, for f(x) = x* we obtain T'(h) = 30009, T'(2h) = 30736, and with
extrapolation T' &~ 29 766.7 (exact 29 766.4).

1.1.5 Finite Difference Approximations

The local approximation of a complicated function by a linear function leads to an-
other frequently encountered idea in the construction of numerical methods, namely
the approximation of a derivative by a difference quotient. Figure1.1.6 shows the
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1.1. Common ldeas and Concepts 11

graph of a function y(z) in the interval [z, _1, Zp4+1] where Ty 11 — 2y = Tp —Tpo1 =
h; his called the step size. If we set y; = y(x;), i = n—1,n,n+1, then the derivative
at x, can be approximated by a forward difference quotient,

~ Yn+1 — Yn

y'(en) & ==——, (1.1.12)

or a similar backward difference quotient involving ¥, and y,_1. The error in the
approximation is called a discretization error.

Figure 1.1.6. Centered finite difference quotient.
But it is conceivable that the centered difference approximation

/ Yn+1 — Yn—1
n) o~ 7 - 1.1.13
Y (on) ~ 2 (1.1.13)

will usually be more accurate. It is in fact easy to motivate this. By Taylor’s
formula,

y(x +h) —y(z) =y (x)h + " (x)h? /2 + v (2)h3 )6 + ... (1.1.14)
—y(z —h) +y(x) =y (x)h —y" (2)h?/2 + 3" (x)h3 /6 — ... (1.1.15)
Set © = x,. Then, by the first of these equations,

’ _yn-i-l_yn_ﬁ " _
Y'(zn) = A 2y (zn)

Next, add the two Taylor expansions and divide by 2h. Then the first error term

cancels and we have

n - Yn— h2
Y (zn) = % - Fy"'(xn) — (1.1.16)

We shall in the sequel call a formula (or a method), where a step size parameter h
is involved, accurate of order p, if its error is approximately proportional to hP.
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12 Chapter 1. Principles of Numerical Calculations

Since y”(x) vanishes for all z if and only if y is a linear function of z, and similarly,
y'"(z) vanishes for all z if and only if y is a quadratic function, we have established
the following important result:

Lemma 1.1.1.

The forward difference approzimation (1.1.12) is exact only for a linear func-
tion, and it is only first order accurate in the general case. The centered difference
approzimation (1.1.13) is exact also for a quadratic function, and is second order
accurate in the general case.

For the above reason the approximation (1.1.13) is, in most situations, prefer-
able to (1.1.12). But there are situations when these formulas are applied to the
approximate solution of differential equations where the forward difference approx-
imation suffices, but where the centered difference quotient is entirely unusable, for
reasons which have to do with how errors are propagated to later stages in the
calculation. We shall not discuss this phenomenon more closely here, but mention
it only to intimate some of the surprising and fascinating mathematical questions
which can arise in the study of numerical methods.

Higher derivatives can be approximated with higher differences, that is,
differences of differences, another central concept in numerical calculations. We
define

(AY)n = Yn+1 = Yn;
(A%) = (AAY))n = (Ynt2 = Yn+1) = (Ynt1 — Yn)
= Yn+2 — 2Un+1 + Yn;
(Agy)n = (A(AQy))n = Yn+3 — 3Yn+2 + 3Ynt1 — Yn,

etc. For simplicity one often omits the parentheses and writes, for example, A2%ys
instead of (A2y)s. The coefficients that appear here in the expressions for the higher
differences are, by the way, the binomial coefficients. In addition, if we denote the
step length by Az instead of by h, we get the following formulas, which are easily
remembered:
2 2

dy ~ %, ay RS ﬂ, (1.1.17)

de  Ax dx?  (Ax)?
etc. Each of these approximations is second order accurate for the value of the
derivative at an x which equals the mean value of the largest and smallest x for
which the corresponding value of y is used in the computation of the difference. (The
formulas are only first order accurate when regarded as approximations to deriva-
tives at other points between these bounds.) These statements can be established
by arguments similar to the motivation for the formulas (1.1.12) and (1.1.13).

Taking the difference of the Taylor expansions (1.1.14)—(1.1.15) with one more

term in each, and dividing by h? we obtain the following important formula

Ynt1l — 2Yn + Yn—1 h? i
Yy (zn) = 72 —12Y (n) =+
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1.1. Common Ideas and Concepts 13

Introducing the central difference operator
6Yn =y (0 + 3h) —y (20 — 3h) (1.1.18)
and neglecting higher order terms we get

" ~ 1 52 h2 v
Yy (an) 720 Yn T Y (n). (1.1.19)

The approximation of equation (1.1.13) can be interpreted as an application
of (1.1.17) with Az = 2h, or else as the mean of the estimates which one gets
according to equation (1.1.17) for y'((n + 3)h) and y/((n — 3)h).

When the values of the function have errors (for example, when they are
rounded numbers) the difference quotients become more and more uncertain the
smaller h is. Thus if one wishes to compute the derivatives of a function one should
be careful not use a too small step length; see Sec. 3.3.4.

Example 1.1.4.
Assume that for y = cosz, function values correct to six decimal digits are
known at equidistant points:

x y Ay A%
0.59  0.830941

—5605

0.60 0.825336 —-83
—5688

0.61 0.819648

where the differences are expressed in units of 107¢. This arrangement of the
numbers is called a difference scheme. Using (1.1.13) and (1.1.17) one gets

y'(0.60) = (0.819648 — 0.830941)/0.02 = —0.56465,
y"(0.60) ~ —83-1075/(0.01)% = —0.83.

The correct results are, with six decimals,
y'(0.60) = —0.564642, 3" (0.60) = —0.825336.

In y” we only got two correct decimal digits. This is due to cancellation, which is
an important cause of loss of accuracy; see further Sec.2.3.4. Better accuracy can
be achieved by increasing the step h; see Problem 1.1.5 at the end of this section.

A very important equation of Mathematical Physics is the Poisson equa-

tion:%

0%u  0%u
972 + 3—7;2 = f(z,y), (x,y) €. (1.1.20)

6Siméon Denis Poisson (1781-1840), professor of Ecole Polytechnique. He has also given his
name to the Poisson distribution in probability theory.
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14 Chapter 1. Principles of Numerical Calculations

Here the function f(z,y) is given together with some boundary condition on u(x, y).
Under certain conditions, gravitational, electric, magnetic, and velocity potentials
satisfy the Laplace equation” which is (1.1.20) with f(z,y) = 0.

Finite difference approximations are useful for partial derivatives. Suppose
that € is a rectangular region and introduce a rectangular grid that covers the
rectangle. With grid spacing h and k, respectively, in the x and y directions,
respectively, this consists of the points

r; =x0+1th, 1=0:M, Yy =y +jk, j=0:N.

By (1.1.19), a second order accurate approximation of Poisson’s equation is given
by the five-point operator

2 Wity =2y iy Uigan = Uit Ui
h? 2

Fork=h
Vi = 72 (i +wic1y — 4uij + w1 j + tijo1),

which corresponds to the “computational molecule”

1
1

I
2

h 1

If this is superposed on each grid point we get one equation for the unknown values
w(zi,yj), t=1: M —1,5=1: N —1, at each interior point of the grid.

To get a solution we also need prescribed boundary conditions on w or du/on
on the boundary. The solution can then be obtained in the interior by solving a
system of linear equations.

Review Questions

1.1. Make lists of the concepts and ideas which have been introduced. Review their
use in the various types of problems mentioned.

1.2. Discuss the convergence condition and the rate of convergence of the fixed
point iteration method for solving a nonlinear equation x = F(z).

1.3. What is meant by quadratic convergence of an iterative method for solving a
nonlinear equation.

1.4. What is the trapezoidal rule? What is said about the dependence of its error
on the step length?

"Pierre-Simon, Marquis de Laplace (1749-1827), professor at Ecole Militaire. Laplace was
one of the most influential scientists of his times and did major work in probability and celestial
mechanics.
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Problems and Computer Exercises 15

1.5.

How can Richardson extrapolation be used to improve the accuracy of the
trapezoidal rule?

Problems and Computer Exercises

1.1.

1.2.

1.3.

1.4.

1.5.

Calculate v/10 to seven decimal places using the method in Example 1.1.1.
Begin with zg = 2.

Consider f(z) = 2®—2z—5. The cubic equation f(x) = 0 has been a standard
test problem, since Newton used it in 1669 to demonstrate his method. By
computing (say) f(x) for x = 1,2, 3, we see that = 2 probably is a rather
good initial guess. Iterate then by Newton’s method until you trust that the
result is correct to six decimal places.

The equation 2% —z = 0 has three roots, —1,0, 1. We shall study the behaviour
of Newton’s method on this equation, with the notations used in Sec. 1.1.2
and Figure1.1.3.

(a) What happens if zo = 1/4/3? Show that z,, converges to 1 for any z¢ >
1/v/3. What is the analogous result for convergence to —17?

(b) What happens if 2o = 1/4/5? Show that z,, converges to 0 for any z( €
(—1/V5, 1/v5).

Hint: Show first that if zo € (0, 1/4/5) then 21 € (—z0,0). What can then
be said about zo?

(¢) Find, by a drawing (with paper and pencil), lim z,, if g is a little less than
1/\/§ Find by computation lim z,, if o = 0.46.

(d) A complete discussion of the question in (c) is rather complicated, but
there is an implicit recurrence relation that produces a decreasing sequence
{a; = 1/V/3, az, a3, ...}, by means of which you can easily find lim,, o 2,
for any x € (1/v/5, 1/4/3). Try to find this recurrence.

Answer: a; — f(a;)/f'(a;) = —a;—1; imy, oo T, = (=1)" if 29 € (a4, ai11);

ayr = 0.577, as = 0.462, a3 = 0.450, a4 ~ lim; . a; = 1/\/5 = 0.447.
Calculate f01/2 e® dx

(a) to six decimals using the primitive function.

(b) with the trapezoidal rule, using step length h = 1/4.

(¢) using Richardson extrapolation to A = 0 on the results using step length
h=1/2,and h =1/4.

(d) Compute the ratio between the error in the result in (c¢) to that of (b).
In Example 1.1.4 we computed y”(0.6) for y = cos x, with step length h = 0.01.
Make similar calculations using h = 0.1, h = 0.05 and h = 0.001. Which value
of h gives the best result, using values of y to six decimal places? Discuss
qualitatively the influences of both the rounding errors in the function values

and the error in the approximation of a derivative with a difference quotient
on the result for various values of h.
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16 Chapter 1. Principles of Numerical Calculations

1.6. Give an approximate expression of the form ah?f()(0) for the error of the

estimate of the integral ffh f(z)dz obtained by Richardson extrapolation (ac-
cording to Sec. 1.1.4) from the trapezoidal values T'(h) and T'(2h).

1.2 Some Numerical Algorithms

For a given numerical problem one can consider many different algorithms. Even
if they just differ in small details they can differ in efficiency and reliability and
give approximate answers with widely varying accuracy. In the following we give a
few examples of how algorithms can be developed to solve some typical numerical
problems.

1.2.1 Solving a Quadratic Equation

An early example on pitfalls in computation studied by G. E. Forsythe [111] is the
following: For computing the roots of the quadratic equation az? + bx + ¢ = 0,
a # 0, elementary “text-books” usually give the well-known formula

ri2 = (—b£ Vb2 — 4ac) /(2a).

Using this for the quadratic equation 22 — 56z 4+ 1 = 0 we get the two approximate
real roots

r =28+ /783 ~ 28 + 27.982 = 55.982 + $107°.
ro =28 — V783 ~ 28 — 27.982 = 0.018 + 1107°.

In spite of the fact that the square root used is given to five digits accuracy, we
get only two significant digits in 72, while the relative error in r; is less than 1075,
This shows that there can be very poor relative accuracy in the difference between
two nearly equal numbers. This phenomenon is called cancellation of terms. It
is a very common reason for poor accuracy in numerical calculations.

Notice that the subtraction in the calculation of ro was carried out exactly.
The cancellation in the subtraction only gives an indication of the unhappy conse-
quence of a loss of information in previous steps, due to the rounding of one of the
operands, and is not the cause of the inaccuracy.

In numerical calculations one should if possible try to avoid formulas that give
rise to cancellation, as in the above example. For the quadratic equation this can
be done by rewriting of the formulas. Comparing coefficients on both sides of

2?24 (b/a)x +cla= (x —r1)(x —12) = 2% — (r1 + r2)T + 1172,
we get the relation between coefficients and roots
r1+ry = —b/a, rire = ¢/a. (1.2.1)

A more accurate value of the root of smaller magnitude is obtained by computing
this root from the latter of these relations, We then get

ro = 1/55.982 = 0.0178629 £ 0.0000002.

Five significant digits are now obtained also for this root.
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1.2. Some Numerical Algorithms 17

1.2.2 Recurrence Relations

A common computational task is the evaluation of a polynomial
p(x) = apx™ + az’ + -+ a1z + an
at a given point. This can be reformulated as
p(x)=(-((aox+ar)z+az)x+ -+ apn—1)x + an,
and written as a recurrence relation:
bi(z) =bi—1(x)x +a;, i=1:n. (1.2.2)
We note that this recurrence relation can be used in two different ways:

e it can be used algebraically to generate a sequence of Horner polynomials b;(x)
such that b, (z) = p(x);

e it can be used arithmetically with a specific value x = z1, which is Horner’s
rule for evaluating p(z1) = by, (z1).

Horner’s rule requires n additions and multiplications for evaluating p(z) for x = ;.
Note that if the powers are calculated recursively by xf = x1 -xi_l and subsequently
multiplied by a,—; this requires twice as many multiplications.

When a polynomial p(x) is divided by & — x; the remainder equals p(x1), i.e.
p(z) = (x — x1)q(z) + p(z1). The quantities b;(z1) from the Horner scheme (1.2.2)
are of intrinsic interest because they are the coeflicients of the quotient polynomial
q(z). This algorithm therefore performs the synthetic division

p(‘r)_p(‘rl) :nilb(xl)xn—l—l (123)
E—— 2 i . 2.
The proof of this result is left as an exercise.

Synthetic division is used, for instance, in the solution of algebraic equations,
when already computed roots are successively eliminated. After each elimination,
one can deal with an equation of lower degree. This process is called deflation; see
Sec. 6.5.4. As emphasized there, some care is necessary in the numerical application
of this idea to prevent the propagation of roundoff errors.

The proof of the following useful relation is left as an exercise to the reader:

Lemma 1.2.1.
Let the b; be defined by (1.2.2) and

co = bg, ¢ =b;+xc;_1, i=1:n-—1. (124)
Then p'(z) = cp_1.

Due to their intrinsic constructive quality, recurrence relation are one of the
basic mathematical tools of computation. There is hardly a computational task
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18 Chapter 1. Principles of Numerical Calculations

which does not use recursive techniques. One of the most important and interesting
parts of the preparation of a problem for a computer is therefore to find a recursive
description of the task. Often an enormous amount of computation can be described
by a small set of recurrence relations.

Although recurrence relations are a powerful tool they are also susceptible
to error growth. Each cycle of a recurrence relation not only generates its own
errors but also inherits errors committed in all previous cycles. If conditions are
unfavorable the result may be disastrous. This aspect of recurrence relations and its
prevention is therefore of great importance in computations and has been studied
extensively; see [128].

Example 1.2.1.
Unless used in the right way, errors committed in a recurrence relation can
grow exponentially and completely ruin the results. To compute the integrals

1 n
In:/ Y _dr, i=1:N,
0o T+5

one can use the recurrence relation
I, + 51,1 =1/n, (1.2.5)

which follows from

1, n n—1 1
1
In+51n,1:/ idm:/ 2" Vde = =

0 T +5 0 n

Below we use this formula to compute Ig, using six decimals throughout. For n =0
we have

Iy = [In(z + 5)]5 ~ In6 — In 5 = 0.182322.

Using the recurrence relation we get

I =1-5Ip=1-0.911610 = 0.088390,

I, =1/2 —5I; = 0.500000 — 0.441950 = 0.058050,
Is =1/3 — 51, = 0.333333 — 0.290250 = 0.043083,
I, =1/4—5I3 = 0.250000 — 0.215415 = 0.034585,
Is =1/5— 51, = 0.200000 — 0.172925 = 0.027075,
Is =1/6 — 515 = 0.166667 — 0.135375 = 0.031292,
I; =1/7— 51 = 0.142857 — 0.156460 = —0.013603.

It is strange that Ig > I5, and obviously absurd that I7; < 0! The reason for the
absurd result is that the round-off error € in Iy = 0.18232156. . ., whose magnitude
is about 0.44 - 1079 is multiplied by (—5) in the calculation of I;, which then has
an error of —5e. That error produces an error in I of 52%¢, and so forth. Thus the
magnitude of the error in I7 is 57¢ = 0.0391, which is larger than the true value of

2007/
page



1.2. Some Numerical Algorithms 19

I7. On top of this comes the round-off errors committed in the various steps of the
calculation. These can be shown in this case to be relatively unimportant.

If one uses higher precision, the absurd result will show up at a later stage.
For example, a computer that works with a precision corresponding to about 16
decimal places gave a negative value to Iso although Iy had full accuracy. The
above algorithm is an example of an unpleasant phenomenon, called numerical
instability. In this simple case, one can avoid the numerical instability by reversing
the direction of the recursion.

Example 1.2.2.
If we use the recurrence relation in the other direction,

Iy = (1/n—1I,)/5. (1.2.6)

the errors will be divided by —5 in each step. But we need a starting value. We
can directly see from the definition that I,, decreases as n increases. One can
also surmise that I,, decreases slowly when n is large (the reader is encouraged to
motivate this). Thus we try setting I1o = I11. It then follows that

Iy + 511 = 1/12, Ip =~ 1/72 ~ 0.013889.
(show that 0 < I35 < 1/72 < I1). Using the recurrence relation we get
Iio = (1/11 — 0.013889)/5 = 0.015404, Iy = (1/10 — 0.015404) /5 = 0.016919,
and further

Is = 0.018838, 17 =0.021232, I¢ = 0.024325, 15 = 0.028468,
14 =0.034306, I3 =0.043139, I, =0.058039, I; = 0.088392,

and finally I = 0.182322. Correct!

If we instead simply take as starting value 115 = 0, one gets I;; = 0.016667,
Ip = 0.018889, Iy = 0,016222, I = 0.018978, I; = 0.021204, Is = 0.024331, and
I5, ..., Iy have the same values as above. The difference in the values for I is
0.002778. The subsequent values of I1g, Ig, ..., Iy are quite close because the error
is divided by -5 in each step. The results for I, obtained above have errors which
are less than 1073 for n < 8.

One should not to draw erroneous conclusions from the above example. The
use of a recurrence relation “backwards” is not a universal recipe as will be seen
later on! Compare also Problems 1.2.7 and 1.2.8.

In Sec. 3.3.5 we will study the general linear homogeneous difference equation
of kth order

Yntk + QO1Yntk—1 + -+ aryn =0, (1.2.7)
with real or complex constant coefficients a1,...,ar. The stability properties of

this type of equations are fundamental, since they arise in the numerical solution
of ordinary and partial differential equations.
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20 Chapter 1. Principles of Numerical Calculations

1.2.3 Divide-and-Conquer Strategy

A powerful strategy for solving large scale problems is the divide-and-conquer
strategy (one of the oldest military strategies!). This is one of the most powerful
algorithmic paradigms for designing efficient algorithms. The idea is to split a
high dimensional problem into problems (typically two for sequential algorithms)
of lower dimension. Each of these is then again split into smaller subproblems, and
so forth, until a number of sufficiently small problems are obtained. The solution of
the initial problem is then obtained by combining the solution of the subproblems
working backwards in the hierarchy.

We illustrate the idea on the computation of the sum s = >~ | a;. The usual
way to proceed is to use the recursion

so =0, $;i =8;—1+a;, t=1:n.

Another order of summation is as illustrated below for n = 23 = 8:

aj as as Q4 as Qg a7 as

N SN SN SN S

S1:2 §3:4 $5:6 S7:8
NS N\ /
S1:4 55:8
N\ /
S1:8

where s; ; = a; + -+ + a;. In this table each new entry is obtained by adding its
two neighbors in the row above. Clearly this can be generalized to compute an
arbitrary sum of n = 2 terms in k steps. In the first step we perform n/2 sums of
two terms, then n/4 partial sums each of four terms, etc., until in the kth step we
compute the final sum.

This summation algorithm uses the same number of additions as the first
one. But it has the advantage that it splits the task in several subtasks that can be
performed in parallel. For large values of n this summation order can also be much
more accurate than the conventional order (see Problem 2.3.5).

The algorithm can also be described in another way. Consider the following
summation algorithm

sum = s(i,7);
if j =4+ 1 then sum = a; + a;;
else k= |(i+7)/2]; sum =s(i,k)+s(k+1,5);

end

for computing the sum s(i,5) = a; +--- + a;, j > i. (Here and in the following
|z] denotes the floor of z, i.e. the largest integer < x. Similarly, [z] denotes the
ceiling of z, i.e. the smallest integer > z.)  This function defines s(i,j) in a
recursive way; if the sum consists of only two terms then we add them and return
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1.2. Some Numerical Algorithms 21

with the answer. Otherwise we split the sum in two and use the function again
to evaluate the corresponding two partial sums. Espelid [103] gives an interesting
discussion of such summation algorithms.

The function above is an example of a recursive algorithm—it calls it-
self. Many computer languages (for example, MATLAB) allow the definition of such
recursive algorithms. The divide-and-conquer is a top down description of the
algorithm in contrast to the bottom up description we gave first.

Example 1.2.3.

Sorting the items of an one-dimensional array in ascending or descending order
is one of the most important problem in computer science. In numerical work,
sorting is frequently needed when data needs to be rearranged. One of the best
known and most efficient sorting algorithm, quicksort by Hoare [183], is based
on the divide-and-conquer paradigm. To sort an array of n items, a[0 : n — 1], it
proceeds as follows:

1. Select an element a(k) to be the pivot. Commonly used methods is to select
the pivot randomly or to be the median of the first, the middle, and the last
element in the array.

2. Rearrange the elements of the array a into a left and right subarray, such that
no element in the left subarray is larger than the pivot and no element in the
right subarray is smaller than the pivot.

3. Recursively sort the left and right subarray.

The partitioning of a subarray a[l : r], I < r, in step 2 can proceed as follows.
Place the pivot in a[l] and initialize two pointers ¢ = [, j = r + 1. The pointer i
is incremented until an element a(#) is encountered which is larger than the pivot.
Similarly the pointer j is decremented until an element a(j) is encountered which
is smaller than the pivot. At this point the elements a(i) and a(j) are exchanged.
The process continues until the pointers cross each other. Finally the pivot element
is placed in its correct position.

It is intuitively clear that this algorithm sorts the entire array and that no
merging phase is needed.

There are many other examples of the power of the divide-and-conquer ap-
proach. It underlies the Fast Fourier Transform (Sec.4.6.3) and is used in efficient
automatic parallelization of many tasks such as matrix multiplication; see [100].

1.2.4 Power Series Expansions

In many problems of Applied Mathematics, the solution of a given problem can be
obtained as a power series expansion. Often the convergence of these series are quite
fast. As an example we consider the task of computing, to five decimals, y(0.5),
where y(x) is the solution to the differential equation

"

Yy =—-1y,
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22 Chapter 1. Principles of Numerical Calculations

with initial conditions y(0) = 1, y’(0) = 0. The solution cannot be simply expressed
in terms of elementary functions. We shall use the method of undetermined
coefficients. Thus we try substituting a series of the form:

y(z) = icnﬂﬂn =co+c1r+eax® 4.
n=0
Differentiating twice we get
y'(z) = i n(n —1)c,z™ 2
= gzzo'i‘ 6csx 4+ 12c42% + -4+ (m + 2)(m + 1eppoz™ + - - -,
—zy(z) = —cor — cra? —coa® — - — g™ — - -

Equating coefficients of 2™ in these series gives
co =0, (m+2)(m+ Demga = —¢m—1, m>1

It follows from the initial conditions that ¢g = 1, ¢; = 0. Thus ¢, = 0, if n is not a
multiple of 3, and using the recursion we obtain

3 LL’G LL’g

X
6 180 12060

This gives y(0.5) ~ 0.97925. The x? term is ignored, since it is less than 2 - 1077.
In this example also the first neglected term gives a rigorous bound for the error
(i.e. for the remaining terms), since the absolute value of the term decreases, and
the terms alternate in sign.

Since the calculation was based on a trial substitution, one should, strictly
speaking, prove that the series obtained defines a function which satisfies the given
problem. Clearly, the series converges at least for |z| < 1, since the coefficients
are bounded. (In fact the series converges for all z.) Since a power series can be
differentiated term by term in the interior of its interval of convergence, the proof
presents no difficulty. Note, in addition, that the finite series obtained for y(z)
by breaking off after the z%-term is the exact solution to the following modified
differential equation:

yl)=1-— (1.2.8)

ZClO

12960’

"

y'=—ay y(0)=1,  y'(0)=0,

where the “perturbation term” —'°/12 960 has magnitude less than 10~7 for |z| <
0.5. It is possible to find rigorous bounds for the difference between the solutions
of a differential system and a modified differential system.

The use of power series and rational approximations will be studied in depth
in Chapter 3, where also other more efficient methods than the Maclaurin series for
approximation by polynomials will be treated.

A different approximation problem, which occurs in many variants, is to ap-
proximate a function f specified at a one or two-dimensional grid by a member f*
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of a class of functions which is easy to work with mathematically. Examples are
(piecewise) polynomials, rational functions, or trigonometric polynomials, where
each particular function in the class is specified by the numerical values of a num-
ber of parameters.

In computer aided design (CAD) curves and surfaces have to be represented
mathematically, so that they can be manipulated and visualized easily. For this
purpose spline functions are now used extensively with important applications
in aircraft and automotive industries; see Sec.4.4. The name spline comes from
a very old technique in drawing smooth curves, in which a thin strip of wood or
rubber, called a draftsman’s spline, is bent so that it passes trough a given set of
points. The points of interpolation are called knots and the spline is secured at
the knots by means of lead weights called ducks. Before the computer age splines
were used in ship building and other engineering designs.

Review Questions

2.1. What is a common cause of loss of accuracy in numerical calculations?
2.2. Describe Horner’s rule and synthetic division.

2.3. Give a concise explanation why the algorithm in Example 1.2.1 did not work
and why that in Example 1.2.2 did work.

2.4. Describe the basic idea behind the divide-and-conquer strategy. What is a
main advantage of this strategy? How do you apply it to the task of summing
n numbers?

Problems and Computer Exercises

2.1. (a) Use Horner’s scheme to compute for x = 2
p(x) = 2* + 223 — 32% 4 2.

(b) Count the number of multiplications and additions required for the eval-
uation of a polynomial p(z) of degree n by Horner’s rule. Compare with the
work needed when the powers are calculated recursively by 7 = z - 27~ and
subsequently multiplied by a,_;.

2.2. P(x)=1- %:CQ + ix‘* is a polynomial approximation to cosx for small values
of |z|. Estimate the errors of

P(x), P'(), é/OZP(t)alt7

and compare them for x = 0.1.
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2.3.

2.4.

2.5.

2.6.

Show how repeated synthetic division can be used to move the origin of a
polynomial, i.e. given a1, as,...,ay,, and z, find ¢1, co,..., ¢, so that

palz) = X0 a2t =30 ej(a— 2L

Write a program for synthetic division (with this ordering of the coefficients)
and apply it to this algorithm.

Hint: Apply synthetic division to p,(z), prn—1(x) = (pn(z) — pn(2))/(z — 2),
and so forth.

(a) Show that the transformation made in Problem 1.2.3 can also be expressed
by means of the matrix-vector equation,

c=diag(1,z7%,...,2' ™) Pdiag(1,2,...,2" Y a,
where a = [ay,az,...a,]", ¢ = [c1,¢ca,...¢,]7, and diag (1,2,...,2""!) is a
diagonal matrix with elements z/~!, j = 1 : n. The matrix P € R"*" has

elements
) — 1
)T iz
Pij = i —1

0, otherwise.

0
By convention, (()) =1 here.

(b) Note the relation of P to the Pascal triangle, and show how P can be
generated by a simple recursion formula. Also show how each element of P!
can be expressed in terms of the corresponding element of P. How is the origin
of the polynomial p,(z) moved, if you replace P by P~! in the matrix-vector
equation that defines ¢?

(c) If you reverse the order of the elements of the vectors a, c¢—this may
sometimes be a more convenient ordering—how is the matrix P changed?

Comment: With a terminology to be used much in this book (see Sec.4.1.2),
we can look upon a and c as different coordinate vectors for the same element
in the n-dimensional linear space P,, of polynomials of degree less than n. The
matrix P gives the coordinate transformation.

Derive recurrence relations and write a program for computing the coefficients
of the product r of two polynomials p and g,

m+n—1

(@) = plaate) = (S ) (Lbr ) = S b

k=1

Let a,b be nonnegative integers, with b # 0. The division a/b yields the
quotient g and the remainder r. Show that if ¢ and b have a common factor,
then that number is a divisor of r as well. Use this remark to derive the
Euclidean algorithm for the determination of the greatest common divisor
of a and b.
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2.7. Derive a forward and a backward recurrence relation for calculating the inte-

grals
1 In
1, = / dzx.
o 4z +1

Why is in this case the forward recurrence stable and the backward recurrence
unstable?

2.8. (a) Solve Example 1.2.1 on a computer, with the following changes: Start the
recursion (1.2.5) with Iy = In1.2, and compute and print the sequence {I,,}
until I,, for the first time becomes negative.

(b) Start the recursion (1.2.6) first with the condition I1g = I39, then with
Isg = I39. Compare the results you obtain and assess their approximate
accuracy. Compare also with the results of 2.8 (a).

*2.9. (a) Write a program (or study some library program) for finding the quotient
Q(z) and the remainder R(z) of two polynomials A(x), B(x), i.e.

A(z) = Q(x)B(z) + R(x), degR(x) < deg B(z).

(b) Write a program (or study some library program) for finding the coeffi-
cients of a polynomial with given roots.

*2.10. (a) Write a program (or study some library program) for finding the greatest
common divisor of two polynomials. Test it on a number of polynomials of
your own choice. Choose also some polynomials of a rather high degree, and
do not only choose polynomials with small integer coefficients. Even if you
have constructed the polynomials so that they should have a common divisor,
rounding errors may disturb this, and some tolerance is needed in the decision
whether a remainder is zero or not. One way of finding a suitable size of
the tolerance is to make one or several runs where the coefficients are subject
to some small random perturbations, and find out how much the results are
changed.

(b) Apply the programs mentioned in the last two problems for finding and
eliminating multiple zeros of a polynomial.

Hint: A multiple zero of a polynomial is a common zero of the polynomial
and its derivative.

1.3 Matrix Computations

Matrix computations are ubiquitous in Scientific Computing. A survey of basic
notations and concepts in matrix computations and linear vector spaces is given in
Appendix A. This is needed for several topics treated in later chapters of this first
volume. A fuller treatment of this topic will be given in Vol. II.

In this section we focus on some important developments since the 1950s in
the solution of linear systems. One is the systematic use of matrix notations and
the interpretation of Gaussian elimination as matrix factorization. This decom-
positional approach has several advantages, e.g., a computed factorization can
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26 Chapter 1. Principles of Numerical Calculations

often be used with great saving to solve new problems involving the original ma-
trix. Another is the rapid developments of sophisticated iterative methods, which
are becoming increasingly important as the size of systems increase.

1.3.1 Matrix Multiplication

A matrix® A is a collection of m x n numbers ordered in m rows and n columns

ail ai2 e A1n

a1 a9 N a9on,
A= (aij) =

adm1 Am2 ... Qmn

We write A € R"™*™, where R™*" denotes the set of all real m x n matrices. If
m = n, then the matrix A is said to be square and of order n. If m # n, then A is
said to be rectangular.

The product of two matrices A and B is defined if and only if the number of
columns in A equals the number of rows in B. If A € R™*? and B € RP*" then

P
C = AB e R™*", cij = aiby;, 1<i<m, 1<ij<n  (13.1)
k=1

The product BA is only defined if m = n and then BA € RP*P. Clearly matrix
multiplication is in general not commutative. In the exceptional case that AB = BA
holds, the matrices A and B are said to commute.

Matrix multiplication satisfies the associative and distributive rules

A(BC) = (AB)C,  A(B+C) = AB + AC.

However, the number of arithmetic operations required to compute, the left- and
right-hand sides of these equations can be very different!

Example 1.3.1.

Let the three matrices A € R™*P, B € RP*™, and C € R"*4 be given. Then
computing the product ABC as (AB)C requires mn(p+ ¢) multiplications whereas
A(BC) requires pg(m + n) multiplications.

If A and B are square n x n matrices and C = z € R"*!, a column vector of
length n, then computing (AB)x requires n?(n + 1) multiplications whereas A(Bx)
only requires 2n? multiplications. When n > 1 this makes a great difference!

It is often useful to think of a matrix as being built up of blocks of lower
dimensions. The great convenience of this lies in the fact that the operations of ad-
dition and multiplication can be performed by treating the blocks as non-commuting
scalars and applying the definition (1.3.1). Of course the dimensions of the blocks
must correspond in such a way that the operations can be performed.

8The first to use the term “matrix” was the English mathematician James Sylvester in 1850.

Arthur Cayley then published Memoir on the Theory of Matrices in 1858, which spread the
concept.
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Example 1.3.2.
Assume that the two n X n matrices are partitioned into 2 x 2 block form

A11 A12 Bll B12
A= B=
(AQI Azz) ’ <le 322) ’

where A1; and Bi; are square matrices of the same dimension. Then the product
C = AB equals

- (AllBll + A12Bo1 A11Bio + A12B22> (1.3.2)
A21B11 + AseBo1 A21Bia + AsaBas ) - o

Be careful to note that since matrix multiplication is not commutative the order of
the factors in the products cannot be changed! In the special case of block upper
triangular matrices this reduces to

<R11 R12> <511 512) _ <R11511 R11512+R12522> (1.3.3)
0  Ro 0 So 0 R225% ’ e

Note that the product is again block upper triangular and its block diagonal simply
equals the products of the diagonal blocks of the factors.

It is important to know roughly how much work is required by different matrix
algorithms. By inspection of (1.3.1) it is seen that computing the mp elements ¢;;
in the product C = AB requires mnp additions and multiplications.

In matrix computations the number of multiplicative operations (x, /) is usu-
ally about the same as the number of additive operations (+,—). Therefore, in
older literature, a flop was defined to mean roughly the amount of work associated
with the computation

5= s+ ajibyy,

i.e. one addition and one multiplication (or division). In more recent textbooks (e.g.,
Golub and Van Loan [155, 1996]) a flop is defined as one floating point operation
doubling the older flop counts.® Hence, multiplication C = AB of two square
matrices of order n requires 2n® flops. The matrix-vector multiplication y = A,
where A € R" " and x € R", requires 2mn flops.'®

Operation counts are meant only as a rough appraisal of the work and one
should not assign too much meaning to their precise value. On modern computer
architectures the rate of transfer of data between different levels of memory of-
ten limits the actual performance. Also usually ignored is the fact that on many
computers a division is 5—10 times slower than a multiplication.

An operation count still provides useful information, and can serve as an
initial basis of comparison of different algorithms. It implies that the running time
for multiplying two square matrices on a computer roughly will increase cubically

9Stewart [300, p.96] uses flam (floating point addition and multiplication) to denote an “old”
flop.

10To add to the confusion, in computer literature flops means floating point operations per
second.
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28 Chapter 1. Principles of Numerical Calculations

with the dimension n. Thus, doubling n will approximately increase the work by a
factor of eight; this is also apparent from (1.3.2).

An intriguing question is whether it is possible to multiply two matrices
A, B € R™" (or solve a linear system of order n) in less than n? (scalar) multi-
plications. The answer is yes! Strassen [305] developed a fast algorithm for matrix
multiplication, which, if used recursively to multiply two square matrices of dimen-
sion n = 2, reduces the number of multiplications from n3 to n'°827 = p2807.
The key observation behind the algorithm is that the block matrix multiplication
(1.3.2) can be performed with only seven block matrix multiplications and eighteen
block matrix additions. Since for large dimensions matrix multiplication is much
more expensive (2n® flops) than addition (2n? flops) this will lead to a saving in
operations.

It is still an open (difficult!) question what the minimum exponent w is, such
that matrix multiplication can be done in O(n*) operations. The best upper bound
known in 2002 is w < 2.376; see Higham [180, Ch. 23]. (Note that for many of the
theoretically “fast” methods large constants are hidden in the O notation.)

1.3.2 Solving Linear Systems by LU Factorization

The solution of linear systems of equations is the most frequently encountered
task in scientific computing. One important source of linear systems is discrete
approximations of continuous differential and integral equations.

A linear system can be written in matrix-vector form as

aiy a2 - Qip z1 b1
a1 G2 - Q2p T2 bo

=17 (1.3.4)
Am1 Am2 tee Amn Tn bm

where a;; and b;, 1 < i <m, 1 < j < n are known input data and the task is to
compute the unknowns z;, 1 < j < n. More compactly we write Az = b, where
A€ R™*" is a matrix and z € R™ and b € R™ are column vectors.

Solving linear systems by Gaussian elimination'! is taught in elementary
courses in linear algebra. Although this algorithm in theory seems deceptively sim-
ple the practical solution of large linear systems is far from trivial. In the 1940s at
the beginning of the computer age there was a mood of pessimism among mathe-
maticians about the possibility of accurately solving systems even of modest order,
say n = 100. Today there is a deeper understanding of how Gaussian elimination
performs in finite precision arithmetic. Linear systems with hundred of thousands
unknowns are now routinely solved in scientific computing!

' Named after the German mathematician Carl Friedrich Gauss (1777-1855), but known already
in China as early as in the first century BC. Gauss was one of the greatest mathematician of the
19th century. He spent most of his life in Gottingen, where in his dissertation gave the first proof of
the Fundamental Theorem of Algebra. He has made fundamental contributions to number theory,
differential geometry, celestial mechanics and geodesy. He introduced the method of least squares
and put it on a solid foundation.
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Linear systems which (possibly after a permutation of rows and columns)
are of triangular form are particularly simple to solve. Consider a square upper
triangular linear system (m =n)

U1l ... Ulp—1 Uln 1 b1
Un—1,n—1 Un—1,n Tn—1 bn—l

The matrix U is nonsingular if and only if
det(U) = U1l Un—1,n—1Unn 75 0.

If this is the case the unknowns can be computed by the following recursion

n

T = by /Unn, T, = (bi — Z uikxk)/uii, i=n—1:-1:1. (1.3.5)
k=i+1

Since the unknowns are solved in backward order this is called back-substitution.
Thus the solution of a triangular system of order n can be computed in only about
n? flops; this is the same amount of work as required for multiplying a vector by a
triangular matrix.

Similarly, a square linear system of lower triangular form Lz = b,

11 T b1
lor a2 zo || b2
lnl ln2 v lnn Tn bn

where L is nonsingular, can be solved by forward-substitution
i—1
xr, = bl/llla €Xr; = (bl - Z lika)/l“‘, 1=2:n. (136)
k=1

(Note that by reversing the order of the rows and columns an upper triangular
system is transformed into a lower triangular and vice versa.)

When implementing a matrix algorithm on a computer, the order of operations
in matrix algorithms may be important. One reason for this is the economizing of
storage, since even matrices of moderate dimensions have a large number of ele-
ments. When the initial data is not needed for future use, computed quantities may
overwrite data. To resolve such ambiguities in the description of matrix algorithms
it is important to be able to describe computations like those in equations (1.3.5)
in a more precise form. For this purpose we will use an informal programming
language, which is sufficiently precise for our purpose but allows the suppression
of cumbersome details. We illustrate these concepts on the back-substitution al-
gorithm given above. In the following back-substitution algorithm the solution x
overwrites the data b.
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Algorithm 1.1. Back-Substitution.

Given a nonsingular upper triangular matrix U € R™*™ and a vector b € R", the
following algorithm computes z € R" such that Ux = b:

fori=n:(-1):1

si= Y wikbs;
k=i+1
bi = (bz — s)/uii;
end

Here x := y means that the value of y is evaluated and assigned to x. We use the
convention that when the upper limit in a sum is smaller than the lower limit the
sum is set to zero.

In the above algorithm the elements in U are accessed in a row-wise manner.
In another possible sequencing of the operations the elements in U are accessed
column-wise. This gives the following algorithm:

fork=n:(-1):1
bi = by /ukk;
fori=k—1:(-1):1
b; := b; — wikby;
end

end

Such differences sequencing of the operations can influence the efficiency of the
implementation depending on how the elements in the matrix U are stored.

Gaussian elimination uses the following elementary operation, which can be
performed without changing the set of solutions:

e Interchanging two equations.
e Multiplying an equation by a nonzero scalar o.
e Adding a multiple « of the ith equation to the jth equation.

These operations correspond in an obvious way to row operations carried out on the
augmented matrix (A, b). By performing a sequence of such elementary operations
the system Az = b can be transformed into an upper triangular system which, as
shown above, can be solved by recursive substitution.

In Gaussian elimination the unknowns are eliminated in a systematic way, so
that at the end an equivalent triangular system is produced, which can be solved
by substitution. Consider the system (1.3.4) with m = n and assume that a1 # 0.
Then we can eliminate x; from the last (n—1) equations by subtracting from the ith
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equation the multiple l;7 = a;1/a11, of the first equation. The last (n — 1) equations
then become

ayy - ab)\ (2 b
a5122) . a/'£7,272 In b,ELQ)
where the new elements are given by
2 1075
az('j) =ajj — —— = a;j — lpayy,

ail
552) Zbi—lilbl, i,j=2:n.

This is a system of (n — 1) equations in the (n — 1) unknowns za,...,z,. All
following steps are similar. In step k, k =1 : n — 1, if agfg) # 0, we eliminate xy,
from the last (n — k) equations giving a system containing only xp41,...,z,. We

take I = az(.l,z) / a,(clz), and the elements of the new system are given by

o _ SN (k)

+1) _ ik Tkj ‘

Qg = Qgm — Ty~ % likay;
Ak

B =) — b =k +1:n.

The diagonal elements a11, a§22), ey aSZ},)z, which appear during the elimination

are called pivotal elements. As long as these are nonzero, the elimination can be

continued. After (n — 1) steps we get the single equation
a\™Max, = b,

Collecting the first equation from each step we get

Y (6
Agy 1t Gy T2 | | by (1.3.7)

) N/ g
where we have introduced the notations az(-;) = a;j, bz(-l) = b; for the coeflicients in

the original system. Thus (1.3.4) has been reduced to an equivalent nonsingular,
upper triangular system (1.3.7), which can be solved by back-substitution.

We remark that no extra memory space is needed to store the multipliers.
When [;;, = al(;:) / agfg) is computed the element aEZH) becomes equal to zero, so the
multipliers can be stored in the lower triangular part of the matrix. Note also that if
the multipliers /;; are saved, then the operations on the vector b can be carried out
at a later stage. This observation is important in that it shows that when solving a

sequence of linear systems

Axi:bi; i:l:p, ZEGRH, biERna
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32 Chapter 1. Principles of Numerical Calculations

with the same matriz A but different right-hand sides the operations on A only have
to be carried out once.

We now show another interpretation of Gaussian elimination. For notational
convenience we assume that m = n and that Gaussian elimination can be carried
out without pivoting. Then Gaussian elimination can be interpreted as computing
the factorization A = LU of the matrix A into the product of a unit lower triangular
matrix L and an upper triangular matrix U.

Depending on whether the element a;; lies on or above or below the principal
diagonal we have

i+1 [ . .
a<n>={"'_a("+)‘a§j), i<

Y =al™ =0, i>j.
Thus the elements a;;, 1 <4, j < n, are transformed according to

k)

(k+1)
] J

al ™ =all? —lpal?, k=1:p, p=min(i-1,j). (1.3.8)

If these equations are summed for k = 1 : p, we obtain

p p
k+1 k 1 k
Z(az('jJr - ‘%('j)) = al('?Jr ) — Qij = _Zlikal(cj)'
k=1 k=1

This can also be written

i—1
afy) + > lika,(cj), i < J;
k=1

J
0+ ), >,
k=1

Q5 =

or, if we define l;; =1,i=1:n,

T

a;j = Z Likurg, Uk = ag;), r = min(, j). (1.3.9)
k=1

However, these equations are equivalent to the matrix equation
A = LU7 L = (lik)7 U = (ukj),

Here L and U are lower and upper triangular matrices, respectively. Hence GE
computes a factorization of A into a product of a lower and an upper triangular
matrix, the LU factorization of A. Note that since the unit diagonal elements in
L need not be stored it is possible to store the L and U factors in an array of the
same dimensions as A.
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Algorithm 1.2. LU Factorization.

Given a matrix A = A € R and a vector b = b() € R”, the following
algorithm computes the elements of the reduced system of upper triangular form
(1.3.7). Tt is assumed that al®) # 0, k = 1: n:

fork=1:n-1
fori=k+1:n

zk — gt k)/a(k)’ k+1) 07
for j=k+1:n
o = o) Lyl
end
end

end

Although the LU factorization is just a different interpretation of Gaussian
elimination it turns out to have important conceptual advantages. It divides the
solution of a linear system into two independent steps:

1. The factorization A = LU.
2. Solution of the systems Ly = b and Ux = y.

The LU factorization is a prime example of the decompositional approach to
matriz computation. This approach came into favor in the 1950s and early 1960s
and has been named as one of the ten algorithms with most influence on science
and engineering in the 20th century. This interpretation of Gaussian elimination
has turned out to be very fruitful. For example, it immediately follows that the
inverse of A (if it exists) has the factorization

A=)yt =v"tL
This shows that the solution of linear system Az = b,
r=A"=U"YL"'b),

can be computed by solving the two triangular systems Ly = b, Uz = y. Indeed it
has been said (Forsythe and Moler [114]) that

“Almost anything you can do with A~! can be done without it.”

Another example is the problem of solving the transposed system ATz = b.
Since
AT =(@u)" =U"L",
we have that ATz = UT(LTz) = b. Tt follows that z can be computed by solving
the two triangular systems

UTc=b, LTz =c. (1.3.10)
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In passing we remark that Gaussian elimination is an efficient algorithm also
for computing the determinant of a matrix A. It can be shown that the value
of the determinant is unchanged if a row (column) multiplied by a scalar is added
to another row (column) (see Appendix (A.2.4)). Further. if two rows (columns)
are interchanged the value of the determinant is multiplied by (—1). Since the
determinant of a triangular matrix equals the product of the diagonal elements it
follows that

det(A) = (-1)%aVald .- a(m (1.3.11)

nn-*

where ¢ is the number of row interchanges performed.

From Algorithm 1.2 it follows that (n—k) divisions and (n—k)? multiplications
and additions are used in step k to transform the elements of A. A further (n — k)
multiplications and additions are used to transform the elements of b. Summing
over k and neglecting low order terms we find that the number of flops required for
the reduction of Az = b to a triangular system by Gaussian elimination is

n—1 n—1
Z2(n—k)2z2n3/3, Z2(n—k)%n2,
k=1 k=1

for the transformation of A and the right-hand side b, respectively. Comparing this
with the n? flops needed to solve a triangular system we conclude that, except for
very small values of n, the LU factorization of A dominates the work in solving a
linear system. If several linear systems with the same matrix A but different right-
hand sides are to be solved, then the factorization needs to be performed only once!

Pivoting and Stability

If A is nonsingular, then Gaussian elimination can always be carried through pro-
vided row interchanges are allowed. In this more general case, Gaussian elimination
computes an LU factorization of the matrix A obtained by carrying out all row
interchanges on A. In practice row interchanges are needed to ensure the numerical
stability of Gaussian elimination. We now consider how the LU factorization has
to be modified when such interchanges are incorporated.

Consider the case when in step k of Gaussian elimination a zero pivotal element
is encountered, i.e. a,(jc) = 0. (The equations may have been reordered in previous
steps, but we assume that the notations have been changed accordingly.) If A is
nonsingular, then in particular its first k& columns are linearly independent. This
must also be true for the first & columns of the reduced matrix and hence some
element agllz), 1 = k : n must be nonzero, say afjl? # 0. By interchanging rows k and r
this element can be taken as pivot and it is possible to proceed with the elimination.
The important conclusion is that any nonsingular system of equations can be reduced
to triangular form by Gaussian elimination, if appropriate row interchanges are
used.

Note that when rows are interchanged in A the same interchanges must be
made in the elements of the right-hand side b. Also the computed factors L and
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U will be the same as had the row interchanges first been performed on A and the
Gaussian elimination been performed without interchanges.

To ensure the numerical stability in Gaussian elimination it will, except for
special classes of linear systems, be necessary to perform row interchanges not only
when a pivotal element is exactly zero. Usually it suffices to use partial pivoting,
i.e. to choose the pivotal element in step k as the element of largest magnitude in
the unreduced part of the kth column.

(D)) -(0)

is nonsingular for any € # 1 and has the unique solution x; = —z3 = —1/(1 — ¢).
But when ¢ = 0 the first step in Gaussian elimination cannot be carried out. The
remedy here is obviously to interchange the two equations, which directly gives an
upper triangular system.

Suppose that in the system above e = 107%. Then the exact solution, rounded
to four decimals equals z = (—1.0001,1.0001)7. But if Gaussian elimination is
carried through without interchanges, we obtain l; = 10% and the triangular system

Example 1.3.3.
The linear system

0.0001z1 + x5 = 1
(1 —10Yzy = —10%.

Suppose that the computation is performed using arithmetic with three decimal
digits. Then in the last equation the coefficient aé? will be rounded to —10* and
the solution computed by back-substitution is o = 1.000, z; = 0, which is a
catastrophic result!

If before performing Gaussian elimination we interchange the two equations
then we get lo; = 10~% and the reduced system becomes

1+ X9 = 0
(1—10"Hze = 1.
The coefficient aé? is now rounded to 1, and the computed solution becomes Zy =
1.000, 1 = —1.000, which is correct to the precision carried.

In this simple example it is easy to see what went wrong in the elimination
without interchanges. The problem is that the choice of a small pivotal element
gives rise to large elements in the reduced matriz and the coefficient aso in the
original system is lost through rounding. Rounding errors which are small when
compared to the large elements in the reduced matrix are unacceptable in terms of
the original elements! When the equations are interchanged the multiplier is small
and the elements of the reduced matrix of the same size as in the original matrix.

In general an algorithm is said to be backward stable (see Definition 2.4.19)
if the computed solution w equals the exact solution of a problem with “slightly
perturbed data”. It can be shown that backward stability can almost always be
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ensured for Gaussian elimination with partial pivoting. The essential condition
for stability is that no substantial growth occurs in the elements in L and U; see
Theorem 2.4.12.

It is important to note that the fact that a problem has been solved by a
backward stable algorithm does not mean that the error in the computed solution
is small. If the matrix A is close to a singular matrix then the solution is very
sensitive to perturbations in the data. This is the case when the rows (columns) of
A are almost linearly dependent. But this inaccuracy is intrinsic to the problem and
cannot be avoided except by using higher precision in the calculations. Condition
numbers for linear systems are discussed in Sec. 2.4.3.

An important special case, that arises in many applications, is when the matrix
A is symmetric, AT = A, and positive definite i.e.

T Az >0, VYzeR", z#0. (1.3.12)

An important fact is that for linear systems Ax = b where A is symmetric, positive
definite no pivoting is needed for stability in Gaussian elimination. Indeed, unless
the pivots are chosen from the diagonal, pivoting is harmful since it will destroy
symmetry.
For symmetric positive definite matrices there always exists a unique factor-
ization
A=RTR, (1.3.13)

where R is an upper triangular matrix with positive diagonal elements. This is called
the Cholesky factorization'?. The elements in the Cholesky factor R = (r;;)
can be determined directly. The matrix equation A = RTR with R upper triangular
can be written elementwise as

B i—1
Qi3 = Zrkirkj = ZT]”‘T]C]‘ + TiiTij, 1 S ) S] S n. (1314)
k=1 k=1

These are n(n+1)/2 equations for the unknown elements in R. Solving for r;; from
the corresponding equation in (1.3.14), we obtain

i—1 j—1

o - - - B ) ) o - 9 1/2
iy = \Qij — TkiTkj /TZ’L; 1<), Tj5 = \ Q55 — T'kj :
k

1 =1

ol
Il

If properly sequenced, these equations can be used in a recursive fashion to compute
the elements in R, for example, one row at a time. The resulting algorithm requires
n square roots and approximately n3/3 flops, which is about half the work of an
LU factorization.

We remark that for a symmetric indefinite matrix, for example, the matrix in
Example 1.3.3 with € < 1, no Cholesky factorization exists.

12 André-Louis Cholesky (1875-1918) was a French military officer involved in geodesy and sur-
veying in Crete and North Africa just before World War I.
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1.3.3 The Linear Least Squares Problem

A basic problem in science is to fit a mathematical model to given observations
subject to errors. As an example, consider observations (¢;,y;), ¢ = 1 : m, to be
fitted to a model described by a scalar function y(t) = f(c,t), where ¢ € R" is a
parameter vector to be determined. There are two types of shortcomings to take
into account: errors in the input data, and approximations made in the particular
model (class of functions, form). We shall call these measurement errors and
errors in the model, respectively.

Clearly the more observations that are available the more accurately will it be
possible to determine the parameters in the model. One can also see this problems
as analogous to the task of a communication engineer, to filter away noise from the
signal. These questions are connected with both Mathematical Statistics and the
mathematical discipline Approximation Theory.

A simple example is when the model is linear in ¢ and of the form

y(t) = cids(t),
j=1

where ¢;(t) are given (possibly nonlinear) functions. One would like to use a greater
number m of measurements than the number n of unknown parameters in the model.
The resulting equations

Yi = ch(bj(ti)u 1=1: m,
Jj=1

form a linear system Ac =y, where
Ae Rmxn, Q5 = ¢j(ti).

The linear system is said to be overdetermined when m > n. In general such a
system is inconsistent and has no solution. But we can try to find a vector ¢ € R"
such that Ac is the “best” approximation to y. This is equivalent to minimizing the
size of the residual vector r = y — Ac.

Consider now an inconsistent linear system Az = b. There are many possible
ways of defining the “best solution”. A choice which can often be motivated for
statistical reasons, and which also leads to a simple computational problem, is to
take as solution a vector x, which minimizes the sum of the squared residuals, that
is

m
min Y 7 = min ||b — Azl|2, (1.3.15)
where we have used the notation
Izll2 = (o1 * + - + |2 )2 = (@) /2,

for the Euclidean length of a vector x (see Appendix A). We call (1.3.15) a linear
least squares problem and any minimizer z a least squares solution of the
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system Ax = b. The principle of least squares for solving an overdetermined linear
system was first used by Gauss 1801 to successively predict the orbit of the asteroid
Ceres.!3

The set of all solutions to problem (1.3.15) is characterized in the following
theorem.

Theorem 1.3.1.
The vector x minimizes ||b— Az||2 if and only if the residual vector r = b— Ax
is orthogonal to R(A), or equivalently

AT (b — Az) = 0. (1.3.16)

Proof. Let z be a vector for which AT (b — Az) = 0. Then for any y € R", it holds

that b — Ay = (b — Az) + A(xz — y). Squaring this and using (1.3.16) we obtain
16— Ay|3 = b — Az|3 + | Alz = y)lI3 = [Ib — Az]]3,

where equality holds only if A(x —y) =0.

Now assume that AT (b — Azr) = z # 0. Then if 2 —y = —ez we have for
sufficiently small € # 0,

1= Ayll3 = [|b — Az |3 + || A2]|3 — 2¢(A2)" (b — Ax)
= [|b— Azl + €| Az[|3 — 2el|=]3 < b - Ax]3,

so = does not minimize ||b — Azx||2. 0O

It follows from (1.3.16) that any least squares solution must satisfy the normal

equations
ATAz = AT, (1.3.17)

These are always consistent, since
ATh e R(AT) = R(ATA).

Therefore a least squares solution always exists, although it may not be unique.
The range of A and the null space of A7 are two subspaces of R™ that are
fundamental to the least squares problem. They are defined by

R(A)={z€R™| z= Az, x € R"}, (1.3.18)
N(AT) = {y e R™| ATy = 0}. (1.3.19)

If 2 € R(A) and y € N(AT) then 27y = 27 ATy = 0, which shows that A (AT)
is the orthogonal complement of R(A). From Theorem 1.3.1 it follows that a least
squares solution x decomposes the right-hand side b into two orthogonal components

b= Ax +r, r 1 Az (1.3.20)

BGauss claims to have discovered the method of least squares in 1795 when he was 18 years
old.
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r=b— Ax
R(A)

[

T

Figure 1.3.1. Geometric characterization of the least squares solution.

Here Az is the orthogonal projection onto R(A) and 7 = b — Az € N(AT). This
geometric interpretation is illustrated in Figure 1.3.1. Note that although the solu-
tion x to the least squares problem may not be unique the decomposition (1.3.20)
always is unique.

We now give a necessary and sufficient condition for the least squares solution
to be unique.

Theorem 1.3.2.

The matriz ATA is positive definite and hence nonsingular if and only if the
columns of A are linearly independent, that is, when rank (A) = n. In this case the
least squares solution x is unique and given by

= (ATA)"1ATD. (1.3.21)

Proof. 1If the columns of A are linearly independent, then = # 0 = Az # 0.
Therefore  # 0 = 2T ATAz = || Az||2 > 0, and hence ATA is positive definite.

On the other hand, if the columns are linearly dependent, then for some zy # 0
we have Axg = 0. Then xOTATAxo = 0, and therefore ATA is not positive definite.
When ATA is positive definite it is also nonsingular and (1.3.21) follows. O

Example 1.3.4.

The comet Tentax discovered in 1968 is supposed to move within the solar
system. The following observations of its position in a certain polar coordinate
system have been made

r 270 200 161 120 1.02
¢ | 48° 67° 83° 108° 126°

By Kepler’s first law the comet should move in a plane orbit of elliptic or hyperbolic
form, if the perturbations from planets are neglected. Then the coordinates satisfy

r=p/(1—ecosg),
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where p is a parameter and e the eccentricity. We want to estimate p and e by the
method of least squares from the given observations.
We first note that if the relationship is rewritten as

1/p—(e/p)cos¢ =1/r,

it becomes linear in the parameters z1 = 1/p and 23 = e/p. We then get the linear
system Ax = b, where

1.0000 —0.6691 0.3704
1.0000 —0.3907 0.5000
A= 10000 -0.1219 [, b= 0.6211
1.0000  0.3090 0.8333
1.0000  0.5878 0.9804

The least squares solution is = (0.6886 0.4839 )T giving p = 1/x1 = 1.4522 and
finally e = pxo = 0.7027.

We have seen that orthogonal projections play a central role in the least
squares problems. In general, a matrix P, € R™*" is called a projector onto
a subspace S C R™ if and only if it holds that

Piv=v, YWweS, P =P. (1.3.22)

An arbitrary vector v € R™ can then be decomposed as v = Pyv + Pov = v1 + va,
where P, =1 — P;.
In particular, if P is symmetric, P, = P, then we have

PPy =PI(I—-P)v=(P,—PHuv=0, YveR™,

and it follows that PI P, = 0. Hence vfvy = vT PI'Pyv = 0, for all v € R™, i.e.
v9 L v1. In this case P; is the orthogonal projector onto S and P, = I — P; the
orthogonal projector onto S*.

In the full column rank case, rank (A) = n, of the least squares problem, the
residual 7 = b — Ax can be written r = b — Pr(a)b, where

Priay = A(ATA)1AT (1.3.23)
is the orthogonal projector onto R(A). If rank (A) < n, then A has a nontrivial
null space. In this case if & is any vector that minimizes ||Az — bl|2, then the set of
all least squares solutions is

S={z=2+ylyeN(A)}. (1.3.24)

In this set there is a unique solution of minimum norm characterized by = L N'(4),
which is called the pseudoinverse solution.
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1.3.4 The Singular Value Decomposition

In the past the conventional way to determine the rank of a matrix A was to compute
the row echelon form by Gaussian elimination. This would also show whether a
given linear system is consistent or not. However, in floating point calculations it is
difficult to decide if a pivot element, or an element in the transformed right-hand
side, should be considered as zero or nonzero. Such questions can be answered in a
more satisfactory way by using the singular value decomposition (SVD), which
is of great theoretical and computational importance.'

The geometrical significance of the SVD is as follows: the rectangular matrix
A€ R™*"™ m > n, represents a mapping y = Az from R™ to R™. The image of the
unit sphere ||z]|2 = 1 is a hyperellipse in R™ with axes equal to o1 > 02... > 0, > 0.
In other words, the SVD gives orthogonal bases in these two spaces, such that the
mapping is represented by the generalized diagonal matrix ¥ € R™*". This is
made more precise in the following theorem, a constructive proof of which will be
given in Volume II.

Theorem 1.3.3 (Singular Value Decomposition).

Any matriz A € R™*"™ of rank r can be decomposed as

A=UxVv7T, Y= (% 8) € R™*", (1.3.25)
where 3, = diag (01,09, ...,0,) is diagonal and
U= (ui,...,un) € R™™, V= (v1,...,0,) € R™", (1.3.26)

are square orthogonal matrices, UTU = I,,,, VTV = I,,. Here
o1 =022 20p >0

are the r < min(m,n) nonzero singular values of A. The vectors u;, i =1 :m,
and vj, j =1 : nare left and right singular vectors. (Note that if r = n and/or
r =m, some of the zero submatrices in X disappear.)

The singular values of A are uniquely determined. For any distinct singular
value o # 04, i # j, the corresponding singular vector v; is unique (up to a factor
+1). For a singular value of multiplicity p the corresponding singular vectors can
be chosen as any orthonormal basis for the unique subspace of dimension p that
they span. Once the singular vectors v;, 1 < j < r, have been chosen, the vectors
uj, 1 < j <r, are uniquely determined, and vice versa, by

1 1

uj = —Av;,  v;=—ATu;, j=1:7 (1.3.27)
0j 0j

M The SVD was published more than a century ago by Eugenio Beltrami in 1873 and indepen-
dently by Camille Jordan in 1874. Its use in numerical computations is much more recent since a
stable algorithm for computing the SVD, did not become available until the publication of Golub
and Reinsch [154] in the early 1970’s.
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By transposing (1.3.25) we obtain AT = VXTUT, which is the SVD of A”.
Expanding (1.3.25), the SVD of the matrix A can be written as a sum of r matrices

of rank one,
ks
A= g UiuiviT.
i=1

The SVD gives orthogonal bases for the range and null space of A and AT Suppose
that the matrix A has rank r < min(m,n). It is easy to verify that

R(A) = span (u1,...,u), N(AT) = span (upy1,...,um), (1.3.28)
R(AT) = span (vy, .. .,v,), N(A) = span (Vp41,--.,Un)- (1.3.29)

We remark that the SVD generalizes readily to complex matrices. The SVD
of a matrix A € C™*" is

A=UxVE, 2::(%‘8)e;Rm“z (1.3.30)
where the singular values 01,09, ..., 0, are real and non-negative and U and V are

square unitary matrices, UU = I,,,, VHV = I,,. (Here A" denotes the conjugate
transpose of A.)

Let A be a matrix of rank r < min(m,n), and E a matrix of small random
elements. Then it is most likely that the perturbed matrix A+ F has maximal rank
min(m, n). However, since A 4+ E is close to a rank deficient matrix, it should be
considered as having numerical rank equal to r. In general, the numerical rank
assigned to a matrix should depend on some tolerance ¢, which reflects the error
level in the data and/or the precision of the arithmetic used.

It can be shown that perturbations of an element of a matrix A result in per-
turbations of the same, or smaller, magnitude in its singular values. This motivates
the following definition of numerical rank:

Definition 1.3.4.
A matriv A € R™*™ is said to have numerical §-rank equal to k if

01> ...20,>0> 041 > ... >0p, p=min(m,n),

where o; are the singular values of A. Then the right singular vectors (Vg41,...,0n)
form an orthogonal basis for the numerical null space of A.

Definition 1.3.4 assumes that there is a well defined gap between o1 and og.
When this is not the case the numerical rank of A is not well defined!

Example 1.3.5.
Consider an integral equation of the first kind

[ 0061 = g0, kst ="
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on —1 < ¢ < 1. If this equation is discretized using a uniform mesh on [—1,1] and
the trapezoidal rule, a finite-dimensional linear system K f = g is obtained, where
K eR"™" and f,g € R™.

10°

10° + % B
2 X

10° R

107+ x 4

10° x 4

10° x B
0 x

10 B

1077 x E

10" x i

-16

10 X000k, ]

%

107 1 1 1 1 1 1 1 1 1

0 10 20 30 40 50 60 70 80 90 100

Figure 1.3.2. Singular values of a numerically singular matrizx.

For n = 100 the singular values o} of the matrix K were computed in IEEE
double precision with a unit roundoff level of 1.11- 1071 (see Sec.2.2.3). They are
displayed in logarithmic scale in Figure1.3.2. Note that for k£ > 30 all o are close
to roundoff level, so the numerical rank of K certainly is smaller than 30. This
means that the linear system K f = g is numerically under-determined and has a
meaningful solution only for special right-hand sides g.

If there is a vector ¢ # 0 such that Ac = 0 and the least squares solution is not
unique. Then there exists a unique least squares solution of minimum Euclidean
length, which solves the least squares problem

mig |2fla, S = {z € R"| [|p— Aa|l; = min}. (1.3.31)

In terms of the SVD (1.3.25) of A the solution to (1.3.31) can be written z = ATb,
where the matrix AT is

oo

t — yytyT t_
At = vxiyT, 2:_(0 0

) e R™™, (1.3.32)
The matrix A" is unique and called the pseudoinverse of A and x = A'b is the
pseudoinverse solution. Note that problem (1.3.31) includes as special cases the
solution of both overdetermined and underdetermined linear systems.

The pseudoinverse Af is often called the Moore—Penrose inverse. Moore
developed the concept of the general reciprocal in 1920. In 1955 Roger Penrose [258]
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gave an elegant algebraic characterization and showed that X = A' is uniquely
determined by the four Penrose conditions:

(1) AXA= A, (2) XAX =X, (1.3.33)
(3) (AX)T = AX, (4) (xA)T =XA. (1.3.34)

It can be directly verified that X = AT given by (1.3.32) satisfies these four condi-
tions. In particular this shows that A' does not depend on the particular choices
of U and V in the SVD.

1.3.5 Sparse Matrices and Iterative Methods

Following Jim Wilkinson [337], a matrix A will be called sparse if the percentage
of zero elements is large and its distribution is such that it is economical to take
advantage of their presence. The non-zero elements of a sparse matrix may be
concentrated on a narrow band centered on the diagonal. Alternatively they may
be distributed in a less systematic manner.

Example 1.3.6.

A simple example of sparse matrices occurs when the matrix A only has a
few nonzero elements close to the main diagonal. Such matrices are called band
matrices. Band matrices of the form

bl C1
al b2 (6]
A= , (1.3.35)
Qp—2 bn—l Cn—1
Gp—1 bn

are called tridiagonal. Tridiagonal systems of linear equations can be solved by
Gaussian elimination with much less work than the general case. The following
algorithm solves the tridiagonal system Ax = g by Gaussian elimination without
pivoting.

First compute the LU factorization A = LU, where

1 B ca

: ﬂnfl Cn—1
Tn—1 1 ﬁn

The new elements in L and U are obtained from the recursion: Set ; = by, and
Ve = ak/ B, Br+1 = brr1 — ek, k=1:n-—1 (1.3.36)

(Check this by computing the product LU!) The solution to Az = L(Ux) = g is
then obtained in two steps. First a forward substitution to get y = Uz

Y1 = g1, Yk+1 = Ght1 — WYk, k=1:n—1, (1.3.37)
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followed by a backward recursion for x

Tn = Yn/Bn, xp = (yp — ckxp+1)/Br, k=n—-1:-1:1. (1.3.38)

In this algorithm the LU factorization requires only about n divisions and n mul-
tiplications and additions. The solution of the lower and upper bidiagonal systems
require about twice as much work.

Sparse matrices typically arise in many different applications. In Figure1.3.3
we show a sparse matrix and its LU factors. In this case the original matrix is of
order n = 479 and contains 1887 nonzero elements, that is less than 0.9% of the
elements are nonzero. The LU factors are also sparse and contain together 5904
nonzero elements or about 2.6%.
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0 50 100 150 200 250 300 350 400 450 0 50
nz = 1887

Figure 1.3.3. Nonzero pattern of a sparse matriz and its LU factors.

For many classes of sparse linear systems iterative methods are more effi-
cient to use than direct methods such as Gaussian elimination. Typical examples
are those arising when a differential equation in 2D or 3D is discretized. In itera-
tive methods a sequence of approximate solutions is computed, which in the limit
converges to the exact solution z. Basic iterative methods work directly with the
original matriz A and therefore have the added advantage of requiring only extra
storage for a few vectors.

In a classical iterative method due to Richardson [268], starting from 2(®) = 0,
a sequence =) is defined by

2D = 2 4 (b — A2W), k=0,1,2,..., (1.3.39)

where w > 0 is a parameter to be chosen. It follows easily from (1.3.39) that the
error in x(®) satisfies z(*+t1) — gz = (I — wA)(z® — ), and hence

e — = (I —wAF® — ).
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46 Chapter 1. Principles of Numerical Calculations

It can be shown that, if all the eigenvalues A\; of A are real and satisfy
0<a<A<b

then (®) will converge to the solution, when k — oo, for 0 < w < 2/b.

Iterative methods are used most often for the solution of very large linear
systems, which typically arise in the solution of boundary value problems of partial
differential equations by finite difference or finite element methods. The matrices
involved can be huge, sometimes involving several million unknowns. The LU fac-
tors of matrices arising in such applications typically contain order of magnitudes
more nonzero elements than A itself. Hence, because of the storage and number of
arithmetic operations required, Gaussian elimination may be far too costly to use.

In a typical problem for the Poisson equation (1.1.20) the function is to be
determined in a plane domain D, when the values of u are given on the boundary
0D. Such boundary value problems occur in the study of steady states in most
branches of Physics, such as electricity, elasticity, heat flow and fluid mechanics
(including meteorology). Let D be a square grid with grid size h, i.e. x; = xo + ih,
Yy =Yo+jh, 0 <i < N+1,0<j <N+ 1. Then the difference approximation
yields

Ui g1 + Uimg + Uiy + Uit — duig = WP f(zi, ),

(1 <4,j < N). This is a huge system of linear algebraic equations; one equation
for each interior gridpoint, altogether N? unknowns and equations. (Note that
U0, Wi, N+1, U0,j, UN+1,; are known boundary values.) To write the equations in
matrix-vector form we order the unknowns in a vector

U= (U101, UL, N, U215y U2 N, UN,T, - - - s UN,N)-

the so-called natural ordering. If the equations are ordered in the same order we
get a system Au = b where A is symmetric with all nonzero elements located in five
diagonals; see Figure 1.3.4 (left).

In principle Gaussian elimination can be used to solve such systems. But even
taking symmetry and the banded structure into account this would require %~N 4
multiplications, since in the LU factors the zero elements inside the outer diagonals
will fill-in during the elimination as shown in Figure 1.3.4 (right).

The linear system arising from the Poisson equation has several features com-
mon to boundary value problems for all linear partial differential equations. One of
these is that there are at most five nonzero elements in each row of A, i.e. only a
tiny fraction of the elements are nonzero. Therefore one iteration in Richardson’s
method requires only about 5-N2? multiplications or equivalently five multiplications
per unknown. Using iterative methods which take advantage of the sparsity and
other features does allow the efficient solution of such systems. This becomes even
more essential for three-dimensional problems!

As early as in 1954, a simple atmospheric model was used for weather forecast-
ing on an electronic computer. The net covered most of North America and Europe.
During a 48 hour forecast, the computer solved (among other things) 48 Poisson
equations (with different right-hand sides). This would have been impossible at
that time, if the special features of the system had not been used.
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Figure 1.3.4. Structure of the matriz A (left) and L + U (right) for the
Poisson problem, N = 20. (Row-wise ordering of the unknowns.)

1.3.6 Software for Matrix Computations

In most computers in use today the key to high efficiency is to avoid as much
as possible data transfers between memory, registers and functional units, since
these can be more costly than arithmetic operations on the data. This means that
the operations have to be carefully structured. One observation is that Gaussian
elimination consists of three nested loops, which can be ordered in 3-2-1 = 6 ways.
Disregarding the right-hand side vector b, each version does the operations

G+ . () () (k)/a(k)

ij ij akj A
and only the ordering in which they are done differs. The version given above uses
row operations and may be called the “kij” variant, where k refers to step number,
1 to row index, and j to column index. This version is not suitable for program-
ming languages like Fortran 77, in which matrix elements are stored sequentially
by columns. In such a language the form “kji” should be preferred, as well as a
column oriented back-substitution rather than that in Algorithm 1.1.

The first collection of high quality linear algebra software was a series of
algorithms written in Algol 60 that appeared in the handbook [337]. This contains
11 subroutines for linear systems, least squares, and linear programming and 18
routines for the algebraic eigenvalue problem.

The Basic Linear Algebra Subprograms (BLAS) have become an important
tool for structuring linear algebra computations. These are now commonly used
to formulate matrix algorithms and have become an aid to clarity, portability and
modularity in modern software. The original set of BLAS ([213]), introduced in
1979, identified frequently occurring vector operations in matrix computation such
as scalar product, adding of a multiple of one vector to another, etc. For example,
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48 Chapter 1. Principles of Numerical Calculations

the operation

y:=ar+vy

in single precision is named SAXPY. By carefully optimizing them for each specific
computer, performance was enhanced without sacrificing portability. These BLAS
were adopted in the collections of Fortran subroutines LINPACK (see [91]) for linear
systems and EISPACK (see [123]) for eigenvalue problems.

For modern computers it is important to avoid excessive data movements
between different parts of memory hierarchy. To achieve this so called level 3 BLAS
have been introduced in the 1990s. These work on blocks of the full matrix and
perform, for example, the operations

C = aAB + 3C, C:=aATB+pC, C :=aABT + gC.

Level 3 BLAS use O(n?) data but perform O(n?) arithmetic operations. This gives
a surface-to-volume effect for the ratio of data movement to operations.

LAPACK (see [6]) is a linear algebra package initially released in 1992. LA-
PACK was designed to supersede and integrate the algorithms in both LINPACK
and EISPACK. It achieves close to optimal performance on a large variety of com-
puter architectures by expressing as much as possible of the algorithm as calls to
level 3 BLAS. This is also an aid to clarity, portability and modularity. LAPACK
today is the backbone of the interactive matrix computing system MATLAB.

Example 1.3.7.

In 1974 the authors wrote in [80, Sec.8.5.3] that “a full 1000 x 1000 system
of equations is near the limit at what can be solved at a reasonable cost”. Today
systems of this size can easily be handled on a personal computer. The benchmark
problem for the Japanese Earth Simulator, one of the worlds fastest computers in
2004, was the solution of a system of size 1041216 on which a speed of 35.6 x 10'2
operations per second was measured. This is a striking illustration of the progress
in high speed matrix computing that has occurred in these 30 years!

Review Questions

3.1. How many operations are needed (approximately) for
(a) The multiplication of two square matrices A, B € R"*"?
(b) The LU factorization of a matrix A € R"*"?
(b) The solution of Az = b, when the triangular factorization of A is known?

3.2. Show that if the kth diagonal entry of an upper triangular matrix is zero, then
its first k& columns are linearly dependent.

3.3. What is the LU factorization of an n by n matrix A, and how is it related to
Gaussian elimination? Does it always exist? If not, give sufficient conditions
for its existence.
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3.4.

3.5.

3.6.

3.7.

3.8.

3.9.

3.10.

(a) For what type of linear systems are iterative methods to be preferred to
Gaussian elimination?

(b) Describe Richardson’s method for solving Az = b. What can you say
about the error in successive iterations?

Describe the least squares principle for solving an overdetermined linear sys-
tem.

(a) Show that AT = A~! when A is a nonsingular matrix.
(b) Construct an example where G # A" despite the fact that GA = I.

Show that the matrix ATA € R"*" of the normal equations is a symmetric,
positive semidefinite, i.e., 7 (ATA)z > 0, for all z # 0.

Show, using the SVD, that Pr4) = AAT and Priary = ATA.
(a) Construct an example where (AB)" # BTAT.

(b) Show that if A is an m x r matrix, B is an r X n matrix, and rank (4) =
rank (B) = r, then (AB)" = BTAT.

What does the acronym BLAS stand for? What is meant by level 3 BLAS
and why are they used in current linear algebra software?

Problems and Computer Exercises

3.1.

3.2.

3.3.

3.4.

Let A be a square matrix of order n and k a positive integer such that 2P <
k < 2P*1. Show how AF can be computed in at most 2pn® multiplications.
Hint: Write k in the binary number system and compute A%, A% A8, ..., by
successive squaring; e.g., 13 = (1101)y and A'® = ASA*A.

(a) Let A and B be square upper triangular matrices of order n. Show that
the product matrix C = AB is also upper triangular. Determine how many
multiplications are needed to compute C'.

(b) Show that if R is an upper triangular matrix with zero diagonal elements,
then R = 0.

Show that there cannot exist an LU factorization

A (O L\ _ ([l 0 U1l U2
1 1 log oo 0 u )
Hint: Equate the (1,1)-elements and deduce that either the first row or the
first column in LU must be zero.

(a) Consider the special upper triangular matrix of order n,
1 a a a
1 a a
Un (a) — 1 -+ a
1
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3.5.

3.6.

3.7.

3.8.

Determine the solution z to the triangular system U, (a)x = e,, where e, =
(0,0,...,0,1)T is the nth unit vector.

(b) Show that the inverse of an upper triangular matrix is also upper triangu-
lar. Determine for n = 3 the inverse of U, (a). Try also to determine U, (a)~*
for an arbitrary n.

Hint: Note that UU ™! = U~'U = I, the identity matrix.

A matrix H, of order n such that h;; = 0 whenever ¢ > j + 1 is called an
upper Hessenberg matrix. For n = 5 it has the structure

hi1 hi2 hiz his his

ho1 h2e haz has hos

Hs= | 0  hsx hss hss hss
0 0  haz haa has

0 0 0 hss hss

(a) Determine the approximate number of operations needed to compute the
LU factorization of H,, without pivoting.

(b) Determine the approximate number of operations needed to solve the linear
system H,x = b, when the factorization in (a) is given.

Compute the product |L||U]| for the LU factors with and without pivoting
of the matrix in Example 1.3.3. (Here |A| denotes the matrix with elements
|ai;l.)

Let A € R™*"™ be a given matrix. Show that if Az = y has at least one solution

for any y € R", then it has ezactly one solution for any y € R™. (This is a
useful formulation for showing uniqueness of approximation formulas.)

Show that the SVD can be written in the form

A= Z oiuivl, (1.3.40)
i=1

which expresses A as a sum of r matrices of rank one.

1.4 Numerical Solution of Differential Equations
1.4.1 Euler’'s Method

Approximate solution of differential equations is a very important task in scientific
computing. Nearly all the areas of science and technology contain mathematical
models which lead to systems of ordinary (or partial) differential equations. For the
step by step simulation of such a system a mathematical model is first set up,
i.e. state variables are set up which describe the essential features of the state of
the system. Then the laws are formulated, which govern the rate of change of the
state variables, and other mathematical relations between these variables. Finally,
these equations are programmed for a computer to calculate approximately, step by
step, the development in time of the system.
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1.4. Numerical Solution of Differential Equations 51

The reliability of the results depends primarily on the quality of the mathe-
matical model and on the size of the time step. The choice of the time step is partly
a question of economics. Small time steps may give you good accuracy, but also long
computing time. More accurate numerical methods are often a good alternative to
the use of small time steps.

The construction of a mathematical model is not trivial. Knowledge of nu-
merical methods and programming helps also in that phase of the job, but more
important is a good understanding of the fundamental processes in the system, and
that is beyond the scope of this text. It is, however, important to realize that if
the mathematical model is bad, no sophisticated numerical techniques or powerful
computers can stop the results from being unreliable, or even harmful.

A mathematical model can be studied by analytic or computational tech-
niques. Analytic methods do not belong to this text. We want, though, to empha-
size that the comparison with results obtained by applying analytic methods, in the
special cases when they can be applied, can be very useful when numerical methods
and computer programs are tested. We shall now illustrate these general comments
on a particular example.

2-
1.8¢
1.61
1.4r
1.2¢

1+
0.8f
0.6
0.4r

0.2f

00 0.5 i 15 é 215
Figure 1.4.1. Approxzimate solution of the differential equation dy/dt =y,
yo = 0.25, by Euler’s method with h = 0.5.

An initial value problem for an ordinary differential equation is to find y(¢)

such that
dy

2w, ) =c

The differential equation gives, at each point (¢,y), the direction of the tangent to
the solution curve which passes through the point in question. The direction of the
tangent changes continuously from point to point, but the simplest approximation
(which was proposed as early as the 18th century by Euler!®) is that one studies the
solution for only certain values of t = t,, = nh, n =0,1,2,... (h is called the “time

5Leonhard Euler (1707-1783), incredibly prolific Swiss mathematician. He gave fundamental
contributions to many branches of mathematics and to the mechanics of rigid and deformable
bodies as well as to fluid mechanics.

2007/
page



52 Chapter 1. Principles of Numerical Calculations

step” or “step length”) and assumes that dy/dt is constant between the points. In
this way the solution is approximated by a polygon (Figure 1.4.1) which joins the
points (tn,yn), n =0,1,2,..., where

Yn+1l — Yn

Thus we have the simple difference equation known as Euler’s method:
Yo = ¢, Yn+1 :yn+hf(tn7yn)7 TL:O,l,Q,... (142)

During the computation, each y, occurs first on the left-hand side, then recurs
later on the right-hand side of an equation. (One could also call equation (1.4.2) an
iteration formula, but one usually reserves the word “iteration” for the special case
where a recursion formula is used solely as a means of calculating a limiting value.)

1.4.2 An Introductory Example

Consider the motion of a ball (or a shot) under the influence of gravity and air
resistance. It is well known that the trajectory is a parabola, when the air resistance
is neglected and the force of gravity is assumed to be constant. We shall still neglect
the variation of the force of gravity as well as the curvature and the rotation of the
earth. This means that we forsake serious applications, for example, to satellites.
We shall, however, take the air resistance into account. We neglect the rotation of
the shot around its own axis. Therefore we can treat the problem as a motion in a
plane, but we have to forsake the application to, for example, table tennis, baseball
or a rotating projectile. Now we have introduced a number of assumptions, which
define our model of reality.

The state of the ball is described by its position (x,y) and velocity (u,v),
each of which has two Cartesian coordinates in the plane of motion. The z-axis is
horizontal, and the y-axis is directed upwards. Assume that the air resistance is a
force P, such that the direction is opposite to the velocity, and the strength z is
proportional to the square of the speed and to the square of the radius R of the
shot. If we denote by P, and P, the components of P along the x and y directions,
respectively, we can then write

R2
e, (1.4.3)

P, = —mzu, Py=-mzv, z=
where m is the mass of the ball.

For the sake of simplicity we assume that cis a constant. It actually depends on
the density and the viscosity of the air. Therefore, we have to forsake the application
to cannon shots, where the variation of the density with height is important. If one
has access to a good model of the atmosphere, the variation of ¢ would not make
the numerical simulation much more difficult. This contrasts to analytic methods,
where such a modification is likely to mean a considerable complication. In fact,
even with a constant ¢, a purely analytic treatment offers great difficulties.
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1.4. Numerical Solution of Differential Equations 53

Newton’s law of motion tells us that
mdu/dt = P, mdv/dt = —mg + Py, (1.4.4)

where the term —myg is the force of gravity. Inserting (1.4.3) into (1.4.4) and dividing
by m we get
du/dt = —zu, dv/dt = —g — zv, (1.4.5)

and by the definition of velocity,
dx/dt = u, dy/dt = v. (1.4.6)

Equations (1.4.5) and (1.4.6) constitute a system of four differential equations for
the four variables z,y,u,v. The initial state zg,yo, and wg, vy at time to = 0
is assumed to be given. A fundamental proposition in the theory of differential
equations tells us that, if initial values of the state variables u, v, x,y are given at
some initial time t = tg, then they will be uniquely determined for all ¢ > ¢;.

The simulation of the motion of the ball means that, at a sequence of time
instances, t,, n = 0,1,2,..., we determine the approximate values, n, Vn, Tn, Yn-
We first look at the simplest technique, using Euler’s method with a constant time
step h. Set therefore ¢, = nh. We replace the derivative du/dt by the forward
difference quotient (w41 — uy,)/h, and similarly for the other variables. Hence after
multiplication by h, the differential equations are replaced by the following system
of difference equations:

Tn+l = Tn + hunu Yn+1 = Yn + h’Un,
Unt1 = Up — NZpln, (1.4.7)

Unt1 = Vn — h(g + 2nvn),

where )
cR
Zn = —Jud + v2.
From this 41, Yn+1, Unt1, Unt1, etc. are solved, step by step, for n =0,1,2,...,
using the provided initial values xg, yo, uo and vg.

We performed these computations until y,+1 became negative for the first
time, with g = 9.81, ¢ = 60°, and the initial values

x0=0, yo=0, wug=100cos¢p, vy = 100sin ¢.

Curves obtained for h = 0.01 and cR?*/m = 0.25i - 1072, i = 0 : 4, are shown in
Figure 1.4.2. There is, in this graphical

representation, also an error due to the limited resolution of the plotting de-
vice.

In Euler’s method the state variables are locally approximated by linear func-
tions of time, one of the often recurrent ideas in numerical computation. We can
use the same idea for computing the coordinate x* of the point where the shot hits
the ground. Suppose that y,41 becomes negative for the first time when n = N.
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Figure 1.4.2. Approximate trajectories computed with Euler’s method with
h=0.01.

For zny < 2 < xy41 we then approximate y by a linear function of z, represented
by the secant through the points (xn,yn) and(zn+1,yYn+1) , L-€.

YN+1 — YN
y=yn + (x — zy)
IN+1 — TN
By setting y = 0 we obtain
x” :xN—yNM. (1.4.8)
YN+1 — YN

This is called (linear) inverse interpolation; see Sec.4.3.3. The error from the
linear approximation in (1.4.8) used for the computation of z* is proportional to
h2. It is thus approximately equal to the error committed in one single step with
Euler’s method, and hence of less importance than the other error.

The case without air resistance (i = 0) can be solved exactly. In fact it can
be shown that

¥ = 2ugup/9.81 = 5000 - V/3/9.81 ~ 882.7986.

The computer produced x* = 883.2985 for h = 0.01, and x* ~ 883.7984 for h = 0.02.
The error for h = 0.01 is therefore 0.4999, and for A = 0.02 it is 0.9998. The
approximate proportionality to h is thus verified, actually more strikingly than
could be expected!

It can be shown that the error in the results obtained with Fuler’s method
is also proportional to h (not h?). Hence a disadvantage of the above method is
that the step length A must be chosen quite small if reasonable accuracy is desired.
In order to improve the method we can apply another idea mentioned previously,
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1.4. Numerical Solution of Differential Equations 55

namely Richardson extrapolation. (The application differs a little from the one you
saw previously, because now the error is approximately proportional to h, while
for the trapezoidal rule it was approximately proportional to h%.) For i = 4, the
computer produced z* =~ 500.2646 and x* =~ 500.3845 for, respectively, h = 0.01
and h = 0.02. Now let * denote the ezact horizontal coordinate of the landing
point. Then

x* — 500.2646 ~ 0.01k, x* —500.3845 ~ 0.02k.
By elimination of k£ we obtain
x* &~ 2-500.2646 — 500.3845 = 500.1447,

which should be a more accurate estimate of the coordinate. By a more accurate
integration method we obtained 500.1440. So in this case, we gained more than two
decimal digits by the use of Richardson extrapolation.

The simulations shown in Figure 1.4.2 required about 1500 time steps for each
curve. This may seem satisfactory, but we must not forget that this is a very small
task, compared with most serious applications. So we would like to have a method
that allows much larger time steps than Euler’s method.

1.4.3 Second Order Accurate Methods

In step by step computations we have to distinguish between the local error, i.e.
the error that is committed at a single step, and the global error, that is the error
of the final results. Recall that we say that a method is accurate of order p if its
global error is approximately proportional to h?. Euler’s method is only first order
accurate; we shall present a method that is second order accurate. To achieve the
same accuracy as with Euler’s method the number of steps can then be reduced
to about the square root of the number of steps in Euler’s method. In the above
ball problem this means /1500 = 40 steps. Since the amount of work is closely
proportional to the number of steps this is an enormous saving!

Another question is how the step size h is to be chosen. It can be shown that
even for rather simple examples (see below) it is adequate to use very different step
size in different parts of the computation. Hence the automatic control of the step
size (also called adaptive control) is an important issue.

Both requests can be met by an improvement of the Euler method (due to
Runge'%) obtained by the applying the Richardson extrapolation in every second
step. This is different from our previous application of the Richardson idea. We
first introduce a better notation by writing a system of differential equations
and the initial conditions in vector form

dy/dt =1f(t,y), y(a)=c, (1.4.9)

16 Carle David Tolmé Runge (1856-1927), German mathematician. Runge had a chair in Applied
Mathematics in Gottingen from 1904 until his death.
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where y is a column vector that contains all the state variables.'” With this notation
methods for large systems of differential equations can be described as easily as
methods for a single equation. The change of a system with time can then be
thought of as a motion of the state vector in a multidimensional space, where the
differential equation defines the velocity field. This is our first example of the
central role of vectors and matrices in modern computing.

For the ball example, we have a = 0 and by (1.4.5) and (1.4.6)

Y x Y3 0
N I I 7 _ Ya 102 0
y = Y3 - U ’ f(t7Y) - —2y3 ’ c= 10 COS¢ ’
Ya v —g — 2Ya sin ¢

where )
cR
- 2 + 2.
7=V (3)* + ()
The computations in the step which leads from ¢,, to t,41 are then as follows:

i. One Euler step of length h yields the estimate:
erJrl =Yn+ hf(tnuYn)'

ii. Two Euler steps of length %h yield another estimate:

1 » 1
Yntd =¥n+ Ehf(tn;yn); Y1 =Yn4it Ehf(tn+1/2v}’n+1/2)a
where t,, 41/ = t,, + h/2.

iii. Then y,41 is obtained by Richardson extrapolation:
Yol = Yog1 + (Yni1 — Yni1):

It is conceivable that this yields a 2nd order accurate method. It is left as
an exercise (Problem 1.4.2) to verify that this scheme is identical to the following
somewhat simpler scheme known as Runge’s 2nd order method:

kl - hnf(tnayn);
Ky = hof(tn + hn /2, yn + k1/2); (1.4.10)
Yn+1 = ¥Yn + k27

where we have replaced h by h, in order to include the use of variable step size.
Another explanation of the 2nd order accuracy of this method is that the displace-
ment ko equals the product of the step size and a sufficiently accurate estimate of
the velocity at the midpoint of the time step. Sometimes this method is called the
improved Euler method or Heun’s method, but these names are also used to denote
other 2nd order accurate methods.

7The boldface notation is temporarily used for vectors in this section, not in the rest of the
book.
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1.4. Numerical Solution of Differential Equations 57

1.4.4 Adaptive Choice of Step Size

We shall now describe how the step size can be adaptively (or automatically)
controlled by means of a tolerance TOL, by which the user tells the program how
large error he tolerates in values of variables (relative to the values themselves).!®
Compute

0= max 0is 03 = |kai — k14|/]3vil,

where §; is related to the relative error of the ith component of the vector y at the
current step; see below.
A step size is accepted if § < TOL, and the next step should be

hpezt = hmin{1.5,1/TOL/(1.26)},

where 1.2 is a safety factor, since the future is never exactly like the past! The
square root occurring here is due to the fact that this method is 2nd order accurate,
i.e. the global error is almost proportional to the square of the step size and 0 is
approximately proportional to hZ.

A step is rejected if § > TOL, and recomputed with the step size

hnest = hmax{0.1,1/TOL/(1.25)}.

The program needs a suggestion for the size of the first step. This can be
a very rough guess, because the step size control described above will improve it
automatically, so that an adequate step size is found after a few steps (or recompu-
tations, if the suggested step was too big). In our experience, a program of this sort
can efficiently handle guesses that are wrong by several powers of 10. If y(a) # 0
and y'(a) # 0 you may try the initial step size

h= g St/ Sl fat

evaluated at the initial point ¢ = a. When you encounter the cases y(a) = 0 or
y'(a) = 0 for the first time, you are likely to have gained enough experience to
suggest something that the program can handle. More professional programs take
care of this detail automatically.

The request for a certain relative accuracy may cause trouble when some
components of y are close to zero. So, already in the first version of your program,
you had better replace y; in the above definition of § by §; = max{|y;|,0.001}. (You
may sometimes have to replace the default value 0.001 by something else.)

It is a good habit to make a second run with a predetermined sequence of
step sizes (if your program allows this) instead of adaptive control. Suppose that
the sequence of time instances used in the first run is tg, t1, t2,.... Divide each
subinterval [t,,t,+1] into two steps of equal length. So, the second run still has

18With the terminology that will be introduced in the next chapter, TOL is, with the step size
control described here, related to the global relative errors. At the time of writing, this contrasts
to most codes for the solution of ordinary differential equations, in which the local errors per step
are controlled by the tolerance.
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variable step size and twice as many steps as the first run. The errors are therefore
expected to be approximately % of the errors of the first run. The first run can
therefore use a tolerance that is 4 times as large than the error you can tolerate in
the final result. Denote the results of the two runs by y;(¢) and yrr(t). You can
plot 1(yrr(t) — yi(t)) versus ¢; this is an error curve for y;7(t). Alternatively you
can add £ (ys7(t) — yr(t)) to yrr(t). This is another application of the Richardson
extrapolation idea. The cost is only 50% more work than the plain result without
an error curve.

If there are no singularities in the differential equation, &(yrr(t) — yr(t))
strongly overestimates the error of the extrapolated values—typically by a factor
like TOL™'/2. Tt is, however, a non-trivial matter to find an error curve that strictly
and realistically tells us how good the extrapolated results are. The reader is ad-
vised to test experimentally how this works on examples where the exact results are
known.

An easier, though inferior, alternative is to run a problem with two different
tolerances. One reason why it is inferior is that the two runs do not ”keep in step”,
and then Richardson extrapolation cannot be easily applied.

If you request very high accuracy in your results, or if you are going to sim-
ulate a system over a very long time, you will need a method with a higher order
of accuracy than two. The reduction of computing time if you replace this method
by a higher order method can be large, but the improvements are seldom as dras-
tic as when you replace Euler’s method by a second order accurate scheme like
this. Runge’s 2nd order method is, however, no universal recipe. There are spe-
cial classes of problems, notably the problems which are called “stiff”, which need
special methods.

One advantage of a second order accurate scheme when requests for accuracy
are modest, is that the quality of the computed results is normally not ruined by
the use of linear interpolation at the graphical output, or at the post-processing
of numerical results. (After you have used a more than second order accurate
integration method, it may be necessary to use more sophisticated interpolation at
the graphical or numerical treatment of the results.)

Example 1.4.1.
The differential equation

dy/dt = =%y,

with initial condition y(1) = 1, was treated by a program, essentially constructed as
described above, with TOL = 10~* until ¢ = 10*. When comparing the result with
the exact solution y(t) = ¢t~1/2, it was found that the actual relative error stayed
a little less than 1.5 TOL all the time when ¢ > 10. The step size increased almost
linearly with ¢ from A = 0.025 to h = 260. The number of steps increased almost
proportionally to logt; the total number of steps was 374. Only one step had to be
recomputed (except for the first step, where the program had to find an appropriate
step size).

The computation was repeated with TOL = 4 - 10~%. The experience was the
same, except that the steps were about twice as long all the time. This is what can
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be expected, since the step sizes should be approximately proportional to /TOL,
for a second order accurate method. The total number of steps was 194.

Example 1.4.2.

The example of the motion of a ball was treated by Runge’s 2nd order method
with the constant step size h = 0.9. The z-coordinate of the landing point became
z* =~ 500.194, which is more than twice as accurate than the result obtained by
Euler’s method (without Richardson extrapolation) with A = 0.01, which uses about
90 times as many steps.

We have now seen a variety of ideas and concepts which can be used in the
development of numerical methods. A small warning is perhaps warranted here: it
is not certain that the methods will work as well in practice as one might expect.
This is because approximations and the restriction of numbers to a certain number
of digits introduce errors which are propagated to later stages of a calculation. The
manner in which errors are propagated is decisive for the practical usefulness of a
numerical method. We shall examine such questions in Chapter 2. Later chapters
will treat propagation of errors in connection with various typical problems.

The risk that error propagation may up-stage the desired result of a numerical
process should, however, not dissuade one from the use of numerical methods. It is
often wise, though, to experiment with a proposed method on a simplified problem
before using it in a larger context. The development of hardware as well as software
has created a far better environment for such work.

Review Questions

4.1. Explain the difference between the local and global error of a numerical method
for solving a differential equation. What is meant by the order of accuracy of
a method?

4.2. Describe how Richardson extrapolation can be used to increase the order of
accuracy of FEuler’s method.

4.3. Discuss some strategies for the adaptive control of step length and estimate
of global accuracy in the numerical solution of differential equations.

Problems and Computer Exercises

4.1. (a) Integrate numerically using Euler’s method the differential equation dy/dt =
y, with initial conditions y(0) = 1, to ¢t = 0.4:
with step length h = 0.2 and A = 0.1.

(b) Extrapolate to h = 0, using the fact that the error is approximately pro-
portional to the step length. Compare the result with the exact solution of
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4.2.

4.3.

4.4.

the differential equation and determine the ratio of the errors in the results in
(a) and (b).

(c¢) How many steps would have been needed in order to attain, without using
extrapolation, the same accuracy as was obtained in (b)?

(a) Write a program for the simulation of the motion of the ball using Euler’s
method and the same initial values and parameter values as above. Print only
x,y at integer values of ¢ and at the last two points (i.e. for n = N and
n = N + 1) as well as the x-coordinate of the landing point. Take h = 0.05
and h = 0.1. As post-processing, improve the estimates of * by Richardson
extrapolation, and estimate the error by comparison with the results given in
the text above.

(b) In (1.4.7) replace in the equations for z,+1 and y,4+1 the right-hand sides
uy, and vy, by, respectively, 4y, +1 and vy, 1. Then proceed as in (a) and compare
the accuracy obtained with that obtained in (a).

(c) Choose initial values which correspond to what you think is reasonable for
shot put. Make experiments with several values of ug, vy for ¢ = 0. How much
is z* influenced by the parameter cR?/m?

Verify that Runge’s 2nd order method, as described by equation (1.4.10), is
equivalent to the scheme described a few lines earlier (with Euler steps and
Richardson extrapolation).

Write a program for Runge’s 2nd order method with automatic step size con-
trol that can be applied to a system of differential equations. Store the results
so that they can be processed afterwards, for example, for making a table of
the results, and/or curves to be drawn showing y(t) versus ¢, or (for a system)
Yo versus yi, or some other interesting curves.

Apply the program to Examples 1.4.1 and 1.4.2, and to the circle test, that is

/

Vi=—Y2 Y=

with initial conditions y1(0) = 1, y2(0) = 0. Verify that the exact solution is
a uniform motion along the unit circle in the (y1,y2)-plane. Stop the com-
putations after 10 revolutions (¢ = 20w). Make experiments with different

tolerances, and determine how small the tolerance has to be in order that the
circle on the screen should not become “thick”.

1.5 Monte Carlo Methods
1.5.1 Origin of Monte Carlo Methods

In most of the applications of probability theory one makes a mathematical formula-
tion of a stochastic problem (i.e., a problem where chance plays some part) and then
solves the problem by using analytical or numerical methods. In the Monte Carlo
method one does the opposite; a mathematical or physical problem is given, and
one constructs a numerical game of chance, the mathematical analysis of which
leads to the same equations as the given problem, for example, for the probability
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of some event, or for the mean of some random variable in the game. One plays
it IV times and estimates the relevant quantities by traditional statistical methods.
Here N is a large number, because the standard deviation of a statistical estimate
typically decreases only inversely proportional to v/N.

The idea behind the Monte Carlo method was used by the Italian physicist
Enrico Fermi to study neutron diffusion in the early 1930s. Fermi used a small
mechanical adding machine for this purpose. With the development of computers
larger problems could be tackled. At Los Alamos in the late 1940s the use of the
method was pioneered by von Neumann,!? Ulam?® and others for many problems
in mathematical physics including approximating complicated multidimensional in-
tegrals. The picturesque name of the method was coined by Nicholas Metropolis.

The Monte Carlo method is now so popular that the definition is too narrow.
For instance, in many of the problems where the Monte Carlo method is successful,
there is already an element of chance in the system or process which one wants to
study. Thus such games of chance can be considered to be a numerical simulation
of the most important aspects. In this wider sense the “Monte Carlo methods”
also include techniques used by statisticians since around 1900, under names like
experimental or artificial sampling. For example, statistical experiments were used
to check the adequacy of certain theoretical probability laws that had been derived
mathematically by the eminent scientist W. S.Gosset. (He used the pseudonym
“Student” when he wrote on Probability.)

Monte Carlo methods may be used when the changes in the system are de-
scribed with a much more complicated type of equation than a system of ordinary
differential equations. Note that there are many ways to combine analytical meth-
ods and Monte Carlo methods. An important rule is that if a part of a problem
can be treated with analytical or traditional numerical methods, then one should use
such methods.

The following are some areas where the Monte Carlo method has been applied:

(a) Problems in reactor physics; for example, a neutron, because it collides with
other particles, is forced to make a random journey. In infrequent but impor-
tant cases the neutron can go through a layer of (say) shielding material (see
Figure1.5.1).

(b) Technical problems concerning traffic (telecommunication systems, railway net-

works, regulation of traffic lights and other problems concerning automobile
traffic).

(¢) Queuing problems.

19John von Neumann was born Jinos Neumann in Budapest 1903, and died in Washington
D.C. 1957. He studied under Hilbert in Gottingen during 192627, was appointed professor at
Princeton University in 1931, and in 1933 joined the newly founded Institute for Advanced Studies
in Princeton. He built a framework for quantum mechanics, worked in game theory and was one
of the pioneers of computer science.

20Stanislaw Marcin Ulam, born in Lemberg, Poland (now Lwow, Ukraine) 1909, died Santa Fe,
New Mexico, USA, 1984. Ulam obtained his Ph.D. in 1933 from the Polytechnic institute of Lwow,
where he studied under Banach. He was invited to Harward University by G. D. Birkhoff in 1935,
and left Poland permanently in 1939. In 1943 he was asked by von Neumann to come to Los
Alamos, where he remained until 1965.
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Inside Shield Outside

d

Figure 1.5.1. Neutron scattering.

(d) Models of conflict.
(e) Approximate computation of multiple integrals

(f) Stochastic models in financial mathematics.

Monte Carlo methods are often used for the evaluation of high dimensional
(10-100) integrals over complicated regions. Such integrals occur in such diverse
areas as quantum physics and mathematical finance. The integrand is then eval-
uated at random points uniformly distributed in the region of integration. The
arithmetic mean of these function values is then used to approximate the integral;
see Sec. 5.4.5.

In a simulation, one can study the result of various actions more cheaply, more
quickly, and with less risk of organizational problems than if one were to take the
corresponding actions on the actual system. In particular, for problems in applied
operations research, it is quite common to take a shortcut from the actual system to
a computer program for the game of chance, without formulating any mathematical
equations. The game is then a model of the system. In order for the term Monte
Carlo method to be correctly applied, however, random choices should occur
in the calculations. This is achieved by using so-called random numbers; the
values of certain variables are determined by a process comparable to dice throwing.
Simulation is so important that several special programming languages have been
developed exclusively for its use.?!

1.5.2 Basic Concepts in Probability and Statistics

In this section we introduce, without proofs, some basic concepts, formulas and
results from Probability and Statistics which will be used later. Proofs may be
found in most texts on these subjects.

210ne notable early example is the SIMULA programming language designed and built by Ole-
Johan Dahl and Kristen Nygaard at the Norwegian Computing Center in Oslo 1962—-1967. It was
originally built as a language for discrete event simulation, but was influential also because it
introduced object-oriented programming concepts.
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The terminology of Probability and Statistics is varied, in particular within
areas of application. We shall use the following terms for probability distributions
in R

The distribution function of a random variable X is denoted by F(x) and
defined by

F(z) = Pr{X < z}.
Note that F'(x) is non-negative and non-decreasing, F'(—o0) = 0, F(c0) = 1. If
F(z) is differentiable, the (probability) density function 22 is f(r) = F'(x). Note
that

f(z) >0, /Rﬂsc)d:c:l,

and
Pr{X € [z,z + Az]} = f(z) Az + o(Ax).

In the discrete case X can only take on discrete values x;, ¢ = 1: N, and
Pr{X =uxz;}=p;, i=1:N,
where p; > 0 and >, p; = 1.

The mean or the expectation of X is

/xf(:v) dz, continuous case,
R

EX)=<¢ N
Z PiTs, discrete case.
=1

The variance of X equals
0% = var(X) = B((X — p)?),

where p = F(X) and 0 = /var(X) is the standard deviation. The mean and
standard deviation are frequently used as measures of the center and spread of a
distribution.

If Xk, k=1 :n, are random variables with mean values u, then the covari-
ance between X, and X, j # k is is

ok = cov(X;, Xi) = E((X; — py)(Xk — px))-

If cov(X;, Xi) = 0 then X; and X}, are said to be uncorrelated. The covariance
matrix V is the matrix with elements

ijZUjk, 1<j,k<n.
If the random variables Xy, k = 1 : n, are mutually uncorrelated then V is a
diagonal matrix.
22In old literature a density function is often called a frequency function. The term cumulative

distribution is also used as a synonym of distribution function. Unfortunately, distribution or
probability distribution is sometimes used in the meaning of a density function.
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Some formulas for the estimation of mean, standard deviation, etc., from
results of simulation experiments or other statistical data are given in the computer
exercises of Sec.2.3. See also the references to the Matlab Reference Guide in the
problems and exercises of the present section.

1.5.3 Generating Pseudo-Random Numbers

In the beginning, coins, dice and roulettes were used for creating the randomness.
For example, the sequence of twenty digits

11100 01001 10011 01100

is a record of twenty tosses of a coin where “heads” are denoted by 1 and “tails”
by 0. Such digits are sometimes called (binary) random digits, assuming that we
have a perfect coin—i.e. that heads and tails have the same probability of occurring.
We also assume that the tosses of the coin are made in a statistically independent
way.?3

Similarly, decimal random digits could in principle be obtained by using a well-
made icosahedral (twenty-sided) dice, and assigning each decimal digit to two of its
sides. Such mechanical (or analogous electronic) devices have been used to produce
tables of random sampling digits; the first one by Tippett was published in
1927 and was to be considered as a sequence of 40000 independent observations
of a random variable that equals one of the integer values 0,1,2,...,9, each with
probability 1/10. In the early 1950s the Rand Corporation constructed a million-
digit table of random numbers using an electrical “roulette wheel” ([72, 1955]). The
wheel had 32 slots, of which 12 were ignored; the others were numbered from 0 to 9
twice. To test the quality of the randomness several tests were applied. Every block
of a thousand digits in the tables (and also the table as a whole) were tested.?*

Example 1.5.1.

The random number generator, used for drawing of prizes of Swedish Premium
Saving Bonds, was developed in 1962 by Dahlquist [77]. Speed is not a major con-
cern for this application, since relatively few random decimal digits (about 50 000)
are needed. Therefore an algorithm, which is easier to analyze, was chosen. This
uses a primary series of less than 240 decimal random digits produced by some other
means. The length of this primary series is n = p; + p2 + -+ + px, where p; are
prime numbers and p; # p;, @ # j. For the analysis it is assumed that the primary
series is perfectly random.

The primary series is used to generate a much longer secondary series of prime
numbers in a way that is best described by a mechanical analogy. Think of k cog-
wheels with p; cogs, i = 1 : k, and place the digits from the primary series on the
cogs of these. The first digit in the secondary series is obtained by adding the &
digits (modulus 10) that are at the top position of each cog-wheel. Then each wheel

230f course, these assumptions cannot be obtained in practice as shown in theoretical and
experimental studies by Persi Diaconis, Stanford University.

242500 five digit random numbers compiled from this set are given in Handbook of Mathematical
Functions [1, Table 26.11].
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is turned one cog clock-wise and the second digit is obtained in the same way as
the first, etc. After p; - po - - - px steps we are back in the original position. This is
the minimum period of the secondary series of random digits.

For the application mentioned above k = 7 prime numbers, in the range 13 <
p; < 53, are randomly selected. This gives a varying minimum period approximately
equal to 108, which is much more than the number of digits used to produce the
drawing list. Considering the public reaction, the primary series is generated by a
tombola drawing.

Random digits from a table can be packed together to give a sequence of
equidistributed integers. For example, the sequence

55693 02945 81723 43588 81350 76302

can be considered as six five-digit random numbers, where each element in the
sequence has probability of 107° of taking on the value, 0,1,2,...,99,999. From the
same digits one can also construct the sequence

0.556935,0.029455, 0.817235, 0.435885, 0.813505, 0.763025, . . ., (1.5.1)

which can be considered a good approximation to a sequence of independent obser-
vations of a variable which is a sequence of uniform deviates in the interval [0, 1).
The 5 in the sixth decimal place is added in order to get the correct mean (without
this the mean would be 0.499995 instead of 0.5).

In a computer it is usually not appropriate to store a large table of random
numbers. Several physical devices for random number generation have been pro-
posed, using for instance electronic or radioactive noise, but very few seem to have
been inserted in an actual computer system. Instead random numbers are usually
produced by arithmetic methods, so called random number generators. The aim
of a random number generator is to generate a sequence of numbers uy, ug, us, . ..
that imitate the abstract mathematical concept of a sequence of mutually inde-
pendent random variables uniformly distributed over the interval [0,1). Sequences
obtained in this way are uniquely determined by one or more starting values called
seeds, to be given by the user (or some default values). Random number generators
should be analyzed theoretically and be backed by practical evidence from extensive
statistical testing. According to a much quoted statement by D. H. Lehmer2®

“A random sequence is a vague notion ...in which each term is un-
predictable to the uninitiated and whose digits pass a certain number of
tests traditional with statisticians...”

Because the set of floating point numbers in [0, 1] is finite, although very large,
there will eventually appear a number that has appeared before, (say) wi+; = u;
for some positive ¢,j. The sequence {u,} therefore repeats itself periodically for

25Some readers may think that Lehmer’s definition is too vague. There have been many deep
attempts for more precise formulation. See Knuth [204, pp.149-179], who catches the flavor of
the philosophical discussion of these matters and contributes to it himself.
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n > i; the length of the period is j. A truly random sequence is, of course, never
periodic. For this and other reasons, a sequence generated like this is called a
pseudo-random sequence. But the ability to repeat exactly the same sequence
of numbers, which is needed for program verification and variance reduction, is a
major advantage over generation by physical devices.

There are two popular myths about the making of random number generators:

(1) it is impossible; (2) it is trivial . . ..
We have seen that the first myth is correct, unless we add the prefix “pseudo”.?6
The second myth, however, is completely false.

In a computer the fundamental concept is not a sequence of decimal random
digits, but uniform random deviates, i.e. a sequence of mutually independent ob-
servations of a random variable U with a uniform distribution on [0, 1); the density
function of U is thus (with a temporary notation)

(1, ifuel0,1);
i(u) = { 0, otherwise.

Random deviates for other distributions are generated by means of uniform deviates.
For example, the variable X = a+ (b—a)U is a uniform deviate on [a,b). Its density
function is f(z) = fi((x — a)/(b — a)). If [a,b] = [0,1] we usually write “uniform
deviate” (without mentioning the interval). We often write “deviate” instead of
“random deviate”, when the meaning is evident from the context. Algorithms for
generating deviates for several other distributions are given in Sec. 1.5.5.

The most widely used generators for producing pseudo-random numbers are
multiple recursive generators. These are based on a linear recurrence of order k

Tp = MTp_1+ -+ MTp_r +c mod P, (1.5.2)

i.e. x, is the remainder obtained when the right-hand side is divided by the modulus
m. Here P is a positive integer and the coefficients A1,..., Ax belong to the set
{0,1,...,m—1}. The state at step n is s, = (p—g+1,-- ., Zn) and the generator is
started from a seed sg_1 = (zg, ..., zr—1). When m is large the output can be taken
as the number u,, = z,,/m. For k = 1 we obtain the classical mixed congruential
method

Ty = Ap—1 +c¢ mod P.

An important characteristic of a random number generator (RNG) is its pe-
riod, which is the maximum length of the sequence before it begins to repeat. Note
that if the algorithm for computing x,, only depends on x,_1, then the entire se-
quence repeats once the seed zg is duplicated. One can show that if P = 2¢ (which
is natural on a binary computer) the period of the mixed congruential method is
equal to 2! assuming that ¢ is odd and that A gives remainder 1 when divided by

26 «Anyone who considers arithmetic methods of producing random numbers is, of course, in a
state of sin ”, John von Neumann (1951).
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4. Also, if P is a prime number and if the coefficients \; satisfy certain conditions,
then the generated sequence has the maximal period m* — 1; see Knuth [204].

A good RNG should have a period that is guaranteed to be extremely long
to make sure that no wrap-around can occur in practice. The linear congruential
generator defined by

x, = 16807z, _; mod (23! — 1), (1.5.3)

with period (231 —2), was proposed originally by Lewis, Goodman, and Miller (1969).
It has been widely used in many software libraries for statistics, simulation and
optimization. In the survey by Park and Miller [254] this generator was proposed
as a “minimal standard” against which other generators should be judged. A similar
generator but with the multiplier 77 = 823543 was used in MATLAB 4.

Marsaglia [230] pointed out a theoretical weakness of all linear congruential
generators. He showed that if k successive random numbers (z;41,...,Ti+k) at a
time are generated and used to plot points in k-dimensional space, then they will lie
on (k — 1)-dimensional hyperplanes, and will not fill up the space; see Figure 1.5.2
(left). More precisely the values will lie on a set of, at most (k!m)/* =~ (k/e)m!/*
equidistant parallel hyperplanes in the k-dimensional hypercube (0,1)*. When the
number of hyperplanes is too small, this obviously is a strong limitation to the k-
dimensional uniformity. For example, for m = 23! —1 and k = 3, this is only about
1600 planes. This clearly may interfere with a simulation problem.

If the constants m,a and ¢ are not very carefully chosen, there will be many
fewer hyperplanes than the maximum possible. One such infamous example is the
linear congruential generator with a = 65539,¢ = 0 and m = 23! used by IBM
mainframe computers for many years.

Another weakness of linear congruential generators is that their low-order
digits are much less random than their high-order digits. Therefore when only part
of a generated random number is used one should pick the high-order digits.

One approach to better generators is to combine two RNGs. One possibility
is to use a second RNG to shuffle the output of a linear congruential generator. In
this way it is possible to get rid of some serial correlations in the output; see the
generator ranl described in Press et. al. [263, Chapter 7.1].

A good generator should have been analyzed theoretically and be supported by
practical evidence from extensive statistical and other tests. Knuth [204, Chapter 3]
points out important ideas, concepts and facts of the topic, but also mentions some
scandalously poor random number generators that were in daily use for decades
as standard tools in widely spread computer libraries. Although the generators in
daily use have improved, many are still not satisfactory. He ends this masterly
chapter on Random Numbers with the following exercise: Look at the subroutine
library at your computer installation, and replace the random number generators by
good ones. Try to avoid to be too shocked at what you find.

L’Ecuyer [218] writes in 2001:

“Unfortunately, despite repeated warnings over the past years about cer-
tain classes of generators, and despite the availability of much better
alternatives, simplistic and unsafe generators still abound in commer-
cial software.”
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L’Ecuyer reports on tests of RNGs used in some popular software products. Mi-
crosoft Excel used the linear congruential generator

u; = 9821.0uy,—1 + 0.211327 mod 1,

implemented directly for the w; in floating point arithmetic. Its period length
depends on the precision of the arithmetic and it is not clear what it is. Microsoft
Visual Basic used a linear congruential generator with period 224, defined by

x; = 1140671485z, 1 + 12820163 mod (2%%),
and takes u; = x;/ 224 The Unix standard library uses the recurrence

z; = 25214903917z;_1 + 12820163 mod (2%),

with period 248 and sets u; = z;/2%®. The Java standard library uses the same

recurrence but construct random deviates u; from z9; and x9;11. In MATLAB 5 and
later versions the previous linear congruential generator has been replaced with a
much better generator, based on ideas of Marsaglia; see Figure1.5.2 (right). This
generator has a 35 element state vector and can generate all the floating point
numbers in the closed interval [27°3,1 — 27°3]. Theoretically it can generate 21492
values before repeating itself; see Moler [237]. If one generates one million random
numbers a second it would take 10%3° years before it repeats itself!

Some modern linear RNGs can generate huge samples of pseudo-random num-
bers very fast and reliably. The multiple recursive generator MRG32k3a proposed
by L’Ecuyer has a period near 2'°!. The Mersenne twister MT19937 by Mat-
sumoto and Nishimura [233], the “World Champion” among RNGs in year 2000,
has a period length of 219937 — 1!

1.5.4 Testing Pseudo-Random Number Generators

Many statistical tests have been adapted and extended for the examination of arith-
metic methods of (pseudo-)random number generation, in use or proposed for digital
computers. In these the observed frequencies (a histogram) for some random vari-
able associated with the test, is compared with the theoretical frequencies on the
hypothesis that the numbers are independent observations from a true sequence
of random digits without bias. This is done by means of the famous x2-test of
K. Pearson [257)%7, which we now describe.

Suppose that the space S of the random variable is divided into a finite number
r of non-overlapping parts Si,...,S,. These parts may be groups into which the
sample values have been arranged for tabulation purposes. Let the corresponding
group probabilities be

=1

27This paper, published in 1900 by the English mathematician Karl Pearson (1857-1936), is
considered as one of the foundations of modern statistics. In it he gave several examples, e.g. he
proved that some runs at roulette he had observed during a visit to Monte Carlo were so far from
expectations that the odds against an honest wheel was about 1029 to one.
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We now form a measure of the deviation of the observed frequencies v, ..., v,
>, Vi =n, from the expected frequencies

T 2

= i —nmpi)* _ p— (1.5.4)

np; np;
i=1 pi im1 P

It is known that as n tends to infinity the distribution of x? tends to a limit inde-
pendent of Pr(S;), which is the y2-distribution with r — 1 degrees of freedom.

Let x2 be a value such that Pr(x*> > x3) = p%. Here p is chosen so small
that we are practically certain that an event of probability p % will not occur in a
single trial. The hypothesis is rejected if the observed value of x? is larger than X;%-
Often a rejection level of 5% or 1% is used.

Example 1.5.2.

In an experiment consisting of n = 4040 throws with a coin one obtained
v = 2048 heads and hence n — v = 1992 tails. Is this consistent with the hypothesis
that there is a probability of p; = 1/2 of throwing tails? Computing

_ 2 _ _ 2 _ 2
= (v1 —np) n (n—wv1 —np1) _ 2(2048 2020) _ 0.776,
np1 np1 2020

and using a rejection level of 5% we find from a table of the x2-distribution with
one degree of freedom that x2 = 3.841. Hence the hypothesis is accepted at this
level.

Several tests that have been used for testing RNGs are described in Knuth
[204, Sec. 3.3]. Some of them are:

1. Frequency test. This test is to find out if the generated numbers are equidis-
tributed. One divides the possible outcomes in equal non-overlapping intervals
and tallies the amount of numbers in each interval.

2. Poker test. This test applies to generated digits, which are divided into non-
overlapping groups of 5 digits. Within the groups we study some (unordered)
combinations of interest in poker. These are given below together with their

probabilities.
All different: abcde  0.3024
One pair: aabed  0.5040
Two pairs: aabbc  0.1080
Three of a kind: aaabc  0.0720
Full house: aaabb  0.0090

Four of a kind: aaaab  0.0045
Five of a kind: aaaaa 0.0001

3. Gap test. This test examines the length of “gaps” between occurrences of
U; in a certain range. If o and # are two numbers with 0 < a < 8 <
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70 Chapter 1. Principles of Numerical Calculations

1, we consider the length of consecutive subsequences U;,Ujtq,...,Uj;, in
which Uj,, lies between o and g but U;,Uji1,...,U;1r—1 does not. This
subsequence then represents a gap of length 7.

The special cases (a, 8) = (0,1/2) or (1/2,1) give rise to tests called “runs
above the mean” and “runs below the mean”, respectively.

Working with single digits the gap equals the distance between two equal
digits. The probability of a gap of length r in this case equals

pr=0.1(1-0.1)" =0.1(0.9)", r=0,1,2,....

Figure 1.5.2. Plots of pairs of 105 random uniform deviates (U;,Us;11)
such that U; < 0.0001. Left: MATLAB /4; Right: MATLAB 5.

Example 1.5.3.

To test the two-dimensional behavior of a RNG we generated 10° pseudo-
random numbers U;. We then placed the numbers (U;, U;11) in the unit square of
the plot. A thin slice of the surface of the square 0.0001 wide by 1.0 high was then
cut on its left side and stretched out horizontally. This corresponds to plotting only
the pairs (U;, U;11) such that U; < 0.0001 (about 1000 points).

In Figure1.5.2 we show the two plots from the generators in MATLAB 4 and
MATLAB 5, respectively. The lattice structure is quite clear in the first plot. With
the new generator no lattice structure is visible.

A statistical test studied by Knuth [204] is the collision test. In this test
the interval useful [0,1) is first cut into n equal intervals, for some positive integer
n. This partitions the hypercube [0,1)% into & = n? cubic boxes. Then N random
points are generated in [0,1)¢ and we record the number of times C that a point
falls in a box that already has a point in it. The expectation of the random num-
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1.5. Monte Carlo Methods 71

ber C' is known to very good approximation when N is large. Indeed C' follows
approximatively a Poisson distribution with mean equal to N?/(2k).

For this and other similar tests it has been observed that when the sample
size N is is increased the test starts to fail when N reaches a critical value Ny and
the failure is clear for all larger values of N. For the collision test it was observed
by L’Ecuyer [218] that Ny ~ 16p'/? for good linear congruential generators. For
another statistical test called the birthday spacing test the relation was Ny ~ 16p/3.

From such tests is can be concluded that when large sample sizes are needed
many RNGs are unsafe to use and can fail decisively. A period of 224 or even 248
may not be enough. Linear RNGs are also unsuitable for cryptographic applications,
because the output is too predictable. For this reason, nonlinear generators have
been developed, but these are in general much slower than the linear generators.

1.5.5 Random Deviates for Other Distributions

We have so far discussed how to generate sequences that behave as if they were
random uniform deviates U on [0, 1). By arithmetic operations one can form random
numbers with other distributions. A simple example is that the random numbers

S=a+(b—-a)U

will be uniformly distributed on [a, b).

Monte Carlo methods often call for other kinds of distributions. We shall
show here how to use uniform deviates to generate random deviates X for several
other distributions. Many of the tricks used were originally suggested by John von
Neumann in the early 1950s, but have since been improved and refined.

Discrete Distributions

To make a random choice from a finite number k of equally probable possibilities is
equivalent to generate a random integer X between 1 and k. To do this we take
a random deviate U uniformly distributed on [0, 1), multiply it by & and take the
integer part

X = [kUT;

here [x] denotes the smallest integer larger than or equal to z. There will be a
small error because the set of floating point numbers is finite, but this is usually
negligible.

In a more general situation, we might want to give different probabilities to the
values of a variable. Suppose we give the values X = z;, i« = 1 : k, the probabilities
pi, t = 1: k; note that > p; = 1. We can then generate a uniform number U and
let

x1, if0<U <py;

x2, ifpr <U <p1+po;
x=1{

xg, fpr+pr+-pro <UL
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72 Chapter 1. Principles of Numerical Calculations

If k is large, and the sequence {p;} is irregular, it may require some thought how
to find x quickly for a given u. See the analogous question to find a first guess to
the root of equation (1.5.5) below and the discussion in Knuth [204, Sec. 3.4.1].

09 F(x)

L L L L L L
-2 -15 -1 -05 0 05 1 15 2

Figure 1.5.3. Random number with distribution F(x).

A General Transformation from U to X

Suppose we want to generate numbers for a random variable X with a given con-
tinuous or discrete distribution function F(z). (In the discrete case, the graph of
the distribution function becomes a staircase, see the formulas above.) A general
method for this is to solve the equation

F(X)=U, orequivalently, X = F (U), (1.5.5)

see Figure1.5.3. Because F'(z) is a nondecreasing function, and Pr{U < u} =
u,Vu € [0, 1], equation (1.5.5) is proved by the line

Pr{X <z} =Pr{F(X) < F(z)} = Pr{U < F(x)} = F(z).

How to solve (1.5.5) efficiently is the main problem with this method. For some
distributions we shall describe better methods below.

Exponential Deviates

The exponential distribution with parameter A > 0 occurs in queuing problems, for
example, in telecommunication, to model arrival and service times. The important
property is that the intervals of time between two successive events are a sequence
of exponential deviates. The exponential distribution with mean 1/A has density
function f(t) = Ae™*, ¢t > 0, and distribution function

F@):/‘M‘”ﬁzl—e”? (1.5.6)
0

Using the general rule given above, exponentially distributed random numbers X
can be generated as follows: Let U be a uniformly distributed random number in
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[0,1]. Solving the equation 1 — e~*X = U, we obtain
X=-2"'In(1-0).

A drawback of this method is that the evaluation of the logarithm is relatively slow.

One important use of exponentially distributed random numbers is in the
generation of so-called Poisson processes. Such processes are often fundamental in
models of telecommunication systems and other service systems. A Poisson process
with frequency parameter \ is a sequence of events characterized by the property
that the probability of occurrence of an event in a short time interval (¢,¢ + At)
is equal to A-At + o(At), independent of the sequence of events previous to time
t. An “event” can mean a call on a telephone line, the arrival of a customer to a
store, etc. For simulating a Poisson process one can use the important property that
the intervals of time between two successive events are independent exponentially
distributed random numbers.

Normal Deviates
A normal deviate N = N(0,1) with zero mean and unit standard deviation has the
density function

— 1 e—m2/2

Then p+o N is a normal deviate with mean p and standard deviation o with density

1
function — f((x — pu)/o). Since the normal distribution function
o

@(z):::jgﬁl/ﬂ: e /2 gt (1.5.7)

is not an elementary function, solving the equation (1.5.5) would be time consuming,.

Fortunately random normal deviates can be obtained in easier ways. In the
polar algorithm a random point in the unit disc is first generated as follows. Let
U1, Us be two independent uniformly distributed random numbers on [0,1]. Then
the point (V4,V2), where V; = 2U; — 1, i = 1,2, is uniformly distributed in the
square [—1,1] x [=1,1]. If we compute S = V2 + Vi and reject the point if it is
outside the unit circle, i.e. if S > 1, remaining points will be uniformly distributed
on the unit disc. For each accepted point we then form

“2l0g S
Ny =1V, ]W:T%,T:M—i$;. (1.5.8)

It can be proved that Ni, N are two independent normally distributed random
numbers with zero mean and unit standard deviation.

We point out that Ny, No can be considered to be rectangular coordinates of
a point whose polar coordinates (r, ¢) are determined by the equations

12 = N2+ N2=-2InS, cos¢=U,/VS, sing=Uy/VS.
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The correctness of the above procedure follows from the fact that the distribution
function for a pair of independent normally distributed random variables is rota-
tionally symmetric (uniformly distributed angle) and that their sum of squares is
exponentially distributed with mean 2. For a proof of this, see Knuth [204, p. 123].

The polar algorithm (used in MATLAB 4) is not optimal. First, about
1 —7/4 ~ 21.5% of the uniform numbers are rejected because the generated point
falls outside the unit disc. Further, the calculation of the logarithm contributes
significantly to the cost. From MATLAB 5 on, a more efficient table look-up algo-
rithm developed by Marsaglia and Tsang [232] is used. This is called the “ziggurat”
algorithm after the name of ancient Mesopotamian terraced temples mounds, that
look like two-dimensional step functions. A popular description of the ziggurat
algorithm is given by Moler [238]; see also [196].

Figure 1.5.4. Simulated two-dimensional Brownian motion. 32 simulated
paths with h = 0.1 are plotted, each consisting of 64 steps.

Example 1.5.4.

To simulate a two-dimensional Brownian motion trajectories are generated as
follows. Initially the particle is located at the origin wy = (0,0)7. At each time
step the particle moves randomly,

_ N P
wk+1—wk+h<N2k), k=0:n

where Nj; and Noi are normal random deviates generated according to (1.5.8).
Figure 1.5.4 shows plots of 32 simulated paths with h = 0.1, each consisting of
n = 64 time steps.
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Chi-Square Distribution

The chi-square distribution function P(y?, n) is related to the incomplete gamma
function (see Abramowitz and Stegun [1, Sec. 6.5]).

PO, m) = 1(n/2,X%/2). (1.5.9)

Its complement Q(x2,n) = 1 — P(x?,n) is the probability that the observed chi-
square will exceed the value x? even for a correct model. Subroutines for evaluating
the y2-distribution function as well as other important statistical distribution func-
tions are given in [263, Sec.6.2-6.3].

Numbers belonging to the chi-square distribution can also be obtained by
using the definition of the distribution. If N1, Na, ..., N,, are normal deviates with
zero mean and unit variance, the number

Y, = N} + Nj+---+ N?

is distributed as x? with n degrees of freedom.

Other Methods

Several other methods to generate random deviates with Poisson, gamma and bi-
nomial distribution, are described in Knuth [204, Sec.3.4]) and Press et al. [263,
Chapter 7.3]. The rejection method is based on ideas of von Neumann (1951).
A general method introduced by G. Marsaglia [229] is the rectangle-wedge-tail
method; see references in Knuth [204]. Powerful combinations of rejection methods
and the rectangle-wedge-tail method have been developed.

1.5.6 Reduction of Variance

From statistics, we know that if one makes n independent observations of a quantity
whose standard deviation is o, then the standard deviation of the mean is o/+/n.
Hence to increase the accuracy by a factor of 10 (say) we have to increase the
number of experiments n by a factor 100.

Often a more efficient way, than increasing the number of samples, is to try
to decrease the value of o by redesigning the experiment in various ways. Assume
that one has two ways (which require the same amount of work) of carrying out an
experiment, and these experiments have standard deviations o1 and o2 associated
with them. If one repeats the experiments n; and ng times (respectively), the same
precision will be obtained if o1 /\/n1 = 02//n2, or

ni/ng = o1 /o3 (1.5.10)

Thus if a variance reduction by a factor k can be achieved, then the number of
experiments needed is also reduced by the same factor k.
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Example 1.5.5.

In 1777 Buffon?® carried out a probability experiment by throwing sticks over
his shoulder onto a tiled floor and counting the number of times the sticks fell across
the lines between the tiles. He stated that the favourable cases correspond “to the
area of part of the cycloid whose generating circle has diameter equal to the length
of the needle”. To simulate Buffon’s experiment we suppose a board is ruled with
equidistant parallel lines and that a needle fine enough to be considered a segment
of length [ not longer than the distance d between consecutive lines is thrown on
the board. The probability is then 2//(wd) that it will hit one of the lines.

o

3.5 T T T T 10

estimate of pi
|min-2/pi]

2.5 . A

o 200 400 600 800 1000 10° 10" 10% 10°

Figure 1.5.5. The left part shows how the estimate of m varies with the
number of throws. The right part compares |m/n—2 /7| with the standard deviation

of m/n.

The Monte Carlo method and this game can be used to approximate the value
of m. Take the distance § between the center of the needle and the lines and the
angle ¢ between the needle and the lines to be random numbers. By symmetry we
can choose these to be rectangularly distributed on [0, d/2] and [0, /2], respectively.
Then the needle hits the line if § < (1/2) sin ¢.

We took [ = d. Let m be the number of hits in the first n throws in a Monte
Carlo simulation with 1000 throws. The expected value of m/n is therefore 2/, and
so 2n/m is an estimate of 7 after n throws. In the left part of Figure1.5.5 we see,
how 2n/m varies with n in one simulation. The right part compares |m/n — 2/m|
with the standard deviation of m/n, which equals

2 2\ 1
2(1-2)1
s ™/ n

and is, in the log-log-diagram, represented by a straight line, the slope of which is

28Comte de Buffon (1707-1788), French natural scientist that contributed to the understanding
of probability. He also computed the probability that the sun would continue to rise after having
been observed to rise on n consecutive days.

2007/
page '
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—1/2. This can be taken as a test that the random number generator in MATLAB is
behaving correctly! (The spikes, directed downwards in the figure, typically indicate
where m/n — 2 /7 changes sign.)

An important means of reducing the variance of estimates obtained from the
Monte Carlo method is to use antithetic sequences. If U;, i = 1 : n, is a sequence
of random uniform deviates on [0, 1] then U/ = 1—U,;, i = 1 : n, is an antithetic
uniformly distributed sequence. From the sequence in (1.5.1) we get the antithetic
sequence

0.443065, 0.970545, 0.182765,0.564115, 0.186495, 0.236975, . . .. (1.5.11)

Antithetic sequences of normally distributed numbers with zero mean are obtained
simply by reversing the sign of the original sequence.

Roughly speaking, since the influence of chance has opposing effects in the
two antithetic experiments, one can presume that the effect of chance on the means
is much less than the effect of chance in the original experiments. In the following
example we show how to make a quantitative estimate of the reduction of variance
accomplished with the use of antithetic experiments.

Example 1.5.6.
Suppose the numbers x; are the results of statistically independent measure-
ments of a quantity with expected value p, and standard deviation o. Set

gxi, s? = nilé(aji_f)?

Then Z is an estimate of u, and s is an estimate of o.
In ten simulation and their antithetic experiments of a service system the
following values were obtained for the treatment time:

685 14,045 718 615 1021 735 675 635 616 889.

Tr =

S|

From this experiment the mean for the treatment time is estimated as 763.4, and
the standard deviation 51.5. Using an antithetic series, one got the following values:

731 521 585 710 527 574 607 698 761 532.
The series means is thus
708 783 651.5 662.5 774 654.5 641 666.5 688.5 710.5,

from which one gets the estimate 694.0 & 15.9.

When one instead supplemented the first sequence with ten values using in-
dependent random numbers, the estimate 704 + 36 using all twenty values was
obtained. These results indicate that, in this example, using antithetical sequence
produces the desired accuracy with (15.9/36)% ~ 1/5 of the work required if com-
pletely independent random numbers are used. This rough estimate of the work
saved is uncertain, but indicates that it is profitable to use the technique of anti-
thetic series.
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Table 1.5.1. Simulation of waiting times for patients at a polyclinic.
Pno Parr Tbeg R Ttime Tend Parr Tend
1 0* 0 211 106 106 0* 106
2 50 106 3 2 108 0 108
3 100 108 53 26 134 50 134
4 150* 150 159 80 230 100 214
5 200 230 24 12 242 150 226
6 250* 250 35 18 268 200 244
7 300 300 54 27 327 250* 277
8 350* 350 39 20 370 300* 320
9 400* 400 44 22 422 350* 372
10 | 450* 450 13 6 456 400* 406
> | 2250 319 2663 14-,800 2407
Example 1.5.7.

Monte Carlo methods have been successfully used to study queuing prob-
lems. A well known example is a study by Bailey [12] to determine how to give
appointment times to patients at a polyclinic. The aim is to find a suitable balance
between the mean waiting times of both patients and doctors. This problem was
in fact solved analytically—much later—after Bailey already had gotten the results
that he wanted; this situation is not uncommon when numerically methods (and
especially Monte Carlo methods) have been used.

“ k=1
k=2
Y k=3
Figure 1.5.6. Mean waiting times for doctor/patients at polyclinic.

Suppose that k patients have been booked at the time ¢ = 0 (when the clinic
opens), and that the rest of the patients (altogether 10) are booked at intervals
of 50 time units thereafter. The time of treatment is assumed to be exponentially
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distributed with mean 50. (Bailey used a distribution function which was based
on empirical data.) We use the following numbers which are taken from a table of
exponentially distributed random numbers with mean 100:

211 3 53 159 24 35 54 39 44 13.

Three alternatives, k = 1,2,3, are to be simulated. By using the same random
numbers for each k (hence the same treatment times) one gets a reduced variance
in the estimate of the change in waiting times as k varies.

The computations are shown in the Table 1.5.1. The following abbreviations
are used in the following: P = patient, D = doctor, T" = treatment. An asterisk
indicates that the patient did not need to wait. In the table P, follows from
the rule for booking patients given previously. The treatment time Ty;,. equals
50R /100 where R are exponentially distributed numbers with mean 100 taken from
a table. Tpey equals the larger of the number P, (on the same row) and Tenq (in
the row just above), where Teng = Theg + Trime-

From the table we find that for £ = 1 the doctor waited the time D = 456 —
319 = 137; the total waiting time for patients was P = 2663 — 2250 — 319 = 94.
For k = 2 the corresponding waiting times were D = 406 — 319 = 87 and P =
2407 — 1800 — 319 = 288. Similar calculations for k = 3 gave D = 28 and P = 553
(see Figure1.5.6). For k > 4 the doctor never needs to wait.

One cannot, of course, draw any tenable conclusions from one experiment.
More experiments should be made in order to put the conclusions on statistically
solid ground. Even isolated experiments, however, can give valuable suggestions
for the planning of subsequent experiments, or perhaps suggestions of appropriate
approximations to be made in the analytic treatment of the problem. The large-
scale use of Monte Carlo methods requires careful planning to avoid drowning in
enormous quantities of unintelligible results.

Two methods for reduction of variance have here been introduced: anti-
thetic sequence of random numbers and the technique of using the same random
numbers in corresponding situations. The latter technique is used when studying
the changes in behavior of a system when a certain parameter is changed, for ex-
ample, the parameter k£ in Example 1.5.7. Note that for this we need to able to
restart the RNG using the same seed. Other effective methods for reducing vari-
ance are importance sampling and splitting techniques; see Hammersley and
Handscomb [167].

Review Questions

5.1. What is meant by the Monte Carlo method? Describe the origin of the method
and give some typical applications. In general, how fast does the error decrease
in estimates obtained from the Monte Carlo method?

5.2. Describe a linear congruential generator for generating a sequence of uniformly
distributed pseudo-random numbers. What are some important properties of
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5.3.

5.4.

5.5.

5.6.

5.7.

such a generator?

Describe a general method for obtaining pseudo-random numbers with a given
discrete or continuous distribution from uniformly distributed random num-
bers. Give examples of its use.

Describe some statistical tests which can be applied to a pseudo-random num-
ber generator.

What are the most important properties of a Poisson process? How can one
generate a Poisson process with the help of random numbers?

What is the mixed congruential method for generating pseudo-random num-
bers? What important difference is there between the numbers generated by
this method and “genuine” random numbers?

Explain what is meant by reduction of variance in estimates made with the
Monte Carlo method. Give three methods for reduction of variance. What
is the quantitative connection between reducing variance and decreasing the
amount of computation needed in a given problem?

Problems and Computer Exercises

5.1.

5.2.

5.3.

5.4.

(C. Moler) Consider the toy random number generator, z; = az; mod m, with
a = 13, m = 31 and start with g = 1. Show that this generates a sequence
consisting of a permutation of all integers from 1 to 30, and then repeats itself.
Thus this generator has period m — 1 = 30, equal to the maximum possible.

Simulate (say) 360 throws with two usual dices. Denote the sum of the number
of dots on the two dices in the nth throw by Y,,, 2 <Y, < 12. Tabulate or
draw a histogram, that is the (absolute) frequency of the occurrence of j dots
versus j, j = 2: 12. Make a conjecture about the true value of P(Y,, = j). Try
to confirm it by repeating the experiment with fresh uniform random numbers.
When you have found the right conjecture, it is not hard to prove it.

(a) Let X,Y be independent uniform random numbers on the interval [0, 1].
Show that P(X? +Y?2 < 1) = 7/4, and estimate this probability by a Monte
Carlo experiment with (say) 1000 pairs of random numbers. Make graphical
output like in the Buffon needle problem.

(b) Make an antithetic experiment, and take the average of the two results.
Is the average better than one can expect if the second experiment had been
independent of the first one.

(c) Estimate similarly the volume of the four-dimensional unit ball. If you
have enough time, use more random numbers. (The exact volume of the unit
ball is 72/2.)

A famous result by P. Diaconis asserts that it takes approximately % logy 52 ~
8.55 riffle shuffles to randomize a deck of 52 cards, and that randomization
occurs abruptly according to a “cutoff phenomenon”. (After six shuffles the
deck is still far from random!)
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5.5.

5.6.

5.7.

The following definition can be used for simulating a riffle shuffle. The deck
of cards is first cut roughly in half according to a binomial distribution, i.e.
the probability that v cards are cut is 2/2". The two halves are then riffled
together by dropping cards roughly alternately from each half onto a pile, with
the probability of a card being dropped from each half being proportional to
the number of cards in it.

Write a program that uses uniform random numbers (and perhaps uses the
formula X = [kR], for several values of k, to simulate a random “shuffle”
of a deck of 52 cards according to the above precise definition. This is for a

numerical game; do not spend time on drawing beautiful hearts, clubs, etc.

Brownian motion is the irregular motion of dust particles suspended in a fluid,
being bombarded by molecules in a random way. Generate two sequences of
random normal deviates a; and b;, and use these to simulate Brownian motion
by generating a path defined by the points (z;,y;), where zy = yo = 0,
T; = Xi—1 + a;, Y; = yi—1 + b;. Plot each point and connect the points with a
straight line to visualize the path.

Repeat the simulation in the queuing problem in Example 1.5.7 for £k = 1 and
k = 2 using the sequence of exponentially distributed numbers R

13 365 88 23 154 122 87 112 104 213,

antithetic to that used in Example 1.5.7. Compute the mean of the waiting
times for the doctor and for all patients for this and the previous experiment.

A target with depth 2b and very large width is to be shot at with a can-
non. (The assumption that the target is very wide makes the problem one-
dimensional.) The distance to the center of the target is unknown, but esti-
mated to be D. The difference between the actual distance and D is assumed
to be a normally distributed random variable X = N(0,07).

One shoots at the target with a salvo of three shots, which are expected to
travel a distance D — a, D and D + a, respectively. The difference between
the actual and the expected distance traveled is assumed to be a normally
distributed random variable N (0, 02); the resulting error component in the
three shots is denoted by Y_1,Yp,Y:. We further assume that these three
variables are independent of each other and X.

One wants to know how the probability of at least one “hit” in a given salvo
depends on a and b. Use normally distributed pseudo-random numbers to
shoot ten salvos and determine for each salvo, the least value of b for which
there is at least one “hit” in the salvo. Show that this is equal to

mkin|X - Yy + ka)|, k=-1,0,1.

Fire an “antithetic salvo” for each salvo.

Draw curves, for both a = 1 and a = 2, which give the probability of a hit as
a function of the depth of the target. Use o7 = 3 and o2 = 1, and the same
random numbers.
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Notes and Further References

The development of Numerical Analysis during the period when the foundation was
laid in the 16th through the 19th century is traced in Goldstine [148]. Essays on the
history of Scientific Computing can be found in Nash [245]. An interesting account
of the developments in the 20th century is given in [50]. An eloquent essay on the
foundations of computational mathematics and its relation to other fields is given
by Baxter and Iserles [19].

Many of the methods and problems introduced in this introductory chapter
will be studied in more detail in later chapters and volumes. Numerical quadra-
ture methods are studied in Chapter 5 and iterative methods for solving a single
nonlinear equation in Chapter 6. For a survey of sorting algorithms we refer to
[263, Chapter8]. A comprehensive treatment of sorting and searching is given in
Knuth [205].

The later chapters in this book assume a working knowledge in numerical
linear algebra. Appendix A gives a brief survey of Matrix Computations. A more
in-depth treatment of direct and iterative methods for linear systems, least squares
and eigenvalue problems is planned to be presented in Volume II. Some knowledge of
modern analysis including analytic functions is also needed for some more advanced
parts of the book. As suitable reference the classical textbook by Apostolé [7] is
highly recommended.

A good introduction to Monte Carlo methods and their applications is Ham-
mersley and Handscomb [167]. Knuth [204] is a comprehensive source of information
on all aspects of random numbers. Another good reference on the state of the art
is the monograph by Niederreiter [246]. An application oriented overview is found
in Press et al. [263, Chapter 7]. Guidelines for choosing a good random number
generator are given in Marsaglia [231], the monograph by Gentle [141], and in the
two surveys L’Ecuyer [216], [217]. Hellekalek [173] explains the art to access random
number generators for practitioners.

An excellent source of survey articles on topics of current interest can be
found in Acta Numerica, a Cambridge University Press Annual started in 1992.
The journal STAM Review also publishes high quality review papers.

Since Numerical Analysis is still in a dynamic stage it is important to keep
track of new developments. The Journal of Computational and Applied Mathe-
matics published in Volumes 121-128, 2000-2001, a series of papers on “Numerical
Analysis of the 20th Century”, with the aim of presenting the historical development
of numerical analysis and to review current research. The papers were arranged in
seven volumes,

A collection of outstanding survey papers on special topics are being published
in a multi-volume sequence in the Handbook of Numerical Analysis [62], edited by
Philippe G. Ciarlet and Jacques-Louis Lions. It offers comprehensive coverage in
all areas of numerical analysis as well as many actual problems of contemporary
interest. Each volume concentrates on one to three particular subjects under the
following headings:

A more complete guide to relevant literature ans software is given in Ap-
pendix C available at the homepage of the book. Although the selection presented

2007/
page



Problems and Computer Exercises 83

is by no means complete and reflects a subjective choice, we hope it can serve as a
guide for a reader who out of interest (or necessity!) wishes to deepen his knowledge.
Both more recent textbooks and older classics are included. Note that reviews of
new books can be found in Mathematical Reviews as well as in the journals STAM
Review and Mathematics of Computation.

The James & James Mathematics Dictionary [189] is a high quality general
mathematics dictionary covering arithmetic to calculus and which includes a multi-
lingual index. CRC Concise Encyclopedia of Mathematics [327] by Eric Weisstein is
a comprehensive compendium of mathematical definitions, formulas, and references.
A free web encyclopedia containing surveys and references is Eric Weisstein’s World
of Mathematics at mathworld.wolfram.com.
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Chapter 1.

Principles of Numerical Calculations
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Chapter 2

How to Obtain and
Estimate Accuracy

I always think I used computers for what
God had intended them for, to do arithmetic.
—Cleve Moler

2.1 Basic Concepts in Error Estimation

The main purpose of numerical analysis and scientific computing is to develop ef-
ficient and accurate methods to compute approximations to quantities that are
difficult or impossible to obtain by analytic means. It has been convincingly argued
(N. Trefethen [318]) that controlling rounding errors is just a small part of this, and
that the main business of computing is the development of algorithms that converge
rapidly. Even if we acknowledge the truth of this statement, it is still necessary to
be able to control different sources of errors, including round-off errors, so that these
will not interfere with the computed results.

2.1.1 Sources of Error

Numerical results are affected by many types of errors. Some sources of error are
difficult to influence; others can be reduced or even eliminated by, for example,
rewriting formulas or making other changes in the computational sequence. Errors
are propagated from their sources to quantities computed later, sometimes with a
considerable amplification or damping. It is important to distinguish between the
new error produced at the computation of a quantity (a source error), and the error
inherited (propagated) from the data that the quantity depends on.

A. Errors in Given Input Data.
Input data can be the result of measurements which have been contaminated
by different types of errors. In general one should be careful to distinguish
between systematic errors and random errors. A systematic error can, for
example, be produced by insufficiencies in the construction of an instrument of
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86 Chapter 2. How to Obtain and Estimate Accuracy

measurement; such an error is the same in each trial. Random errors depend
on the variation in the experimental environment which cannot be controlled.

B. Rounding Errors During the Computations.
A rounding error occurs whenever an irrational number, for example T,
is shortened (“rounded off”) to a fixed number of digits, or when a decimal
fraction is converted to the binary form used in the computer. The limitation
of floating-point numbers in a computer leads at times to a loss of information
that, depending on the context, may or may not be important. Two typical
cases are:

(i) If the computer cannot handle numbers which have more than, say, s
digits, then the exact product of two s-digit numbers (which contains 2s or
25 — 1 digits) cannot be used in subsequent calculations; the product must be
rounded off.

(i) In a floating-point computation, if a relatively small term b is added to a,
then some digits of b are “shifted out” (see Example 2.3.1, and they will not
have any effect on future quantities that depend on the value of a + b.

The effect of such rounding can be quite noticeable in an extensive calculation,
or in an algorithm which is numerically unstable.

C. Truncation Errors.
These are errors committed when a limiting process is truncated (broken off)
before one has come to the limiting value. A truncation error occurs, for
example, when an infinite series is broken off after a finite number of terms,
or when a derivative is approximated with a difference quotient (although in
this case the term discretization error is better). Another example is when
a nonlinear function is approximated with a linear function as in Newton’s
method. Observe the distinction between truncation error and rounding error.

D. Simplifications in the Mathematical Model.
In most of the applications of mathematics, one makes idealizations. In a
mechanical problem one might assume that a string in a pendulum has zero
mass. In many other types of problems it is advantageous to consider a given
body to be homogeneously filled with matter, instead of being built up of
atoms. For a calculation in economics, one might assume that the rate of
interest is constant over a given period of time. The effects of such sources

of error are usually more difficult to estimate than the types named in A, B,
and C.

E. “Human” Errors and Machine Errors.
In all numerical work, one must expect that clerical errors, errors in hand cal-
culation, and misunderstandings will occur. One should even be aware that
textbooks (!), tables and formulas may contain errors. When one uses com-
puters, one can expect errors in the program itself, typing errors in entering
the data, operator errors, and (more seldom) pure machine errors.
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Errors which are purely machine errors are responsible for only a very small
part of the strange results which (occasionally with great publicity) are produced
by computers. Most of the errors depend on the so-called human factor. As a
rule, the effect of this type of error source cannot be analyzed with the help of
the theoretical considerations of this chapter! We take up these sources of error
in order to emphasize that both the person who carries out a calculation and the
person who guides the work of others can plan so that such sources of error are
not damaging. One can reduce the risk for such errors by suitable adjustments in
working conditions and routines. Stress and tiredness are common causes of such
errors.

Intermediate results that may reveal errors in a computation are not visible
when using a computer. Hence the user must be able to verify the correctness of
his results or be able to prove that his process cannot faill Therefore one should
carefully consider what kind of checks can be made, either in the final result or
in certain stages of the work, to prevent the necessity of redoing a whole project
just because a small error has been made in an early stage. One can often discover
whether calculated values are of the wrong order of magnitude or are not sufficiently
regular, for example using difference checks (see Sec.3.3.1).

Occasionally one can check the credibility of several results at the same time
by checking that certain relations are true. In linear problems, one often has the
possibility of sum checks. In physical problems, one can check to see whether energy
is conserved, although because of the error sources A-D one cannot expect that it
will be exactly conserved. In some situations, it can be best to treat a problem in
two independent ways, although one can usually (as intimated above) check a result
with less work than this.

Errors of type E do occur, sometimes with serious consequences. The first
American Venus probe was lost due to a program fault caused by the inadvertent
substitution of a statement in a Fortran program of the form DO 3 I = 1.3 for
one of the form DO 3 I = 1,3. The erroneous replaced comma “,” with a dot “.”
converts the intended loop statement into an assignment statement! A hardware
error that got much publicity surfaced in 1994, when it was found that the IN-
TEL Pentium processor gave wrong results for division with floating-point numbers
of certain patterns. This was discovered during research on prime numbers (see
Edelman [93]) and later fixed.

From a different point of view, one may distinguish between controllable and
uncontrollable (or unavoidable) error sources. Errors of type A and D are usually
considered to be uncontrollable in the numerical treatment (although a feedback
to the constructor of the mathematical model may sometimes be useful). Errors
of type C are usually controllable. For example, the number of iterations in the
solution of an algebraic equation, or the step size in a simulation can be chosen,
either directly or by setting a tolerance.

The rounding error in the individual arithmetic operation (type B) is, in a
computer, controllable only to a limited extent, mainly through the choice between
single and double precision. A very important fact is, however, that it can often be
controlled by appropriate rewriting of formulas or by other changes of the algorithm,
see Example 2.3.3.
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88 Chapter 2. How to Obtain and Estimate Accuracy

If it doesn’t cost too much, a controllable error source should be controlled so
that its effects are evidently negligible compared to the effects of the uncontrollable
sources. A reasonable interpretation of “full accuracy” is that the controllable error
sources should not increase the error of a result more than about 20%. Sometimes,
“full accuracy” may be expensive, for example in terms of computing time, memory
space or programming efforts. Then it becomes important to estimate the relation
between accuracy and these cost factors. One goal of the rest of this chapter is to
introduce concepts and techniques useful to this purpose.

Many real-world problems contain some non-standard features, where under-
standing the general principles of numerical methods can save much time in the
preparation of a program as well as in in the computer runs. Nevertheless, we
strongly encourage the reader to use quality library programs whenever possible,
since a lot of experience and profound theoretical analysis has often been built into
these (sometimes far beyond the scope of this text). It is not practical to “reinvent
the wheel”!

2.1.2 Absolute and Relative Errors

Approximation is a central concept in almost all the uses of mathematics. One must
often be satisfied with approximate values of the quantities with which one works.
Another type of approximation occurs when one ignores some quantities which are
small compared to others. Such approximations are often necessary to insure that
the mathematical and numerical treatment of a problem does not become hopelessly
complicated.

We make the following definition:

Definition 2.1.1.
Let T be an approximate value whose exact value is x. Then the absolute
error in T is:
Ax = |T — x|,

and if © # 0 the relative error is:

Ax/x =|(Z — x)/x|.

Note that z — Z is the correction which should be added to T to get rid of the
error. The correction and the absolute error have then the same magnitude but
may have different sign.

In many situations one wants to compute strict or approximate bound for
the absolute or relative error. Since it is sometimes rather hard to obtain an error
bound that is both strict and sharp, one sometimes prefers to use less strict but
often realistic error estimates. These can be based on the first neglected term in
some expansion or some other asymptotic considerations.

The notation = Z + € means, in this book, |Z — 2| < e. For example, if
x = 0.5876 + 0.0014 then 0.5862 < z < 0.5890, and |Z — z| < 0.0014. In other
texts, the same plus-minus notation is sometimes used for the “standard error” (see

2007/
page



2.1. Basic Concepts in Error Estimation 89

Sec. 2.3.3) or some other measure of deviation of a statistical nature. If = is a vector
| - || then the error bound and the relative error bound may be defined as bounds
for
[ —af| and [[& — xf|/[l=],

respectively, where || - | denotes some vector norm (see Sec.appA.3.3). Then a
bound ||Z — z||/||=|| < 1/2 1077 implies that components Z; with |Z;| = ||z| have
about p significant digits but this is not true for components of smaller absolute
value. An alternative is to use componentwise relative errors,

max |%; — ;| /|xi], (2.1.1)

but this assumes that z; # 0, for all 3.

We will distinguish between the terms accuracy and precision. By accuracy
we mean the absolute or relative error of an approximate quantity. The term pre-
cision will be reserved for the accuracy with which the basic arithmetic operations
+,—, %,/ are performed. For floating-point operations this is given by the unit
roundoff; see (2.2.8).

Numerical results which are not followed by any error estimations should often,
though not always, be considered as having an uncertainty of % a unit in the last
decimal place. In presenting numerical results, it is a good habit, if one does not
want to go to the difficulty of presenting an error estimate with each result, to give
explanatory remarks such as:

e “All the digits given are thought to be significant.”
e “The data has an uncertainty of at most 3 units in the last digit.”

e “For an ideal two-atom gas, cp/cy = 1.4 (exactly).”

We shall also introduce some notations, useful in practice, though their defi-
nitions are not exact in a mathematical sense:

a < b (a>0b)isread: “ais much smaller (much greater) than b”. What is
meant by “much smaller” (or “much greater”) depends on the context—among
other things, on the desired precision.

a = bisread: “ais approximately equal to b” and means the same as |a —b| <
¢, where c¢ is chosen appropriate to the context. We cannot generally say, for
example, that 1076 ~ 0.

a Sb(orb g a)isread: “ais less than or approximately equal to b” and
means the same as “a < bor a=>b."

Occasionally we shall have use for the following more precisely defined math-
ematical concepts:

f(z) = O(g(x)), © — a, means that |f(x)/g(z)| is bounded as x — a
(a can be finite, +00, or —o0).

f(z) =o(g(x)), © — a, means that lim,_., f(z)/g(x) = 0.

f(z) ~ g(z), x — a, means that lim,_., f(z)/g(x) = 1.

2007/
page



90 Chapter 2. How to Obtain and Estimate Accuracy

2.1.3 Rounding and Chopping

When one counts the number of digits in a numerical value one should not include
zeros in the beginning of the number, as these zeros only help to denote where the
decimal point should be. For example, the number 0.00147 has five decimals but is
given with three digits. The number 12.34 has two decimals but is given with four
digits but

If the magnitude of the error in a given numerical value a does not exceed
%-104, then a is said to have ¢ correct decimals. The digits in a which occupy
positions where the unit is greater than or equal to 10™t are then called significant
digits (any initial zeros are not counted). Thus, the number 0.001234+0.000004 has
five correct decimals and three significant digits, while 0.001234 + 0.000006 has four
correct decimals and two significant digits. The number of correct decimals gives
one an idea of the magnitude of the absolute error, while the number of significant
digits gives a rough idea of the magnitude of the relative error.

We distinguish here between two ways of rounding off a number x to a given
number ¢ of decimals. In chopping (or round toward zero) one simply leaves off all
the decimals to the right of the tth. That way is generally not recommended since
the rounding error has, systematically, the opposite sign of the number itself. Also,
the magnitude of the error can be as large as 107°.

In rounding to nearest (sometimes called “correct” or “optimal” round-
ing”), one chooses, a number with s decimals which is nearest to . Hence if p is
the part of the number which stands to the right of the sth decimal one leaves the
tth decimal unchanged if and only if |p| < 0.5-107°. Otherwise one raises the sth
decimal by 1. In case of a tie, when z is equidistant to two s digit numbers then
one raises the sth decimal if it is odd or leaves it unchanged if it is even (round
to even). In this way, the error is positive or negative about equally often. The
error in rounding a decimal number to s decimals will always lie in the interval
[— 11075 21077].

Example 2.1.1.
Shortening to three decimals:

0.2397  rounds to 0.240 (is chopped to 0.239)
—0.2397 rounds to —0.240 (is chopped to —0.239)
0.23750 rounds to 0.238 (is chopped to 0.237)
0.23650 rounds to 0.236 (is chopped to 0.236)
0.23652 rounds to 0.237 (is chopped to 0.236)

Observe that when one rounds off a numerical value one produces an error;
thus it is occasionally wise to give more decimals than those which are correct. Take
a = 0.1237 £ 0.0004, which has three correct decimals according to the definition
given previously. If one rounds to three decimals, one gets 0.124; here the third
decimal is not correct, since the least possible value for a is 0.1233.

Suppose that you are tabulating a transcendental function and a particular
entry has been evaluated as 1.2845 correct to the digits given. You want to round
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the value to three decimals. Should the final digit be 4 or 57 The answer depends
on whether there is a nonzero trailing digit. You compute the entry more accu-
rately and find 1.28450, then 1.284500, then 1.2845000, etc. Since the function is
transcendental, there clearly is no bound on the number of digits that has to be
computed before distinguishing if to round to 1.284 or 1.285. This is called the
tablemaker’s dilemma.?’

Example 2.1.2.

The difference between chopping and rounding can be important as is illus-
trated by the following story. The index of the Vancouver Stock Exchange, founded
at the initial value 1000.000 in 1982, was hitting lows in the 500s at the end of 1983
even though the exchange apparently performed well. It was discovered (The Wall
Street Journal, Nov. 8, 1983, p. 37) that the discrepancy was caused by a computer
program which updated the index thousands of times a day and used chopping
instead of rounding to nearest! The rounded calculation gave a value of 1098.892.

Review Questions
1.1. Clarify with examples the various types of error sources which occur in nu-
merical work.

1.2. (a) Define “absolute error” and “relative error” for an approximation Z to a
scalar quantity . What is meant by an error bound?

(b) Generalize the definitions in (a) to a vector z.
1.3. How is “rounding to nearest” performed?
1.4. Give 7 to four decimals using: (a) chopping; (b) rounding.

1.5. What is meant by the “tablemaker’s dilemma”?

2.2 Computer Number Systems
2.2.1 The Position System

In order to represent numbers, we use in daily life a position system with base
10 (the decimal system). Thus to represent the numbers, we use ten different
characters, and the magnitude with which the digit a contributes to the value of a
number depends on the digit’s position in the number. If the digit stands n steps
to the right of the decimal point, the value contributed is a - 10™". For example,
the sequence of digits 4711.303 means

4-102°4+7-102+1-10'4+1-10°+3-1071+0-10"2+3-10"%.

29This can be used to advantage in order to protect mathematical tables from illegal copying
by rounding a few entries incorrectly where the error in doing so is insignificant due to several
trailing zeros. An illegal copy could then be exposed simply by looking up these entries!
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92 Chapter 2. How to Obtain and Estimate Accuracy

Every real number has a unique representation in the above way, except for the
possibility of infinite sequences of nines—for example, the infinite decimal fraction
0.3199999. .. represents the same number as 0.32.

One can very well consider other position systems with base different from
10. Any integer 5 > 2 (or 8 < —2) can be used as base. One can show that
every positive real number a has, with exceptions analogous to the nines-sequences
mentioned above, a unique representation of the form

a=dnf"+dy 1" . B+ A+ d BT d TR+

or more compactly a = (dpdp—1...dop.d—1d_52...)s, where the coeflicients d;, the
“digits” in the system with base (3, are positive integers d; such that 0 < d; < —1.

One of the greatest advantages of the position system is that one can give
simple, general rules for the arithmetic operations. The smaller the base is, the
simpler these rules become. This is just one reason why most computers operate in
base 2, the binary number system. The addition and multiplication tables then
take the following simple form:

0+0=0; 0+1=14+0=1; 14+1=10;
0-0=0; 0-1=1-0=0; 1-1=1;

In the binary system the number seventeen becomes 10001, since 1-24+0-2340-
22 40-21 4 1- 29 = sixteen + one = seventeen. Put another way (10001)2 = (17)1o,
where the index (in decimal representation) denotes the base of the number system.
The numbers become longer written in the binary system; large integers become
about 3.3 times as long, since N binary digits suffice to represent integers less than
2N — 10N10g102 ~ 10N/3.3'

Occasionally one groups together the binary digits in subsequences of three or
four, which is equivalent to using 2% and 2%, respectively, as base. These systems
are called the octal and hexadecimal number systems, respectively. The octal
system uses the digits from 0 to 7; in the hexadecimal system the digits 0 through
9 and the letters A, B,C, D, E, F (“ten” through “fifteen”) are used.

Example 2.2.1.

(17)10 = (10001)3 = (21)s = (1)1,
(13.25)10 = (1101.01)5 = (15.2)s = (D.4)1,
(0.1)10 = (0.000110011001 .. .)5 = (0.199999 .. ).

Note that the finite decimal fraction 0.1 cannot be represented exactly by a finite
fraction in the binary number system! (For this reason some pocket calculators use
the base 10.)

Example 2.2.2.
In 1991 a Patriot missile in Saudi Arabia failed to track and interrupt an in-
coming Scud due to a precision problem. The Scud then hit an Army barrack and
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killed 28 Americans. The computer used to control the Patriot missile was based on
a design dating from the 1970’s using 24-bit arithmetic. For the tracking computa-
tions time was recorded by the system clock in tenth of a second but converted to
a 24-bit floating-point number. Rounding errors in the time conversions caused an
error in the tracking. After 100 hours of consecutive operations the calculated time
in seconds was 359999.6567 instead of the correct value 360000, an error of 0.3433
seconds leading to an error in the calculated range of 687 meters; see Skeel [291].
Modified software was later installed.

In the binary system the “point” used to separate the integer and fractional
part of a number (corresponding to the decimal point) is called the binary point.
The digits in the binary system are called bits(=binary digits).

We are so accustomed to the position system that we forget that it is built
upon an ingenious idea. The reader can puzzle over how the rules for arithmetic
operations would look if one used Roman numerals, a number system without the
position principle described above.

Recall that rational numbers are precisely those real numbers which can be
expressed as a quotient between two integers. Equivalently rational numbers are
those whose representation in a position system have a finite number of digits or
whose digits are repeating.

We now consider the problem of conversion between two number systems with
different base. Since almost all computers use a binary system this problem arises
as soon as one want to input data in decimal form or print results in decimal form.

Algorithm 2.1. Conversion between number systems.

Let a be an integer given in number systems with base a. We want to determine
its representation in a number system with base 3:

a=b,0" 4+ bp_ 18" 4+ by, 0<b;<p. (2.2.1)

The computations are to be done in the system with base o and thus also 3 is
expressed in this representation. The conversion is done by successive divisions of
a with §: Set qo = a, and

QK/ﬁ:qk-i-l'i_bk/ﬁ? k2071727"' (222)

(gr+1 is the quotient and by the remainder in the division).
If @ is not an integer, we write a = b + ¢, where b is the integer part and

c= C_1ﬁ_1 + C_25_2 + C_3ﬁ_3 + - (2.2.3)

is the fractional part, where c_1,c_o,... are to be determined. These digits are
obtained as the integer parts when successively multiplying ¢ with 3: Set p_1 = ¢,
and

pk~5zck6+pk71, k:—l,—2,—3.... (224)
Since a finite fraction in a number system with base « usually does not correspond
to a finite fraction in the number system with base § rounding of the result is in
general needed.
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When converting by hand between the decimal system and the binary system
all computations are made in the decimal system (o« = 10 and 8 = 2). It is then more
convenient to convert the decimal number first to octal or hexadecimal, from which
the binary representation easily follows.) If, on the other hand, the conversion is
carried out on a binary computer, the computations are made in the binary system
(o =2 and § = 10).

Example 2.2.3.

Convert the decimal number 176.524 to ternary form (base 8 = 3). For the
integer part we get 176/3 = 58 with remainder 2; 58/3 = 19 with remainder 1;
19/3 = 6 with remainder 1; 6/3 = 2 with remainder 0; 2/3 = 0 with remainder 2.
It follows that (176)10 = (20112)s.

For the fractional part we compute .524 -3 = 1.572, .572-3 = 1.716, .716-3 =
2.148, .. .. Continuing in this way we obtain (.524)19 = (.112010222...)5. The finite
decimal fraction does not correspond to a finite fraction in the ternary number
system!

2.2.2 Fixed and Floating-Point Representation

A computer is in general built to handle pieces of information of a fixed size called a
word. The number of digits in a word (usually binary) is called the word-length
of the computer. Typical word-lengths are 32 and 64 bits. A real or integer number
is usually stored in a word. Integers can be exactly represented, provided that the
word-length suffices to store all the digits in its representation.

In the first generation of computers calculations were made in a fixed-point
number system, i.e. real numbers were represented with a fixed number of ¢ bi-
nary digits in the fractional part. If the word-length of the computer is s + 1 bits
(including the sign bit), then only numbers in the interval I = [—257% 257%] are
permitted. Some common conventions in fixed-point are t = s (fraction convention)
or t = 0 (integer convention). This limitation causes difficulties, since even when
zel,yel, wecanhavex —y & Tora/y &1

In a fixed-point number system one must see to it that all numbers, even inter-
mediate results, remain within 7. This can be attained by multiplying the variables
by appropriate scale factors, and then transforming the equations accordingly.
This is a tedious process. Moreover it is complicated by the risk that if the scale
factors are chosen carelessly, certain intermediate results can have many leading ze-
ros which can lead to poor accuracy in the final results. As a consequence, current
numerical analysis literature rarely deals with other than floating-point arithmetic.
In Scientific Computing fixed-point is mainly limited to computations with integers
as in subscript expressions for vectors and matrices.

On the other hand, fixed-point computations can be much faster than floating-
point, especially since modern microprocessors have super-scalar architectures with
several fixed-point units but only one floating-point unit. In computer graphics,
fixed-point is used almost exclusively once the geometry is transformed and clipped
to the visible window. fixed-point square roots and trigonometric functions are also
pretty quick, and easy to write.
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By a normalized floating-point representation of a real number a, we
mean a representation in the form

a==+m- 3°, t<m<1, e an integer. (2.2.5)

Such a representation is possible for all real numbers a, and unique if @ # 0. (The
number 0 is treated as a special case.) Here the fraction part m is called the
mantissa®’ or significand), e is the exponent and 3 the base (also called the
radix).

In a computer, the number of digits for e and m is limited by the word-length.
Suppose that ¢ digits is used to represent m. Then we can only represent floating-
point numbers of the form

a==4m-3° m= (O.dldg-'-dt)g, 0<d; <p, (226)

where m is the mantissa m rounded to ¢ digits, and the exponent is limited to a
finite range
€min <e< €max- (227)

A floating-point number system F' is characterized by the base 3, the precision
t, and the numbers enin, €max. Only a finite set F' of rational numbers can be
represented in the form (2.2.6). The numbers in this set are called floating-point
numbers. Since d; # 0 this set contains, including the number 0, precisely

2(6 - 1)ﬁt71(emax — €min + 1) + 1

numbers. (Show this!) The limited number of digits in the exponent implies that a
is limited in magnitude to an interval which is called the range of the floating-point
system. If a is larger in magnitude than the largest number in the set F', then a
cannot be represented at all (exponent spill). The same is true, in a sense, of
numbers smaller than the smallest nonzero number in F'.

Figure 2.2.1. Positive normalized numbers when 3 =2,t =3, and —1 < e < 2.

Example 2.2.4.

Consider the floating-point number system for § = 2, ¢t = 3, emin = —1,
and emax = 2. The positive normalized numbers in the corresponding set F' are
shown in Figure 2.2.1. The set F' contains exactly 2-16 + 1 = 33 numbers. In this

30Strictly speaking mantissa refers to the decimal part of a logarithm.
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example the nonzero numbers of smallest magnitude that can be represented are
(0.100)2 - 271 = 1 and the largest is (0.111), - 22 = .

Notice that floating-point numbers are not equally spaced; the spacing jumps
by a factor § at each power of 5. This wobbling is smallest for 5 = 2.

Definition 2.2.1.
The spacing of floating-point numbers is characterized by the machine ep-
silon, which is the distance epr from 1.0 to the next larger floating-point number.

The leading significant digit of numbers represented in a number system with
base 3 has been observed to closely fit a logarithmic distribution, i.e. the proportion
of numbers with leading digit equal to n is Ing(1+1/n) (n =0,1,...,8—1). It has
been shown that under this assumption taking the base equal to 2 will minimize the
mean square representation error. A discussion of this intriguing fact with historic
references is found in Higham [180, Sec. 2.7].

Even if the operands in an arithmetic operation are floating-point numbers
in F, the exact result of the operation may not be in F. For example, the exact
product of two floating-point ¢-digit numbers has 2t or 2¢ — 1 digits.

If a real number a is in the range of the floating-point system the obvious way
is to represent a by @ = fl(a), where fl(a) denotes a number in F' which is nearest
to a. This corresponds to rounding of the mantissa m, and according to Sec.2.1.3,
we have

1. _

(There is one exception. If |m| after rounding should be raised to 1, then |m]| is set
equal to 0.1 and e raised by 1.) Since m > 0.1 this means that the magnitude of
the relative error in a is at most equal to

19— e
Lt 1

p by
m - 3¢ _26 ’

Even with the exception mentioned above this relative bound still holds. (If chop-
ping is used, this doubles the error bound above.) This proves the following theorem:

Theorem 2.2.2.

In a floating-point number system F = F(B,t, emin, €max) €very real number
in the floating-point range of F' can be represented with a relative error, which does
not exceed the unit roundoff u, which is defined by

1a—t+1 P
=0 if rounding is used
=<2 ’ ’ 2.2.8
b {ﬁtJrl, if chopping is used. ( )

Note that in a floating-point system both large and small numbers are repre-
sented with nearly the same relative precision. The quantity w is, in many contexts,
a natural unit for relative changes and relative errors. For example, termination
criteria in iterative methods usually depend on the unit roundoff.
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To measure the difference between a floating-point number and the real num-
ber it approximates we shall occasionally use “unit in last place” or ulp. We
shall often say that “the quantity is perturbed by a few ulps”. For example, if in a
decimal floating-point system the number 3.14159 is represented as 0.3142 - 10! this
has an error of 0.41 ulps.

Example 2.2.5.

Sometimes it is useful to be able to approximately determine the unit roundoff
in a program at run time. This may be done using the observation that v ~ y, where
w is the smallest floating-point number x for which fl(1 4+ x) > 1. The following
program computes a number p which differs from the unit roundoff v at most by a
factor of 2:

r:=1;
while 1 + 2 >1 z:=z/2; end;
pi= x;

One reason why u does not exactly equal u is that so called double rounding may
occur. This is when a result is first rounded to extended format and then to the
target precision.

Figure 2.2.2. Positive normalized and denormalized numbers when 3 = 2,
t=3,and -1 <e<2.

A floating-point number system can be extended by including denormalized
numbers (also called subnormal numbers). These are numbers with the minimum
exponent and with the most significant digit equal to zero. The three numbers

(.001)927 1 =1/16, (.010)227' =2/16, (.011),27" = 3/16,

can then also be represented. Because the representation of denormalized numbers
have initial zero digits these have fewer digits of precision than normalized numbers.

2.2.3 IEEE Floating-Point Standard

Actual computer implementations of floating-point representations may differ in
detail from the one given above. Although some pocket calculators use a floating-
point number system with base § = 10, almost all modern computers use base
B = 2. Most current computers now conform to the IEEE 754 standard for binary
floating-point arithmetic.®! This standard from 1985 (see [108]) which is the result

31W. Kahan, University of California, Berkeley, was given the Turing Award by the Association
of Computing Machinery for his contribution to this standard.
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98 Chapter 2. How to Obtain and Estimate Accuracy

of several years work by a subcommittee of the IEEE, is now implemented on almost
all chips used for personal computers and workstations. There is also a standard
IEEE 854 for radix independent floating-point arithmetic [109]. This is used with
base 10 by several hand calculators.

The IEEE 754 standard specifies basic and extended formats for floating-point
numbers, elementary operations and rounding rules available, conversion between
different number formats, and binary-decimal conversion. The handling of excep-
tional cases like exponent overflow or underflow and division by zero are also spec-
ified.

Two main basic formats, single and double precision are defined, using 32 and
64 bits respectively. In single precision a floating-point number « is stored as a
sign s (one bit), the exponent e (8 bits), and the mantissa m (23 bits). In double
precision of the 64 bits 11 are used for the exponent, and 52 bits for the mantissa.
The value v of a is in the normal case

v=(=1)°(1.m)22° —emin < € < emax- (2.2.9)

Note that the digit before the binary point is always 1 for a normalized number.
Thus the normalization of the mantissa is different from that in (2.2.6). This bit
is not stored (the hidden bit). In that way one bit is gained for the mantissa. A
biased exponent is stored and no sign bit used for the exponent. In single precision
emin = —126 and en. = 127 and e + 127 is stored.

The unit roundoff equals

u — 2724 ~ 596-107%, in single precision;
2753 ~ 1.11-107'6 in double precision.

(The machine epsilon is twice as large.) The largest number that can be represented
is approximately 2.0 - 2127 ~ 3.4028 x 10%® in single precision and 2.0 - 21023 ~
1.7977 x 103%% in double precision. The smallest normalized number is 1.0 - 27126 ~
1.1755 x 10738 in single precision and 1.0 - 271022 ~ 2.2251 x 10738 in double
precision.

An exponent e = ey, — 1 and m # 0, signifies the denormalized number

v = (—=1)%(0.m)g2%min;

The smallest denormalized number that can be represented is 27126723 ~ 1.4013 -
104 in single precision and 271022752 x 4.9407 - 107324 in double precision.

There are distinct representations for +0 and —0. =0 is represented by a
sign bit, the exponent e, — 1 and a zero mantissa. Comparisons are defined so
that +0 = —0. One use of a signed zero is to distinguish between positive and
negative underflowed numbers. Another use occurs in the computation of complex
elementary functions; see Sec. 2.2.4.

Infinity is also signed and 4oo is represented by the exponent eyax + 1 and
a zero mantissa. When overflow occurs the result is set to +o0o. This is safer than
simply returning the largest representable number, that may be nowhere near the
correct answer. The result oo is also obtained from the illegal operations a/0,
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where a # 0. The infinity symbol obeys the usual mathematical conventions, such
as 00 4+ 00 = 00, (—1) x 0o = —00, a/oo = 0.

The TEEE standard also includes two extended precision formats that offer
extra precision and exponent range. The standard only specifies a lower bound on
how many extra bits it provides.?? Most modern processors use 80-bit registers for
processing real numbers and store results as 64-bit numbers according to the IEEE
double precision standard. Extended formats simplify tasks such as computing
elementary functions accurately in single or double precision. Extended precision
formats are used also by hand calculators. These will often display 10 decimal digits
but use 13 digits internally—“the calculator knows more than it shows.”

The characteristics of the IEEE formats are summarized in Table 2.2.1. (The
hidden bit in the mantissa accounts for the +1 in the table. Note that double
precision satisfies the requirements for single extended, so three different precisions
suffice.)

Table 2.2.1. IEEFE floating-point formats.

Format t e €min €max
Single 32 bits 23 +1 8 bits —126 127
Single extended > 43 bits > 32 > 11 bits < —1022 > 1023
Double 64 bits 52+1 11 bits —1022 1023
Double extended > 79 bits >64 > 15 bits < —16382 > 16383

Example 2.2.6.

Although the exponent range of the floating-point formats seems reassuringly
large, even simple programs can quickly give exponent spill. If xg = 2, x,11 = 22,
then already z19 = 2'9%* is larger than what IEEE double precision permits. One
should also be careful in computations with factorials, e.g., 171! ~ 1.24 - 103%9 is
larger than the largest double precision number.

Four rounding modes are supported by the standard. The default rounding
mode is round to nearest representable number, with round to even in case of a
tie. (Some computers in case of a tie round away from zero, i.e. raise the absolute
value of the number, because this is easier to realize technically.) Chopping is also
supported as well as directed rounding to co and to —oo. The latter mode simplifies
the implementation of interval arithmetic, see Sec. 2.5.3.

The standard specifies that all arithmetic operations should be performed as if
they were first calculated to infinite precision and then rounded to a floating point
number according to one of the four modes mentioned above. This also includes
the square root and conversion between integer and floating-point. The standard
also requires the conversion between internal formats and decimal to be correctly
rounded.

32Hardware implementation of extended precision normally does not use a hidden bit, so the
double extended format uses 80 bits rather than 79.
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100 Chapter 2. How to Obtain and Estimate Accuracy

This can be implemented using extra guard digits in the intermediate result
of the operation before normalization and rounding. Using a single guard digit,
however, will not always ensure the desired result. However by introducing a second
guard digit and a third sticky bit (the logical OR of all succeeding bits) the rounded
exact result can be computed at only a little more cost (Goldberg [146]). One
reason for specifying precisely the results of arithmetic operations is to improve
the portability of software. If a program is moved between two computers both
supporting the IEEE standard intermediate results should be the same.

IEEE arithmetic is a closed system, that is every operation, even mathematical
invalid operations, even 0/0 or \/—1 produces a result. To handle exceptional
situations without aborting the computations some bit patterns (see Table 2.2.2)
are reserved for special quantities like NaN (“Not a Number”) and co. NaNs (there
are more than one NaN) are represented by e = epax + 1 and m # 0.

Table 2.2.2. IEEE 754 representation.

Exponent Mantissa  Represents
€ = €min — 1 m=0 +0
€ = €emin — 1 m # 0 +0.m - 26min

€min < € < €max +1.m - 2¢
€ =¢€max +1 m =20 +o0
€= €max + 1 m =0 NaN

Note that the gap between 0 and the smallest normalized number is 1.0 x 2°mi=,
This is much larger than for the spacing 2 P! x 2¢min for the normalized numbers
for numbers just larger than the underflow threshold; compare Example 2.2.4. With
denormalized numbers the spacing becomes more regular and permits what is called
gradual underflow. This makes many algorithms well behaved also close to the
underflow threshold. Another advantage of having gradual underflow is that it
makes it possible to preserve the property

r=y & z—y=0

as well as other useful relations. Several examples of how denormalized numbers
makes writing reliable floating-point code easier are analyzed by Demmel [85].

One illustration of the use of extended precision is in converting between
IEEE 754 single precision and decimal. The converted single precision number
should ideally be converted with enough digits so that when it is converted back
the binary single precision number is recovered. It might be expected that since
224 < 108 eight decimal digits in the converted number would suffice. But it can be
shown that nine decimal digits are needed to recover the binary number uniquely
(see Goldberg [146, Theorem 15] and Problem 2.2.4). When converting back to
binary form a rounding error as small as one ulp will give the wrong answer. To do
this conversion efficiently extended single precision is needed!33

331t should be noted that some computer languages do not include input/output routines, but
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2.2. Computer Number Systems 101

A NaN is generated by operations such as 0/0, +00 + (—00), 0 x co and /—1.
A NaN compares unequal with everything including itself. (Note that x # x is a
simple way to test if « equals a NaN.) When a NaN and an ordinary floating-point
number is combined the result is the same as the NaN operand. A NaN is often
used also for uninitialized or missing data.

Exceptional operations also raise a flag. The default is to set a flag and
continue, but it is also possible to pass control to a trap handler. The flags are
“sticky” in that they remain set until explicitly cleared. This implies that without
a log file everything before the last setting is lost, why it is always wise to use a
trap handler. There is one flag for each of the following five exceptions: underflow,
overflow, division by zero, invalid operation and inexact. By testing the flags it is,
for example, possible to test if an overflow is genuine or the result of division by
Zero.

Because of cheaper hardware and increasing problem sizes double precision
is more and more used in scientific computing. With increasing speed and mem-
ory becoming available, bigger and bigger problems are being solved and actual
problems may soon require more than IEEE double precision! When the IEEE 754
standard was defined no one expected computers able to execute more than 102
floating-point operations per second!

2.2.4 Elementary Functions

Although the square root is included, the IEEE 754 standard does not deal with the
implementation of other familiar elementary functions, such as i.e. the exponential
function exp, the natural logarithm log, the trigonometric and hyperbolic functions
sin, cos, tan, sinh, cosh, tanh, and their inverse functions. With the IEEE 754
standard more accurate implementations are possible which in many cases give
almost correctly rounded exact results. To always guarantee correctly rounded exact
results sometimes require computing many more digits than the target accuracy
(cf. the tablemaker’s dilemma) and therefore is in general too costly. It is also
important to preserve monotonicity, e.g, 0 < z < y < 7/2 = sinz < siny, and
range restrictions, e.g., sinz < 1, but these demands may conflict with rounded
exact results!

The first step in computing an elementary function is to perform a range
reduction. To compute trigonometric functions, for example, sinz, an additive
range reduction is first performed, in which a reduced argument z*, —7w/4 < z* <
/4, is computed by finding an integer k such that

a* =z —kn/2, (r/2= 15707963267 9489661923 ..).

(Quantities such as 7/2, log(2), that are often used in standard subroutines are
listed in decimal form to 30 digits and octal form to 40 digits in Hart et al. [170,
Appendix C] and to 40 and 44 digits in Knuth [204, Appendix A].) Then sinz =

these are developed separately. This can lead to double rounding, which spoils the careful designed
accuracy in the IEEE 754 standard. (Some banks use separate routines with chopping even today—
you may guess why!)
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102 Chapter 2. How to Obtain and Estimate Accuracy

+sinz* or sinz = +cosz*, depending on if £k mod 4 equals 0,1,2 or 3. Hence
approximation for sinz and cosz need only be provided for 0 < = < 7/4. If the
argument x is very large then cancellation in the range reduction can lead to poor
accuracy; see Example 2.3.7.

To compute log z, z > 0, a multiplicative range reduction is used. If an integer
k is determined such that

ot =gx/2%, 2t €[1/2,1],

then logz = logz* + k - log 2.
To compute the exponential function exp(z) an integer k is determined such
that

¥ =x—klog2, z*¢€[0,log2] (log2=0.69314718055994530942...).

It then holds that exp(z) = exp(z*) - 2¥ and hence we only need an approximation
of exp(z) for the range z € [0, log2];

Coefficients of polynomial and rational approximations suitable for software
implementations are tabulated in Hart et al. [170] and Cody and Waite [67]. But
approximation of functions can now be simply obtained using software such as
Maple [58]. For example in Maple the commands

Digits = 40; minimax(exp(x), x = 0..1, [i,k],1,’err’)

means that we are looking for the coefficients of the minimax approximation of
the exponential function on [0,1] by a rational function with numerator of de-
gree ¢ and denominator of degree k with weight function 1 and that the variable
err should be equal to the approximation error. The coefficients are to be com-
puted to 40 decimal digits. A trend now is that elementary functions are more
and more implemented in hardware. Hardware implementations are discussed
by Muller [243]. Carefully implemented algorithms for elementary functions are
available from www.netlib.org/fdlibm in the library package fdlibm (Freely Dis-
tributable Math. Library) developed by Sun Microsystems and used by MATLAB.

Example 2.2.7.

On a computer using IEEE double precision arithmetic the roundoff unit is
u =272~ 1.1-10"16. One wishes to compute sinh z with good relative accuracy,
both for small and large |z|, at least moderately large. Assume that e is computed
with a relative error less than w in the given interval. The formula (e” —e~*)/2 for
sinh z is sufficiently accurate except when |z| is very small and cancellation occurs.
Hence for |z| < 1, e® and e~ and hence (e® — e~?)/2 can have absolute errors
of order of magnitude (say) u. Then the relative error in (e — e~ *)/2 can have
magnitude ~ u/|x|; for example, this is more than 100% for z ~ 10~16.

For |z| < 1 one can instead use (say) two terms in the series expansion for
sinh z,

sinhz =z + 23 /3! + 25/5! + .. ..

Then one gets an absolute truncation error which is about z°/120, and a round-off
error of the order of 2u|z|. Thus the formula z + 22 /6 is better than (e* —e~%)/2 if

|2|° /120 + 2u|z| < u.
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2.2. Computer Number Systems 103

If 2u|z| < u, we have |z|® < 120u = 15-27°° or |z| < 15/°.2710 2 0.00168, (which
shows that 2u|z| really could be ignored in this rough calculation). Thus, if one
switches from (e — e™®)/2 to x + 2%/6 for |z| < 0.00168, the relative error will
nowhere exceed u/0.00168 ~ 0.66-10~13. If one needs higher accuracy, one can take
more terms in the series, so that the switch can occur at a larger value of |z|.

For very large values of |x| one must expect a relative error of order of mag-
nitude |zu| because of round-off error in the argument . Compare the discussion
of range reduction in Sec.2.2.4 and Problem 2.2.13.

For complex arguments the elementary functions have discontinuous jumps
across when the argument crosses certain branch cuts in the complex plane. They
are represented by functions which are single-valued excepts for certain straight
lines called branch cuts. Where to put these branch cuts and the role of IEEE
arithmetic in making these choices are discussed by Kahan [195].

Example 2.2.8.

The function /z is multivalued and there is no way to select the values so
the function is continuous over the whole complex plane. If a branch cut is made
by excluding all real negative numbers from consideration the square root becomes
continuous. Signed zero provides a way to distinguish numbers of the form x+i(+0)
and x + i(—0) and to select one or the other side of the cut.

To test the implementation of elementary functions a Fortran package ELE-
FUNT has been developed by Cody [65]. This checks the quality using indentities
like cos z = cos(z/3)(4 cos?(x/3) — 1). For complex elementary functions a package
CELEFUNT serves the same purpose; see Cody [66].

2.2.5 Multiple Precision Arithmetic

Hardly any quantity in the physical world is known to an accuracy beyond IEEE
double precision. A value of 7w correct to 20 decimal digits would suffice to cal-
culate the circumference of a circle around the sun at the orbit of the earth to
within the width of an atom. There seems to be little need for multiple precision
calculations. Occasionally, however, one may want to perform some calculations,
for example, the evaluation of some mathematical constant (such as 7 and Euler’s
constant ) or elementary functions, to very high precision.?* Extremely high preci-
sion is sometimes needed in experimental mathematics when trying to discover new
mathematical identities. Algorithms, which may be used for these purposes include
power series, continued fractions, solution of equations with Newton’s method, or
other superlinearly convergent methods.

For performing such tasks it is convenient to use arrays to represent numbers
in a floating-point form with a large base and a long mantissa and have routines
for performing floating-point operations on such numbers. In this way it is possible

34In Oct. 1995 Yasumasa Kanada of the University of Tokyo computed 7 to 6,442,458 938
decimals on a Hitachi supercomputer; see [11].
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104 Chapter 2. How to Obtain and Estimate Accuracy

to simulate arithmetic of arbitrarily high precision using standard floating point
arithmetic.

Brent [40, 39] developed the first major such multiple-precision package in
Fortran 66. His package represents multiple precision numbers as arrays of integers
and operates on them with integer arithmetic. It includes subroutines for multiple
precision evaluation of elementary functions. A more recent package called MPFUN,
written in Fortran 77 code, is that of Bailey [9]. In MPFUN a multiple precision
number is represented as a vector of single precision floating-point numbers with
base 224, Complex multiprecision numbers are also supported. There is also a
Fortran 90 version of this package [10], which is easy to use.

A package Mulprec of MATLAB m-files for computations in, in principle,
unlimited precision floating-point has been developed by the first named author. A
documentation of Mulprec and the m-files can be downloaded from the homepage of
the book at www.mai.liu.se/~akbjo/NMbook.html together with some examples
of its use.

Fortran routines for high-precision computation are also provided in Press et
al [263, §20.6], and is also supported by symbolic manipulation systems such as
Maple [58] and Mathematica [338]; see Appendix C..

Review Questions

2.1. What base ( is used in the binary, octal and hexadecimal number systems?

2.2. Show that any finite decimal fraction corresponds to a binary fraction that
eventually is periodic.

2.3. What is meant by a normalized floating-point representation of a real number?

2.4. (a) How large can the maximum relative error be in representation of a real
number a in the floating-point system F' = F'(f3, p, €min, €max)? It is assumed
that a is in the range of F.

(b) How are the quantities “machine epsilon” and “unit round off” defined?
2.5. What are the characteristics of the IEEE single and double precision formats?

2.6. What are the advantages of including denormalized numbers in the IEEE
standard?

2.7. Give examples of operations that give NaN as result.

Problems and Computer Exercises
2.1. Which rational numbers can be expressed with a finite number of binary digits
to the right of the binary point?

2.2. (a) Prove the algorithm for conversion between number systems given in
Sec.2.2.1.

(b) Give the hexadecimal form of the decimal numbers 0.1 and 0.3. What
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2.3.

2.4.

2.5.

2.6.

2.7.

2.8.

2.9.

2.10.

2.11.

error is incurred in rounding these numbers to IEEE 754 single and double
precision?

(c) What is the result of the computation 0.3/0.1 in IEEE 754 single and
double precision 7

(W. Kahan) An (over-)estimate of u can be obtained for almost any computer
by evaluating |3x (4/3—1)—1] using rounded floating-point for every operation.
Test this on a calculator or computer available to you.

(Goldberg [146]) The binary single precision numbers in the half-open interval
[10%,1024) have 10 bits to the left and 14 bits to the right of the binary
point. Show that there are (210 —103) - 214 = 393, 216 such numbers, but only
(219 —10%) - 10* = 240, 000 decimal numbers with 8 decimal digits in the same
interval. Conclude that 8 decimal digits are not enough to uniquely represent
single precision binary numbers in the IEEE 754 standard.

Suppose one wants to compute the power A" of a square matrix A, where n
is a positive integer. To compute A**!1 = A . A¥ for k = 1 :n — 1 requires
n — 1 matrix multiplications. Show that the number of multiplications can be
reduced to less than 2[log, 1| by converting n into binary form and successive
squaring A% = (A¥)2 k =1: |logyn].

Give in decimal representation: (a) (10000)2; (b) (100)s; (c) (64)16; (d)
(FF)16; (e) (0.11)s; (g) the largest positive integer which can be written with
thirty—one binary digits (answer with one significant digit).

(a) Show how the following numbers are stored in the basic single precision
format of the IEEE 754 standard: 1.0; —0.0625; 250.25; 0.1.

(b) Give in decimal notation the largest and smallest positive numbers which
can be stored in this format.

(Goldberg [146, Theorem7].) When = 2, if m and n are integers with
m < 2P~1 (p is the number of bits in the mantissa) and n has the special form
n = 2' + 27, then fI((m/n)-n) = m provided that floating-point operations
are exactly rounded to nearest. The sequence of possible values of n start with
1,2,3,4,5,6,8,9,10,12,16,17. Test the theorem on your computer for these
numbers.

Let pi be the closest floating-point number to 7 in double precision IEEE 754
standard. Find a sufficiently accurate approximation to m from a table and
show that 7 — pi ~ 1.2246 - 1076, What value do you get on your computer
for sin?

(A. Edelman.) Let z, 1 < z < 2, be a floating-point number in IEEE double
precision arithmetic. Show that fi(x - fI(1/x)) is either 1 or 1 — ey /2, where
enr = 2752 (the machine epsilon).

(N. J. Higham.) Let a and b be floating-point numbers with a < b. Show that
the inequalities a < fI((a + b)/2) < b can be violated in base 10 arithmetic.
Show that a < fl(a+ (b —a)/2) < b in base § arithmetic.
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106 Chapter 2. How to Obtain and Estimate Accuracy

2.12. (J.-M. Muller) A rational approximation of tanx in [—m/4,7/4] is

_(0.99999 99328 — 0.09587 504522)
~ 1—(0.42920 9672 + 0.00974 323422)22

r(z)

Determine the approximate maximum error of this approximation by compar-
ing with the function on your system on 100 equidistant points in [0, 7/4].

2.13. (a) Show how on a binary computer the exponential function can be approx-
imated by first performing a range reduction based on the relation e* = 29,
y = x/log 2, and then approximating 2¥ on y € [0,1/2].
(b) Show that since 2¥ satisfies 27¥ = 1/2¥ a rational function r(y) approxi-
mating 2Y¥ should have the form

where ¢ and s are polynomials.
(c) Suppose the r(y) in (b) is used for approximating 2¥ with

q(y) = 20.81892 37930 062 + v,
s(y) = 7.21528 91511 493 + 0.05769 00723 731y.

How many additions, multiplications and divisions are needed in this case to
evaluate r(y)? Investigate the accuracy achieved for y € [0,1/2].

2.3 Accuracy and Rounding Errors
2.3.1 Floating-Point Arithmetic

It is useful to have a model of how the basic floating-point operations are carried
out. If x and y are two floating-point numbers, we denote by

fliz+y), flx-y), flx-y), [fl(z/y)

the results of floating addition, subtraction, multiplication, and division, which the
machine stores in memory (after rounding or chopping). We will in the following
assume that underflow or overflow does not occur, and that the following standard
model for the arithmetic holds:

Definition 2.3.1.
Assume that x,y € F. Then in the standard model it holds

fl(xopy)=(xopyd+9), [I<u, (2.3.1)

where u is the unit roundoff and “op” stands for one of the four elementary opera-
tions +, —, -, and /.
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2.3. Accuracy and Rounding Errors 107

The standard model holds with the default rounding mode for computers
implementing the IEEE 754 standard. In this case we also have

ALVE) = Va1 +0), 1o <u, (2.3.2)
If a guard digit is lacking then instead of (2.3.1) only the weaker model
fl(z opy) =a(l+61) opy(l+d2), [6]<u, (2.3.3)

holds for addition/subtraction. The lack of a guard digit is a serious drawback
and can lead to damaging inaccuracy caused by cancellation. Many algorithms
can be proved to work satisfactorily only if the standard model (2.3.1) holds. We
remark that on current computers multiplication is as fast as addition/subtraction.
Division usually is 5-10 times slower than a multiply and a square root about twice
slower than division.

Some earlier computers lack a guard digit in addition/subtraction. Notable
examples are several models of Cray computers (Cray 1,2, X-MP,Y-MP, and C90)
before 1995, which were designed to have the highest possible floating-point perfor-
mance. The IBM 360, which used a hexadecimal system, lacked a (hexadecimal)
guard digit between 1964-1967. The consequences turned out to be so intolerable
that a guard digit had to be retrofitted.

Sometimes the floating-point computation is more precise than what the stan-
dard model assumes. An obvious example is that when the exact value x op y can
be represented as a floating-point number there is no rounding error at all.

Some computers can perform a fused multiply-add operation, i.e. an expression
of the form a x x + y can be evaluated with just one instruction and there is only
one rounding error at the end

fllaxz+y)=(axz+y)(1+75), |0 <u.

Fused multiply-add can be used to advantage in many algorithms. For example,
Horner’s rule to evaluate the polynomial p(z) = agx™ + a;x™ ' + -+ ay_17 + an,
which uses the recurrence relation by = ag, b; = b;—1 - * + a4, i = 1 : n, needs only
n fused multiply-add operations.

It is important to realize that these floating-point operations have, to some
degree, other properties than the exact arithmetic operations. floating-point addi-
tion and multiplication are commutative, but not associative and the distributive
law also fails for them. This makes the analysis of floating point computations quite
difficult.

Example 2.3.1.
To show that associativity does not, in general, hold for floating addition,
consider adding the three numbers

a = 0.1234567 - 10°, b=0.4711325- 10%, c = —b.

in a decimal floating-point system with ¢ = 7 digits in the mantissa. The following
scheme indicates how floating-point addition is performed:

flb+¢)=0,  fl(a+ fl(b+¢)) =a=0.1234567- 10°
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a = 0.0000123 | 4567 - 10*
+b = 0.4711325 -10%
fla+b) = 0.4711448 107
¢ = —0.4711325 -10%

The last four digits to the right of the vertical line are lost by outshifting, and
FL(fl(a+b) 4+ ¢) = 0.0000123 - 10* = 0.1230000 - 10° # f1(a + f1(b+ c)).

An interesting fact is that, assuming a guard digit is used, floating-point sub-
traction of two sufficiently close numbers is always ezxact.

Lemma 2.3.2 (Sterbenz [298]).
Let the floating-point numbers x and y satisfy

y/2 <z < 2y.

Then fl(x —y) = x — vy, unless x — y underflows.

Proof. By the assumption the exponent of x and y in the floating-point represen-
tations of = and y can differ at most by one unit. If the exponent is the same then
the exact result will be computed. Therefore assume the exponents differ by one.
After scaling and, if necessary, interchanging « and y it holds that /2 <y < x < 2
and the exact difference z = x — y is of the form

r = T1.292...%¢
y= 0y yr1us
Z = Z1.22 ... RZtRt+1

But from the assumption 2/2 —y < 0 or  — y < y. Hence we must have z; = 0, so
after shifting the exact result is obtained also in this case. [0

With gradual underflow, as in the IEEE 754 standard, the condition that x —y
does not underflow can be dropped.

Example 2.3.2.
A corresponding result holds for any base 3. For example, using four digit
floating decimal arithmetic we get with guard digit

£1(0.1000 - 10" — 0.9999) = 0.0001 = 1.000 - 104,
(exact) but without guard digit
£1(0.1000 - 10 — 0.9999) = (0.1000 — 0.0999)10' = 0.0001 - 10* = 1.000 - 10~3.
The last result satisfies equation (2.3.3) with |§;| < 0.5- 1073 since 0.10005 - 101 —
0.9995 = 1073,

Outshiftings are common causes of loss of information that may lead to catas-
trophic cancellation later, in the computations of a quantity that one would have
liked to obtain with good relative accuracy.
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Figure 2.3.1. Computed values for n = 10P, p =1 : 14, of the sequences:
solid line |(1 4 1/n)™ — e|; dashed line |exp(nlog(l+ 1/n)) — e| using (2.3.4).

Example 2.3.3.

An example where the result of Lemma 2.3.2 can be used to advantage is in
computing compounded interest. Consider depositing the amount ¢ every day on
an account with an interest rate ¢ compounded daily. Then with the accumulated
capital at the end of the year equals

cdl+z)" —1)/z, z=i/n<K1,

and n = 365. Using this formula does not give accurate results. The reason is that
a rounding error occurs in computing fI(1 4+ z) = 1 + Z and low order bits of x is
lost. For example, if ¢ = 0.06 then i/n = 0.0001643836 and in decimal arithmetic
using six digits when this is added to one we get fI(1+1i/n) = 1.000164 so four low
order digits are lost.
The problem then is to accurately compute (14 z)" = exp(nlog(l + z)). The
formula
x, if fl(l4+x)=1;
(1+z)—1’

otherwise. (2.3.4)

can be shown to yield accurate results when x € [0,3/4] and the computed value of
log(1 + x) equals the exact result rounded; see Goldberg [146, p.12].
To check this formula we recall that the base e of the natural logarithm can
be defined by the limit
e= nlingo(l +1/n)"
In Figure 2.3.1 we show computed values, using double precision floating-point
arithmetic, of the sequence |(1+ 1/n)™ — ¢| for n = 10P, p = 1 : 14. More precisely,

2007/
page



110 Chapter 2. How to Obtain and Estimate Accuracy

the expression was computed as

|exp(nlog(l 4+ 1/n)) — exp(1)].

The smallest difference 3-10~8 occur for n = 108, for which about half the number
of bits in = 1/n are lost. For larger values of n rounding errors destroy the
convergence. But using (2.3.4) we obtain correct results for all values of n! (The
Maclaurin series

log(l+z) =2 —a2?/2+23/3 —2*/4+---
will also give good results.

A fundamental insight from the above examples can be expressed in the fol-
lowing way:

“mathematically equivalent” formulas or algorithms are not in general
“numerically equivalent”.

This adds a new dimension to calculations in finite precision arithmetic and it will
be a recurrent theme in the analysis of algorithms in this book!

By mathematical equivalence of two algorithms we mean here that the
algorithms give exactly the same results from the same input data, if the com-
putations are made without rounding error (“with infinitely many digits”). One
algorithm can then, as a rule, formally be derived from the other using the rules
of algebra for real numbers, and with the help of mathematical identities. Two
algorithms are numerically equivalent if their respective floating-point results,
using the same input data are the same.

In error analysis for compound arithmetic expressions based on the standard
model (2.3.1) one often needs an upper bound for quantities of this form

e=|14+6)1+6) - (1+d,) —1], |6 <u, i=1:n.

Then € < (1 + )™ — 1. Assuming that nu < 1 an elementary calculation gives

2!

nu nu\ k-1 nu
14 (_) ):7 2.3.
<nu( + > + 5 + p——r (2.3.5)

-1
(l—i—u)”—l—nu—kmuQ—Fu.-{-<Z>uk+...

Similarly it can be shown that (1 —u)~" —1 < nu/(1 —nu), and the following useful
result follows (N. J. Higham [180, Lemma 3.1]):

Lemma 2.3.3.
Let |6;] < u, p; = %1, i = I:n, and set

n

[[a+6)7 =1+ 06, (2.3.6)

i=1
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If nu < 1, then |0, < 7y, where

Y = nu/(1 — nu). (2.3.7)

Complex arithmetic can be reduced to real arithmetic. Let x = a + b and
y = ¢+ id be two complex numbers. Then we have:

rty=atc+i(btd),
xy = (ac — bd) + i(ad + be), (2.3.8)
ac+bd . bec—ad
)y = c? 4+ d? +102+d2’

Using the above formula complex addition (subtraction) needs two real additions
and multiplying two complex numbers requires four real multiplications

Lemma 2.3.4.

Assume that the standard model (2.3.1) for floating point arithmetic holds.
Then, provided that no overflow or underflow occurs, no denormalized numbers are
produced, the complex operations computed according to (2.3.8) satisfy

fl(z£y)=(x£y)(1+9), [0 <u,
fl(zy) = zy(1+9), || < V5u, (2.3.9)
fl(z/y) = x/y(1436), 6] < V2,

where 0 is a complex number and 7, is defined in (2.3.7).

Proof. See Higham [180, Sec. 3.6]. The result for complex multiplication is due to
Brent et al. [42]. 0O

The square root of a complex number u + tv = \/x + iy is given by

r+o 1/2 r—a\'?
u—( ) ) , v—< 5 ) , r=Va 4y (2.3.10)

When z > 0 there will be cancellation when computing v, which can be severe if
also |z| > |y| (cf. Sec.2.3.4). To avoid this we note that uwv = vr? — 22/2 = y/2,
so v can be computed from v = y/(2u). When x < 0 we instead compute v from
(2.3.10) and set u = y/(2v).

Most rounding error analysis given in this book are formulated for real arith-
metic. Since the bounds in Lemma 2.3.4 are of the same form as the standard model
for real arithmetic, these can simply be extended to complex arithmetic.

In some cases it may be desirable to avoid complex arithmetic when working
with complex matrices. This can be achieved in a simple way by replacing the
complex matrices and vectors by real ones of twice the order. Suppose that a
complex matrix A € C™*"™ and a complex vector z € C™ are given, where

A=B+iC, z =+ 1y,
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112 Chapter 2. How to Obtain and Estimate Accuracy

with real B, C,x and y. Form the real matrix A € R2%21 and real vector Z € R2"

defined by
~ B -C - x
=@ 5) =)

It is easy to verify the following rules

(Az) = Az, (AB) = AB, (A=) = (A7,

Thus we can solve complex valued matrix problems using algorithms for the real
case. But this incurs a penalty in storage and arithmetic operations.

2.3.2 Basic Rounding Error Results

We now use the notation of Sec.2.3.1 and the standard model of floating-point
arithmetic (Definition 2.3.1) to carry out rounding error analysis of some basic
computations. Most but not all results are still true if only the weaker bound
(2.3.3) hold for addition and subtraction. Note that fI(z op y) = (z op y)(1 +9),
|| < wu, can be interpreted for multiplication to mean that fI(x -y) is the ezact
result of © - y(1 + §) for some 0, |§] < u. In the same way, the results using the
three other operations can be interpreted as the result of exact operations where
the operands have been perturbed by a relative amount which does not exceed u. In
backward error analysis (see Sec. 2.4.5) one applies the above interpretation step
by step backwards in an algorithm.

By repeated use of the formula (2.3.1) in case of multiplication, one can show
that

fl (leg e In) = leg(l —+ 52)$3(1 + 53) cee In(l =+ 571)7
[0;]| <u, i=2:n.

holds, i.e. the computed product fl(z1x2---xy,) is exactly equal to a product of
the factors

T = x1, i‘lle(l—f—&l), 1=2:n.
Using the estimate and notation of (2.3.7) it follows from this analysis that
[fl(x122 -+ ) — 122 - | < Yn—1|T1Z2 - - Tn, (2.3.11)

which bounds the forward error of the computed result.
For a sum of n floating-point numbers similar results can be derived. If the
sum is computed in the natural order we have

FLC (@1 +22) +25) + -+ 22))
=x1(1+01) +a2(1+02) + -+ 2p(1 +6n),
where
161] < V-1, 10i] < Yn41—i- 1=2:n,

2007/
page



2.3. Accuracy and Rounding Errors 113

and thus the computed sum is the ezact sum of the numbers z;(1 + §;). This also
gives an estimate of the forward error

UG (1 +22) tag) + 0+ an)) — (@1 22+ a3+ + 24

<D il <or Y, (2.3.12)
=1 i=1

where the last upper bound holds independent of the summation order.

Notice that to minimize the first upper bound in equation (2.3.12), the terms
should be added in increasing order of magnitude! For large n an even better bound
can be shown if the summation is done using the divide-and-conquer technique
described in Sec. 1.2.3; see Problem 2.3.5.

Example 2.3.4.
Using a hexadecimal machine (3 = 16), with t = 6 and chopping (u = 16> ~
107%) we computed

10,000
Z n~2 ~ 1.644834
n=1

in two different orders. Using the natural summation order n = 1,2, 3, ... the error
was 1.317 - 10~3. Summing in the opposite order n = 10,000,9,999,9,998 ... the
error was reduced to 2 - 1076, This was not unexpected. Each operation is an
addition, where the partial sum s is increased by n~2. Thus, in each operation,
one commits an error of about s - u, and all these errors are added. Using the first
summation order, we have 1 < s < 2 in every step, but using the other order of

summation we have s < 1072 in 9,900 of the 10,000 additions.

Similar bounds for roundoff errors can easily be derived for basic vector and
matrix operations; see Wilkinson [333, pp.114-118]. For an inner product z7y
computed in the natural order we have

U@ y) = 21y (14 61) + 2aya(1+ 62) + -+ + Zayn(1 + )

where
[01] < Yns [0r] < Ynt2-i, ©=2:n.

The corresponding forward error bound becomes
n n
F1ETy) = 2"yl <D ymrailallyil < Y lwillyil,
i=1 i=1

If we let |z|, |y| denote vectors with elements |z;|, |y;| the last estimate can be
written in the simple form

1f1(zTy) — 2Ty| < 2T []yl. (2.3.13)

This bound is independent of the summation order and holds also for the weaker
model (2.3.3) valid with no guard digit rounding.
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114 Chapter 2. How to Obtain and Estimate Accuracy

The outer product of two vectors z,y € R" is the matrix zy? = (z;y;). In
floating-point arithmetic we compute the elements f1 (z;y,) = x;y;(1+0i5), di5 < u,
and so

[fL(xy") —ay"| < ulzy”]. (2.3.14)

This is a satisfactory result for many purposes, but the computed result is not
in general a rank one matrix and it is not possible to find Az and Ay such that
fl(zy") = (z + Az)(z + Ay)T.

The product of two ¢ digit floating-point numbers can be exactly represented
with at most 2¢ digits. This allows inner products to be computed in extended pre-
cision without much extra cost. If fl. denotes computation with extended precision
and u, the corresponding unit roundoff then the forward error bound for an inner
product becomes

LTy = 2Tyl < ulaTy|+ o

where the first term comes form the final rounding. If |27 ||y| < u|zTy| then the
computed inner product is almost as accurate as the correctly rounded exact re-
sult. These accurate inner products can be used to improve accuracy by so-called
iterative refinement in many linear algebra problems. But since computations in
extended precision are machine dependent it has been difficult to make such pro-
grams portable.?> The recent development of Extended and Mixed Precision BLAS
(Basic Linear Algebra Subroutines) (see [219]) may now make this more feasible!

Similar error bounds can easily be obtained for matrix multiplication. Let
A e R™" B e R"P, and denote by |A| and |B| matrices with elements |a;;| and
|bi;|. Then it holds that

(1 4+u)|z |yl (2.3.15)

\fl(AB) — AB| < 7,|A||B. (2.3.16)

where the inequality is to be interpreted elementwise. Often we shall need bounds
for some norm of the error matrix. From (2.3.16) it follows that

[f1(AB) — ABJ| < vall [A[ ][ [BI - (2.3.17)
Hence, for the 1-norm, oco-norm and the Frobenius norm we have
If1(AB) — AB|| < v All || B]|- (2.3.18)

but unless A and B have only non-negative elements, we get for the 2-norm only
the weaker bound
|£1(AB) — ABl2 < nval|All2 || Bll:- (2.3.19)

To reduce the effects of rounding errors in computing a sum >~ ; z; one can
use compensated summation. In this algorithm the rounding error in each addi-
tion is estimated and then compensated for with a correction term. Compensated

351t was suggested that the IEEE 754 standard should require inner products to be precisely
specified, but that did not happen.
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2.3. Accuracy and Rounding Errors 115

summation can be useful when a large number of small terms are to be added as in
numerical quadrature. Another example is the case in the numerical solution of ini-
tial value problems for ordinary differential equations. Note that in this application
the terms have to be added in the order in which they are generated.

Compensated is based on the possibility to simulate double precision floating-
point addition in single precision arithmetic. To illustrate the basic idea we take as
in Example 2.3.1

a = 0.1234567 - 10°, b=0.4711325- 10%,
so that s = fl(a + b) = 0.4711448 - 10*, Suppose we form
c=fl(fl(b—s)+a)=—0.1230000- 10° + 0.1234567 - 10° = 4567000 - 103>,

Note that the variable ¢ is computed without error and picks up the information
that was lost in the operation fI(a + b).

Algorithm 2.2. Compensated Summation.

The following algorithm uses compensated summation to accurately compute the

sum y o @

s:=x1; c:=0;
fori=2:n

Y = c+ x;;
t:=s+y;
c:=(s—t)+y;
s =1

end

It can be proved (see Goldberg [146, 1991]) that on binary machines with a
guard digit the computed sum satisfies

s=Y (L+&w, & <2u+0(nu?). (2.3.20)
1=1

This formulation is a typical example of a backward error analysis; see Sec. 2.4.5.
The first term in the error bound is independent of n.

2.3.3 Statistical Models for Rounding Errors

The bounds for the accumulated rounding error we have derived so far are estimates
of the maximal error. These bounds ignore the sign of the errors and tend to be
much too pessimistic when the number of variables is large. They can still give
valuable insight into the behavior of a method and be used for the purpose of
comparing different methods.
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116 Chapter 2. How to Obtain and Estimate Accuracy

An alternative is a statistical analysis of rounding errors, which is based on the
assumption that rounding errors are independent and have some statistical distri-
bution. It was observed already in the 1950s that rounding errors occurring in the
solution of differential equations are not random and often are strongly correlated.
This does not in itself preclude that useful information can sometimes be obtained
by modeling them by random uncorrelated variables! In many computational situ-
ations and scientific experiments, where the error can be considered to have arisen
from the addition of a large number of independent error sources of about the same
magnitude, an assumption that the errors are normally distributed is justified.

Example 2.3.5.

Figure 2.3.2 illustrates the effect of rounding errors on the evaluation of two
different expressions for the polynomial p(z) = (z — 1) for = € [0.999,1.001], in
IEEE double precision (unit roundoff u = 1.1-10716). Among other things it shows
that the monotonicity of a function can be lost due to rounding errors. The model
of rounding errors as independent random variables works well in this example. It
is obvious that it would be impossible to locate the zero of p(z) to a precision better
than about (0.5-1071%)1/6 ~ 0.0007 using the expanded form of p(x). But using the
expression p(z) = (1 — x)° function values can be evaluated with constant relative
precision even close to = 1, and the problem disappears!

-15

-1.5-

_2 L i
0.999 0.9995 1 1.0005 1.001

Figure 2.3.2. Cualculated values of a polynomial near a multiple root: solid
line p(x) = 2° — 52 + 1023 — 102% + 52 — 1 = 0; dashed line p(z) = (v — 1)5.

This example shows that although multiple roots are in general ill-conditioned
an important exception is when the function f(z) if is given in such a form that it
can be computed with less absolute error as x approaches a.

The theory of standard error is based on probability theory and will not be
treated in detail here. The standard error of an estimate of a given quantity is the
same as the standard deviation of its sampling distribution.
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2.3. Accuracy and Rounding Errors 117

If in a sum y = > ., 2; each z; has error |A;| < 4, then the maximum
error bound for y is nd. Thus, the maximal error grows proportionally to n. If
n is large—for example, n = 1000—then it is in fact highly improbable that the
real error will be anywhere near nd, since that bound is attained only when every
Az; has the same sign and the same maximal magnitude. Observe, though, that
if positive numbers are added, each of which has been abridged to ¢ decimals by
chopping, then each Ax; has the same sign and a magnitude which is on the average
%6, where § = 10~*. Thus, the real error is often about 5004.

If the numbers are rounded instead of chopped, and if one can assume that the
errors in the various terms are stochastically independent with standard deviation
€, then the standard error in y becomes (see Theorem 2.4.5)

(E+E+... +V2=eyn.

Thus the standard error of the sum grows only proportionally to /n. This supports
the following rule of thumb, suggested by Wilkinson [332, p. 26], that if a rounding
error analysis gives a bound f(n)u for the mazimum error, then one can expect the
real error to be of size \/ f(n)u.
0.4r
0.351
0.3r

0.25-

Figure 2.3.3. The frequency function of the normal distribution for o = 1.

If n > 1, then the error in y is, under the assumptions made above, approxi-
mately normally distributed with standard deviation o = ey/n. The corresponding
frequency function, .

22
is illustrated in Figure 2.3.3; the curve shown there is also called the Gauss curve.
The assumption that the error is normally distributed with standard deviation o
means, for example, that the statement “the magnitude of the error is greater than
20" (see the shaded area of Figure 2.3.3) is true in about only 5 % of all cases (the
clear area under the curve). More generally, the assertion that the magnitude of
the error is larger than o, 20, and 30 respectively, is about 32%, 5%, and 0.27%.

One can show that if the individual terms in a sum y = > | z; have a uni-
form probability distribution in the interval [—%5, %5], then the standard deviation
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118 Chapter 2. How to Obtain and Estimate Accuracy

of an individual term is §/12. Therefore, in only about 5% of the cases is the error
in the sum of 1,000 terms greater than 2§,/1000/12 a2 18, which can be compared
to the maximum error 5004. This shows that rounding can be far superior to chop-
ping when a statistical interpretation (especially, the assumption of independence)
can be given to the principal sources of errors. Observe that, in the above, we have
only considered the propagation of errors which were present in the original data,
and have ignored the effect of possible round-off errors in the additions themselves.

For rounding errors the formula for standard errors is used. For systematic
errors, however, the formula for maximal error (2.4.5) should be used.

2.3.4 Avoiding Overflow and Cancellation

In the rare cases when input and output data are so large or small in magnitude
that the range of the machine is not sufficient, one can, use higher precision or
else work with logarithms or some other transformation of the data. One should,
however, keep in mind the risk that intermediate results in a calculation can produce
an exponent which is too large (overflow) or too small (underflow) for the floating-
point system of the machine. Different actions may be taken in such situations,
as well for division by zero. Too small an exponent is usually, but not always,
unproblematic. If the machine does not signal underflow, but simply sets the result
equal to zero, there is a risk, however, of harmful consequences. Occasionally,
“unexplainable errors” in output data are caused by underflow somewhere in the
computations.

The Pythagorean sum c¢ = +va? + b% occurs frequently, for example, in
conversion to polar coordinates and in computing the complex modulus and complex
multiplication. If the obvious algorithm is used, then damaging underflows and
overflows may occur in the squaring of a and b even if a and b and the result ¢ are
well within the range of the floating-point system used. This can be avoided by
using instead the algorithm: If « = b = 0 then ¢ = 0; otherwise set p = max(|al, |b|),
g = min(|al, |b]), and compute

p=q/p; c=py1+ p2 (2.3.21)

Example 2.3.6.

The formula (2.3.8) for complex division suffers from the problem that inter-
mediate results can overflow even if the final result is well within the range of the
floating-point system. This problem can be avoided by rewriting the formula as for
the Pythagorean sum: If |¢| > |d| then compute

a—i—ib_ a—i—be_i_ib—ae

Tid- — e=d/c, T=c+de.

If |d| > |c| then e = ¢/d is computed and a corresponding formula used.
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2.3. Accuracy and Rounding Errors 119

Similar precautions are also needed for computing the Euclidian length (norm)

of a vector ||zl = (31, x?)l/z, x # 0. We could avoid overflows by first finding

Tmax = MaXi<i<n |;| and then forming
s=> (@i/Tmas)®s  [|7ll2 = Tmaa /5. (2.3.22)
=1

This has the drawback of needing two passes through the data.

Algorithm 2.3.

The following algorithm, due to S. J. Hammarling, for computing the Euclidian
length of a vector requires only one pass through the data. It is used in the level-1
BLAS routine xXNRM2:

t=0; s=1;
fori=1:n
if |$Z| >t
s=1+s(t/)% t=|z;
else
s =5+ (z;/t)%
end
end
end

]2 = tV/s;

On the other hand this code does not vectorize and can therefore be slower if
implemented on a vector computer.

One very common reason for poor accuracy in the result of a calculation is
that somewhere a subtraction has been carried out in which the difference between
the operands is considerably less than either of the operands. This causes a loss of
relative precision. (Note that, on the other hand, relative precision is preserved in
addition of nonegative quantities, multiplication and division.)

Consider the computation of y = x1 — x2 where 1 = 1 + Az, To = 22+ Axs
are approximations to the exact values. If the operation is carried out exactly the
result is § = y + Ay, where Ay = Azy — Azo. But, since the errors Az and Azs
can have opposite sign, the best error bound for g is

|Ay| < [Az1| + |Aza]. (2.3.23)
Notice the plus sign! Hence for the relative error we have

’%} < w (2.3.24)

Yy |1 — 2]
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This shows that there can be very poor relative accuracy in the difference between
two nearly equal numbers. This phenomenon is called cancellation of terms.
In Sec. 1.2.1 it was shown that when using the well-known “text-book” formula

r,2 = (—bE Vb2 — dac) /(2a).

for computing the real roots of the quadratic equation ax? + bz + ¢ = 0 (a # 0)
cancellation could cause a loss of accuracy in the root of smallest magnitude. This
can be avoided by computing the root of smaller magnitude from the relation riry =
¢/a between coefficients and roots. The following is a suitable algorithm:

Algorithm 2.4. Solving a Quadratic Equation.

d:=b* — dac;

if d > 0 % real roots
1 == —sign(b) (|b] + \/E)/(2a);
ro:=c/(a-11);

else % complex roots x + iy
x:=—b/(2a);
y == V=d/(2a);

end

Note that we define sign (b) = 1, if b > 0, else sign (b) = —1.3¢ It can be proved that
in IEEE arithmetic this algorithm computes a slightly wrong solution to a slightly
wrong problem.

Lemma 2.3.5.

Assume that the Algorithm 2.3.2 is used to compute the roots r12 of the
quadratic equation ax® + bz + ¢ = 0. Denote the computed roots by 712 and let
1.2 be the ezact roots of the nearby equation ax? +bx +¢ = 0, where |¢ —c| < ¥2¢|.
Then |’I:1 — 7:1'| S '-Y5|7Zz|; 1= 1,2

Proof. See Kahan [194]. O

More generally, if |§| < x, then one should rewrite

r+6—x 1)
- V== T+ Vito+z

There are other exact ways of rewriting formulas which are as useful as the
above; for example,

cos(x + 0) — cosz = —25sin(d/2) sin(z + §/2).

36Tn MATLAB sign (0) = 0, which can lead to failure of this algorithm!
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If one cannot find an exact way of rewriting a given expression of the form f(z +
8) — f(x), it is often advantageous to use one or more terms in the Taylor series

Fla+8) = f@) = f/@)5 + 5 f/ )5 + -+

Example 2.3.7 (Cody [65]).

To compute sin22 we first find [22/(7/2)] = 14. It follows that sin22 =
—sinz*, where z* = 22 — 14(7w/2). Using the correctly rounded 10 digit approxi-
mation 7/2 = 1.57079 6327 we obtain

x* =22 — 1.57079 6327 = 8.85142 - 102,

Here cancellation has taken place and the reduced argument has a maximal error
of 7-1079, The actual error is slightly smaller since the correctly rounded value
is 2* = 8.85144 8711 - 10~3, which corresponds to a relative error in the computed
sin 22 of about 2.4 - 10~%, in spite of using a ten digit approximation to /2.

For very large arguments the relative error can be much larger. Techniques for
carrying out accurate range reductions without actually needing multiple precision
calculations are discussed by Muller [243]; see also Problem 2.3.9.

In previous examples we got a warning that cancellation would occur, since
xo was found as the difference between two nearly equal numbers each of which
was, relatively, much larger than the difference itself. In practice, one does not
always get such a warning, for two reasons: first, in using a computer one has no
direct contact with the individual steps of calculation; secondly, cancellation can be
spread over a great number of operations. This may occur in computing a partial
sum of an infinite series. For example, in a series where the size of some terms are
many orders of magnitude larger than the sum of the series, small relative errors in
the computation of the large terms can then produce large errors in the result.

It has been emphasized here that calculations where cancellation occur should
be avoided. But there are cases, where one has not been able to avoid it, and there
is no time to wait for a better method. Situations occur in practice where (say)
the first ten digits are lost, and we need a decent relative accuracy in what will be
left.3” Then, high accuracy is required in intermediate results. This is an instance
where the high accuracy in IEEE double precision is needed!

Review Questions

3.1. What is the standard model for floating-point arithmetic? What weaker model
holds if a guard digit is lacking?

3.2. Give examples to show that some of the axioms for arithmetic with real num-
bers do not always hold for floating-point arithmetic.

37@G. Dahlquist has encountered just this situation in a problem of financial mathematics.
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3.3.

3.4.

3.5.

(a) Give the results of a backward and forward error analysis for computing
fl(z1 + 22+ -+ x,). It is assumed that the standard model holds.

(b) Describe the idea in compensated summation.
Explain the terms “maximum error” and “standard error”. What statistical

assumption about rounding errors is often made when calculating the standard
error in a sum due to rounding?

Explain, what is meant by “cancellation of terms”. Give an example how this
can be avoided by rewriting a formula.

Problems and Computer Exercises

3.1.

3.2.

3.3.

3.4.

3.5.

3.6.

Rewrite the following expression to avoid cancellation of terms:

(a) 1 —cosz, |[z| < 1; (b)sinx —cosz, |z| = 7/4;

(a) The expression 22 —y? exhibits catastrophic cancellation if |z| =~ |y|. Show
that it is more accurate to evaluate it as (z + y)(z — y).

(b) Consider using the trigonometric identity sin? z + cos? z = 1 to compute
cosxz = (1 —sin?2)*/2. For which arguments in the range 0 < z < 7/4 will
this formula fail to give good accuracy?

The polar representation of a complex number is

z=x+iy=r(sing +cosp) =r-e'.

Develop accurate formulas for computing this polar representation from x and
y using real operations.

(Kahan) Show that with the use of fused multiply-add the algorithm

w:=be; c:=w—be; y:=(ad—w)+c

computes x = det (CCL b) with high relative accuracy.

d

Suppose that the sum s = Y1 | 2, n = 2% is computed using the the divide-
and-conquer technique described in Sec.1.2.3. Show that this summation al-
gorithm computes an exact sum

5= sz(l +di), 10i] < dlogy .
i=1

Hence for large values of n this summation order can be much more accurate
than the conventional order.

Show that for the evaluation of a polynomial p(z) = Y., a;x* by Horner’s
rule the following roundoff error estimate holds:

f1(p(x) = p(@)] <y Y _(2i+ Dail 2", (2nu < 0.1).
1=0
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3.7.

3.8.

3.9.

3.10.

In solving linear equations by Gaussian elimination there often occurs expres-
sions of the form s = (¢ — Z?:_ll a;b;)/d. Show that by a slight extension of
the result above that the computed 5 satisfies

n—1 n—1
}gd et Y b < %(|§d| +3 |ai||bi|),
=1 1=1

where the inequality holds independent of the summation order.

The zeros of the reduced cubic polynomial 2> 4+ 3¢z — 2r = 0, can be found
from the Cardano—Tartaglia formula:

1/3
z:(r—l— q3—|—1"2) +(T—\/q3+r2)

The two cubic roots are to be chosen so that their product equals —¢q. One
real root is obtained if q3 +r2 > 0, which is the case unless all three roots are
real and distinct.

The above formula can lead to cancellation. Rewrite it so that it becomes
more suitable for numerical calculation and requires the calculation of only
one cubic root.

1/3

(Eldén and Wittmeyer-Koch) In the interval reduction for computing sinz
there can be a loss of accuracy through cancellation in the computation of
the reduced argument z* = = — k- w/2 when k is large. A way to avoid
this without reverting to higher precision has been suggested by Cody and
Waite [67]). Write

T/2=mo/2+T,

where 7o /2 is exactly representable with a few digits in the (binary) floating-
point system. The reduced argument is now computed as z* = (x —k -7y /2) —
kr. Here, unless k is very large, the first term can be computed without
rounding error. The rounding error in the second term is bounded by k|r|u,
where u is the unit roundoff.

In IEEE single precision one takes

m0/2 = 201/128 = 1.573125 = (10.1001001)3, r = 4.838267949-10~*

Estimate the relative error in the computed reduced argument x* when x =
1000 and 7 is represented in IEEE single precision.

(W. Kahan [1983]) The area A of a triangle with sides equal to a, b, ¢ is given
by Heron’s formula

A=+/s(s—a)(s—b)(s—c), s=(a+b+c)/2.

Show that this formula fails for needle-shaped triangles, using five digit decimal
floating arithmetic and a = 100.01, b = 99.995, ¢ = 0.025.

The following formula can be proved to work if addition/subtraction satisfies
(2.3.21):
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3.11.

3.12.

3.13

3.14

Order the sides so that a > b > ¢, and use

A= V@T BT e @bt (@ o+ b-a).

Compute a correct result for the data above using this modified formula. If a
person tells you that this gives an imaginary result if a — b > ¢, what do you
answer him?

As is well known f(x) = (14 )"/ has the limit e = 2.71828 18284 59045 . . .,
when  — oco. Study the sequences f(z,) for z, = 107" and z,, = 27", for
n=1,2,3,.... Stop when z,, < 107!° (or when z,, < 10720 if you are using
double precision). Give your results as a table of n, z,, and the relative error
gn = (f(xn) —e)/e. Also plot log(|g,|) against log(|x,|). Comment on and
explain your observations.

(a) Compute the derivative of the exponential function e® at z = 0, by approx-
imating with the difference quotients (e**" — e®)/h, for h = 27% i =1 : 20.
Explain your results.

(b) Same as in (a) but approximate instead with the central difference ap-
proximation (e**" — e*=")/(2h).

The hyperbolic cosine is defined by cosht = (ef + ¢7%)/2, and its inverse
function ¢ = arccosh () is the solution to the equation

r=(e"+e")/2.

Solving the quadratic equation (ef)? — 2zef + 1, we find €' = 2 4+ (22 — 1)1/2
and

arccos = log(z & (22 — 1)'/?).

(a) Show that this formula suffers from serious cancellation when the minus
sign is used and z is large. Try, e.g., * = cosh(10) using double precision
IEEE. (Using the plus sign will just transfer the problem to negative z.)

(b) An better formula is
arccosz = 2log (((z +1)/2)"% + ((x — 1)/2)"/?).

This also avoids the squaring of x which can lead to overflow. Derive this
formulas and show that it is well behaved!

(W. Gautschi) Euler’s constant v = 0.57721566490153286 . . . is defined as the
limit

~v= lim v,, where ~,=1+1/241/34---4+1/n—logn.

Assuming that v — v, ~ cn~%, n — oo, for some constants ¢ and d > 0, try to

determine ¢ and d experimentally on your computer.
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3.15. In the statistical treatment of data, one often needs to compute the quantities

Z s? = %Z(mi—g’cF.

If the numbers z; are the results of statistically independent measurements of
a quantity with expected value m, then Z is an estimate of m, whose standard
deviation is estimated by s/v/n — 1.

(a) The computation of Z and m using the formulas above have the drawback
that they require two passes through the data ;. Let « be a provisional mean,
chosen as an approximation to Z, and set x} = x; — . Show that the formulas

BT LR

: Mﬂ

S]]

||
3 h~
: h~

hold for an arbitrary a.
(b) In sixteen measurements of a quantity « one got the following results:

) €T; ) xX; ) €T; ) €T;
1 546.85 5  546.81 9 546.96 13  546.84
2 54679 6  546.82 10 546.94 14  546.86
3 546.82 7  546.88 11 546.84 15  546.84
4 546.78 8 546.89 12 546.82 16  546.84

Compute Z and s to two significant digits using o = 546.85.

(c) In the computations in (b), one never needed more than three digits.
If one uses the value o = 0, how many digits is needed in (z})? in order
to get two significant digits in s2? If one uses five digits throughout the
computations, why is the cancellation in the s? more fatal than the cancellation
in the subtraction z; — a? (one can even get negative values for s2!)

(d) If we define
1k k
e e Y R P 3B
i=1 i=1 i=1 i=1
then it holds that # = m,,, and s?> = g,,/n. Show the recursion formulas

my=ry, my = mg—1+ (T, —mp_1)/k
71=0, @k = Qo1 + (e — ma—1)*(k — 1) /k

3.14. Compute the sum in Example 2.3.4 using the natural summation ordering
in IEEE 754 double precision. Repeat the computations using compensated
summation (Algorithm 2.3.1).
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2.4 Error Propagation
2.4.1 Numerical Problems, Methods and Algorithms

By a numerical problem we mean here a clear and unambiguous description of
the functional connection between input data —that is, the “independent vari-
ables” in the problem—and output data—that is, the desired results. Input data
and output data consist of a finite number of real (or complex) quantities and are
thus representable by finite dimensional vectors. The functional connection can be
expressed in either explicit or implicit form. We require for the following discussion
also that the output data should be uniquely determined and depend continuously on
the input data.

By an algorithm?® for a given numerical problem we mean a complete descrip-
tion of well-defined operations through which each permissible input data vector is
transformed into an output data vector. By “operations” we mean here arithmetic
and logical operations, which a computer can perform, together with references to
previously defined algorithms. It should be noted that, as the field of computing
has developed, more and more complex functions (for example, square root, circu-
lar and hyperbolic functions) are built into the hardware. In many programming
environments operations like matrix multiplication, solution of linear systems, etc.,
are considered as “elementary operations” and for the user appear as black boxes.

(The concept algorithm can be analogously defined for problems completely
different from numerical problems, with other types of input data and fundamental
operations—for example, inflection, merging of words, and other transformations of
words in a given language.)

Example 2.4.1.
To determine the largest real root of the cubic equation

p(2) = apz® + a12% + azz + a3 = 0,

with real coefficients ag, a1, az, as, is a numerical problem. The input data vector
is (ag, a1, az2,as). The output data is the desired root z; it is an implicitly defined
function of the input data.

An algorithm for this problem can be based on Newton’s method, supple-
mented with rules for how the initial approximation should be chosen and how the
iteration process is to be terminated. One could also use other iterative methods,
or algorithms based upon the formula by Cardano—Tartaglia for the exact solution
of the cubic equation (see Problem 2.3.8). Since this uses square roots and cube
roots, one needs to assume that algorithms for the computation of these functions
have been specified previously.

One often begins the construction of an algorithm for a given problem by
breaking down the problem into subproblems in such a way that the output data

38The term “algorithm?” is a latinization of the name of the Arabic 9th century mathematician Al-
Khowéarizmi. He also introduced the word algebra (Al-jabr). Western Europe became acquainted
with the Hindu positional number system from a latin translation of his book entitled “Algorithmi
de numero Indorum”.
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from one subproblem is the input data to the next subproblem. Thus the distinction
between problem and algorithm is not always so clearcut. The essential point is that,
in the formulation of the problem, one is only concerned with the initial state and
the final state. In an algorithm, however, one should clearly define each step along
the way, from start to finish.

We use the term numerical method in this book to mean a procedure ei-
ther to approximate a mathematical problem with a numerical problem or to solve
a numerical problem (or at least to transform it to a simpler problem). A numer-
ical method should be more generally applicable than an algorithm, and set lesser
emphasize on the completeness of the computational details. The transformation of
a differential equation problem to a system of nonlinear equations can be called a
numerical method—even without instructions as to how to solve the system of non-
linear equations. Newton’s method is a numerical method for determining a root
of a large class of nonlinear equations. In order to call it an algorithm, conditions
for starting and stopping the iteration process should be added.

For a given numerical problem one can consider many differing algorithms. As
we have seen in Sec. 2.3 these can, in floating-point arithmetic, give approximations
of widely varying accuracy to the exact solution.

Example 2.4.2.

The problem of solving the differential equation

2
% =2 +9?

with boundary conditions y(0) = 0, y(5) = 1, is not a numerical problem according
to the definition stated above. This is because the output data is the function vy,
which cannot in any conspicuous way be specified by a finite number of parameters.
The above mathematical problem can be approzimated with a numerical problem
if one specifies the output data to be the values of y for x = h,2h,3h,...,5 — h.
Also the domain of variation of the unknowns must be restricted in order to show
that the problem has a unique solution. This can be done, however, and there are a
number of different algorithms for solving the problem approximately, which have
different properties with respect to number of arithmetic operations needed and the
accuracy obtained.

Before an algorithm can be used it has to be implemented in an algorithmic
program language in a reliable and efficient manner. We leave these aspects aside
for the moment, but this is far from a trivial task—it has been said that when the
novice thinks the job is done then the expert knows that most of the hard work lies
ahead!

2.4.2 Propagation of Errors

In scientific computing the given input data is usually imprecise. The errors in the
input will propagate and give rise to errors in the output. In this section we develop
some general tools for studying the propagation of errors. Error-propagation formu-
las are also of great interest in the planning and analysis of scientific experiments.
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Note that rounding errors from each step in a calculation are also propagated
to give errors in the final result. For many algorithms a rounding error analysis can
be given, which shows that the computed result always equals the exact (or slightly
perturbed) result of a nearby problem, where the input data has been slightly
perturbed (see, e.g, Lemma 2.3.5). The effect of rounding errors on the final result
can then be estimated using the tools of this section.

We first consider two simple special cases of error propagation. For a sum of
an arbitrary number of terms we get from (2.3.23) by induction:

Lemma 2.4.1.
In addition (and subtraction) a bound for the absolute errors in the result is
given by the sum of the bounds for the absolute errors of the operands

y=> m, |yl <> |Ax. (2.4.1)
=1

=1

To obtain a corresponding result for the error propagation in multiplication
and division, we start with the observations that for y = logx we have A(logz) ~
A(z)/x. In words: the relative error in a quantity is approzimately equal to the
absolute error in its natural logarithm. This is related to the fact that displacements
of the same length at different places on a logarithmic scale, mean the same relative
change of the value. From this we obtain the following result:

Lemma 2.4.2.
In multiplication and division, an approximate bound for the relative error is
obtained by adding the relative errors of the operands. More generally, for y =

my . Mm2 M,
A n
y—yy <3

xl $2 xn s
Y

(2.4.2)

i

Proof. The proof follows by differentiating logy = mqlogz; + mologxs + --- +
my log . O

Example 2.4.3.

In Newton’s method for solving a nonlinear equation a correction is to be
calculated as a quotient Az = f(xx)/f'(xx). Close to a root the relative error in
the computed value of f(z) can be quite large due to cancellation. How accurately
should one compute f’(zy), assuming that the work grows as one demands higher
accuracy? Since the limit for the relative error in Az is equal to the sum of the
bounds for the relative errors in f(zy) and f’(zy), there is no gain in making
the relative error in f’(xj) very much less than the relative error in f(zj). This
observation is of great importance in particular in the generalization of Newton’s
method to systems of nonlinear equations.

2007/
page



2.4. Error Propagation 129

We now study the propagation of errors in more general non-linear expressions.
Consider first the case when we want to compute a function y = f(z) of a single
real variable x. How is the error in = propagated to y? Let £ — x = Az. Then, a
natural way is to approximate Ay = § — y with the differential of y By the mean
value theorem, Ay = f(x + Az) — f(z) = f'(§)Ax, where £ is a number between z
and x + Az. Suppose that |Az| < e. Then it follows that

Ay| < max|f(Ole, €€ lo—eatd, (2.4.3)

In practice, it is usually sufficient to replace ¢ by the available estimate of z. Even
if high precision is needed in the value of f(x), one rarely meeds a high relative
precision in an error bound or an error estimate. (In the neighborhood of zeros of
the first derivative f’(x) one has to be more careful!)

By the implicit function theorem a similar result holds if y is an implicit
function of z defined by g(x,y) = 0. If g(z,y) = 0 and g—g(x,y) # 0, then in a
neighborhood of z, y there exists a unique function y = f(z) such that g(z, f(z)) = 0
and it holds that

£@) = ~g2 fle) | Gota S @),

Example 2.4.4.

The result in Lemma 2.3.5 does not say that the computed roots of the
quadratic equation are close to the exact roots ri,r.. To answer that question
we must determine how sensitive the roots are to a relative perturbation in the
coefficient c. Differentiating az? + bx + ¢ = 0, where z = z(c) with respect to ¢
we obtain (2ax + b)dz/dc+ 1 =0, dz/dc = —1/(2ax + b). With = r; and using

r1 4+ re = =b/a, rir2 = ¢/a this can be written
dry dc 1o
1 cCTy—T2 '

This shows that when |rq — 3| < |rz| the roots can be very sensitive to small
relative perturbations in c.

When r; = ro, that is when there is a double root, this linear analysis breaks
down. Indeed it is easy to see that the equation (r — r)2 — Ac = 0 has roots

z=r++VAc

To analyze error propagation in a function of several variables f = f(x1,...,zy),
we need the following generalization of the mean value theorem:

Theorem 2.4.3.

Assume that the real valued function f is differentiable in a neighborhood of
the point x = (x1,%2,...,%,), and let © = x + Az be a point in this neighborhood.
Then there exists a number 0, such that

Af = f(x+ Azx) — f(x) :Zgj,(x+9Ax)A$i’ 0<6<1.
i=1 "
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Proof. The proof follows by considering the function F(t) = f(z + tAxz) and using
the mean value theorem for functions of one variable and the chain rule. O

From Theorem 2.4.3 it follows that the perturbation A f is approximately equal
to the total differential. The use of this approximation means that the function
f(z) is, in a neighborhood of x that contains the point z + Az, approximated
by a linear function. All the techniques of differential calculus, such as logarithmic
differentiation, implicit differentiation, may be useful for the calculation of the total
differential; see the examples and the problems at the end of this section.

Theorem 2.4.4 (General Formula for Error Propagation).

Let the real valued function f = f(x1,x2,...,2,) be differentiable in a neigh-
borhood of the point x = (x1,x2,...,2,) with errors Axy, Az, ..., Ax,. Then it
holds

Af ~ E —Az;. 2.4.4
! = Omi ’ ( )
Then for the mazimal error in f(x1,...,x,) we obtain the approximate upper bound
AfI S Az, 2.4.5
A5 | 1w (2.45)

where the partial derivatives are evaluated at x.

In order to get a strict bound for |Af|, one should use in (2.4.5) the maximum
absolute values of the partial derivatives in a neighborhood of the known point x.
In most practical situations it suffices to calculate |0f/0x;| at x and then add a
certain marginal amount (5 to 10 percent, say) for safety. Only if the Ax; are
large or if the derivatives have a large relative variation in the neighborhood of x,
need the maximal values be used. (The latter situation occurs, for example, in a
neighborhood of an extremal point of f(x).)

The bound in Theorem 2.4.4 is the best possible, unless one knows some
dependence between the errors of the terms. Sometimes it can, for various reasons,
be a gross overestimate of the real error.

Example 2.4.5.
Compute error bounds for f = x%—xg, where z1 = 1.03+0.01, x5 = 0.4540.01.
We obtain

of of
— | =12 <21 — | =-1]=1
’8171 | £L'1| - ’ ‘8$2 | | ’
and find |Af|] < 2.1-0.01+1-0.01 = 0.031, or f = 1.061 — 0.450 £+ 0.032 =

0.611£0.032. the error bound has been raised 0.001 because of the rounding in the
calculation of 7.

One is seldom asked to give mathematically guaranteed error bounds. More
often it is satisfactory to give an estimate of the order of magnitude of the anticipated
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error. The bound for |Af| obtained with Theorem 2.4.3 estimates the maximal
error, i.e, covers the worst possible cases, where the sources of error Ax; contribute
with the same sign and magnitudes equal to the error bounds for the individual
variables.

In practice, the trouble with formula (2.4.5) is that it often gives bounds which
are too coarse. More realistic estimates are often obtained using the standard error
introduced in Sec. 2.3.3. Here we give without proof the result for the general case,
which can be derived using probability theory and the formula (2.4.4). (Compare
with the result for the standard error of a sum given in Sec. 2.3.3.)

Theorem 2.4.5.

Assume that the errors Az, Az, ..., Az, are independent random variables
with mean zero and standard deviations €1, €a,. .., €,. Then the standard error e for
flx1, 29, ..., 2,) is given by the formula:

€~ <zn: <§£>263> - (2.4.6)

i=1

Analysis of error propagation is more than just a means for judging the relia-
bility of calculated results. As remarked above, it has an equally important function
as a means for the planning of a calculation or scientific experiment. It can help
in the choice of algorithm, and in making certain decisions during a calculation.
Examples of such decisions are the choice of step length during a numerical inte-
gration. Increased accuracy often has to be bought at the price of more costly or
complicated calculations. One can also shed some light to what degree it is advis-
able to obtain a new apparatus to improve the measurements of a given variable,
when the measurements of other variables are subject to error as well.

2.4.3 Condition Numbers of Problems

It is useful to have a measure of how sensitive the output data is to small changes
in the input data. In general, if “small” changes in the input data can result in
“large” changes in the output data, we call the problem ill-conditioned; otherwise
it is called well-conditioned. (The definition of large may differ from problem
to problem depending on the accuracy of the data and the accuracy needed in the
solution.)

Definition 2.4.6.

Consider a numerical problem y = f(x) € R™, x € R", or in component form
y;i = fi(®1,...,xn), 5 =1:m. Let & be fized and assume that neither & or §0f (%)
is zero. The sensitivity of y with respect to small changes in x can be measured by
the relative condition number

k(f;2) = lim sup { (2.4.7)

=0 n)=e

[f(z+h) = f@)] M}
1/ (@)l (1 S
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We have used a vector norm || - || to measure the size of a vector; see Ap-
pendix A.3.3. Common vector norms are the p-norms defined by

lzllp = (@1” + [@af? + -+ zaf?) /P, 1< p<oo,

where one usually takes p = 1,2, or p = oc.

The condition number (2.4.7) is a function of the input data & and also depends
on the choice of norms in the data space and the solution space. It measures the
maximal amount which a given relative perturbation is magnified by the function
f, in the limit of infinitely small perturbations. For perturbations of sufficiently
small size we have the estimate

17 = yll < rellyll + O(e?).

We can expect to have roughly s = logipk less significant decimal digits in the
solution than in the input data. However, this may not hold for all components of
the output.

Assume that f has partial derivatives with respect to z;, ¢ = 1 : n, and let
J(x) be the Jacobian matrix
IF;
Jij(x)zm, j=1:m, i=1:n. (2.4.8)
Then, for any matrix norm subordinate to the vector norm (see Appendix A.3.3),
the condition number defined above can be expressed as

@)
K(f;2) = . (2.4.9)
I1f (@)l
For a composite function g o f the chain rule for derivatives can be used to
show that

K(go fi2) < r(g;9)r(f; 1) (2.4.10)
If the composite function is ill-conditioned we can infer from this that at least one
of the functions g and f must be ill-conditioned.
If y = f(z) is a linear (bounded) function y = Mz, where M € R™*™, then
according to (2.4.9)

#(M;z) = | M| 5=

This inequality is sharp in the sense that for any matrix norm and for any M and
x there exists a perturbation §b such that equality holds.

If M is a square and invertible matrix then from z = M~y we conclude that
llz|| < [|[M~1|||ly||. This gives the upper bound

K(M;a) <= [|M|[| M. (2.4.11)

which is referred to as the condition number of M. For given z (or y), this upper
bound may not be achievable for any perturbation of x. The inequality (2.4.11)
motivates the following definition.
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Theorem 2.4.7.

The condition number for a square nonsingular matrix M € R™ "™ equals
k(M) = |M| ||M~Y|, where || - || is a subordinate matriz norm. In particular, for
the Fuclidean norm

K(M) = ko (M) = |M |2 [|M 72 = 01/0n, (2.4.12)
where o1 and o, are the largest and smallest singular value of M.

The last expression in (2.4.12) follows by the observation that if M has singular
values 0;, i = 1 : n, then M 1! has singular values 1/0;, i = 1 : n; see Theorem 1.3.3.

We note some simple properties of x(M). From (aM)~! = M1/« it follows
that k(aM) = k(M), i.e. the condition number is invariant under multiplication of
M by a scalar. Matrix norms are submultiplicative, i.e. [|[KM| < || K| ||M]|. From
the definition and the identity MM~ = I it follows that

(M) = [[M|l2]| M2 > 1] = 1,

i.e. the condition number ko is always greater or equal to one. The composite
mapping of z = Ky and y = Mx is represented by the matrix product K'Y, and we
have

K(KM) < k(K)x(M).

It is important to note that the condition number is a property of the mapping
x — y and does not depend on the algorithm used to evaluate y! An ill-conditioned
problem is intrinsically difficult to solve accurately using any numerical algorithm.
Even if the input data is exact rounding errors made during the calculations in
floating-point arithmetic may cause large perturbations in the final result. Hence,
in some sense an ill-conditioned problem is not well posed.

Space of Space of
Input data Output data
X P Y

A\

&/

Figure 2.4.1. Geometrical illustration of the condition number.

C

Example 2.4.6.

If we get an inaccurate solution to an ill-conditioned problem, then often
nothing can be done about the situation. (If you ask a stupid question you get a
stupid answer!) But sometimes the difficulty depends on the form one has chosen
to represent the input and output data of the problem.
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The polynomial
P(x) = (x — 10)* + 0.200(x — 10)* + 0.0500(z — 10)? — 0.00500(x — 10) + 0.00100,

is identical with a polynomial () which if the coefficients are rounded to six digits,
becomes

Q(z) = z* — 39.80002> + 594.05022 — 3941.002 + 9805.05.

One finds that P(10.11) = 0.0015 4+ 10~*, where only three digits are needed in the
computation, while Q(lO.ll) = —0.0481 + % -107%, in spite of the fact that eight
digits were used in the computation. The rounding to six digits of the coefficients
of @ has thus caused an error in the polynomial’s value at x = 10.11; the erroneous
value is more than 30 times larger than the correct value and has the wrong sign.
When the coefficients of @@ are input data, the problem of computing the value of
the polynomial for x ~ 10 is far more ill-conditioned than when the coefficients of
P are input data.

The conditioning of a problem can to some degree be illustrated geometrically.
A numerical problem P means a mapping of the space X of possible input data
onto the space Y of the output data. The dimensions of these spaces are usually
quite large. In Figure 2.4.2 we picture a mapping in two dimensions. Since we
are considering relative changes, we take the coordinate axis to be logarithmically
scaled. A small circle of radius r is mapped onto an ellipse whose ratio of major to
minor axis is k7, where & is the condition number of the problem P.

2.4.4 Perturbation Analysis for Linear Systems

Consider the linear system y = Az, where A is nonsingular and y # 0. From the
analysis in the previous section we know that the condition number of the inverse
mapping x = A~ 'y # 0 is bounded by the condition number

(AT = s(4) = [|A7] ]| A].

Assume that the elements of the matrix A are given data and subject to
perturbations § A. The perturbed solution x + dx satisfies the linear system

(A+6A)(z + 02) = .

Subtracting Az = y we obtain (A+0A)dx = —JAx. Assuming that also the matrix
(A+6A) = A(I + A~16A) is nonsingular, and solving for dz yields

bx=—(I+A16A) 1A 5 Ax, (2.4.13)
which is the basic identity for the analysis. Taking norms gives

ozl < 12+ A7 0 A)TH[IATHIIOA] [l
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It can be shown (see Problem 2.4.9) that if | A716 A|| < 1, then A+JA is nonsingular
and
(I +A7H6A) 7 < 1/(1 = [[A716A|).

Neglecting second order terms,

[[6|

k4l

llsA]
WA (2.4.14)

RN

This shows that x(A) also is the condition number of z = A~'y with respect to
perturbations in A.
For any real, orthogonal matrix ) we have

k2(Q) = 1QI2/1Q 2 = 1,

so @ is perfectly conditioned. By Lemma 1.6.3 we have |QAP|2 = ||A]|2 for any
orthogonal P and Q. It follows that

K2 (PAQ) = K2 (A),

i.e. the condition number of a matriz A is invariant under orthogonal transforma-
tions. This important fact is one reason why orthogonal transformations play a
central role in numerical linear algebra!

How large may x be before we consider the problem to be ill-conditioned?
That depends on the accuracy of the data and the accuracy desired in the solution.
If the data have a relative error of 10~7 then we can guarantee a (normwise) relative
error in the solution < 1072 if kK < 0.5-10%. But to guarantee a (normwise) relative
error in the solution < 10~% we need to have x < 5.

Table 2.4.1. Condition numbers of Hilbert matrices of order < 12.

KQ(Hn) n K2 (Hn)

1 7 | 4.753-108

19.281 8 1.526-101'°
5.241-10% | 9 4.932-1011

1.551-10* | 10 | 1.602-10'3
4.766-10°5 | 11 | 5.220-104
1.495-107 | 12 | 1.678-1016

D UL W NS

Example 2.4.7.
The Hilbert matrix H,, of order n with elements

is a notable example of an ill-conditioned matrix. In Table 2.4.1 approximate condi-
tion numbers of Hilbert matrices of order < 12, computed in IEEE double precision,
are given. For m > 12 the Hilbert matrices are too ill-conditioned even for IEEE
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double precision! From a result by G. Szegd (see Gautschi [136, p.34]) it follows

that
(\/§+ 1)4(n+1) 3.5n

o15/4 Jmr ’
i.e. the condition numbers grows exponentially with n. Although the severe ill-
conditioning exhibited by the Hilbert matrices is rare, moderately ill-conditioned
linear systems do occur regularly in many practical applications!

ko(H,) ~

The normwise condition analysis in the previous section usually is satisfactory
when the linear system is “well scaled”. If this is not the case then a component-
wise analysis may give sharper bounds. We first introduce some notations. The
absolute values |A| and |b| of a matrix A and vector b is interpreted componentwise,

[Alij = (laiz]),  [bli = ([bal)-

The partial ordering “<” for the absolute values of matrices |A|, | B| and vectors
|b], |c|, is to be interpreted component-wise3”

(Al <IB] <= lai| <|bi|, bl <le| = |bi] <leil-

It follows easily that |AB| < |A||B| and a similar rule holds for matrix-vector
multiplication.

Taking absolute values in (2.4.13) gives component-wise error bounds for the
corresponding perturbations in z,

|6 < (I + ATH6A) T AT (|0A[2] + b))

The matrix (I — |A7!||§A|) is guaranteed to be nonsingular if || [A7![[6A] ] < 1.
Assume now that we have component-wise bounds for the perturbations in A
and b, say
[0A] < w|Al, |0b] < wlb]. (2.4.15)

Neglecting second order terms in w and using (2.4.15) gives
|6 £ JATH([8Al2] + [6b]) < w|ATH(IA] || + [b]), (2.4.16)
Taking norms in (2.4.16) we get
82| £ Il AT (Al 2] + [B]) [| + O(w?). (2.4.17)

The scalar quantity
ria(A) = [1ATA]] (2.4.18)

is called the Bauer—Skeel condition number of the matrix A.
A different way to examine the sensitivity of various matrix problems is the
differentiation of a parametrized matrix. Suppose that A is a scalar and that A(\)

39Note that A < B in other contexts means that B — A is positive semidefinite.
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is a matrix with elements a;;(\) that are differentiable functions of A. Then by the
derivative of the matrix A(\) we mean the matrix

daij

A\ = %A()\) - ( o ) (2.4.19)

Many of the rules for differentiation of scalar functions are easily generalized to
differentiation of matrices. For differentiating a product of two matrices there holds

d d d
SANBO)] = T [ANIBO) + AN [BOL. (2.4.20)

Assuming that A=1()\) exists, using this rule on the identity A=1(\)A()\) = I, we

obtain
d

_ _ d
LA AR + A7 ()7 [A] =0,
or solving for the derivative of the inverse
d 1 o —1 d —1
E[A N]=-4 (A)E[A(/\)]A (N). (2.4.21)

2.4.5 Error Analysis and Stability of Algorithms

One common reason for poor accuracy in the computed solution is that the problem
is ill-conditioned. But poor accuracy can also be caused by a poorly constructed
algorithm. We say in general that an algorithm is unstable if it can introduce large
errors in the computed solutions to a well-conditioned problem.

We consider in the following a finite algorithm with input data (ai,...,a,),
which by a sequence of arithmetic operations is transformed into the output data
(w1, ..., ws), There are two basic forms of roundoff error analysis for such an algo-

rithm, which both are useful:

(i) In forward error analysis one attempts to find bounds for the errors in the
solution [w; — w;|, i = 1 : s, where W; denotes the computed value of w;. The
main tool used in forward error analysis is the propagation of errors as studied
in Sec.2.4.2.

(ii) In backward error analysis, one attempts to determine a modified set of data
a; + Aa; such that the computed solution w; is the exact solution, and give
bounds for |Aa;|. There may be an infinite number of such sets; in this case
we seek to minimize the size of|Aa;|. However, it can also happen, even for
very simple algorithms, that no such set exists.

Sometimes, when a pure backward error analysis cannot be achieved, one can
show that the computed solution is a slightly perturbed solution to a problem with
slightly modified input data. An example of such a mixed error analysis is the
error analysis given in Lemma 2.3.5 for the solution of a quadratic equation.

2007/
page
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In backward error analysis no reference is made to the exact solution for the
original data. In practice, when the data is known only to a certain accuracy,
the “exact” solution may not be well-defined. Then any solution, whose backward
error is smaller than the domain of uncertainty of the data, may be considered to a
satisfactory result.

A frequently occurring backward error problem is the following. Suppose we
are given an approximate solution y to a linear system Az = b. We want to find
out if y is the exact solution to a nearby perturbed system (A+ AA)y = b+ Ab. To
this end we define the norm-wise backward error of y as

n(y) = min{e | (A+Ad)y = b+ Ab, [|AA] < el A, [[Ad]] <efpll}  (2.4.22)

The following theorem tells us that the norm-wise backward error of y is small if
the residual vector b — Ay is small.

Theorem 2.4.8 (Rigal and Gaches [271]).
The norm-wise backward error of y is given by

[l

W) = Al T (2.4.23)

where r =b— Ay, and || - || is any consistent norm.

Similarly we define the component-wise backward error w(y) of y by
w(y) =min{e | (A + AA)y =b+ Ab, |AA] <¢||All, |Ab| < €|b]}. (2.4.24)

As the following theorem shows there is a simple expression also for w(y).

Theorem 2.4.9 (Oettli and Prager [248]).
Letr =b— Az, E and [ be nonnegative and set

(2.4.25)

w(y) = max —1"1

i (Elzl+ 1)

where £/0 is interpreted as zero if £ = 0 and infinity otherwise.

By means of backward error analysis it has been shown, even for many quite
complicated matrix algorithms, that the computed results the algorithm produces
under the influence of roundoff error are the ezact output data of a problem of
the same type in which the relative change data only is of the order of the unit
roundoff w.

Definition 2.4.10.

An algorithm is backward stable if the computed solution W for the data a
is the exact solution of a problem with slightly perturbed data a such that for some
norm || - || it holds

la — al|/||al] < c1u, (2.4.26)
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where ¢1 1s a not too large constant and w is the unit roundoff.

We are usually satisfied if we can prove normwise forward or backward stability
for some norm, for example, || -||2 or || ||co- Occasionally we may like the estimates
to hold component-wise,

|a; — a;|/]ai| < cou, i=1:r (2.4.27)

For example, by equation (2.3.16) the usual algorithm for computing an inner prod-
uct 27y is backward stable, for element-wise relative perturbations.

We would like stability to hold for some class of input data. For example,
a numerical algorithm for solving systems of linear equations Az = b is backward
stable for a class of matrices A if for each A € A and for each b the computed
solution Z satisfies AZ = b where A and b are close to A and b.

To yield error bounds for w;, a backward error analysis has to be comple-
mented with a perturbation analysis. For this the error propagation formulas in
Sec. 2.4.2 can often be used. If the condition number of the problem is x, then it
follows that

@ — w| < cruk|w|| + O(u?). (2.4.28)

Hence the error in the solution may still be large if the problem is ill-conditioned.
But we have obtained an answer which is the exact mathematical solution to a
problem with data close to the one we wanted to solve. If the perturbations a — a
are within the uncertainties of the given data, the computed solution is as good as
our data warrants!

A great advantage of backward error analysis is that, when it applies, it tends
to give much sharper results than a forward error analysis. Perhaps more important,
it usually also gives a better insight into the stability (or lack of it) of the algorithm.

By the definition of the condition number « it follows that backward stability
implies forward stability, but the converse is not true. Many important direct algo-
rithms for solving linear systems are known to be backward stable. The following
result for the Cholesky factorization is an important example.

Theorem 2.4.11. [J. H. Wilkinson [334]/
Let A € R"™™ be a symmetric positive definite matriz. Provided that

2n3/2uk(A) < 0.1, (2.4.29)

the Cholesky factor of A can be computed without breakdown and the computed
factor R satisfies

RTR=A+E, |E|2<2.50%%ulA|s, (2.4.30)
and hence is the exact Cholesky factor of a matriz close to A.

For the LU factorization of matrix A the following component-wise backward
error result is known.
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Theorem 2.4.12.
If the LU factorization of the matriz A € R™™™ runs to completion, then the
computed factors L and U satisfy

A+E=LU, |E|<v.|L||U] (2.4.31)

where v, = nu/(1 — nu), and u is the unit roundoff.

This shows that unless the elements in the computed factors |L| and |U| be-
come large LU factorization is backward stable.

Example 2.4.8.
For € = 10~° the system

G DE)-6)

is well-conditioned and has the exact solution 7 = —z3 = —1/(1 —¢€) = —1. If
Gaussian elimination is used, multiplying the first equation by 10® and subtracting
from the second, we obtain (1 — 10%)zy = —10°. Rounding this to xy = 1 is

correct to six digits. In the back-substitution to obtain x1, we then get 10~ %z =
1 —1, or z; = 0, which is a completely wrong result. This shows that Gaussian
elimination can be an unstable algorithm unless row (and/or column) interchanges
are performed to limit element growth.

Some algorithms, for example, most iterative methods are not backward sta-
ble. Then it is necessary to weaken the definition of stability. In practice an algo-
rithm can be considered stable if it produces accurate solutions for well-conditioned
problems. Such an algorithm can be called weakly stable. Weak stability may be
sufficient for giving confidence in an algorithm.

Example 2.4.9.

In the method of normal equations for computing the solution of a linear
least squares problem one first forms the matrix A7 A. This product matrix can be
expressed in outer form as

m
T A _ T
ATA= g a;a; ,
i=1

where al is the ithrow of A, i.e. AT = (a1 az ... am). From (2.3.14) it follows
that this computation is not backward stable, i.e. it is not true that fI(ATA) =
(A+ E)T(A+ E) for some small error matrix E. In order to avoid loss of significant
information higher precision need to be used.

Backward stability is easier to prove when there is a sufficiently large set of
input data compared to the number of output data. When computing the outer
product 2y’ (as in Example 2.4.9) there are 2n data and n? results. This is not a
backward stable operation. When the input data is structured rather than general
backward stability often does not hold.

2007/
page



2.4. Error Propagation 141

Example 2.4.10.

Many algorithms for solving a linear system Ax = b are known to be backward
stable, i.e. the computed solution is the exact solution of a system (A + E)x = b,
where the normwise relative error ||E||/||A]| is not much larger than the machine
precision. In many cases the system matrix is structured. An important example
is Toeplitz matrices T, whose entries are constant along every diagonal

to t R
t_1 to U e
T = (ti—j)i<ij<n = : : . : e R™*"™, (2.4.32)
tonit temiz ... to

Note that a Toeplitz matrix is completely specified by its first row and column, i.e.
the 2n — 1 quantities t = (f—p41,- -, t0y- - tn_1)-

Ideally, in a strict backward error analysis, we would like to show that a
solution algorithm always computes an exact solution to a nearby Toeplitz system
defined by t + s, where s is small. It has been shown that no such algorithm can
exist! We have to be content with algorithms that (at best) compute the exact
solution of (T'+ E)x = b, where ||E|| is small but E unstructured.

In the construction of an algorithm for a given problem, one often breaks
down the problem into a chain of subproblems, Py, Ps, ..., Py for which algorithms
Aq, Ag, ..., Ay are known, in such a way that the output data from P;_; is the input
data to P;. Different ways of decomposing the problem give different algorithms with,
as a rule, different stability properties. It is dangerous if the last subproblem in such
a chain is ill-conditioned. On the other hand, it need not be dangerous if the first
subproblem is ill-conditioned, if the problem itself is well-conditioned. Even if the
algorithms for all the subproblems are stable, we cannot conclude that the composed
algorithm is stable!

Example 2.4.11.

The problem of computing the eigenvalues \; of a symmetric matrix A, given
its elements (a;;), is always a well-conditioned numerical problem with absolute
condition number equal to 1. Consider an algorithm which breaks down this problem
into two subproblems:

e P;: compute the coefficients of the characteristic polynomial of the matrix A
p(A) = det(A — AI) of the matrix A.

e P5: compute the roots of the polynomial p(\) obtained from P;.

It is well known that the second subproblem P, can be very ill-conditioned.
For example, for a symmetric matrix A with eigenvalues +1, £2,..., £20 the con-
dition number for P, is 10'* in spite of the fact that the origin lies exactly between
the largest and smallest eigenvalues, so that one cannot blame the high condition
number on a difficulty of the same type as that encountered in Example 2.4.7.

The important conclusion that eigenvalues should not be computed as outlined
above is further discussed in Sec.6.5.2.
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On the other hand, as the next example shows, it need not be dangerous if
the first subproblem of a decomposition is ill-conditioned, even if the problem itself
is well-conditioned.

Example 2.4.12.

The first step in many algorithms for computing the eigenvalues \; of a sym-
metric matrix A is to use orthogonal similarity transformations to symmetric tridi-
agonal form,

ar P2
B2 az B3
QTAQ=T= o
ﬁn—l Qn—1 ﬁn
Bn Qp
In the second step the eigenvalues of T', which coincide with those of A, are com-
puted.
Wilkinson [333, §5.28] showed that the computed tridiagonal matrix can differ
a lot from the matrix corresponding to exact computation. Hence here the first
subproblem is ill-conditioned. (This fact is not as well known as it should be and
still alarms many users!) But the second subproblem is well-conditioned and the
combined algorithm is known to be backward stable, i.e. the computed eigenvalues
are the exact eigenvalues of a matrix A + E, where |El|2 < ¢(n)u||Al|2. This is a
more complex example of a calculation, where rounding errors cancel!

It should be stressed that the primary purpose of a rounding error analysis is
to give insight in the properties of the algorithm. In practice we can usually expect
much smaller backward error in the computed solutions than the bounds derived in
this section. It is appropriate to recall here a remark by J. H. Wilkinson:

“All too often, too much attention is paid to the precise error bound
that has been established. The main purpose of such an analysis is either
to establish the essential numerical stability of an algorithm or to show
why it is unstable and in doing so expose what sort of change is necessary
to to make it stable. The precise error bound is not of great importance.”

The treatment in this section is geared towards matrix problems and is not
very useful, for example, for time dependent problems in ordinary and partial dif-
ferential equations. In Sec. 1.4 some methods for the numerical solution of an initial
value problem

were studied. As will be illustrated in Example 3.3.28, catastrophic error growth
can occur in such processes. The notion of stability is here related to the stability of
linear difference equations. A more detailed discussion of these concepts is deferred
to Vol. III.
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Review Questions

4.1.

4.2.

4.3.

4.4.
4.5.

4.6.

The maximal error bounds for addition and subtraction can for various reasons
be a coarse overestimate of the real error. Give, preferably with examples, two
such reasons.

How is the condition number x(A) of a matrix A defined? How does x(A)
relate to perturbations in the solution x to a linear system Az = b, when A
and b are perturbed?

Define the condition number of a numerical problem P of computing output
data y1,..., Yy, given input data x1,...,z,.

Give examples of well-conditioned and ill-conditioned problems.

What is meant by (a) a forward error analysis; (b) a backward error analysis;
(c) a mixed error analysis?

What is meant by (a) a backward stable algorithm; (b) a forward stable algo-
rithm; (c) a mixed stable algorithm; (d) a weakly stable algorithm?

Problems and Computer Exercises

4.1.

4.2.

4.3.

4.4.

4.5.

(a) Determine the maximum error for y = x123/./T3, where x1 = 2.0 £ 0.1,
x9 = 3.0+ 0.2, and z3 = 1.0 £ 0.1. Which variable contributes most to the
error?

(b) Compute the standard error using the same data as in (a), assuming that
the error estimates for the x; indicate standard deviations.

One wishes to compute f = (v/2 — 1)%, using the approximate value 1.4 for
V2. Which of the following mathematically equivalent expressions gives the
best result

N Y1 N S
e 07 ErvEe

1
99 —70v2; —— 7
99 4 70v/2

Analyze the error propagation in x®:

(a) If = is exact and « in error. (b) If « is exact and z in error.

One is observing a satellite in order to determine its speed. At the first
observation, R = 30,000 £+ 10 miles. Five seconds later, the distance has
increased by r = 125.0 £ 0.5 miles and the change in the angle was ¢ =
0.00750 + 0.00002 radians. What is the speed of the satellite, assuming that
it moves in a straight line and with constant speed in the interval?

One has measured two sides and the included angle of a triangle to be a =
100.0 £ 0.1, b = 101.0 £ 0.1, and the angle C' = 1.00° £ 0.01°. Then the third
side is given by the cosine theorem

¢ = (a4 % — 2abcos C)/2,
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4.6.

4.7.

4.8.

(a) How accurately is it possible to determine ¢ from the given data?

(b) How accurately does one get c if one uses the value cos 1° = 0.9998, which
is correct to four decimal places.

(c) Rewrite the cosine theorem so that it is possible to compute ¢ to full
accuracy using only a four-decimal table for the trigonometric functions.

Consider the linear system

(o 1)) -6)

where o # 1. What is the relative condition number for computing x? Using
Gaussian elimination and four decimal digits compute x and y for e = 0.9950
and compare with the exact solution z = 1/(1 — a?), y = —a/(1 — a?).

(a) Let two vectors v and v be given with components (u1,uz2) and (v1, v2).
The angle ¢ between u and v is given by the formula

U1V + U2V2
(uf + ud)'/2(vF +03)1/2

cos ¢ =

Show that computing the angle ¢ from the components of v and v is a well-
conditioned problem.

Hint: Take the partial derivative of cos¢ with respect to w1, and from this
compute 0¢/0ui. The other partial derivatives are obtained by symmetry.

(b) Show that the formula in (a) is not stable for small angles ¢.

(c) Show that the following algorithm is stable. First normalize the vectors
@ =u/||ul|2, © = v/|v|l2. Then compute o = ||& — ¥||2, 3 = ||& + ?||2 and set

| 2arctan(a/f3), if a <f3;
9= m —2arctan(8/a), if a > 3.

For the integral

1 e—b;ﬂ
I(a,b) = / dx
0

a+z2

the physical quantities a and b have been measured to be a = 0.4000 £ 0.003,
b =0.340+0.005. When the integral is computed for various perturbed values
of a and b, one obtains:

a b I

0.39 034  1.425032
0.40 032  1.408845
0.40 0.34  1.398464
0.40 0.36  1.388198
0.41 034 1.372950

Estimate the uncertainty in I(a,b)!
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4.9.

4.10.

4.11.

4.12.

4.13.

Let B € R™™ ™ be a matrix for which ||B|| < 1. Show that the infinite sum
and product

1 I+B+B*+B*+B*--,
(I-B) —{(1+B)(1+32)(1+B4)(1+B8)---

both converge to the indicated limit.
Hint: Use the identity (I — B)(I + B+ ---+ B¥) = I — Bk*1,
(b) Show that the matrix (I — B) is nonsingular and that

1= B)~ I <1/ - B

Solve the linear system in Example 2.4.8 with Gaussian elimination after ex-
changing the two equations. Do you now get an accurate result?

Derive forward and backward recursion formulas for calculating the integrals

1 n
In:/ x dzr
0 4$+1

Why is one algorithm stable and the other unstable?

(a) Use the results in Table 2.4.1 to determine constants ¢ and ¢ such that
k(Hp) = c¢-104.

(b) Compute the Bauer—Skeel condition number cond (H,,) = | |H, t||H,| |2,
of the Hilbert matrices for n = 1 : 12. Compare the result with the values of
k(H,) given in Table 2.4.1.

Vandermonde matrices are structured matrices of the form

al a2 PR an
Vo=
n—1 n—1 n—1
al a2 DY an

Let j =1—-2(j—1)/(n—1), j =1 : n. Compute the condition numbers
k2(Vy,) for n = 5,10, 15,20, 25. Is the growth in k2(V},) exponential in n?

2.5 Automatic Control of Accuracy and Verified

Computing

2.5.1 Running Error Analysis

A different approach to rounding error analysis is to perform the analysis automat-
ically, for each particular computation. This gives an a posteriori error analysis as
compared to the a priori error analysis discussed above.

A simple form of a posteriori analysis, called running error analysis, was used

in the early days of computing, see Wilkinson [336]. To illustrate his idea we rewrite
the basic model for floating-point arithmetic as

zopy = fl(zopy)(1l+e).
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These are also satisfied for most implementations of floating-point arithmetic. Then,
the actual error can be estimated |fI (zop y) — zop y| < u|fl(zop y)|. Note that
the error is now given in terms of the computed result and is available in the computer
at the time the operation is performed. This running error analysis can often be
easily implemented. We just take an existing program and modify it, so that as
each arithmetic operation is performed, the absolute value of the computed results
is added into the accumulating error bound.

Example 2.5.1.
The inner product fI(z7y) is computed by the program

s=0; 1n=0;
fori=1,2,...,n
t= fl(zyi); n=n+It);
s=fl(s+t); n=n+]|s|;
end

For the final error we have the estimate |fl (z7y) — 27y| < nu. Note that a running
error analysis takes advantage of cancellations in the sum. This is in contrast to the
previous estimates, which we call a priori error analysis, where the error estimate
is the same for all distribution of signs of the elements x; and y;.

Efforts have been made to design the computational unit of a computer so
that it gives, in every arithmetic operation, only those digits of the result which
are judged to be significant (possibly with a fixed number of extra digits), so-called
unnormalized floating arithmetic. This method reveals poor construction in al-
gorithms, but in many other cases it gives a significant and unnecessary loss of
accuracy. The mechanization of the rules, which a knowledgeable and experienced
person would use for control of accuracy in hand calculation, is not as free from
problems as one might expect. As complement to arithmetical operations of con-
ventional type, the above type of arithmetic is of some interest, but it is doubtful
that it will ever be widely used.

A fundamental difficulty in automatic control of accuracy is that to decide how
many digits are needed in a quantity to be used in later computation, one needs
to consider the entire context of the computations. It can in fact occur that the
errors in many operands depend on each other in such a way that they cancel each
other. Such cancellation of error, is a completely different phenomenon from the
previously discussed cancellation of terms, is most common in larger problems, but
will be illustrated here with a simple example.

Example 2.5.2.

Suppose we want to compute y = z1 + 22, where z1 = Va2 + 1, 29 = 200 — z,
x = 100 £ 1, with a rounding error which is negligible compared to that resulting
from the errors in z; and zo. The best possible error bounds in the intermediate
results are z; = 100 £ 1, 2o = 100 4 1. It is then tempting to be satisfied with the
result y = 200 £ 2.
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But the errors in z; and 2z due to the uncertainty in z will, to a large extent,
cancel each other! This becomes clear if we rewrite the expression as

1

- 2 ) = _
y =200+ (Va2 +1—2x) =200+ N
It follows that y = 200 + z, where 1/202 < 2z < 1/198. Thus y can be computed
with an absolute error less than about 2/(200)? = 0.5 - 10~*. Therefore using the
expression y = z1 + 29 the intermediate results z; and z; should be computed
to four decimals even though the last integer in these is uncertain! The result is
y = 200.0050 £ %10*4.

In larger problems, such a cancellation of errors can occur even though one
cannot easily give a way to rewrite the expressions involved. The authors have
seen examples where the final result, a sum of seven terms, was obtained correctly
to eight decimals even though the terms, which were complicated functions of the
solution to a system of nonlinear equations with fourteen unknowns, were correct
only to three decimals! Another nontrivial example is given in Example 2.4.12.

2.5.2 Experimental Perturbations

In many practical problems, the functional dependence between input data and
output data are so complicated that it is difficult to directly apply the general
formulas for error propagation derived in Sec.2.4.4. One can then investigate the
sensitivity of the output data for perturbations in the input data by means of an
experimental perturbational calculation: One the performs the calculations
many times with perturbed input data and studies the perturbations in the output
data. For example, instead of using the formula for standard error of a function of
many variables, given in in Theorem 2.4.5, it is often easier to compute the function
a number of times with randomly perturbed arguments and to use them to estimate
the standard deviation of the function numerically.

Important data, such as the step length in a numerical integration or the
parameter which determines when an iterative process is going to be broken off,
should be varied with all the other data left unchanged. If one can easily vary the
precision of the machine in the arithmetic operations one can get an idea of the
influence of rounding errors. It is generally not necessary to make a perturbational
calculation for each and every data component; one can instead perturb many input
data simultaneously—for example, by using random numbers.

A perturbational calculation often gives not only an error estimate, but also
greater insight into the problem. Occasionally, it can be difficult to interpret the
perturbational data correctly, since the disturbances in the output data depend not
only on the mathematical problem, but also on the choice of numerical method
and the details in the design of the algorithm. The rounding errors during the
computation are not the same for the perturbed and unperturbed problem. Thus if
the output data reacts more sensitively than one had anticipated, it can be difficult
to immediately point out the source of the error. It can then be profitable to plan
a series of perturbation experiments with the help of which one can separate the
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effects of the various sources of error. If the dominant source of error is the method
or the algorithm, then one should try another method or another algorithm. It is
beyond the scope of this book to give further comments on the planning of such
experiments. Imagination and the general insights regarding error analysis, which
this chapter is meant to give, play a large role.

2.5.3 Introduction to Interval Arithmetic

In interval arithmetic one assumes that all input values are given as intervals
and systematically calculates an inclusion interval for each intermediate result. It
is partly an automation of calculation with maximal error bounds. The importance
of interval arithmetic is that it provides a tool for computing validated answers to
mathematical problems.

The most frequently used representations for the intervals are the infimum-
supremum representation

I=lab:={x]a<z<b}, (a<bh). (2.5.1)

where x is a real number. The absolute value or the magnitude of an interval is
defined as

| [a,b] | = mag([a,b]) = max{|z| | x € [a,b]}, (2.5.2)
and the mignitude of an interval is defined as
mig([a, b]) = min{|z| | = € [a, b]}. (2.5.3)
In terms of the endpoints we have

mag([a,b]) = max{|al, |b[},

- _ Jmin{|al, [b[}, if O ¢ [a,],
mig([a, b]) = {0, otherwise

The result of an interval operation equals the range of the corresponding real
operation. For example, the difference between the intervals [a;,as] and [by, b,
is defined as the shortest interval which contains all the numbers x1 — x2, where
x1 € [a1,as], T2 € [b1,bo], i.e. [a1, as]—[b1,ba] := [a1 —ba, az —b1]. Other elementary
interval arithmetic operations are similarly defined:

[al,ag] op [bl,bg] = {1‘1 op T2 | xr1 € [al,ag], xro € [bl,bg]}, (254)

where op € {+,—,-,div}. The interval value of a function ¢ (for example, the
elementary functions sin, cos, exp, log) evaluated on an interval is defined as

¢(la,b]) = [ inf ¢(z), sup ¢(z)].

wefa,b] wefab]
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Operational Definitions

Although (2.5.4) characterizes interval arithmetic operations we also need opera-
tional definitions. We take

[a1, az] + [b1, ba] = [a1 + b1, a2 + ba],

[a1, az] — [b1,ba] = [a1 — b, az — b1,

[a1,az] - [b1, b2] = [miﬂ{albl,01527a2b1,0252}7111%({&1517albz,azbba2b2}],

1/[a1,a2] = [1/az,1/a1], for aqas >0, (2.5.5)

[a1, az]/[b1,b2] = [a1, az] - (1/[b1, ba]).
It is easy to prove that in exact interval arithmetic the operational definitions above
give the exact range (2.5.4) of the interval operations. Division by an interval
containing zero is not defined and may cause an interval computation to come to a
premature end.

A degenerate interval with radius zero is called a point interval and can be
identified with a single number a = [a,a]. In this way the usual arithmetic is
recovered as a special case. The intervals 0 = [0,0] and 1 = [1,1] are the neutral
elements with respect to interval addition and interval multiplication, respectively.

A non-degenerate interval has no inverse with respect to addition or multiplication
For example, we have

[1,2] — [1,2] = [-1,1], [1,2]/[1,2] = [0.5,2].
For interval operations the commutative law
[a1, az]op [b1, ba] = [b1, b2] op [a1, az]
holds. But the distributive law has to be replaced by so called subdistributivity
[a1, a2]([b1, ba] + [c1,ca]) C [a1,az][b1, ba] + [a1, az][c1, ca]. (2.5.6)

This unfortunately means that expressions, which are equivalent in real arithmetic,
differ in exact interval arithmetic. The simple example

-1, 1)([1,1] + [-1,-1]) =0 C [-1,1][1, 1] + [-1,1][-1, -1] = [-2,2]

shows that —[—1, 1] is not the additive inverse to [—1, 1] and also illustrates (2.5.6).
The operations introduced are inclusion monotonic, i.e,

a1, az] € [e1, c2], [b1,bo] € [di,d2] = [a1,a2]0p [by, ba] € [c1, o] op [dy, da).
(2.5.7)
An alternative representation for an interval is the midpoint-radius repre-
sentation, for which we use brackets

(e,r) ={z|lz—c[<r} (0<7), (2.5.8)

where the midpoint and radius of the interval [a,b] are defined as

¢ = mid ([a, b]) = %(a 18, r=rad(fab) = 16— a). (2.5.9)
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For intervals in the midpoint-radius representation we take as operational definitions

{c1,7m1) + {c2,m2) = (c1 + 2,71 + T2),

(c1,7m1) = (c2,m2) = (€1 — co, 71 + 12),

(e1,71) - {ca,m2) = (c1c2, |c1|ra + T1|ca] + rir2), (2.5.10)
1{e,ry = (e/(el* =72),r/ ([ = %)), (lel > ),

{c1,m1)/(c2,m2) = (e1,m1) - (1/{ca, r2)).

For addition, subtraction and inversion, these give the exact range, but for multi-
plication and division they overestimate the range (see Problem 2.5.2). For multi-
plication we have for any x1 € {(¢1,r1) and zo € {c2,72)

|z120 — crc2| = |e1(x2 — c2) + ca(x1 — 1) + (21 — ¢1) (22 — ¢2)]

<leilra + |ea|r1 + rira.

In implementing interval arithmetic using floating-point arithmetic the oper-
ational interval results may not be exactly representable as floating-point numbers.
Then if the lower bound is rounded down to the nearest smaller machine num-
ber and the upper bound rounded up, the exact result must be contained in the
resulting interval. Recall that these rounding modes (rounding to —oo and +o00)
are supported by the IEEE 754 standard. For example, using 5 significant decimal
arithmetic, we would like to get

[1,1] + [-107%° 1071) = [0.99999, 1.0001],
or in midpoint-radius representation
(1,0) 4 (0,1071%) = (1,10719).

Note that in the conversion between decimal and binary representation rounding
the appropriate rounding mode must also be used where needed. For example, con-
verting the point interval 0.1 to binary IEEE double precision we get an interval
with radius 1.3878 - 1077, The conversion between the infimum-supremum repre-
sentation is straightforward but the infimum-supremum and midpoint may not be
exactly representable.

Interval arithmetic applies also to complex numbers. A complex interval in
the infimum-supremum representation is

[21,22] = {z =z +iy |z € [x1,22], Y € [y1,92]}.
This defines a closed rectangle in the complex plane defined by the two real intervals,

(21, 22] = [w1, @2] + iy, p2], 21 <22, w1 < o

This can be written more compactly as [z1, 22] := {2 | 21 < z < 22}, where we use
the partial ordering

z<w <= Rz<Rw & Sz < Sw
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Complex interval operations in the infimum-supremum arithmetic are defined in
terms of the real intervals in the same way as the complex operations are defined
for complex numbers z = x + iy. For addition and subtraction the result coincides
with the exact range. This is not the case for complex interval multiplication,
where the result is a rectangle in the complex plane, whereas the actual range is
not of this shape. Therefore, for complex intervals multiplication will result in an
overestimation.
In the complex case the midpoint-radius representation is

(e,r):={z€C|lz—c <7}, 07,

where the midpoint ¢ now is a complex number. This represents a closed circular
disc in the complex plane. The operational definitions (2.5.10) are still valid, except
that some operations now are complex operations and that inversion becomes

1/ e,r)y = (&/(Ie]* = 12),r/(|e]* = %)), for e[ >,

where ¢ is the complex conjugate of c. Complex interval midpoint-radius arithmetic
is also called circular arithmetic. For complex multiplications it generates less
overestimation than the infimum-supremum notation.

Although the midpoint-radius arithmetic seems more appropriate for complex
intervals, most older implementations of interval arithmetic use infimum-supremum
arithmetic. One reason for this is the overestimation caused also for real inter-
vals by the operational definitions for midpoint-radius multiplication and division.
Rump [272] has shown that the overestimation is bounded by a factor 1.5 in radius
and that midpoint-radius arithmetic allows for a much faster implementation for
modern vector and parallel computers.

2.5.4 Range of Functions

One use of interval arithmetic is to enclose the range of a real valued function. This
can be used, for example, for localizing and enclosing global minimizers and global
minima of a real function of one or several variables in a region. It can also be used
for verifying the nonexistence of a zero of f(x) in a given interval.

Let f(x) be a real function composed of a finite number of elementary oper-
ations and standard functions. If one replaces the variable by an interval [z, Z]
and evaluates the resulting interval expression one gets as result an interval denoted
by f([z,Z]).(It is assumed that all operations can be carried out.) A fundamental
result in interval arithmetic is that this evaluation is inclusion monotonic, i.e.

[z.,7] Cly.7, = [f(z7]) < f(y7D-

In particular this means that
z Clz,7] = f(z)C f(lz,7]),

i.e. f([z]) contains the range of f(x) over the interval [z, Z]. A similar result holds
also for functions of several variables f(x1,...,zp).
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An important case when interval evaluation gives the exact range of a function
is when f(x1,...,2,) is a rational expression, where each variable x; occurs only
once in the function.

Example 2.5.3.
In general narrow bounds cannot be guaranteed. For example, if f(z) =
x/(1 — ) then

f(12,3]) = 2,3]/(1 = [2,3]) = [2,3]/[-2, =1] = [-3, —1].

The result contains but does not coincide with the exact range [—2, —3/2]. But if
we rewrite the expression as f(xz) = 1/(1/x — 1), where z only occurs once, then we
get

F([2,3]) = 1/(1/[2,3] = 1) = 1/[=2/3, =1/2] = [-2, =3/2],

which is the exact range.

When interval analysis is used in a naive manner as a simple technique for
simulating forward error analysis it does not in general give sharp bounds on the
total computational error. To get useful results the computations in general need
to be arranged so that overestimation as far as possible is minimized. Often a
refined design of the algorithm is required in order to prevent the bounds for the
intervals from becoming unacceptably coarse. The answer [—oo, 0] is of course
always correct but not at all useful!

The remainder term in Taylor expansions includes a variable &, which is known
to lie in an interval £ € [a,b]. This makes it suitable to treat the remainder term
with interval arithmetic.

Example 2.5.4.
Evaluate for [z] = [2, 3] the polynomial

plx)=1—az+2?—2% 42" -2
Using exact interval arithmetic we find
p([2,3]) = [-252,49]

(verify this!). This is an overestimate of the exact range, which is [—182,—21].
Rewriting p(z) in the form p(z) = (1 —)(1 + 2%+ z*) we obtain the correct range.
In the first example there is a cancellation of errors in the intermediate results
(cf. Example 2.5.2), which is not revealed by the interval calculations.

Sometimes it is desired to compute a tiny interval that is guaranteed to enclose
a real simple root z* of f(z). This can be done using an interval version of Newton’s
method. Suppose that the function f(x) is continuously differentiable. Let f’([xo])

denote an interval containing f’(z) for all z in a finite interval [z] := [a, b]. Define
the Newton operator N ([z]), [x] = [a,b], by
f(m) :
N([z]) :=m — , m =mid [z]. (2.5.11)
f'([=])
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For the properties of the interval Newton’s method
[xk-i-l] :N([xk]), k=0,1,2,...;

see Sec. 6.3.3.
Another important application of interval arithmetic is to initial value prob-
lems for ordinary differential equations

Y = f(z,y), yl@o) =%, yeR"

Interval techniques can be used to provide for errors in the initial values, as well as
truncation and rounding errors, so that at each step intervals are computed that
contain the actual solution. But it is a most demanding task to construct an interval
algorithm for the initial value problem, and they tend to be significantly slower than
corresponding point algorithms. One problem is that a wrapping effect occurs at
each step and causes the computed interval widths to grow exponentially. This is
illustrated in the following example.

Example 2.5.5.
The recursion formulas

Tn+1 = (xn - yn)/\/ﬁa Yn+1 = (xn + yn)/\/i

mean a series of 45-degree rotations in the xzy-plane (see Figure 2.3.5). By a two-
dimensional interval one means a rectangle whose sides are parallel to the coordinate
axes.

If the initial value (xq, yo) is given as an interval [zg] = [1—¢, 1+€], [yo] = [—¢, €]
(see the dashed square, in the leftmost portion of Figure 2.3.5), then (x,,, y,) will,
with ezact performance of the transformations, also be a square with side 2¢, for
all n (see the other squares in Figure 2.3.5). If the computations are made using
interval arithmetic, rectangles with sides parallel to the coordinate axis will, in
each step, be circumscribed about the exact image of the interval one had in the
previous step. Thus the interval is multiplied by v/2 in each step. After 40 steps,
for example, the interval has been multiplied by 22° > 10°. This phenomenon,
intrinsic to interval computations, is called the wrapping effect. (Note that if one
uses discs instead of rectangles, there would not have been any difficulties in this
example.)

2.5.5 Interval Matrix Computations

In order to treat multidimensional problems we introduce interval vectors and matri-
ces. An interval vector is denoted by [z] and has interval components [z;] = [z;,T5]),
i =1:n. Likewise an interval matrix [A] = ([a;;]) has interval elements

laij] = la;;,@i5], i=1:m, j=1:n
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=Nl

Figure 2.5.1. Wrapping effect in interval analysis.

Operations between interval matrices and interval vectors are defined in an obvious
manner. The interval matrix-vector product [A][x] is the smallest interval vector,
which contains the set

{Az | A e [A], = € [z]}
but normally does not coincide with it. By the inclusion property it holds that
{Az | Ae[A], = € [a]} C [A]lz] = <Z[az‘j][$g‘]>-
j=1

In general, there will be an overestimation in enclosing the image with an inter-
val vector, caused by the fact that the image of an interval vector under a linear
transformation in general is not an interval vector. This phenomenon, intrinsic to
interval computations, is similar to the wrapping effect described in Example 2.5.5.

Example 2.5.6.
We have

_(1 1 _ ([0,1] _( 0,2]

Hence b = (2 —1)" € Alz], but there is no z € [z] such that Az = b. (The
solution to Az =bis z = (3/2 1/2)"))

The magnitude of an interval vector or matrix is interpreted component-wise
and defined by

2] = (el |, [Tz2] |, - [zl DT,
where the magnitude of the components are defined by
[[a.b] | = max{Ja] | o € [a, 5]}, (2.5.12)

The oco-norm of an interval vector or matrix is defined as the oco-norm of their
magnitude,

[z loo = I T12] oo, AT loo = I 1 [A] Hloo- (2.5.13)
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In implementing matrix multiplication it is important to avoid case distinc-
tions in the inner loops, because that would make it impossible to use fast vector
and matrix operations. Using interval arithmetic it is possible to compute strict
enclosures of the product of two matrices. Note that this is needed also in the case
of the product of two point matrices since rounding errors will in general occur.

We assume that the command

setround(s), ¢=-1,0,1,

sets the rounding mode to —oo, to nearest, and to +o0o, respectively. (Recall that
these rounding modes are supported by the IEEE standard.) Let A and B be point
matrices and suppose we want to compute an interval matrix [C] such that

fl(A : B) C [C] = [Cil’lf7 Csup]'
Then the following simple code, using two matrix multiplications, does that:

setround(—1); Ciysr = A - B;
setround(1); Csup = A - B;

We next consider the product of a point matrix A and an interval matrix [B] =
[Binf, Bsup]- The following code performs this using four matrix multiplications:

A_ =min(4, 0); A, = max(A4, 0);
setround(—1);

Cint = A4 - Bing + A_ - Baup;
setround(1);

Csup = A_ - Bint + Ay - Baup;

(Note that the commands A_ = min(4, 0) and A, = max(A, 0) acts component-
wise.) An algorithm for computing the product of two interval matrices using eight
matrix multiplications is given by Rump [273].

Fast portable codes for interval matrix computations are now available. that
makes use of the Basic Linear Algebra Subroutines (BLAS) and IEEE 754 standard.
This makes it possible to efficiently use high-performance computers for interval
computation. INTLAB (INTerval LABoratory) by Rump [273, 272|, is based on
MATLAB, and particularly easy to use. It includes many useful subroutines, for
example, one to compute an enclosure of the difference between the solution and
an approximate solution x,, = Cmid [b]. Verified solutions of linear least squares
problems can also be computed.

Review Questions

5.1. (a) Define the magnitude and mignitude of an interval I = [a, b].
(b) How is the oo-norm of an interval vector defined?
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5.2.

5.3.

5.4.

5.5.

Describe the two different ways of representing intervals used in real and com-
plex interval arithmetic. Mention some of the advantages and drawbacks of
each of these!

An important property of interval arithmetic is that the operations are inclu-
sion monotonic. Define this term!

What is meant by the “wrapping effect” in interval arithmetic and what are
its implications? Give some examples of where it occurs.

Assume that the command
setround(z), = —1,0,1,

sets the rounding mode to —oo, to nearest, and to +oo, respectively. Give
a simple code that, using two matrix multiplications, computes an interval
matrix [C] such that for point matrices A and B,

fU(A - B) C [C] = [Cint, Csup)-

Problems and Computer Exercises

5.1.

5.2.

5.3.

5.4.

Carry out the following calculations in exact interval arithmetic:
(a) [0,1]+[1,2]; (b) [3,3.1] = [0,0,2]; (c) [-4.—1]-[=6,5];
(d) [21 2] : [_172]; (e) [_17 1]/[_27 _0'5]; (f) [_372] : [_31721]7

Show that using the operational definitions (2.5.5) the product of the discs
{c1,71) and (cg,72) contains zero if ¢; =cy =1 and ry =73 = /2 — 1.

(J. Stoer) Evaluate using Horner’s scheme and exact interval arithmetic the
cubic polynomial

p(z) = ((x —3)x + 3)z, [z]=][0.9,1.1].
Compare the result with the exact range, which can be determined by observ-
ing that p(x) = (r — 1)3 + 1.

Treat the Example 1.2.2 using interval analysis and four decimal digits. Start-
ing with the inclusion interval I1o = [0,1/60] = [0,0.01667] generate succes-
sively intervals Iy, k =9 : —1: 5, using interval arithmetic and the recursion

L1 = 1/(5n) — L, /5.

Notes and References

A treatment of many different aspects of number systems and floating-point com-
putations is given in Knuth [204, Chapter 4]. It contains an interesting overview of
the historical development of number representation. Leibniz 1703 seems to have
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been the first to discuss binary arithmetic. He did not advocate it for practical
calculations, but stressed its importance for number-theoretic investigations. King
Charles XII of Sweden came upon the idea of radix 8 arithmetic in 1717. He felt
this to be more convenient than the decimal notation and considered introducing
octal arithmetic into Sweden. He died in battle before decreeing such a change!

In the early days of computing floating-point computations were not built into
the hardware but implemented in software. The earliest subroutines for floating-
point arithmetic were probably those developed by J. H. Wilkinson at the National
Physical Laboratory, England, in 1947. A general source on floating-point computa-
tion is Sterbenz [298]. An excellent tutorial on IEEE 754 standard for floating-point
arithmetic, defined in [108, 1985], is Goldberg [146, 1991]. A self-contained, accessi-
ble and easy to read introduction with many illustrating examples is the monograph
by Overton [251, 2001]. An excellent treatment on floating-point computation,
rounding error analysis, and related topics is given in Higham [180, Chapter 2].
Different aspects of accuracy and reliability are discussed in [98].

The fact that thoughtless use of mathematical formulas and numerical meth-
ods can lead to disastrous results are exemplified by Stegun and Abramowitz [296]
and Forsythe [112, 1970]. Numerous examples in which incorrect answers are ob-
tained from plausible numerical methods can be found in Fox [115, 1971].

Statistical analysis of rounding errors goes back to an early paper of Goldstine
and von Neumann [149, 1951]. Barlow and Bairess [15] have investigated the dis-
tribution of rounding errors for different modes of rounding under the assumption
that the mantissa of the operands are from a logarithmic distribution.

Conditioning numbers of general differentiable functions were first studied by
Rice [267]. Backward error analysis was developed and popularized by J. H. Wilkin-
son in the 1950s and 1960s and the classic treatise on rounding error analysis is [332].
The more recent survey [336] gives a good summary and a historical background.
Kahan [194] gives an in depth discussion of rounding error analysis with examples
how flaws in the design of hardware and software in computer systems can have
undesirable effects on accuracy. The normwise analysis is natural for studying the
effect of orthogonal transformations in matrix computations; see Wilkinson [332].
The componentwise approach, used in perturbation analysis for linear systems by
Bauer [17], can give sharper results and has gained in popularity.

Condition numbers are often viewed pragmatically as the coefficients of the
backward errors in bounds on forward errors. Wilkinson in [332] avoids a precise
definition of condition numbers in order to use them more freely. The more precise
limsup definition in Definition 2.4.6 is usually attributed to Rice [267].

Even in the special literature, the discussion of planning of experimental per-
turbations is surprisingly meager. An exception is the collection of software tools
called PRECISE, developed by Chaitin-Chatelin et al., see [56, 57]. These are de-
signed to help the user set up computer experiments to explore the impact of the
quality of convergence of numerical methods. It involves a statistical analysis of the
effect on a computed solution of random perturbations in data.

The modern development of interval arithmetic was initiated by the work
of R. E. Moore [242, 1966]. Interval arithmetic has since been developed into a
useful tool for many problems in scientific computing and engineering. A notewor-
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158 Chapter 2. How to Obtain and Estimate Accuracy

thy example of its use is the verification of the existence of a Lorenz attractor by
W. Tucker [321]. Several extensive surveys on interval arithmetic are available; see
[3, 4, 200]. Hargreaves [169] gives a short tutorial on INTLAB and also a good
introduction to interval arithmetic.
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Chapter 3

Series, Operators and
Continued Fractions

Methods of numerical computations can be
simultaneously efficient, clever and clear.
The viewpoint that they must be so complex
as to be useful only in “black box” form,

we firmly reject.

—Preface to Press et al. Numerical Recipes

3.1 Some Basic Facts about Series
3.1.1 Introduction

Series expansions are a very important aid in numerical calculations, especially for
quick estimates made in hand calculation—for example, in evaluating functions, in-
tegrals, or derivatives. Solutions to differential equations can often be expressed in
terms of series expansions. Since the advent of computers it has, however, become
more common to treat differential equations directly, using, for example, finite dif-
ference or finite element approximations instead of series expansions. Series have
some advantages, especially in problems containing parameters. Automatic meth-
ods for formula manipulation and some new numerical methods provide, however,
new possibilities for series.

In this section we will discuss general questions concerning the use of infinite
series for numerical computations including, for example, the estimation of remain-
ders, power series and various algorithms for computing their coefficients. Often a
series expansion can be derived by simple operations with a known series. We also
give an introduction to formal power series. The next section treats perturbation
expansions, ill-conditioned and semi-convergent expansions, from the point of view
of computing.

Methods and results will sometimes be formulated in terms of series, some-
times in terms of sequences. These formulations are equivalent, since the sum of an

159
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160 Chapter 3. Series, Operators and Continued Fractions

infinite series is defined as the limit of the sequence S,, of its partial sums
S, =a1+ax+...+a,.
Conversely, any sequence S1, So, S3, ... can be written as the partial sums of a series,
S14+(S2—51)+(S3—S2)+....

In practice, one is seldom seriously concerned about a rigorous error bound
when the computed terms decrease rapidly, and it is “obvious” that the terms will
continue to decrease equally quickly. One can then break off the series and use
either the last included term or a coarse estimate of the first neglected term as
an estimate of the remainder.

This rule is not very precise. How rapidly is “rapidly”? Questions like this
occur everywhere in scientific computing. If mathematical rigor costs little effort
or little extra computing time, then it should, of course, be used. Often, however,
an error bound that is both rigorous and realistic may cost more than what is felt
reasonable for (say) a one-off problem.

In problems, where guaranteed error bounds are not asked for, when it is
enough to obtain a feeling for the reliability of the results, one can handle these
matters in the same spirit as one handles risks in every day life. It is then a matter
of experience to formulate a simple and sufficiently reliable termination criterion
based on the automatic inspection of the successive terms.*"

The unexperienced scientific programmer may, however, find such questions
hard, also in simple cases. In the production of general purpose mathematical soft-
ware, or in a context where an inaccurate numerical result can cause a disaster,
such questions are serious and sometimes hard also for the experienced scientific
programmer. For this reason, we shall formulate a few theorems, with which one
can often transform the feeling that “the remainder is negligible” to a mathemat-
ical proof. There are, in addition, actually numerically useful divergent series; see
Sec. 3.2.6. When one uses such series, estimates of the remainder are clearly essen-
tial.

Assume that we want to compute a quantity S, which can be expressed in a
series expansion, S = Y77 a;, and set

Sa=Y"_oa;, Rn=5- S5

We call Zj’;n 1145 the tail of the series; a,, is the “last included term” and a1
is the “first neglected term”. The remainder R, with reversed sign is called the
truncation error.*!

The tail of a convergent series can often be compared to a series with a known
sum, for example, a geometric series, or with an integral which can be computed

directly.

40 Termination criteria for iterative methods will be discussed in Sec. 6.1.3.
41In this terminology the remainder is the correction one has to make in order to eliminate the
error.
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3.1. Some Basic Facts about Series 161

Theorem 3.1.1 (Comparison with a Geometric Series).

If laj41| < klaj|, Vj > n, where k < 1, then

|ant1] < k|an|'
1-k ~1-k

|R,| <

In particular if k < 1/2, then it is true that the absolute value of the remainder is
less than the last included term.

Proof. By induction, one finds that |a;| < k/='""|a, 41|, j > n + 1, since

laj| <K Mapga| = el < klag] < E T apgal.

Thus - -
) j—1-n _ lansl M
|Rn|§.z |aj|§.z k |an+1|— 1—% Sl—k’
j=n+1 j=n+1

according to the formula for the sum of an infinite geometric series. The last
statement follows from the inequality k/(1 — k) < 1, when k< 1/2. 0O

Example 3.1.1.
In a power series with slowly varying coefficients a; = j 1/27=27 Then ag <

2.45-0.0000011 < 3-107, and
laj1] o G+ 1)!/2 22

PR T <(1+1/6)Y2r72 <0.11,
J

0.11

4107
o~

for j > 6. Thus, by Theorem 3.1.1 |Rg| < 3-107°

Theorem 3.1.2 (Comparison of a Series with an Integral).

If laj| < f(j) for all j > n+ 1, where f(x) is a nonincreasing function for
x >n, then

Ra< S |aj|s/ f(z) dz,
j=n+1 n

which yields an upper bound for |R,|, if the integral is finite.
If aj11 > g(j) > 0 for all j > n, we also obtain a lower bound for the error,

namely
o0

R, = Z a; >/:Og(x)dx.

Proof. See Figure 3.1.1. O
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0.04

0.035¢ 1

0.03r 1

0.025 1

0.02 y =f(x) :

0.015 y =9g(x) B

0.01 1

n+1 n+2 an+3 n+4 an+5

0'0055 6 7 8 9 10 11 12

Figure 3.1.1. Comparison a series with an integral, (n = 5).

Example 3.1.2.

When a; is slowly decreasing, the two error bounds are typically rather close
to each other, and are hence rather realistic bounds, much larger than the first
neglected term a,11. Let a; = 1/(5% + 1), f(z) = 3. It follows that

0<R,< / 3 dr = n_2/2.

In addition this bound gives an asymptotically correct estimate of the remainder,
as n — 0o, which shows that R, is here significantly larger than the first neglected
term.

For alternating series the situation is typically quite different.

Definition 3.1.3.
A series is alternating for j > n if, for all j > n, a; and a;1 have opposite
signs, or equivalently signa;signa;y1 < 0, where sign © (read “signum” of x), is

defined by i 0
, x>0
sign x = { 0, ifz=0;

~1, ifz<0.

Theorem 3.1.4.
If R,, and R,y1 have opposite signs, then S lies between S, and Sp4+1. Fur-
thermore

1 1
S = 5(571 + Sny1) £ §|an+1|-
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An+41

1
Rn ! Rn+1

Figure 3.1.2. A series where R, and R,y1 have different signs.

We also have the weaker results:

|Rn| < lan+tl, |Rng1| < lantal, sign Ry, = signa,1.

This theorem has non-trivial applications to practically important divergent
sequences; see Sec. 3.2.6.

Proof. The fact that R,11 and R,, have opposite signs means, quite simply, that
one of S,4+1 and S, is too large and the other is too small, i.e., S lies between
Sn+1 and S,. Since any1 = Sp+1 — Sn, one has for positive values of a,41, the
situation shown in Figure 3.1.2. From this figure, and an analogous one for the case
of an+1 < 0, the remaining assertions of the theorem clearly follow. O

The actual error of the average 3(S, + Sn+1) is, for slowly convergent alter-
nating series, usually much smaller than the error bound %|an+1|. For example, if
Sp=1-%2+%—...£1 limS, =In2~0.6931, the error bound for n = 4 is 0.1
while the actual error is less than 0.01. A systematic exploration of this observation,
by means of repeated averaging, is carried out in Sec. 3.4.3.

15

0.51

-0.5 I I I I I
0 2 4 6 8 10 12

Figure 3.1.3. Successive sums of an alternating series.
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Theorem 3.1.5.

For an alternating series, the absolute values of whose terms approach zero
monotonically, the remainder has the same sign as the first neglected term an41,
and the absolute value of the remainder does not exceed |any1|. (It is well known
that such a series is convergent).

Proof. (Sketch) That the theorem is true is almost clear from Figure 3.1.3. The
figure shows how S; depends on j when the premises of the theorem are fulfilled.
A formal proof is left to the reader. 0O

The use of this theorem will be illustrated in Example 3.1.3. An important
generalization is given as Problem 3.3.2(g).

In the preceding theorems the ideas of well known convergence criteria are
extended to bounds or estimates of the error of a truncated expansion. In Sec. 3.4,
we shall see a further extension of these ideas, namely for improving the accuracy
obtained from a sequence of truncated expansions. This is known as convergence
acceleration.

3.1.2 Taylor’'s Formula and Power Series

Consider an expansion into powers of a complex variable z, and suppose that it is
convergent for some z # 0, and denote its sum by f(z),

f(z) = iajzj, z € C. (3.1.1)
Jj=0

It is then known from complex analysis that the series (3.1.1) either converges for
all z, or it has a circle of convergence with radius p, such that it converges for all
|z] < p, and diverges for |z| > p. (For |z| = p convergence or divergence is possible).
The radius of convergence is determined by the relation

p = limsup |a,| /™. (3.1.2)

Another formula is p = lim |a,|/|an+1], if this limit exists.
The function f(z) can be expanded into powers of z — a around any point of
analyticity,

f(z)=) aj(z—a), zeC. (3.1.3)
§=0
By Taylor’s formula the coefficients are given by

a = fa),  a;=fPa)/jl, =1 (3.1.4)
This infinite series is in the general case called a Taylor series, while the special

case, a = 0, is by tradition called a Maclaurin series.*?

42Brook Taylor (1685-1731), who announced his theorem in 1712, and Colin Maclaurin (1698
1746), were British mathematicians.
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3.1. Some Basic Facts about Series 165

Figure 3.1.4. Partial sums of the Maclaurin expansions for two functions.
The upper curves are for cosz, n =0:2:26, 0 < x < 10. The lower curves are
for1/(14+22),n=0:2:18,0<z < 1.5.

The function f(z) is analytic inside its circle of convergence, and has at least
one singular point on its boundary. The singularity of f, which is closest to the
origin, can often be found easily from the expression that defines f(z); so the radius
of convergence of a Maclaurin series can often be easily found.

Note that these Taylor coefficients are uniquely determined for the function f.
This is true also for a non-analytic function, for example if f € CP[a, b], although in
this case the coefficient a; exists only for j < p. In Figure 3.1.4 the partial sums of
the Maclaurin expansions for the functions f(z) = cosx and f(x) = 1/(1+ 2?) are
shown. The series for cosx converges for all x, but rounding errors cause trouble
for large values of z; see Sec.3.2.5. For 1/(1 + z?) the radius of convergence is 1.

There are several expressions for the remainder R, (z), when the expansion
for f(z) is truncated after the term that contains 2”~!. In order to simplify the
notation, we put a = 0, and consider the Maclaurin series. The following integral
form can be obtained by the application of repeated integration by parts to the
integral zfol f'(zt) dt:

Ra(z) = 2" /O Ta-prt £ (2t) dt; (3.1.5)
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the details are left for Problem 3.2.13 (b). From this follows the upper bound

1
[Bn(2)] < 2" ma £ (t)] (3.1.6)

This holds also in the complex case; if f is analytic on the segment from 0 to z, one
integrates along this segment, i.e. for 0 < ¢t < 1; otherwise another path is to be
chosen. The remainder formulas (3.1.5) (3.1.6) require only that f € C™. It is thus
not necessary that the infinite expansion converges or even exists.

For a real-valued function, Lagrange’s*? formula for the remainder term

F (an

Bn(w) = n!

. celo,al, (3.1.7)

is obtained by the mean value theorem of integral calculus. For complex-valued
functions and, more generally, for vector-valued functions the mean value theorem
and Lagrange’s remainder term are not valid with a single . (Sometimes com-
ponentwise application with different ¢ is possible.) A different form (3.2.11) for
the remainder, valid in the complex plane is given in Sec.3.2.2, in terms of the
maximum modulus M (r) = max,|—, | f(z)|, which may sometimes be easier to
estimate than the nth derivative. A power series is uniformly convergent in any
closed bounded region strictly inside its circle of convergence. Roughly speaking,
the series can be manipulated like a polynomial, as long as z belongs to such a
region:

e it can be integrated or differentiated term by term,
e substitutions can be performed, and terms can be rearranged.

A power series can also be multiplied by another power series:
Theorem 3.1.6 (Cauchy product).
If f(2) = E?:o a;jz?, and g(z) = Z?:o bpz*, then

n

f(x)g(z) = Z en2",  Cp = Z a;bn—j. (3.1.8)
j=0

J=0

The expression on the right side of (3.1.8) is called the convolution or the Cauchy
product of the coefficient sequences of f and g.

43Joseph Louis Lagrange (1736-1813) was born in Turin, Ttaly. In 1766 he succeeded Euler
in Berlin but in 1787 went to Paris, where he remained until his death. He gave fundamental
contributions to most branches of Mathematics and Mechanics.
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Example 3.1.3.

Many important functions in applied mathematics cannot be expressed in fi-
nite terms of elementary functions, and must be approximated by numerical meth-
ods. One such function is the error function defined by

erf(z) = % /0 St (3.1.9)

This function is encountered, for example, in computing the distribution function
of a normal deviate. It takes the values erf(0) = 0, erf(co) = 1 and is related to the
incomplete gamma functions (see the Handbook [1, 6.5]) by erf(x) = v(1/2, 22).

Suppose one wishes to compute erf(z) for x € [—1,1] with a relative error
less than 107 !°. One can then approximate the function by a power series. Setting
z = —t2 in the well known Maclaurin series for e?, truncating after n 4+ 1 terms,
and integrating term by term we obtain

2 [T 27 2 <~ i
erf(z) ~ ﬁ/o ;(_1)]7%: ﬁjgoajx i+l (3.1.10)

where )
—1)J
A5 = 707 1% ( . ) .
3125 +1)
(Note that erf(x) is a odd function of x.) This series converges for all z, but is
suitable for numerical computations only for values of x which are not too large. To
evaluate the series we note that the coefficients a; satisfies the recurrence relation
(2j - 1)

aj = —aj_1———.
! i +1)

aozl,

This recursion shows that for z € [0, 1] the absolute values of the terms t; = a;2z?/ !
decrease monotonically. By Theorem 3.1.5 this implies that the absolute error in a
partial sum is bounded by the absolute value of the first neglected term a,z".

A possible algorithm for evaluating the sum in (3.1.10) is then: Set sg =to =
x; for j =1,2,... compute

(2j—1) »

: —10

Here we have estimated the error by the last term added in the series. Since we have
to compute this term for the error estimate we might as well use it! Note also that
in this case, where the number of terms is not fixed in advance, Horner’s scheme is
not suitable for the evaluation. Figure 3.1.4 shows the graph of the relative error
in the computed approximation pe,11(z). At most twelve terms in the series were
needed.

The use of the Taylor coefficient formula and Lagrange’s form of the remainder
may be inconvenient, and it is often easier to obtain an expansion by manipulating
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error

0 0.2 0.4 0.6 0.8 1

Figure 3.1.5. Relative error in approximations of the error function by a
Maclaurin series truncated after the first term that satisfies the condition in (3.1.11).

some known expansions. The geometric series,

n

=l+z+22+2°+--+2""+

— —, z#1, (3.1.12)

is of particular importance; note that the remainder 2" /(1 — z) is valid even when
the expansion is divergent.

Example 3.1.4.
Set z = —t? in the geometric series, and integrate:

T n—1 x x
21 g5 _ N _2\n 21
/0(1+t) dt_j}_o:/o( 2) dt—i—/o( 2)"(1+ ) dt.

Using the mean-value theorem of integral calculus on the last term we get

n—1 ; ;
—1) 25+1 1 2\—1 —1)" 2n+1
srctana = CPT (L€ (

3.1.13
2j+1 2n + 1 ’ ( )

=0

for some ¢ € int[0,z]. Both the remainder term and the actual derivation are
much simpler than what one would get by using Taylor’s formula with Lagrange’s
remainder term. Note also that Theorem 3.1.4 is applicable to the series obtained
above for all  and n, even for || > 1, when the infinite power series is divergent.

Some useful expansions are collected in Table 3.1.1.These formulas will be
used often without a reference; the reader is advised to memorize the expansions.
“Remainder ratio” denotes the ratio of the remainder to the first neglected term, if
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Table 3.1.1. Maclaurin expansions for some elementary functions.

Function Expansion (z € C) Remainder ratio (z € R)
(1—z)7! l+z+a?+23+ - if [z <1 1—z)tife#1
k k 2 . k—n -
(14+2) 1+ kx + 5 xt 4 iz < 1 14+ mifz>-1
2 3 4
In(1 + ) x—%+%—%+---1f|x|<l 1+6&) Vifz> -1
x? 28
z g 3
e 1+a:—|—2!—|—3!—|— all © es, all x
. 3 25 2T
sin x x—i—i—a—ﬁ—i—---aﬂx cosé&, all z, n odd
x?2 ozt b
cos X 1—E+E—a+-~-aﬂx cos¢, all z, n even
1 5oaf 1
%ln(li—z) x+%+%+"-1f|x|<l 1_52,|gc|<1,neven
3 5
1
arctan x—%+%+-~-if|x|<1 m,allx

x € R; & means a number between 0 and x. Otherwise these expansions are valid
in the unit circle of C or in the whole of C.
The binomial coefficients are, also for non-integer k, defined by

(k) k(k—1)--(k—n+1)

n) 1-2...n

For example, setting k = 1/2 gives

2 3
1 2 g Y T 1.
(422 =145 - T T il <
Depending on the context, the binomial coefficients may be computed by one of the

following well known recurrences:

(nil) B (i) E]:L:LT; o (k;:l) = (ﬁ) + (7:1) (3.1.14)

with appropriate initial conditions. The latter recurrence follows from the matching
of the coefficients of t" in the equation (1 +#)**1 = (1 +#)(1 + ¢)*. (Compare the
Pascal triangle; see Problem 1.2.3.) The explicit formula (fl) = k!/(nl(k — n)!), for
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integers k, n, is to be avoided, if k£ can become large, because k! has overflow for
k > 170 in IEEE double precision arithmetic.

The exponent & in (14 )" is not necessarily an integer; it can even be an irra-
tional or a complex number. This function may be defined as (1 + z)F = *n(1+2),
Since In(1+ ) is multi-valued, (1 +z)* is multi-valued too, unless k is an integer.
We can, however, make them single-valued by forbidding the complex variable z to
take real values less than —1. In other words, we make a cut along the real axis from
—1 to —oo that the complex variable must not cross. (The cut is outside the circle
of convergence.) We obtain the principal branch by requiring that In(1 4+ x) > 0
ifx>0. Let 1 + 2 =re', r >0, ¢ — £m. Note that

1+z— —r, 1n(1+x)—>1nr+{i—z:: Ez:iw (3.1.15)
Two important power series, not given in Table 3.1.1, are:
The Gauss hypergeometric function®*

abz a(a+1)b(b+1) 22

F(a,b,c;z) =1+ ] + %5
a(a—I—1)(a+2)b(b+1)(b+2)£+.”7 (3.1.16)

cle+1)(c+2) 3!

where a and b are complex constants and ¢ # —1, —2..... The radius of convergence

for this series equals unity; see [1, Chap. 15].45

Kummer’s confluent hypergeometric function?t

a(a+1)2’2_j+a(a+1)(a+2)£+”., (3.1.17)

a z
M(a,biz) =14 22
(a,b:2) =147 + b(b 1+ 1)(b+2) 31

b1 B(b+1)

converges for all z (see [1, Ch.13]). It is named “confluent” because
M(a,c;z) = blim F(a,b,c,z/b).

The coefficients of these series are easily computed and the functions are easily
evaluated by recurrence relations. (You also need some criterion for the truncation
of the series, adapted to your demands of accuracy.) In Sec. 3.5, these functions are
also expressed in terms of infinite continued fractions that typically converge faster
and in larger regions than the power series do.

44Gauss presented his paper on this series in 1812.

45This classical Handbook of Mathematical Functions, edited by Milton Abramowitz and Irene
A. Stegun, will be used as a reference throughout this book. We will often refer to it just as “the
Handbook”.

46Ernst Eduard Kummer (1810-1893), a German mathematician, was professor in Berlin from
1855. He extended Gauss work on hypergeometric series. Together with Weierstrass and Kro-
necker, he made Berlin into one of the leading centers of mathematics at that time.

2007/
page



3.1. Some Basic Facts about Series 171

Example 3.1.5.
The following procedure can generally be used in order to find the expansion
of the quotient of two expansions. We illustrate it in a case, where the result is of
interest to us later.
The Bernoulli*” numbers B,, are defined by the Maclaurin series
T = Bjxj

— 1
e? —1 par

(3.1.18)

For x = 0 the left-hand side is defined by Hopital’s rule; the value is 1. If we
multiply this equation by the denominator, we obtain

-ENE)

]
i=1 =

By matching the coefficients of ™, n > 1, on both sides, we obtain a recurrence
relation for the Bernoulli numbers, which can be written in the form

n—1 n—1
1 B; n
By =1, I 0, n>2, ie (,)B-_O. 3.1.19
’ ;0 (n—j)! j! ; i)™ (@119)

The last equation is a recurrence that determines B,,_; in terms of Bernoulli num-
bers with smaller subscripts, hence By = 1, By = —%, By = %, Bs =0, By = —%,
B;=0,Bs=15,....

We see that the Bernoulli numbers are rational. We shall now demonstrate

that B, = 0, when n is odd, except for n = 1.

T T rzet+1 xe®/? 4 emu/2 > Bo,z2™

er—1 ' 2 2et—1 2e%/2 _e—w/2

n=0

Since the next to last term is an even function its Maclaurin expansion contains
only even powers of x, and hence the last expansion is also true.

The recurrence obtained for the Bernoulli numbers by the matching of coeffi-
cients in the equation,

(em/2 — e_m/2) ( Z Bgnx2"/(2n)!> = %:v (61/2 + e_m/Q) ,
n=0

is not the same as the one we found above. It turns out to have better properties
of numerical stability. We shall look into this experimentally in Problem 3.1.10 (g).

47Jacob (or James) Bernoulli (1654-1705), a Swiss mathematician, was one of the earliest to
realize the power of the infinitesimal calculus. The Bernoulli numbers were published posthumously
in 1713, in his fundamental work Ars Conjectandi (on Probability). The notation for Bernoulli
numbers varies in the literature. Our notation seems to be the most common in modern texts.
Several members of the same family enriched mathematics by their teaching and writing. Their
role in the history of mathematics resembles the role of the Bach family in the history of music.
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The singularities of the function x/(e* — 1) are poles at © = 2nmwi, n =
41,42, +3, ..., hence the radius of convergence is 27. Further properties of Bernoulli

numbers and the related Bernoulli polynomials and periodic functions, are presented
in Sec. 3.4.5, where they occur as coefficients in the important Euler-Maclaurin for-
mula.

If r is large the following formula is very efficient; the series on its right-hand
side then converges rapidly.

Ba,/(2r)! = (—1)T_12(27T)_2T(1 + i n—zr). (3.1.21)

n=2

This is a particular case (¢t = 0) of a Fourier series for the Bernoulli functions that
we shall encounter in Lemma 3.4.9 (c¢). In fact, you obtain IEEE double accuracy
for » > 26, even if the infinite sum on the right-hand side is totally ignored. Thanks
to (3.1.21) we do not need to worry much over the instability of the recurrences.
When 7 is very large, however, we must be careful about underflow and overflow.

The Euler numbers F,,, which will be used later, are similarly defined by
the generating function

oo

1 E,z" T
= —. 3.1.22
cosh z 7;3 nl ' Il < 2 ( )

Obviously E, = 0 for all odd n. It can be shown that the Euler numbers are
integers, Fg =1, Fy = —1, E4 =5, Eg = —61; see Problem 3.1.7 (c).

Example 3.1.6.
1 [e’e) .
Let f(z) = (#*+1)"2. Compute [} f(z) dx to 9 decimal places, and f””(10),
with at most 1% error. Since z ! is fairly small, we expand in powers of z~!:

1 1-3
fla) =232 +273)71/2 = 73/ (1 - 5:10—3 + ?w_G —.. )
1 3
— L5 5:674.5 + gx—7.5 o
By integration,
> 1 3
f(x)dr =2-10""% — —107%% + —-107%5 + ... = 0.632410375.
10 7 52

Each term is less than 0.001 of the previous term.
By differentiating the series three times, we similarly obtain
105 1,287
" _ VY. .—45 ’ =75
M (x) = 5L + 6 L +....

For z = 10 the second term is less than 1% of the first; the terms after the second
decrease quickly and are negligible. One can show that the magnitude of each term
is less than 8 73 of the previous term. We get f”/(10) = —4.12-10~* to the desired
accuracy. The reader is advised to carry through the calculation in more detail.
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Example 3.1.7.

One wishes to compute the exponential function e with full accuracy in IEEE
double precision arithmetic (unit round off u = 2753 ~ 1.1-10716). The method of
scaling and squaring is based on the following idea. If we let m > 1 be an integer
and set y = x/2™, then

e® = (e¥)?".
Here the right-hand side can be computed by squaring e¥ m times. By choosing m
large enough e¥ can be computed by a truncated Taylor expansion with k terms;
see Sec. 3.1.2.
The integers m and k should be chosen so that the bound

Lped ()"

k! k! \ 2m
for the truncation error, multiplied by 2™ to take the propagation of error due
to squaring e*  into account, is bounded by the unit roundoff u. Subject to this
constraint m and k are determined to minimize the computing time. If the Taylor
expansion is evaluated by Horner’s this is approximately proportional to (m + 2k),
In IEEE double precision arithmetic with v = 2753 we find that (k,m) = (7,7) and
(8,5) are good choices. Note that to keep the rounding error sufficiently small part
of the computations must be done in extended precision.

We remark that rational approximations often give much better accuracy than
polynomial approximations. This as related to the fact that continued fraction ex-
pansions often converge much faster than those based on power series: see Sec. 3.5.3
where Padé approximations for the exponential function are given.

In numerical computation a series should be regarded as a finite expansion
together with a remainder. Taylor’s formula with the remainder (3.1.5) is valid for
any function f € C"[a,a + x], but the infinite series is valid only if the function is
analytic in a complex neighborhood of a.

If a function is not analytic at 0, it can happen that the Maclaurin expansion
converges to a wrong result. A classical example (see Appendix to Chapter 6 in

Courant [73]) is
=157 w e
0, if x =0.
It can be shown that all its Maclaurin coefficients are zero. This trivial Maclaurin
expansion converges for all z, but the sum is wrong for x # 0. There is nothing
wrong with the use of Maclaurin’s formula as a finite expansion with a remainder.
Although the remainder that in this case equals f(x) itself, does not tend to 0 as
n — oo for a fixed x # 0, it tends to O faster than any power of x, as x — 0,
for any fized n. The “expansion” gives, for example, an absolute error less than
10~43 for x = 0.1, but the relative error is 100%. Also note that this function (and
there are lots of other examples) can be added to any function without changing its
Maclaurin expansion.
From the point of view of complex analysis, however, the origin is a singular
point for this function. Note that |f(z)] — oo as z — 0 along the imaginary
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174 Chapter 3. Series, Operators and Continued Fractions

axis, and this prevents the application of any theorem that would guarantee that
the infinite Maclaurin series represents the function. This trouble does not occur
for a truncated Maclaurin expansion around a point, where the function under
consideration is analytic. The size of the first non-vanishing neglected term then
gives a good hint about the truncation error, when |z| is a small fraction of the
radius of convergence.

The above example may sound like a purely theoretical matter of curiosity.
We emphasize this distinction between the convergence and the validity of an infi-
nite expansion in this text, as a background to other expansions of importance in
numerical computation such as the Euler—-Maclaurin expansion in Sec. 3.4.5, which
may converge to the wrong result, also in the application to a well-behaved analytic
function. On the other hand, we shall see in Sec. 3.2.6, that divergent expansions
can sometimes be very useful. The universal recipe in numerical computation is
to consider an infinite series as a finite expansion plus a remainder term. But a
more algebraic point of view on a series is often useful in the design of a numerical
method; see Sec. 3.1.5 (Formal Power Series) and Sec. 3.3.2 (The Calculus of Opera-
tors). Convergence of an expansion is neither necessary nor sufficient for its success
in practical computation.

3.1.3 Analytic Continuation

Analytic functions have many important properties that you may find in any text on
Complex Analysis. A good summary for the purpose of numerical mathematics is
found in the first chapter of Stenger [297]. Two important properties are contained
in the following lemma.

We remark that the region of analyticity of a function f(z) is an open set. If
we say that f(z) is analytic on a closed real interval, it means that there exists an
open set in C that contains this interval, where f(z) is analytic.

Lemma 3.1.7.

An analytic function can only have a finite number of zeros in a compact subset
of the region of analyticity, unless the function is identically zero.

Suppose that two functions f1 and fo are analytic in regions D1 and Ds,
respectively. Suppose that Dy N Dy contains an interval throughout which f1(z) =
f2(2). Then f1(z) = fa(z) in the intersection Dy N Da.

Proof. We refer, for the first part, to any text on Complex Analysis. We here
follow Titchmarsh [312] closely. The second part follows by the application of the
first part to the function f; — fo. 0O

A consequence of this is known as the permanence of functional equations.
That is, in order to prove the validity of a functional equation (or “a formula for a
function”) in a region of the complex plane, it may be sufficient to prove its validity
in (say) an interval of the real axis, under the conditions specified in the lemma.

Example 3.1.8 (The permanence of functional equations).
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We know from elementary real analysis that the functional equation
POz = 7tz (p,q € R),

holds for all z € R. We also know that all the three functions involved are analytic
for all z € C. Set in the lemma D; = Dy = C, and let “the interval” be any
compact interval of R. The lemma then tells us that that the displayed equation
holds for all complex z.

The right and the left-hand side then have identical power series. Applying
the convolution formula and matching the coefficients of 2", we obtain

n—j n

P+a)" <~ 4q , n nl
2 = - e, (p+q"= e
n! jgo Jt(n—j)! jgoj!(n—j)!

This is not a very sensational result. It is more interesting to start from the following
functional equation
(14 2)PT9 = (1 + 2)P(1 + 2)%.

The same argumentation holds, except that—by the discussion around Table 3.1.1—
Dy, D5 should be equal to the complex plane with a cut from —1 to —oo, and that
the Maclaurin series is convergent in the unit disk only. We obtain the equations

(pZQ>_§(§>(nzj>, n=0,1,2,.... (3.1.23)

(They can also be proved by induction, but it is not needed.) This sequence of alge-
braic identities, where each identity contains a finite number of terms, is equivalent
to the above functional equation.

We shall see that this observation is useful for motivating certain “symbolic
computations” with power series, that can provide elegant derivations of useful
formulas in numerical mathematics.

Now we may consider the aggregate of values of fi1(z) and f2(z) at points
interior to Dy or D5 as a single analytic function f. Thus f is analytic in the union
D1 U Ds, and f(z) = fi(2) in D1, f(z) = fa(2) in Ds.

The function f; may be considered as extending the domain in which f; is
defined, and it is called a (single-valued) analytic continuation of f;. In the
same way f1 is an analytic continuation of fy. Analytic continuation denotes both
this process of extending the definition of a given function, and the result of the
process. We shall see examples of this, e.g., in Sec.3.1.4. Under certain conditions
the analytic continuation is unique.

Theorem 3.1.8.

Suppose that a region D is overlapped by regions D1, D, and that (D1ND2)ND
contains an interval. Let f be analytic in D, and let f1 be an analytic continuation
of f to D1, and let fo an analytic continuation of f to Dy, so that

f(z) = f1(2) = fa(z) in (DN D2)ND.
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Then either of these functions provides a single-valued analytic continuation of f
to D1 N Dy. The results of the two processes are the same.

Proof. Since f1— fo is analytic in D1N D2, and f; — fo = 0 in the set (D1 ND2)ND,
which contains an interval, it follows from Lemma 3.1.7 that fi(z) = f2(2) in
D1 N Dy, which proves the theorem. O

If the set (D1 N D2) N D is void, the conclusion in the theorem may not be
valid. We may still consider the aggregate of values as a single analytic function,
but this function can be multi-valued in D1 N Ds.

Example 3.1.9.
For |z| < 1 the important formula

1 14z
arctanz = — In -
21 1—1x

easily follows from the expansions in the Table 3.1.1. The function arctanz has
an analytic continuation as single-valued functions in the complex plane with cuts
along the imaginary axis from i to oo and from —i¢ to —oo. It follows from the
theorem that “the important formula” is valid in this set.

3.1.4 Manipulating Power Series

In some contexts, algebraic recurrence relations can be used for the computation of
the coefficients in Maclaurin expansions, in particular if only a moderate number
of coefficients are wanted. We shall study a few examples.

Example 3.1.10 (Expansion of a composite function).

Let g(x) = by + bz + box® + ..., f(2) = ap + a1z + a2z®> + ..., be given
functions, analytic at the origin. Find the power series

h(z) = f(g(x)) = co + c12 + cax? + ...

In particular, we shall study the case f(z) = e*.
The first idea we may think of is to substitute the expansion bg+b1z+box?+. ..
for z into the power series for f(z). This is, however, no good unless g(0) = by = 0,
because
(g(x)* = b + kb oy + ...

gives a contribution to, c¢g, c1, ..., for every k, so we cannot successively compute
the c; by finite computation.

Now suppose that bg = 0, by = 1, i.e. g(z) = o + baz? + b32x® +.... (The
assumption that by = 1 is not important, but it simplifies the writing.) Then ¢;
depends only on by, ax, k < j, since (g(z))* = 2¥ + kbox**! + .. .. We obtain

h(z) = ag + a1 + (a1by + a2)x® + (a1bs + 2asbs + az)x® + ...,
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and the coefficients of h(z) come out recursively,
co =ag; €1 =a1, C3=arby+as, c3=aibs+ 2asbs+as,....

Now consider the case f(z) = €, i.e. a, = 1/nl. We first see that it is then
also easy to handle the case that by # 0, since

eg(x) — ebgeblz+b212+b3x3+...'

But there exists a more important simplification if f(z) = e*. Note that h satisfies
the differential equation h/(x) = ¢/(z)h(x), h(0) = eb°. Hence

Z(n + Depprz™ = Z(] + 1)1 chxk.
n=0 =0 k=0

Set cg = e, apply the convolution formula (3.1.8), and match the coefficients of
" on the two sides:

(n+1)cpy1 =bicn +2bacn—1+ ...+ (n+ Dbpyico, (n=0,1,2,...).

This recurrence relation is more easily programmed than the general procedure
indicated above. Other functions that satisfy appropriate differential equations can
be treated similarly; see Problem 3.1.8. More information is found in Knuth [204,
Sec. 4.7].

Formulas like these are often used in packages for symbolic differentiation
and for automatic or algorithmic differentiation. Expanding a function into a
Taylor series is equivalent to finding the sequence of derivatives of the function at a
given point. The goal of symbolic differentiation is to obtain analytic expressions
for derivatives of functions given in analytic form. This is handled by computer
algebra systems, for example, Maple or Mathematica.

In contrast, the goal of automatic or algorithmic differentiation is to ex-
tend an algorithm (a program) for the computation of the numerical values of a few
functions to an algorithm that also computes the numerical values of a few deriva-
tives of these functions, without truncation errors. A simple example, Horner’s rule
for computing values and derivatives for a polynomial, was given in Sec.1.2.1. At
the time of writing, there is a lively activity about automatic differentiation—theory,
software development and applications. Typical applications are in the solution of
ordinary differential equations by Taylor expansion; see the example in Sec.1.2.4.
Such techniques are also used in optimization for partial derivatives of low order for
the computation of Jacobian and Hessian matrices.

Sometimes power series are needed with many terms, although rarely more
than 30 (say). (The ill-conditioned series are exceptions; see Sec.3.2.5.) The de-
termination of the coefficients can be achieved by the Toeplitz matrix method
using floating-point computation and an interactive matrix language. Computa-
tional details will be given in Problems 3.1.10-3.1.13 for MATLAB. These problems
are available from the home page of the book mai.liu.se/akbjo. (Systems like
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178 Chapter 3. Series, Operators and Continued Fractions

Maple and Mathematica that include exact arithmetic and other features, are evi-
dently also useful here.) An alternative method, the Cauchy—FFT method, will
be described in Sec. 3.2.2.

Both methods will be applied later in the book. See in particular Sec.3.3.4,
where they are used for deriving approximation formulas in the form of expansions
in powers of elementary difference or differential operators. In such applications,
the coefficient vector, v (say), is obtained in floating-point (usually in a very short
time).

Very accurate rational approximations to v, often even the exact values, can
be obtained (again in a very short time) by applying the MATLAB function [N, D] =
rat(z, Tol) to the results, with two different values of the tolerance. This function
is based on a continued fraction algorithm, given in Sec.3.5.1 for finding the best
rational approximation to a real number. This can be used for the “cleaning” of
numerical results which have, for practical reasons, been computed by floating-
point arithmetic, although the exact results are known to be (or strongly believed
to be) rather simple rational numbers. The algorithm attempts to remove the
“dirt” caused by computational errors. In Sec.3.5.1 you also find some comments
of importance for the interpretation of the results, for example, for judging whether
the rational numbers are exact results or good approximations only.

Let f(z) be a function analytic at z = 0 with power series

flz)= Zajzj.
Jj=0

With this power series we can associate an infinite upper triangular semicirculant

matrix
ap a1 a2 ag

ap a3 a2 ...
Cy= o ar ... . (3.1.24)
agpg ...

This matrix has constant entries along each diagonal in Cy and is therefore also a
Toeplitz matrix*®. A truncated power series fy(z) = Z;V:Bl a;z’ is represented
by the finite leading principal N x N submatrix of C; (see Definition A.1.1, which

can be written as
N-1

fn(Sn) =" a; 8%, (3.1.25)

=0

where Sy is a shift matrix. For example, with N =4,

ap a1 az as 01 0 O

o O Qg a1 ag o O O 1 O
@SN =1 g ap ar |’ SN=10 0 0 1
0 0 0 ap 0 0 0 O

480tto Toeplitz (1881-1940) German mathematician.
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The following properties of Sy explains the term “shift matrix”:

T T2
i) T3
SN = ) (Il,IQ,I3,$4)SN = (0;I17x27x3)'
3 T4
T4 0

What do the powers of Sy look like? Note that S = 0, i.e. Sy is a nilpo-
tent matrix. This is one of the reasons why the Toeplitz matrix representation is
convenient for work with truncated power series, since it follows that

o N-—1
FISN) =D a;S% =Y a;S% = fn(Sw).
j=0 j=0

It is easily verified that a product of upper triangular Toeplitz matrices is of the
same type. Also note that the multiplication of such matrices is commutative. It
is also evident that a linear combination of such matrices is of the same type.
Further it holds that

(f-9)(Sn) = f(Sn)g(Sn) = fN(SN)gn(Sn);
(af +B9)(Sn) = afn(Sn) + Bgn(SN)

(In general, Toeplitz matrices are not nilpotent, and the product of two non-
triangular Toeplitz matrices is not a Toeplitz matrix. Similarly for the inverse.
In this section we shall only deal with upper triangular Toeplitz matrices.)

Denote by el the first row of the unit matrix of a size appropriate in the
context. An upper triangular Toeplitz matrix of order N is uniquely determined by
its first row r by means of a simple and fast algorithm that we call toep (r, N). For
example, the unit matrix of order N is Iy = toep (el, N), and the shift matrix is
Sn = toep ([0 ef], N). A MATLAB implementation is given in Problem 3.1.10.

Now it will be indicated how one can save CPU time and memory space by
working on the row vector level, with the first rows instead of with the full triangular
matrices.?® We shall denote by f1, g1, the row vectors with the first N coefficients
of the Maclaurin expansions of f(z), g(z). They are equal to the first rows of the
matrices f(Sn), g(Sn), respectively. Suppose that f1, gl are given and we shall
compute f - g1, i.e. the first row of f(Sn) - g(Sn) in a similar notation. Then

frgl=el (f(Sn)-g(Sn)) = (el f(Sn)) - g(Sn) = f1-toep(g1, N).  (3.1.26)

Note that you mever have to multiply two triangular matrices, if you work with
the first rows only. So, only about N2/2 flops and (typically) an application of
the toep(r, N) algorithm, are needed instead of about N3/6 if two upper trian-
gular matrices are multiplied; see Sec.1.3.1, where the operation count for matrix
multiplication is discussed.

49In interactive computations with rather short series the gain of time may sometimes be neu-
tralized by an increased number of manual operations. See the computer exercises.
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Similarly the quotient of two upper triangular Toeplitz matrices, (say)

Q(Sn) = f(Sn) - 9(Sn) ™,

is also a matriz of the same type. (A hint to a proof is given in Problem 3.1.10.°0)
Note that Q(Sn) - 9(Sn) = f(Sn). With similar notations as above, we obtain for
the first row of this matrix equation the following triangular linear system where
the row vector gl is the unknown.

gl - toep(gl, N) = f1. (3.1.27)

Although the discussion in Sec. 1.3.2 is concerned with a linear system with a column
as the unknown (instead of a row), we draw from it the conclusion that only about
N2 /2 scalar flops (including N scalar divisions) and one application of the toep
algorithm, are needed, instead of the N3/6 needed in the solution of the matrix
equation Q - g(Sn) = f(Sn). %!

A library called toeplib is given in Problem 3.1.10 (a), which consists of short
MATLAB scripts mainly based on Table 3.1.1. In the following problems the series of
the library are combined by elementary operations to become interesting examples
of the Toeplitz matrix method. The convenience, the accuracy and the execution
time are probably much better than you expect; even the authors were surprised.

Next we shall study how a composite function h(z) = f(g(z)) can be
expanded in powers of z. Suppose that f(z) and g(z) are analytic at z = 0,
flz) = Z;)i1 f1(j)z7=1.  An important assumption is that g(0) = 0. Then we
can set g(z) = zg(z), hence (g(z))™ = 2"(g(z))" and, because S% =0, n > N, we
obtain

(9(Sn))" = S - (F(Sn))" =0, if n > N and g(0) = 0,

h(Sn) = f(g9(Sn)) =D f1()(g(Sn))’~", if g(0) = 0. (3.1.28)

j=1

This matrix polynomial can be computed by a matrix version of Horner’s scheme.
The row vector version of this equation is written

h1l = comp(f1,g1, N). (3.1.29)

A MATLAB implementation of the function comp is listed and applied in Prob-
lem 3.1.12.

If g(0) # 0, Equation (3.1.28) still provides an “expansion”, but it is wrong;
see Problem 3.1.12(c). Suppose that |g(0)| is less than the radius of convergence

50Tn the terminology of algebra, the set of upper triangular N x N Toeplitz matrices, i.e.
{Zj\:)l aijV}, a; € C, is a commutative integral domain, i.e. isomorphic with the set

! a;j 2J modulo z?V, where z is an indeterminate.

of polynomials Zj\f: ‘o

51The equations (3.1.26) and (3.1.27) are mathematically equivalent to the convolution product
in (3.1.8) and the procedure demonstrated in Example 3.1.10, respectively. Sometimes both pro-
cedures suffer from the growth of the effects of rounding errors when n is very large, in particular
when the power series are ill-conditioned; see Sec.3.2.5. An advantage of the Toeplitz matrix

method is that the coding, in a language with convenient matrix handling, becomes easier.
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of the Maclaurin expansion of f(x). Then a correct expansion is obtained by a
different decomposition. Set §(z) = g(z) — g(0), f(z) = f(z + g(0)). Then f, j are
analytic at z = 0. §(0) = 0 and f(§(z)) = f(g(z)) = h(2). So, (3.1.28) and its row
vector implementations can be used if f , g are substituted for f,g.

Analytic functions of matrices are defined, in terms of their Taylor series. For
example, the series

2 2
eA:I—I—A—I—%-i-%—i—---,

converges elementwise for any matrix A. There exist several algorithms for comput-
ing e?, VA, log A, where A is a square matrix. One can form linear combinations,
products, quotients and composite functions of them. For example, a “principal
matrix value” of Y = (I + A)® is obtained by

B=log(I +A), Y =B,

For a composite function f(g(A)), it is here not necessary that g(0) = 0, but it
is important that g(z) and f(g(z)) are analytic when z is an eigenvalue of A. We
obtain truncated power series if A = Sn; note that Sy has a multiple eigenvalue at
0. The coding, and the manual handling in interactive computing, are convenient
with matrix functions, but the computer has to perform more operations on full
triangular matrices than with the row vector level algorithms described above. So,
for very long expansions the earlier algorithms are notably faster.

If the given power series, f(x), g(z),... have rational coefficients, then the
exact results of a sequence of additions, multiplications, divisions, compositions,
differentiations, integrations will have rational coeflicients, because the algorithms
are all formed by a finite number of scalar additions, multiplications and divisions.
As mentioned above, very accurate rational approximations, often even the exact
values, can be quickly obtained by applying a continued fraction algorithm that is
presented in Sec. 3.5.1 to the results of a floating-point computation.

If f(z) is an even function, its power series contains only even powers of z.
You gain space and time, by letting the shift matrix Sy correspond to 22 (instead
of ). Similarly, if f(x) is an odd function, you can instead work with the even
function f(x)/z, and let Sy correspond to x2.

Finally we consider a classical problem of mathematics, known as power
series reversion. The task is to find the power series for the inverse function
z = g(y) of the function y = f(z) = 372, ajz?, in the particular case where ag = 0,
a; = 1. Note that even if the series for f(z) is finite, the series for g(y) is in general
infinite!

The following simple cases of power series reversion are often sufficient and
useful in low order computations with paper and pencil.

y=x+ax"+..., (k>1),
> az=y—af—.. . =y—ayf—...; (3.1.30)
y=f(z) =z + ax® + azz® + agxt + ...,

= 2 =g(y) =y —aw’® + (205 — a3)y® — (5a3 — basaz + aqs)y* +....(3.1.31)
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An application of power series reversion occurs in the derivation of a family of
iterative methods of arbitrary high order for solving scalar non-linear equations; see
Sec.6.2.3.

Knuth [204, Sec4.7] presents several algorithms for power series reversion,
including a classical algorithm due to Lagrange 1768 that requires O(NN?) operations
to compute the first N terms. An algorithm due to Brent and Kung [41] is based
on an adaptation to formal power series of Newton’s method (1.2.3) for solving a
numerical algebraic equation. For power series reversion, the equation to be solved
reads

fla) =y, (3.1.32)

where the coefficients of g are the unknowns. The number of correct terms is
roughly doubled in each iteration, as long as IV is not exceeded. In the usual nu-
merical application of Newton’s method to a scalar non-linear equation (see Secs. 1.2
and 6.3) it is the number of significant digits that is (approximately) doubled, so-
called quadratic convergence. Brent—Kung’s algorithm can be implemented in about
150 (N log N)3/? scalar flops.

In Problem 3.1.13, a convenient Toeplitz matrix implementation of the idea
of Brent and Kung is presented. It requires about cN2log N scalar flops with a
moderate value of ¢. It is thus much inferior to the original algorithm if N is very
large. In some interesting interactive applications, however, N rarely exceeds 30.
In such cases our implementation is satisfactory, unless (say) hundreds of series are
to be reversed.

3.1.5 Formal Power Series

A power series is not only a means for numerical computation; it is also an aid
for deriving formulas in numerical mathematics and in other branches of applied
mathematics. Then one has another, more algebraic, aspect of power series that
we shall briefly introduce. A more rigorous and detailed treatment is found in
Henrici [177, Chapter 1], and in the literature quoted there.

The set P of formal power series consists of all expressions of the form

P=uay+ax+ayx®+--,
where the coefficients a; may be real or complex numbers (or elements in some other
field), while x is an algebraic indeterminate; x and its powers can be viewed as
place keepers. The sum of P and another formal power series, Q = by + b1x +
box? + -, is defined as
P+ Q= (ap+bo) + (a1 + b1)x + (az + bg)x> + - -

Similarly, the Cauchy product is defined as

n
PQ=co+ex+ed 4o, o= ab .
j=0
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where the coefficients are given by the convolution formula (3.1.8). The multiplica-
tive identity element is the series I := 1+0x+0x2+.... The division of two formal
power series is defined by a recurrence, as indicated in Example 3.1.5, if and only
if the first coeflicient of the denominator is not zero. In algebraic terminology, the
set P together with the operations of addition and multiplication, is an integral
domain.

No real or complex values are assigned to x and P. Convergence, divergence
and remainder term have no relevance for formal power series. The coefficients of
a formal power series may even be such that the series diverges for any non-zero
complex value that you substitute for the indeterminate, for example, the series

P =0!x — 1Ix* +2Ix* - 3Ix* + .- .. (3.1.33)

Other operations are defined without surprises, for example, the derivative of P is
defined as P’ = lay 4+ 2a2x +3a3x? +. ... The limit process, by which the derivative
is defined in Calculus, does not exist for formal power series. The usual rules for
differentiation are still valid, and as an exercise you may verify that the formal power
series defined by (3.1.33) satisfies the formal differential equation x*P’ = x — P.

Formal power series can be used for deriving identities. In most applications
in this book difference operators or differential operators are substituted for the
indeterminates, and the identities are then used in the derivation of approximation
formulas, for interpolation, numerical differentiation and integration.

The formal definitions of the Cauchy product, (i.e. convolution) and division
are rarely used in practical calculation. It is easier to work with upper triangular
N x N Toeplitz matrices, as in Sec. 3.1.4, where N is any natural number. Algebraic
calculations with these matrices are isomorphic with calculations with formal power
series modulo x”.

If you perform operations on matrices far(S), gpm(S),..., where M < N,
the results are equal to the principal M x M submatrices of the results obtained
with the matrices fn(S5), gn(S),.... This fact follows directly from the equivalence
with power series manipulations. It is related to the fact that in the multiplication
of block upper triangular matrices, the diagonal blocks of the product equals the
products of the diagonal blocks, and no new off-diagonal blocks enter; see Appendix
Sec. A.2.1.

So, we can easily define the product of two infinite upper triangular matrices,
C = AB, by stating that if ¢ < j < n then ¢;; has the same value that it has in
the N x N submatrix Cy = AyBy for every N > n. In particular C is upper
triangular, and note that there are no conditions on the behaviour of the elements
ai;, bij as i,j — oo. One can show that this product is associative and distributive.
For the infinite triangular Toeplitz matrices it is commutative too.%2

The mapping of formal power series onto the set of infinite semicirculant ma-
trices is an isomorphism. (see Henrici [177, Sec.1.3]). If the formal power series
ag + a1x + agx? + - - -, and its reciprocal series, which exists if and only if ag # 0,
are represented by the semicirculants A and B, respectively, Henrici proves that

52For infinite non-triangular matrices the definition of a product generally contains conditions
on the behaviour of the elements as i, j — oo, but we shall not discuss this here.
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AB = BA = I, where [ is the unit matrix of infinite order. This indicates how to
define the inverse of any infinite upper triangular matrix if all diagonal elements
ai; # 0.

If a function f of a complex variable z is analytic at the origin, then we define®
f(x) as the formal power series with the same coefficients as the Maclaurin series
for f(z). In the case of a multivalued function we take the principal branch.

There is a kind of “permanence of functional equations” also for the gener-
alization from a function g(z) of a complex variable that is analytic at the origin,
to the formal power series g(x). We illustrate a general principle on an important
special example that we formulate as a lemma, since we shall need it in the next
section.

Lemma 3.1.9.
(e¥)? =, (9 €R). (3.1.34)

Proof. Let the coefficient of x/ in the expansion of the left hand side be ¢;(0).
The corresponding coefficient for the right hand side is 67/;!. If we replace x by
a complex variable z, the power series coefficients are the same, and we know that

(e*)? = €%, hence ¢;(0) = 07/5!, j =1,2,3.. . hence > " ¢;(0)x7 = > 07 (67 /j)x7,
and the lemma follows. a

Example 3.1.11.
Find (if possible) a formal power series Q = 0 + byx + box? + b3x> + ..., that
satisfies the equation
e Q=1-x, (3.1.35)

where e Q@ =1-Q+ Q?%/2! — ...

We can, in principle, determine an arbitrarily long sequence by, bs, b3, . .. by, by

matching the coefficients of x,x%,x3,...x", in the two sides of the equation. We

display the first three equations.

L= (bix+box? +ba3x® +..) + (1x + box? +...)%/2 — (hix+...)3 /6 + ...
=1-1x+0x>+0x>+....

For any natural number k, the matching condition is of the form
—bg + éx(bk—1,bk—2,...,b1) = 0.
This shows that the coefficients are uniquely determined.

—b1:—1:> b1:1,
—by +b3/2=0= by =1/2;
—b3+b1b2—b1/6=0$ b3=1/3;

53Henrici, loc. cit., does not use this concept—it may not be established.
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There exists, however, a much easier way to determine the coefficients. For the
analogous problem with a complex variable z, we know that the solution is unique:
q(z) = —In(1 — 2) = 37727 /j (the principal branch, where by = 0), and hence
>-17x7/j is the unique formal power series that solves the problem, and we can use
the notation Q = —In(1 — x) for it.>

The theory of formal power series can in a similar way justify many elegant
“symbolic” applications of power series for deriving mathematical formulas.

Review Questions

1.1. (a) Formulate three general theorems that can be used for estimating the
remainder term in numerical series.
(b) What can you say about the remainder term, if the nth term is O(n=*),
k > 17 Suppose in addition that the series is alternating. What further
condition should you add, in order to guarantee that the remainder term will
be O(n=*)?

1.2. Give, with convergence conditions, the Maclaurin series for In(1+x), e*, sin x,

1
cosz, (1+2)k (1—2)71, In 1 —l—x’ arctan .
—x

1.3. Describe the main features of a few methods to compute the Maclaurin coef-
ficients of, e.g., v/2e® — 1.

1.4. Give generating functions of the Bernoulli and the Euler numbers. Describe
generally how to derive the coeflicients in a quotient of two Maclaurin series.

1.5. If a functional equation, for example, 4(cosx)? = cos3x + 3 cosz, is known

to be valid for real z, how do you know that it holds also for all complex z?
Explain what is meant by the statement that it holds also for formal power
series, and why is this true?

1.6. (a) Show that multiplying two arbitrary upper triangular matrices of order
N uses Zivzl k(N — k) ~ N3/6 flops, compared to Zivzl k ~ N?/2 for the
product of a row vector and an upper triangular matrix.

(b) Show that if g(x) is a power series and g(0) = 0, then g(Sy)” =0, n > N.
Make an operation count for the evaluation of the matrix polynomial f(g(Sn))
by the matrix version of Horner’s scheme.

(¢) Consider the product f(Sn)g(Sn), where f(z) and g(z) are two power
series. Show, using rules for matrix multiplication, that for any M < N the
leading M x M block of the product matrix equals f(Sn)g(Sar)-

1.7. Consider a power series y = f(x) = .7~ a;ja’, where ag = 0, a; = 1. What
is meant by reversion of this power series? In the Brent-Kung method the
problem of reversion of a power series is formulated as a nonlinear equation.

54The three coefficients bj computed above agree, of course, with 1/5, j =1:3.
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1.8.

Write this equation for the Toeplitz matrix representation of the series.

Let P = ag + a1X + asx? + --- and Q = by + bix + bax? + - - - be two formal
power series. Define the sum P 4+ Q and the Cauchy product PQ.

Problems and Computer Exercises

1.1.

1.2.

1.3.

1.4.

1.5.

1.6.

In how large a neighborhood of x = 0 does one get, respectively, four and six
correct decimals using the following approximations?

(a) sinz ~ x; (b) (1+2?) 712 & 1-22/2; (c) (14+2?)71/2eV5T x e(1-32?).
Comment: The truncation error is asymptotically gz? where you know (?) p.

An alternative to an exact algebraic calculation of ¢, is a numerical estimation
of ¢, by means of the actual error for a suitable value of x—mneither too big
nor too small (!). (Check the estimate of ¢ for another value of z.)

(a) Let a,b, be the lengths of the two smaller sides of a right angle triangle,
b < a. Show that the hypotenuse is approximately a + b*/(2a) and estimate
the error of this approximation. If ¢ = 100, how large is b allowed to be, in
order that the absolute error should be less than 0.017

(b) How large a relative error do you commit, when you approximate the
length of a small circular arc by the length of the chord? How big is the error
if the arc is 100 km on a great circle of the earth? (Approximate the earth by
a ball of radius 40000/ (27) km.)

(c¢) How accurate is the formula arctanz ~ 7/2 — 1/z for z > 1 ?

(a) Compute 10—(999.999)'/3 to 9 significant digits, by the use of the binomial
expansion. Compare with the result obtained by a computer in IEEE double
precision arithmetic, directly from the first expression.

(b) How many terms of the Maclaurin series for In(1 4+ ) would you need in
order to compute In 2 with an error less than 10~% ? How many terms do you
need, if you use instead the series for In (1 4 2)/(1 — ), with an appropriate
choice of x?

It is well known that erf(z) — 1 as © — oco. If z > 1 the relative accuracy
of the complement 1 — erf(z) is of interest. But the series expansion used in
Example 3.1.3 for « € [0, 1] is not suitable for large values of z. Why?

Hint: Derive an approximate expression for the largest term.
Compute, by means of appropriate expansions, not necessarily in powers of ¢,

the following integrals to (say) five correct decimals.
(This is for paper, pencil and a pocket calculator.)

oo

(2) /00'1(1_0.1sint)1/2dt; (b)/1 (3 — )2 dr.

0

(a) Expand arcsinz into powers of by the integration of the expansion of
(1 _ x2)71 /2.
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1.7.

1.8.

(b) Use the result in (a) to prove the expansion

, 1sinh®z 1-3sinh®z  1-3-5sinh” 2
r =sinhz — =

5 3 T24 5 246 7

(a) Consider the power series for
1+2)™% x>0 0<a<l.

Show that it is equal to the hypergeometric function F(«, 1,1, —z). Is it true
that the expansion is alternating, and that the remainder has the same sign
as the first neglected term, also if x > 1, where the series is divergent? What
do the Theorems 3.1.4 and 3.1.5 tell you in the cases x < 1 and = > 17

Comment: An application of the divergent case for a = % is found in Prob-
lem 3.2.9 (c).

(b) Express the coefficients of the power series expansions of ycoty and
In(siny/y) in terms of the Bernoulli numbers.

Hint: Set x = 2iy into (3.1.20). Differentiate the second function.

(c) Find a recurrence relation for the Euler numbers E,, (3.1.22) and use it
for showing that these numbers are integers.

(d) Show that

1(”1) 2(1+1+1+ ). ll>1
n =2(+—+—+... z )
z—1 z 323 BgS ’

Find a recurrence relation for the coefficients of the expansion

I\ 1
(ln(z+ )) = —z—z b — sz — sz — L, 2] > 1.
z—1 2

Compute p1, p3, 5 and determine > pojp1 by letting z | 1. (Full rigor is
not required.)

Hint: Look at Example 3.1.5.

The power series expansion g(x) = bix + bax? + ... is given. Find recurrence

relations for the coefficients of the expansion for h(z) = f(g(z)) = co + 12 +
c2z? + ... in the following cases:

(a) h(z) = (1 + g(x)), f(z) = n(1 +2).
Hint: Show that h'(z) = ¢'(x) — h'(x)g(x). Then proceed analogously to
Example 3.1.10.

Answer:
1 n—1

=0, ¢,=0b,— - Z(n — J)Cn—jb;.

Jj=1

®) h(z) =1 +g@)k fr)=1+2)* keR, k#1.
Hint: Show that g(z)h/(x) = kh(x)g’(x) — h/(x). Then proceed analogously
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to Example 3.1.10.

Answer:
1 n
=1 n = — k+1)j —n)cp—;b;,
€o ) c n;(( +1)j n)c 30j
n =1,2,.... The recurrence relation is known as the J. C. P. Miller formula.

(¢) hi(y) = cosg(x), ha(y) = sin g(x), simultaneously.

Hint: Consider instead h(y) = ¢9(*) and separate real and imaginary parts
afterwards.

1.9. Let y(w) = we®; the inverse function w(y) is known as the Lambert W func-
tion.?® The power series expansion for w(y) is

> (_1)n—1nn—2 N
w(y):y‘i‘ZWy
n=2 '
3 8 125 54 16807
_ .2 ,93 O 4 125 044 103U7 .
SYTY Y Ry o T Y g Y '

Estimate the radius of convergence for f(z) = xze”, approximately by means
of the ratios of the coefficients computed in (d), and exactly.

Comment: The radius of convergence of the power series of the inverse function
to y = f(z) depends on the singularities of g(y), and are typically related to
the singularities of g(y) and to the zeros of f'(x), (why?).

1.10. Problems 1.10-1.13 are available at the homepage of the book.

3.2 More About Series

3.2.1 Laurent and Fourier Series
A Laurent series is a series of the form
> ez (3.2.1)

Its convergence region is the intersection of the convergence regions of the expansions

oo oo
E ez and E c_mz ™,
n=0 m=1

the interior of which are determined by conditions of the form |z| < 72 and |z| > 1.
The convergence region can be void, for example, if ro < 7;.

55 Johann Heinrich Lambert (1728-1777), a German mathematician, physicist and astronomer,
was a colleague of Euler and Lagrange at the Berlin Academy of Sciences. He is best known for his
illumination laws and for the continued fraction expansions of elementary functions; see Sec. 3.5.1.
His W function was “rediscovered” a few years ago, [71].
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If 0 < 71 < 7y < co then the convergence region is an annulus, r1 < |z| < ra.
The series defines an analytic function in the annulus. Conversely, if f(z) is a
single-valued analytic function in this annulus, it is there represented by a
Laurent series, that converges uniformly in every closed subdomain of the annulus.

The coefficients are determined by the following formula, due to Cauchy®%

1
Cn =5 27" f(2)dz, T <71 <719 —00 <M < 00, (3.2.2)
T J|z|=r

and
len| < 77" max | f(2)]. (3.2.3)

|2l

The extension to the case when ro = co is obvious; the extension to r; = 0 depends
on whether there are any terms with negative exponents or not. In the extension
of formal power series to formal Laurent series, however, only a finite number of
terms with negative indices are allowed to be different from zero; see Henrici [177,
Sec. 1.8]. If you substitute z for 2~! an infinite number of negative indices is allowed,
if the number of positive indices is finite.

Example 3.2.1.
A function may have several Laurent expansions (with different regions of
convergence), for example,

( - =3 a2 < al
z—a) ' =
Yo _pamTizmm i |z] > al.

The function 1/(z — 1) + 1/(z — 2) has three Laurent expansions, with validity
conditions |z| < 1, 1 < |z| < 2, 2 < |z|, respectively. The series contains both

positive and negative powers of z in the middle case only. The details are left for
Problem 3.2.4 (a).

Remark 3.2.1. The restriction to single-valued analytic functions is important
in this subsection. In this book we cannot entirely avoid to work with multi-
valued functions such as 1/z, Inz, 2%, (« non-integer). We always work with such
a function, however, in some region where one branch of it, determined by some
convention, is single-valued. In the examples mentioned, the natural conventions
are to require the function to be positive when z > 1, and to forbid z to cross the
negative real axis. In other words, the complex plane has a cut along the negative
real axis. The annulus mentioned above is in these cases incomplete; its intersection
with the negative real axis is missing, and we cannot use a Laurent expansion.

1
For a function like In (il)’ we can, depending on the context, cut out
. —

either the interval [—1,1] or the complement of this interval with respect to the

56 Augustin Cauchy (1789-1857) is the father of modern analysis. He is the creator of complex
analysis, in which this formula plays a fundamental role.
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190 Chapter 3. Series, Operators and Continued Fractions

real axis. We then use an expansion into negative or into positive powers of z,
respectively.

If 1 <1< rg, weset F(t) = f(e). Note that F(t) is a periodic function;
F(t+2m) = F(t). By (3.2.1) and (3.2.2), the Laurent series then becomes for z = e
a Fourier series:

1 U

:% -

F(t) = i cne™ e,

n=—oo

e M E(t) dt. (3.2.4)

Note that c_,, = O(r{") for m — 400, and ¢, = O(r; ") for n — +o00. The formulas
in (3.2.4), however, are valid in much more general situations, where ¢, — 0 much
more slowly, and where F'(¢) cannot be continued to an analytic function f(z), z =
re't, in an annulus. (In such a case r; = 1 = ro, typically.)

A Fourier series is often written in the following form,

F(t) = 1ao —i—Z(ak cos kt + by, sin kt). (3.2.5)
k=1
Consider cie™* + c_pe *t = ay, cos kt + by sin kt. Since eT™** = cos kt & i sin kt, we

obtain for k£ > 0:
1 [ ) 1 [ .
ap =cp+ce_f = - F(t)cosktdt; by =i(cky —c_k) = - F(t) sin kt dt.
(3.2.6)
Also note that ay — iby, = 2¢. If F(t) is real for ¢t € R then c_j, = &.

We mention without proof the important Riemann—Lebesgue theorem,
58 by which the Fourier coefficients ¢, tend to zero as n — oo for any function
that is integrable (in the sense of Lebesgue), a fortiori for any periodic function that
is continuous everywhere. A finite number of finite jumps in each period are also
allowed.

A function F'(t) is said to be of bounded variation in an interval if, in this
interval, it can expressed in the form F(t) = Fy(t) — F2(t), where Fy and F» are non-
decreasing bounded functions. A finite number of jump discontinuities are allowed.
The variation of F' over the interval [a, b] is denoted f; |dF(t)|. If F is differentiable
the variation of F' equals f: |F’(¢)] dt.

Another classical result in the theory of Fourier series reads:

If F(t) is of bounded variation in the closed interval [—m, 7] then ¢, = O(n™1);
see Titchmarsh [312, §13.21,813.73]. This result can be generalized:

57

Theorem 3.2.1.

57George Friedrich Bernhard Riemann (1826-1866), a German mathematician, made fundamen-
tal contributions to Analysis and Geometry. In his habilitation lecture 1854 in Géttingen Riemann
introduced the curvature tensor and laid the groundwork for Einstein’s general theory of relativity.

58Henri Léon Lebesgue (1875-1941), a French mathematician, created path-breaking general
concepts of measure and integral.
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3.2. More About Series 191

Suppose that F®) is of bounded variation on [—7, 7], and that FU) s con-
tinuous everywhere for j < p. Denote the Fourier coefficients of FP)(t) by cglp).
Then

en = (in)PeP) = O(n7P7Y), (3.2.7)

Proof. The theorem follows from the above classical result, after the integration
of the formula for ¢, in (3.2.2) by parts p times. 0O

Bounds for the truncation error of a Fourier series can also be obtained from
this. The details are left for Problem 3.2.4 (d), together with a further generaliza-
tion. A similar result is that ¢, = o(n~P) if F() is integrable, hence a fortiori if
FecCr.

In particular, we find for p = 1 (since Y. n~? is convergent) that the Fourier
series (3.2.2) converges absolutely and uniformly in R. It can also be shown that the
Fourier series is valid, i.e. the sum is equal to F(t).

3.2.2 The Cauchy—FFT Method

An alternative method for deriving coefficients of power series, when many terms
are needed is based on the following classic result. Suppose that the value f(z)
of an analytic function can be computed at any point inside and on the circle
Cr={z:|z—a|] =r}, and set

M(r) =max|f(z)|, z=a+re? eC,.

Then the coefficients of the Taylor expansion around a are determined by
Cauchy’s formula,

1 f(2) A 0\ —nif

"= — — 2 = — v MY de. 3.2.8
a 27i Jo, (2 — a) D) F= o A fla+re?)e ( )
For a derivation, multiply the Taylor expansion (3.1.3) by (z — a)~"~!, integrate
term by term over C., and note that

L[ oaprta= /Qﬂ pimnelmmio gg — [ L AT =m0 )
27 Jo, 2 Jo 0, ifj#n. -

The following inequalities are useful consequences of the definitions and of
(3.2.8).
lan| < r7"M(r), (3.2.10)

Let 2/ =a+1"e¢"?, 0 <r' <r. Then

< irJM(r)(r’)J - Ml(’j(;:;:)n, 0<v <r  (3.2.11)
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192 Chapter 3. Series, Operators and Continued Fractions

This form of the remainder term of a Taylor series is useful in theoretical studies,
and also for practical purpose, if the maximum modulus M (r) is easier to estimate
than the nth derivative.

Set A = 27/N, and apply the trapezoidal rule to the second integral in
(3.2.8). Then®®

N—-1
1 . .
an R an = w70 kzo fla+re®B0)e=inkA0 -y — 0. N — 1. (3.2.12)

The approximate Taylor coefficients a,, or rather the numbers a} = a,Nr", are
here expressed as a case of the (direct) Discrete Fourier Transform (DFT).
More generally, this transform maps an arbitrary sequence {ak}év ~1 to a sequence
{ax}5'~*, by the following equations:

N—
ar = are ™A n=0:N-1. (3.2.13)
k=0

—_

It will be studied more systematically in Sec.4.6.2.

If N is a power of 2, it is shown in Sec. 4.7 that, given the N values ay, k =
0: N —1,and e~**? no more than Nlogy, N complex multiplications and additions
are needed for the computation of all the N coefficients o}, if an implementation of
the discrete Fourier transform known as the Fast Fourier Transform (FFT) is
used. This makes our theoretical considerations very practical.®?

It is also shown in Sec.4.7 that the inverse of the discrete Fourier transform
(3.2.13) is given by the formulas,

N-1
ap=(1/N) Y ape™2  k=0:N-1. (3.2.14)

n=0

It looks almost like the direct discrete Fourier transform (3.2.13), except for the
sign of 7 and the factor 1/N. It can therefore also be performed by means of
O(N log N) elementary operations, instead of the O(N?) operations that the most
obvious approach to this task would require, (i.e. by solving the linear system
(3.2.13)).

In our context, i.e. the computation of Taylor coeflicients, we have, by (3.2.12)
and the line after that equation,

ap = fla+re*A?), ay = a, Nr™. (3.2.15)

598ee (1.2.6). Note that the integrand has the same value for § = 27 as for # = 0. The terms

% 0 and %fN that appear in the general trapezoidal rule can therefore in this case be replaced

by fo.
60The idea of using Cauchy’s formula and FFT for numerical differentiation was suggested by
Lyness and Moler [225].
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Set zx = a + re’*A%. Using (3.2.15), the inverse transformation then becomes,5!
N-1
flzr) = an(zk—a)", k=0:N-1. (3.2.16)
n=0

Since the Taylor coefficients are equal to f(")(a)/n!, this is de facto a method
for the accurate numerical differentiation of an analytic function. If r and N are
chosen appropriately, it is more well-conditioned than most methods for numeri-
cal differentiation, such as the difference approximations mentioned in Chapter 1;
see also Sec. 3.3. It requires, however, complex arithmetic for a convenient imple-
mentation. We call this the Cauchy—FFT method for Taylor coefficients and
differentiation.

The question arises, how to choose N and r. Theoretically, any r less than the
radius of convergence p would do, but there may be trouble with cancellation if r is
small. On the other hand, the truncation error of the numerical integration usually
increases with 7. “Seylla and Charybdis situations”®? like this are very common
with numerical methods.

Typically it is the rounding error that sets the limit for the accuracy; it is
usually not expensive to choose r» and N, so that the truncation error becomes
much smaller. A rule of thumb for this situation is to guess a value of n, i.e. how
many terms will be needed in the expansion, and then to try two values for N
(powers of 2) larger than 7. If p is finite try » = 0.9p and r = 0.8p, and compare
the results. They may or may not indicate that some other values of N and r (and
perhaps also 71) should also be tried. On the other hand, if p = oo, try, for example,
r =1 and r = 3, and compare the results. Again the results indicate whether or
not more experiments should be made.

One can also combine numerical experimentation with a theoretical analysis
of a more or less simplified model, including a few elementary optimization calcu-
lations. The authors take the opportunity to exemplify below this type of “hard
analysis” on this question.

We first derive two lemmas, which are important also in many other contexts.
First we have a discrete analogue of equation (3.2.9).

Lemma 3.2.2.
Let p, N be integers. Then

N-1
E e27r1pk/N =0,
k=0

unless p = 0 or p is a multiple of N. In these exceptional cases every term equals

1, and the sum equals N .

610ne interpretation of these equations is that the polynomial Zg;ol an(z —a)™ is the solution
of a special, although important, interpolation problem for the function f, analytic inside a circle
in C.

62 According to American Heritage Dictionary Scylla is a rock on the Italian side of the Strait
of Messina, opposite to the whirlpool Charybdis, personified by Homer (Ulysses) as a female sea
monster who devoured sailors. The problem is to navigate safely between them.
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Proof. If p is neither 0 nor a multiple of NV, the sum is a geometric series, the sum
of which is equal to
(827rip _ 1)/(827rip/N _ 1) —0.

The rest of the statement is obvious. 0

Lemma 3.2.3.
Suppose that f(z) = > o an(z —a)™ is analytic in the disc |z —a| < p. Let a,
be defined by (3.2.12), where 0 < r < p. Then

n — A = Apan Y + anpon 72N Fapgsy >N + ..., 0<n < N. (3.2.17)

Proof. Since A8 =27/N,

N—-1

1 —2min — T m

k=0 =

Q

1 0o N—-1
_ m 27i(—n+m)k/N
= AmT e .
n Z m
Nr m=0

k=0

By the previous lemma, the inner sum of the last expression is zero, unless m —n
is a multiple of N. Hence (recall that 0 <n < N),

Gy = anr" N + api N PPtV N 4 GntoN PPN ) ,

=1
Nrn
from which equation (3.2.17) follows. 0O

Lemma 3.2.3 can, with some modifications, be generalized to Laurent series
(and to complex Fourier series), for example, (3.2.17) becomes

Gn—Cp = CnanT Nt NN+ cngp Nt + cganr L (3.2.18)

Let M(r) be the maximum modulus for the function f(z) on the circle C,,
and denote by M (r)U an upper bound for the error of a computed function value
f(2), |z| = r, where U < 1. Assume that rounding errors during the computation
of ay are of minor importance. Then, by (3.2.12), M (r)U/r™ is a bound for the
rounding error of a,. (The rounding errors during the computation can be included
by a redefinition of U.)

Next we shall consider the truncation error of (3.2.12). First we estimate the
coefficients that occur in (3.2.17) by means of max |f(z)| on a circle with radius 7’;
" > r, where r is the radius of the circle used in the computation of the first N
coefficients. So, in (3.2.8) we substitute ', j for r, n, respectively, and obtain the
inequality

laj| < M(r')(r") 7, 0<r<r <p.
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The actual choice of v/, strongly depends on the function f. (In rare cases we may
choose 1’ = p.) Put this inequality into (3.2.17), where we shall choose r < ' < p.
Then

|an — an| < M) (7)) NeN 4 ()TN RN g (p) TR NBN )
M) ()™

— M(’I”I)(T/)_n ((’I”/T/)N + (T/T’I)2N + (’I”/T/)3N 4. ) — (74//7')71\[_:[

We make a digression here, because this is an amazingly good result. The trapezoidal
rule that was used in the calculation of the Taylor coefficients is typically expected
to have an error that is O((A#)?) = O(N~2). (As before, A0 = 2w/N.) This
application is, however, a very special situation: a periodic analytic function is
integrated over a full period. We shall return to results like this several times. In
this case, for fixed values of r, r/, the truncation error is O((r/r’)N) = O(e’”/Ae),
where n > 0, A6 — 0+. This tends to zero faster than any power of Af.

It follows that a bound for the total error of a,, i.e. the sum of the bounds
for the rounding and the truncation errors, is given by

M) )

UM(T)T‘_n + (7”//7")7]\]—17

r<r <np. (3.2.19)

Example 3.2.2 (“Scylla and Charybdis” in the Cauchy-FFT).

We shall discuss how to choose the parameters » and N, so that the absolute
error bound of ay, given in (3.2.19) becomes uniformly small for (say) n = 0 : 7.
1+ 7 > 1 is thus the number of Taylor coefficients requested. The parameter 7’
does not belong to the Cauchy-FFT method, but it has to be chosen well in order
to make the bound for the truncation error realistic.

The discussion is rather technical, and you may omit it at a first reading.
It may, however, be useful to study this example later, because similar technical
subproblems occur in many serious discussions of numerical methods that contain
parameters that should be appropriately chosen.

First consider the rounding error. By the maximum modulus theorem, M (r)
is an increasing function, hence, for r > 1, max,, M (r)r—™ = M(r) > M(1). On
the other hand, for r < 1, max, M(r)r~™ = M(r)r~™; # was introduced in the
beginning of this example. Let r* be the value of r, for which this maximum is
minimal. Note that »* =1 unless M'(r)/M(r) = n/r for some r < 1.

Then try to determine N and 7’ € [r*,p) so that, for » = r*, the bound
for the second term of (3.2.19) becomes much smaller than the first term, i.e. the
truncation error is made negligible compared to the rounding error. This works well
if p > r*. In such cases, we may therefore choose r = r*, and the total error is
then just a little larger than UM (r*)(r*)~".

For example, if f(z) = e* then M(r) = ¢, p = oo. In this case r* =1
(since 7 > 1). Then we shall choose N and 1/ = N, so that e /((r')N — 1) < eU.
One can show that it is sufficient to choose N > |InU/In|InU]||. For instance,
if U = 10716, this is satisfied with a wide margin by N = 32. In IEEE double
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196 Chapter 3. Series, Operators and Continued Fractions

precision arithmetic, the choice 7 = 1, N = 32, gave an error less than 2-10716.
The results were much worse for » = 10, and for » = 0.1; the maximum error of the
first 32 coefficients became 4 - 10~% and 9 - 10*3(!), respectively. In the latter case
the errors of the first 8 coefficients did not exceed 1071°, but the rounding error of
an, due to cancellations, increase rapidly with n.

If p is mot much larger than r*, the procedure described above may lead to a
value of N that is much larger than n. In order to avoid this, we now set 7 = aN.
We now confine the discussion to the case that r < 7’ < p < 1,n = 0:n. Then, with
all other parameters fixed, the bound in (3.2.19) is maximal for n = 7. We simplify
this bound; M (r) is replaced by the larger quantity M (r'), and the denominator is
replaced by (' /7). Then, for given 7/, a, N, we set = (r/r")" and determine =
so that

M)y~ N(Uz™ 4 x)
is minimized. The minimum is obtained for z = (aU)Y/(+) ie. for r = /z'/N,
and the minimum is equal to%

M(’r/)(r/)*nUl/(lJra)c(a), where c(a) — (1 + O[)oéfa/(H»oc).

We see that the error bound contains the factor U'/(1+®) | This is, proportional
to 202 for o = 1, and to 1.65 UY/® for a = i. The latter case is thus much more
accurate, but, for the same 7, one has to choose N four times as large, which leads
to more than four times as many arithmetic operations. In practice, n is usually
given, and the order of magnitude of U can be estimated. Then « is to be chosen to
make a compromise between the requirements for a good accuracy and for a small
volume of computation. If p is not much larger than r*, we may choose

N =n/a, z=(aU)/OF0) — p=p/gt/N,
Experiments were made with

f(z) =In(1 — 2),

for which p = 1, M (1) = co. Take i = 64, U = 10715, v/ = 0.999. Then M(r') =
6.9. Fora =1, 1/2, 1/4, we have N = 64, 128, 256, respectively. The above theory
suggests r = 0.764, 0.832, 0.894, respectively. The theoretical estimates of the
absolute errors become, 1077, 2.410712, 2.7.107 4, respectively. The smallest errors
obtained in experiments with these three values of o are, 610710, 1.810712, 1.8107 4,
which were obtained for » = 0.766, 0.838, 0.898, respectively. So, the theoretical
predictions of these experimental results are very satisfactory.

3.2.3 Chebyshev Expansions
The Chebyshev®* polynomials of the first kind are defined by
T, (z) = cos(narccosz), n >0, (3.2.20)

63This is a rigorous upper bound of the error for this value of r, in spite of the fact that
simplifications in the formulation of the minimization.

64Pafnuti Lvovich Chebyshev (1821-1894), a Russian mathematician, pioneer in approximation
theory and the constructive theory of functions. His name has many different transcriptions, for
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3.2. More About Series 197

that is T,,(z) = cos(ng), where z = cos¢. From the well known trigonometric
formula
cos(n + 1)¢ + cos(n — 1) = 2 cos ¢ cos ng.

follows, by induction, the important recurrence relation: Ty(z) = 1, T1(z) = z,
Tht1(z) =22T0(2) = Th-1(2), (n>1), (3.2.21)
Using this recurrence relation we obtain,
To(z) =222 —1; Ts(z2) =42% —32; Tu(z) = 82" =822 +1,
Ts(2) = 162° — 202° 4+ 52;  To(z) = 322° — 482 +182% — 1,...

Clearly T,,(z) is the nth degree polynomial,

To(z) = 2" — (Z) 21— 22) 4 (Z) A= 22—

The Chebyshev polynomials of the second kind,

1 sin(ng)

Una(2) = 523 (@) = =507

¢ = arccos z. (3.2.22)

These satisfy the same recurrence relation, with the initial conditions U_1(z) = 0,
Uo(z) = 1; its degree is n — 1. (When we write just Chebyshev polynomial we refer
to the first kind.)

The Chebyshev polynomial T;,(x) has n zeros in [—1, 1] given by

2k —1m
n 2

xR = cos( ), k=1:n, (3.2.23)

the Chebyshev points, and n + 1 extrema

k
o, = cos (%) k=0:n. (3.2.24)

These results follow directly from the fact that cos(ng) = 0 for ¢ = (2k+ 1)7/(2n),
and that cos(ng) = £1 for ¢ = km/n.

Note that from (3.2.20) it follows that |T},(x)| < 1 for x € [—-1, 1], even though
its leading coefficient is as large as 271

Example 3.2.3.

Figure 3.2.1 shows a plot of the Chebyshev polynomial Tyo(x) for z € [-1,1].
Setting z = 1 in the recurrence relation (3.2.21) and using Tp(1) = T1(1) = 1, it
follows that T,,(1) = 1, n > 0. From T{(1) = 0 an 7{(1) = 1 and differentiating the
recurrence relation we get

Tpi1(2) = 22T (2) + Tn(2)) = Ty (2), (n 2 1),

example, Tschebyscheff. This may explain why the polynomials that bear his name are denoted
Ty (z). He also gave important contributions to probability theory and number theory.
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Figure 3.2.1. Graph of the Chebyshev polynomial Too(x), x € [—1,1].

It follows easily by induction that T (1) = n?, i.e. outside the interval [—1,1] the
Chebyshev polynomials grow rapidly.

The Chebyshev polynomials have a unique minimax property. (For a use
of this property; see, Example 3.2.4.)

Lemma 3.2.4 (Minimax Property).

The Chebyshev polynomials have the following minimax property: Of all
nth degree polynomials with leading coefficient 1, the polynomial 2'~"T,, (x) has the
smallest magnitude 2*~™ in [—1,1].

Proof. Suppose there were a polynomial p,(x), with leading coefficient 1 such that

Ipn(z)| < 217" for all z € [—1,1]. Let 2}, k = 0 : n, be the abscissae of the extrema
of T,,(x). Then we would have

pu(x)) <2V T (xp),  palz)) > 28T (2)),  pul(ah) < 227" T (2h), ...,
etc., up to a},. From this it follows that the polynomial
Pa(@) — 21777, (x)

changes sign in each of the n intervals (x, ) ), ¥ =0:n — 1. This is impossible,
since the polynomial is of degree n — 1. This proves the minimax property. O

The Chebyshev expansion of a function f(z)
f(z) =Y ¢Ti(2), (3.2.25)
=0

are an important aid in studying functions on the interval [—1, 1]. If one is working
with a function f(t), t € [a,b], then one should make the substitution

t=1(a+b)+ 3(b—a)z, (3.2.26)
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which maps the interval [—1, 1] onto [a, b].

Consider the approximation to the function f(z) = 2™ on [—1,1] by a poly-
nomial of lower degree. From the minimax property of Chebyshev polynomials it
follows that the maximum magnitude of the error is minimized by the polynomial

p(x) = 2™ — 27T, (x). (3.2.27)

From the symmetry property T, (—z) = (—1)"T,(x), it follows that this polynomial
has in fact degree n—2. The error 21 =T, (x) assumes its extrema 21~ in a sequence
of n+ 1 points, x; = cos(im/n). The sign of the error alternates at these points.

Suppose that one has obtained, for example, by Taylor series, a truncated
power series approximation to a function f(z). By repeated use of (3.2.27), the
series can be replaced by a polynomial of lower degree with a moderately increased
bound for the truncation error. This process, called economization of power
series often yields a useful polynomial approximation to f(x) with a considerably
smaller number of terms than the original power series.

Example 3.2.4.

If the series expansion cosz = 1 — 22/2 + 2%/24 — - - - is truncated after the
r*-term, the maximum error is 0.0014 in [—1,1]. Since Ty(z) = 8x* — 822 + 1, it
holds that

/24 ~ 2?24 — 1/192

with an error which does not exceed 1/192 = 0.0052. Thus the approximation
cosz = (1 —1/192) — 2%(1/2 — 1/24) = 0.99479 — 0.45833z>

has an error whose magnitude does not exceed 0.0052 +0.0014 < 0.007. This is less
than one-sixth of the error 0.042, which is obtained if the power series is truncated
after the z?-term.

Note that for the economized approximation cos(0) is not approximated by 1.
It may not be acceptable that such an exact relation is lost. In this example one
could have asked for a polynomial approximation to (1 — cosz)/x? instead.

If a Chebyshev expansion converges rapidly, the truncation error is, by and
large, determined by the first few neglected terms. As indicated by Figures 3.2.1
and 3.2.5 the error curve is oscillating with slowly varying amplitude in [—1,1]. In
contrast, the truncation error of a power series is proportional to a power of . Note
that f(z) is allowed to have a singularity arbitrarily close to the interval [—1,1],
and the convergence of the Chebyshev expansion will still be exponential, although
the exponential rate deteriorates, as R | 1.

Important properties of trigonometric functions and Fourier series can be re-
formulated in the terminology of Chebyshev polynomials. For example, they satisfy
certain orthogonality relations; see Example 4.5.10. Also results like (3.2.7) con-
cerning how the rate of decrease of the coefficients or the truncation error of a
Fourier series, is related to the smoothness properties of its sum, can be translated
to Chebyshev expansions. So, even if f is not analytic, its Chebyshev expansion
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converges under amazingly general conditions (unlike a power series), but the con-
vergence is much slower than exponential. A typical result reads: if f € C*[—1,1],
k > 0, there exists a bound for the truncation error that decreases uniformly like
O(n~Flogn). Sometimes convergence acceleration can be successfully applied to
such series.

Set w = €' = cos ¢ + isin ¢, where ¢ and z = cos ¢ may be complex. Then

w=z+\2%2-1, z:cosd):%(w—l—w*l),

and
Ty (z) = cosng = 2 (w" +w™™), (3.2.28)

(z +v22 - 1)n =Tn(2) + Un—1(2)V2% -1,

where U, _1(z) is the Chebyshev polynomials of the second kind; see (3.2.22). It
follows that the Chebyshev expansion (3.2.25) formally corresponds to a symmetric
Laurent expansion,

7 > . Le;, ifj>0;
g(w)zf(%<w+w1>):§ajw% aj—aj—{gof i£7 =0,

It can be shown by the parallelogram law, that |2+ 1|+ |2z — 1| = |w|+|w| ™!, Hence,

if R>1, 2= 3(w+w!) maps the annulus {w : R~! < |w| < R}, twice onto an

ellipse £r, determined by the relation,
Er={z:]z—1+|z+1 <R+ R}, (3.2.29)

with foci at 1 and —1. The axes are, respectively, R+ R~! and R — R~!, and hence
R is the sum of the semi-azes.

Note that, as R — 1, the ellipse degenerates into the interval [—1,1]. As
R — o0, it becomes close to the circle |2| < £ R. It follows from (3.2.28) that this

family of confocal ellipses are level curves of |w| = |z + V22 — 1|. In fact, we can
also write,
5R={z:1§ 2+ V22— 1 gR}. (3.2.30)

Theorem 3.2.5 (Bernstein’s Approximation Theorem).
Let f(2) be real-valued for z € [—1,1], analytic and single-valued for z €
Er, R> 1. Assume that |f(2)| < M for z € Eg. ThenS®

= 2MR ™"
‘f(:c) - jgo ¢;Tj(z)| < ToR for x € [-1,1].

Proof. Set as before, z = (w +w™'), g(w) = f(3(w+ w™')). Then g(w) is
analytic in the annulus R~! + ¢ < |w| < R — ¢, and hence the Laurent expansion

65A generalization to complex values of z is formulated in Problem 3.2.13.
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(3.2.1) converges there. In particular it converges for |w| = 1, hence the Chebyshev
expansion for f(x) converges when x € [—1,1].
Set r = R — e. By Cauchy’s formula, we obtain, for j > 0,

2 . 2 27 . )
lej| = 2]a;| = ‘—2 / g(w)w_(”l)dw‘ <o Mr~i=Yrdg = 2Mr~3.
YA T

|w|=r 0

We then obtain, for = € [—1, 1],

r

n—1 o) [e%s) e’} -n
@) =Y eT@)| = | Y en@| <Y lel <2md> r <20 T
j=0 n n n

This holds for any € > 0. We can here let € — 0 and thus replace r by R. 0O

The Chebyshev polynomials are perhaps the most important example of a
family of orthogonal polynomials; see Sec. 4.5.5. The numerical value of a trun-
cated Chebyshev expansion can be computed by means of Clenshaw’s algorithm,;
see Theorem 4.5.21

3.2.4 Perturbation Expansions

In the equations of applied mathematics it is often possible to identify a small
dimensionless parameter (say) ¢, ¢ < 1. The case when € = 0 is called the reduced
problem or the unperturbed case, and one asks for a perturbation expansion,
i.e. an expansion of the solution of the perturbed problem into powers of the
perturbation parameter €. In many cases it can be proved that the expansion has
the form co+ci1e+coe?+. . ., but there are also important cases, where the expansion
contains fractional or a few negative powers.

In this subsection, we consider an analytic equation ¢(z,e¢) = 0 and seek
expansions for the roots z;(€) in powers of e. This has some practical interest in its
own right, but it is mainly to be considered as a preparation for more interesting
applications of perturbation methods to more complicated problems. A simple
perturbation example for a differential equation is given in Problem 3.2.9.

If z;(0) is a simple root, i.e. if d¢/Iz # 0, for (z,€) = (2;(0),0), then a theorem
of complex analysis tells us that z;(€) is an analytic function in a neighborhood of
the origin. Hence the expansion

zi(€) — zi(0) = cre + cae® + . ..

has a positive (or infinite) radius of convergence. We call this a regular pertur-
bation problem. The techniques of power series reversion, presented in Sec. 3.1.4,
can often be applied after some preparation of the equation. Computer algebra
systems are also used in perturbation problems, if expansions with many terms are
needed.
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Example 3.2.5.
We shall expand the roots of

plz,e) =€ —241=0

into powers of €. The reduced problem —z+1 = 0 has only one finite root z1(0) = 1.
Set z =1+ e, © =c1 + cae +cze® +.... Then ¢(1 +ze, €)/e = (1 +we)2 —x =0,
ie.

(14+cre+ceae® +..)% = (c1 +coe+c3 +...) =0.

Matching the coeflicients of €°, €!, €2, we obtain the system

1l—c1=0 = c=1;
2c1 —co =0 = co=2;
2c0+c —c3=0 = c3=75;

hence z1(e) = 1 + e+ 2e% + 5 + ...

Now, the easiest way to obtain the expansion for the second root z5(e), is to
use the fact that the sum of the roots of the quadratic equation equals e, hence
zoe) =t —1—€e—22+....

Note the appearance of the term e~'. This is due to a characteristic feature
of this example. The degree of the polynomial is lower for the reduced problem
than it is for € # 0; one of the roots escapes to oo as € — 0. This is an example of
a singular perturbation problem, an important type of problem for differential
equations; see Problem 3.2.9.

If 0¢/0z = 0, for some z;, the situation is more complicated; z; is a multiple
root, and the expansions look differently. If z;(0) is a k-fold root then there may
exist an expansion of the form

Zi(e) =co+ Clel/k + Cg(el/k)2 + ...

for each of the k roots of €, but this is not always the case. See (3.2.31) below, where
the expansions are of a different type. If one tries to determine the coefficients in an
expansion of the wrong form, one usually runs into contradictions, but the question
about the right form of the expansions still remains.

The answers are given by the classical theory of algebraic functions, where
Riemann surfaces and Newton polygons are two of the key concepts, see, e.g.,
Bliss [31]. We shall, for several reasons, not use this theory here. One reason
is that it seems hard to generalize some of the methods of algebraic function theory
to more complicated equations, such as differential equations. We shall instead use
a general balancing procedure, recommended in Lin and Segel [220, Sec.9.1],
where it is applied to singular perturbation problems for differential equations too.

The basic idea is very simple: each term in an equation behaves like some
power of €. The equation cannot hold, unless there is a 3, such that a pair of terms
of the equation behave like Ae®, (with different values of A), and the e-exponents of
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the other terms are larger than or equal to 3. (Recall that larger exponents make
smaller terms.)

Let us return to the previous example. Although we have already determined
the expansion for zz(€) (by a trick that may not be useful for other problems than
single analytic equations), we shall use this task to illustrate the balancing proce-
dure. Suppose that

zo(€) ~ Ae®, (a < 0).

The three terms of the equation e€z? — z + 1 = 0 then get the exponents
14+ 2a, a, 0.

Try the first two terms as the candidates for being the dominant pair. Then 14+2a =
«, hence @ = —1. The three exponents become —1, —1, 0. Since the third exponent
is larger than the exponent of the candidates, this choice of pair seems possible, but
we have not shown that it is the only possible choice.

Now try the first and the third terms as candidates. Then 1 + 2a = 0, hence
o= —%. The exponent of the non-candidate is —% < 05 this candidate pair is thus
impossible. Finally, try the second and the third terms. Then « = 0, but we are
only interested in negative values of a.

The conclusion is that we can try coefficient matching in the expansion zs(e) =
c_1e 4+ cg+cre+.... We don'’t need to do it, since we know the answer already,
but it indicates how to proceed in more complicated cases.

Example 3.2.6.

First consider the equation 23 — 22 + € = 0. The reduced problem 23 — 22 =0
has a single root, z; = 1, and a double root, z23 = 0. No root has escaped
to oco. By a similar coefficient matching as in the previous example we find that
21(€) =1 — € —2€2 +.... For the double root, set z = Ae®, 8 > 0. The three terms
of the equation obtain the exponents 33, 23, 1. Since 303 is dominated by 25 we
conclude that 26 =1, i.e. §=1/2,

z0.3(€) = o€/ + cre + o€+ ..
2

By matching the coefficients of €, €3/2, €2, we obtain the system

—34+1=0 = ¢y = +1,

1

—20001—}-68:0 = = 55

H_
oojut

—2¢pCo — cf + 203c1 + clcg =0 =>c =

hence 22 3(€) = +€'/? + Lle £ 263/2 +...

There are, however, equations with a double root, where the perturbed pair
of roots do not behave like +¢pe'/? as € — 0. In such cases the balancing procedure
may help. Consider the equation

(14 €)2° +4ez+ €2 =0. (3.2.31)

The reduced problem iss 22 = 0, with a double root. Try z ~ Ae®, o > 0. The
exponents of the three terms become 2a, a + 1, 2. We see that o = 1 makes the
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three exponents all equal to 2; this is fine. So, set z = ey. The equation reads,
after division by €2, (14 €)y? 4+ 4y + 1 = 0, hence y(0) = a = —2 & /3. Coefficient
matching yields the result

z=ey=ae+ (—a*/(2(a+2)))e* + ...,

where all exponents are natural numbers.

If € is small enough, the last term included can serve as an error estimate. A
more reliable error estimate (or even an error bound) can be obtained by inserting
the truncated expansion into the equation. It shows that the truncated expansion
satisfies a modified equation exactly. The same idea can be applied to equations of
many other types; see also Problem 3.2.9.

3.2.5 lll-Conditioned Series

Slow convergence is not the only numerical difficulty that occurs in connection with
infinite series. There are also series with oscillating terms and a complicated type
of catastrophic cancellation. The size of some terms are many orders of magnitude
larger than the sum of the series. Small relative errors in the computation of the
large terms lead to a large relative error in the result. We call such a series ill-
conditioned.

Such series have not been subject to many systematic investigations. One
simply tries to avoid them. For the important “special functions” of Applied Math-
ematics, such as Bessel Functions, confluent hypergeometric functions, etc., there
usually exists expansions into descending powers of z that can be useful, when
|z| > 1 and the usual series, in ascending powers, are divergent or ill-conditioned.
Another possibility is to use multiple precision in computations with ill-conditioned
power series; this is relatively expensive and laborious (but the difficulties should
not be exaggerated). There are, however, also other, less known, possibilities that
will now be exemplified. The subject is still open for new fresh ideas, and we hope
that the following pages and the related problems at the end of the section will
stimulate some readers to thinking about it.

First, we shall consider power series of the form

i (_i# (3.2.32)
n=0 '

where x > 1, although not so large that there is risk for overflow. We assume that
the coefficients ¢,, are positive and slowly varying (relatively to (—x)™/n!). The
ratio of two consecutive terms is

Cnt1 —X —x

~

cn m+1 n41

We see that the series converges for all z, and that the magnitude increases if and
only if n+ 1 < |z|. The term of largest magnitude is thus obtained for n =~ |x|. De-
note its magnitude by M (z). Then, for > 1, the following type of approximations
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can be used for crude estimates of the number of terms needed and the arithmetic
precision that is to be used in computations related to ill-conditioned power series:
M(x) = cpe®(2mz) ™2, ie.

logig M(z)/co = 0.43z — & log,((2m2). (3.2.33)
This follows from the classical Stirling’s formula,

1 1
| ~ K _ [ R
xl ~ (z/e)*V2mx |14 o0 + 53822 + , x> 1, (3.2.34)

that gives x! with a relative error that is about 1/(12z). You find a proof of this in
most textbooks on calculus. It will often be used in the rest of this book. A more
accurate and general version is given in Example 3.4.12 together with a few more
facts about the gamma function, I'(z), an analytic function that interpolates the
factorial, I'(n + 1) = n! if n is a natural number. Sometimes the notation z! is used
instead of I'(z 4 1) also if z is not an integer.

There exist preconditioners, i.e. transformations that can convert classes
of ill-conditioned power series (with accurately computable coefficients) to more
well-conditioned problems. One of the most successful preconditioners known to
the authors is the following

Z w =e " Z . bnv by, = (_A)nco' (3235)
n.
n=0

n=0

A hint for proving this identity is given in Problem 3.3.22. The notation A"¢, for
high order differences was introduced in Sec.1.1.5.

For the important class of sequences {¢, }, which are completely monotonic,
(=A)"cp is positive and smoothly decreasing; see Sec. 3.4.4.

Table 3.2.1. Results of three different ways of computing the function

F(x) = (1/a) [ (1/0)(1 - ) dt.

T 10 20 30 40 50
F(z) =~ 0.2880 0.1786 0.1326 0.1066 0.0898
lasttermA 1-107% [ 8-107%7 | 7-10726 | 6-1071 | 2. 10!
M (z; A) 3-101 | 1-10° |9-108 |[1-10' |1.10'7
x) — x . - . 1 - . 1 - . 1 - .
FA F 2-1071% | 5.107" | 2.1077 | 3-107% | 2-10!
lasttermB 4-1078% [ 1-10752 | 4-10736 | 2.1072%° | 2.107 18
M (z; B) 4.1072 [ 21072 |1-1072 | 7-107% |5-10°3
|FC(z) — FB(z)| | 7-1079 | 2-107 | 610717 | 0 1-10°16
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x 10%

1
0.8F : b
0.6 7
0.4r b

0.2r : b

Pe

0
—0.2+ B

—-0.4F : 4

_0_67 4

-0.8+ 4

-1 | | | |
0 20 40 60 80 100

Figure 3.2.2. Ezample 3.2.7 A: Terms of (3.2.32), ¢, = (n+1)72, = 40,
no preconditioner.

Example 3.2.7.
Consider the function

1 [“1—et x x2
Flz) =~ U [
() x/o ¢ 211 T3 :

i.e. F(z) is a particular case of (3.2.32) with ¢, = (n + 1)72. We shall look
at three methods of computing F'(z) for = 10 : 10 : 50, named A, B,C. F(x)
decreases smoothly from 0.2880 to 0.0898. The computed values of F'(x) are denoted
FA(x), FB(z), FC(x).

The coefficients ¢,, n = 0 : 119, are given in IEEE floating-point, double
precision. The results in Table 3.2.1 show that (except for z = 50) 120 terms
is much more than necessary for the rounding of the coefficients to become the
dominant error source.

A We use (3.2.32) without preconditioner. M (x; A) is the largest magnitude
of the terms of the expansion. M (z; A) - 10716 gives the order of magnitude of
the effect of the rounding errors on the computed value FA(x). Similarly, the
truncation error is crudely estimated by lasttermA. See also Figure 3.2.2. Since the
largest term is 103, it is no surprise that the relative error of the sum is not better
than 0.03, in spite that double precision floating-point has been used. Note the
scale, and look also in the table.

B. We use the preconditioner (3.2.35). In this example ¢, = (n +1)72. In
Problem 3.3.3 (¢) we find the following explicit expressions, related to the series on
the right-hand side of the preconditioner for this example.

(—A)"co = (—A)"em|m=0 = co(—A)”x72|x:1 =
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x 10~

o ! |
[¢] 20 40 60 80 100

Figure 3.2.3. Ezample 3.2.7B: ¢, = (n +1)72, o = 40, with precondi-
tioner in (3.2.35).

e " 1
F(z) = coe nz:% CEE] kZ:O T (3.2.36)

Note that (—A)™c¢g is positive and smoothly decreasing.

The largest term is thus smaller than the sum, and the series (3.2.36) is well-
conditioned. The largest term is now about 7 - 1073 and the computed sum is
correct to 16 decimal places. Multiple precision is not needed here. It can be shown
that, if > 1, the mth term is approximately proportional to the value at m of
the normal probability density with mean z and standard deviation equal to /x;
note the resemblance to a Poisson distribution. The terms of the right-hand side,
including the factor e, becomes a so-called bell sum; see Figure 3.2.3.

M (z; B) and lasttermB are defined analogously to M (z; A) and lasttermA,
The B-values are very different from the A-values. In fact they indicate that all
values of FB(x), referred to in the table, give F(x) to full accuracy.

C. The following expression for F(z),

—t

2 (=2)" _ —~v—Inz— Ei(z); Ei(z)= /:o eT dt, (3.2.37)

nn!

is valid for all z > 0; see [1, 5.1.11]. Ej(x) is known as the exponential integral,
and
v = 0.57721 5664901532 86061 . . .

is the well known Euler’s constant. In the next section, an asymptotic expansion
for Fy(x) for & > 1 is derived, the first two terms of which are used here in the
computation of F(x;C) for the table above.

Ei(x)~e ®(z7 —27%), x> 1.
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208 Chapter 3. Series, Operators and Continued Fractions

This approximation is the dominant part of the error of F(x;C); it is less than
e~ ®2x~4. F(z;C) gives full accuracy for (say) = > 25.

More examples of sequences, for which rather simple explicit expressions for
the high order differences are known, are given in Problem 3.3.3. Kummer’s con-
fluent hypergeometric function M(a,b, z) was defined in (3.1.17). We have

ala+1)...(a+n—-1)
bb+1)...(b+n—1)"

M(avba_'r):1+ § : (_J;)| cna Cn:Cn(avb):
n.
n=1

In our context b > a > 0, n > 0. The oscillatory series for M (a,b, —x), © > 0, is
ill-conditioned if = > 1.

By Problem 3.3.3, (—A)™co(a,b) = ¢, (b —a,b) > 0, n > 0, hence the precon-
ditioner (3.2.35) yields the equation

M(a,b,—x) =e *M(b—a,b,x), (3.2.38)

where the series on the right-hand side has positive terms, because b—a > 0, z > 0,
and is a well-conditioned bell sum. The mth term has typically a sharp maximum
for m = x; compare Figure 3.2.3. Equation (3.2.38) is in the theory of the confluent
hypergeometric functions known as Kummer’s first identity. It is emphasized
here, because several functions with famous names of their own are particular cases
of the Kummer function. (Several other particular cases are presented in Sec. 3.5.1
together with continued fractions.) These share the numerous useful properties of
Kummer’s function, for example, the above identity; see the theory in Lebedev [214,
Secs. 9.9-9.14]% and the formulas in [1, Ch. 13] in particular Table 13.6 of special
cases. An important example is the error function (see Example 3.1.3) that can be
expressed in terms of Kummer’s confluent hypergeometric as .

_ 2 ® 42 _ 2z 1 3 9
erf(ac)—ﬁ/o e dt_ﬁM(2’2’ :C) (3.2.39)

If we cannot find explicit expressions for high order differences, we can make
a difference scheme by the recurrence A™%l¢c, = A™¢, 1 — A™c,. Unfortunately
the computation of a difference scheme suffers from numerical instability. Suppose
that the absolute errors of the c,, are bounded by e. Then the absolute errors can
become as large as 2¢ in the first differences, 4¢ in the second differences, etc. More
generally, the absolute errors of (—A)™¢, can become as large as 2™e. (You find
more about this in Examples 3.3.2 and 3.2.3.) In connection with ill-conditioned
series, this instability is much more disturbing than in the traditional applications of
difference schemes to interpolation where m is seldom much larger than 10. Recall
that m ~ x for the largest term of the preconditioned series. So, if x > 53 even this
term may not have any correct bit if IEEE double precision arithmetic is used, and
many terms are needed after this.

66Unfortunately, the formulation of Kummer’s first identity in [214, Eq.(9.11.2)] contains a
serious sign error.

2007/
page :



3.2. More About Series 209

So, during the computation of the new coefficients, (—A)™¢,,, (only once for
the function F, and with double accuracy in the results), the old coefficients ¢,
must be available with multiple accuracy, and multiple precision must be used in
the computation of their difference scheme. Otherwise, we cannot evaluate the
series with a decent accuracy for much larger values of x than we could have done
without preconditioning. Note, however, that if satisfactory coefficients have been
obtained for the preconditioned series, double precision is sufficient when the series
is evaluated for large values of . (It is different for method A above.)

Let F(z) be the function that we want to compute for z > 1, where it is
defined by an ill-conditioned power series F;(z). A more general preconditioner can
be described as follows. Try to find a power series P(x) with positive coefficients
such that the power series P(x)F} () has less severe cancellations than than F (z).

In order to distinguish between the algebraic manipulation and the numerical
evaluation of the functions defined by these series, we introduce the indeterminate
x and describe a more general preconditioner as follows:

Fy(x) = P(x) - Fi(x);  Fa(x) = F; (x)/P(x). (3.2.40)

The second statement is a usual scalar evaluation (no bold-face). Here P(x) may
be evaluated by some other method than the power series, if it is more practical. If
P(z) = €%, and Fi(z) is the series defined by (3.2.32), then it can be shown that
F5(z) is mathematically equivalent to the right-hand side of (3.2.35). In these cases
F5(z) has positive coefficients.

If, however, F (x) has a positive zero, this is also a zero of F (), and hence it is
impossible that all coefficients of the series F5(x) have the same sign. Nevertheless,
the following example shows that the preconditioner (3.2.40) can sometimes be
successfully used in such a case too.

Table 3.2.2. Ewvaluation of some Bessel functions.

1 x 10 20 30 40 50
2 Jo(z) ~ -2.107% | 2107" | —=9-1072 | 7-1073 6-1072
3 N1(x) 26 41 55 69 82
4| J(z;N1) — Jo(x) 9.107* | 3.107° | —2.107¢ | —1-107% | —2-10?
5 N2(z) 16 26 36 46 55
6 IJ(x; N2) ~ —7-10% 7-10 | —7-10% 1-10* 2.10"
7 In(z) ~ 3.10° 4-107 8- 10" 1-10% 3.10%°
8 | IJ(x)/Io(x) — Jo(x) | 3-1077 | 2.107** | 3-107*% | —5.107*2 | 2.1071°

Example 3.2.8.
The two functions

Jo(z) = Z(_l)”w Io(z) = Z (z2/4)"

() 2Tl
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are examples of Bessel functions of the first kind; I is nowadays called a modified
Bessel function. Jy(z) is oscillatory and bounded, while Iy(x) ~ e* /v/ 27z for 2 > 1.
Since all coefficients of I are positive, we shall set P = Iy, F} = Jy, and try

Fo(x) =1(x) =To(x) - Jo(x), Fa(z) = Fy(x)/lo(x),

as a preconditioner for the power series for Jy(x), which is ill-conditioned if > 1.
In Table 3.2.2, line 2 and line 7 are obtained from the fully accurate built-in functions
for Jo(z) and Ip(z). J(z;N1) is computed in IEEE double precision arithmetic
from N1 terms of the above power series for Jo(z). N1 = N1(z) is obtained by a
termination criterion that should give full accuracy or, if the estimate of the effect
of the rounding error is bigger than 10715, the truncation error should be smaller
than this estimate. We omit the details; see also Problem 3.2.9 (d).

The coefficients of IJ(x) are obtained from the second expression for 7, given
in Problem 3.2.9(c). N2 = N2(x) is the number of terms used in the expansion
of 1J(x), by a termination criterion, similar to the one described for J(z; N1).
Compared to line 4, line 8 is a remarkable improvement, obtained without the use
of multiple precision.

For series of the form
ia (_xQ)n

n
= (2n)!
one can generate a preconditioner from P(z) = cosh. This can also be applied to
Jo(z) and other Bessel functions; see Problem 3.2.9 (e).

There are several procedures for transforming a series into an integral that can
then be computed by numerical integration or be expanded in another series that
may have better convergence or conditioning properties. An integral representation
may also provide an analytic continuation of the function represented by the original
series. Integral representations may be obtained in several different ways; we men-
tion two of these. Either there exist integral representations of the coefficients,5”
or one can use general procedures in Complex Analysis that transform series into
integrals. They are due to Cauchy, Plana and Lindelof; see Dahlquist [79].

3.2.6 Divergent or Semiconvergent Series

That a series is convergent is no guarantee that it is numerically useful. In this
section, we shall see examples of the reverse situation: a divergent series can be of
use in numerical computations. This sounds strange, but it refers to series where
the size of the terms decreases rapidly at first and increases later, and where an
error bound (see Figure 3.2.4), can be obtained in terms of the first neglected term.
Such series are sometimes called semiconvergent®. An important subclass are

the asymptotic series; see below.

67For hypergeometric or confluent hypergeometric series see Lebedev [214, Secs.9.1 and 9.11],
or [1, Secs. 15.3 and 13.2.].
68 A rigorous theory of semi-convergent series was developed by Stieltjes and Poincaré in 1886.
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Example 3.2.9.
We shall derive a semiconvergent series for the computation of Euler’s function

oo

f(z) = "By (z) = ez/

x

et dt = / e “(u+x)"du
0
for large values of xz. (The second integral was obtained from the first by the

substitution ¢ = u + x.) The expression (u + x)~! should first be expanded in a
geometric series with remainder term, valid even for u > =z,

n—1
(u+z) =24z u) =2t Z(—l)jxfjuj + (=D)™(u+x)" ()™
7=0
We shall frequently use the well known formula
/ we du=j'=T( +1).
0

We write f(z) = S,(x) + Rn(z), where

L 11 2
Sp(z) =21 Z(—l)J:v_J /0 we du=———+——...+ (=) !

, T x 3
Jj=0

R,(x) = (-1)" /Ooo(u—l- I)fl(g)ne*“du.

The terms in S, (x) qualitatively behave as in Figure 3.2.4. The ratio between
the last term in S, 41 and the last term in S, is

n! "™ n
- = —— 3.2.41
2"t (n —1)! x’ ( )
and since the absolute value of that ratio for fixed x is unbounded as n — oo, the
sequence {S,(2)}52, diverges for every positive x. But since sign R, (z) = (—=1)"
for x > 0, it follows from Theorem 3.1.4 that

1 1 n!

f@) =3 (Sn(a:) + Sn+1(x)) 5o (3.2.42)

The idea is now to choose n so that the estimate of the remainder is as small
as possible. According to (3.2.41), this happens when n is equal to the integer part
of x. For x = 5 we choose n = 5,

S5(5) = 0.2 —0.04 + 0.016 — 0.0096 + 0.00768 = 0.17408,
S6(5) = S5(5) — 0.00768 = 0.16640,
which gives f(5) = 0.17024 & 0.00384. The correct value is 0.17042, so the actual

error is only 5% of the error bound. For n = x = 10, the error estimate is 1.0144 -
1075.
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Error estimate

—1.5-1 | | | | | | | |

Figure 3.2.4. FError estimates of the semiconvergent series of Exam-
ple 3.2.7 for x = 10; see (3.2.42).

For larger values of x the accuracy attainable increases. One can show that
the bound for the relative error using the above computational scheme decreases
approximately as (7-x/ 2)1/ 2e77; an extremely good accuracy for large values of x,
if one stops at the smallest term. It can even be improved further, by the use of
the convergence acceleration techniques presented in Sec. 3.4, notably the repeated
averages algorithm, also known as the Euler transformation; see Sec. 3.4.3. The
algorithms for the transformation of a power series into a rapidly convergent con-
tinued fraction, mentioned in Sec.3.5.1, can also be successfully applied to this
example and to many other divergent expansions.

One can derive the same series expansion as above by repeated integration by
parts. This is often a good way to derive numerically useful expansions, convergent
or semi-convergent, with a remainder in the form of an integral. For convenient
reference, we formulate this as a lemma that is easily proved by induction and the
mean value theorem of integral calculus. See Problem 3.2.10 for applications.

Lemma 3.2.6 (Repeated Integration by Parts).

Let F € C?(a,b), let Gy be a piecewise continuous function, and let Go, G1, . ..
be a sequence of functions such that G, (x) = G(x) with suitably chosen constants
of integration. Then

/ "FWGo = S FO 0G|+ (1 / 006, (1) dt.

- t=
Jj=0

The sum is the “expansion”, and the last integral is the “remainder”. If Gp(t) has
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a constant sign in (a,b), the remainder term can also be written in the form

(~DPFPE)(GCpr1(b) = Gpra(a), € € (ash).

The expansion in Lemma 3.2.6 is valid as an infinite series, if and only if the
remainder tends to 0 as p — oo. Even if the sum converges as p — oo, it may
converge to the wrong result.

The series in Example 3.2.9 is an expansion in negative powers of x, with the
property that for all n, the remainder, when x — oo, approaches zero faster than the
last included term. Such an expansion is said to represent f(x) asymptotically
as ¢ — 0o. Such an asymptotic series can be either convergent or divergent (semi-
convergent). In many branches of applied mathematics, divergent asymptotic series
are an important aid, though they are often needlessly surrounded by an air of
mysticism.

It is important to appreciate that an asymptotic series does not define a sum
uniquely. For example f(z) = e * is asymptotically represented by the series
3§ =0%0-277, as x — oo. So e~%, (and many other functions), can therefore be
added to the function, for which the expansion was originally obtained.

Asymptotic expansions are not necessarily expansions into negative powers of
2. An expansion into positive powers of x — a,

n—1

fz) ~ Z cv(z —a)” + Ro(w),

v=0
represents f(x) asymptotically when x — a if

lim (z — a)" " YR, (z) = 0.

r—a
Asymptotic expansions of the error of a numerical method into positive powers of
a step-length h are of great importance in the more advanced study of numeri-
cal methods. Such expansions form the basis of simple and effective acceleration
methods for improving numerical results; see Sec. 3.4.

Review Questions

2.1. Give the Cauchy formula for the coefficients of Taylor and Laurent series, and
describe the Cauchy—FFT method. Give the formula for the coefficients of
a Fourier series. For which of the functions in Table 3.1.1 does also another
Laurent expansion exist?

2.2. Describe by an example the balancing procedure that was mentioned in the
subsection about perturbation expansions.

2.3. Define the Chebyshev polynomials, and tell some interesting properties of
these and of Chebyshev expansions. For example, what do you know about the
speed of convergence of a Chebyshev expansion for various classes of functions?
(The detailed expressions are not needed.)
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2.4.

2.5.

Describe and exemplify, what is meant by an ill-conditioned power series and
a preconditioner for such a series.

Define what is meant, when one says that the series Zgo anx™"
(a) converges to a function f(x) for z > R;

(b) represents a function f(x) asymptotically as x — oo.

(¢) Give an example of a series that represents a function asymptotically as
x — o0, although it diverges for every finite positive x.

(d) What is meant by semi-convergence? Say a few words about termination
criteria and error estimation.

Problems and Computer Exercises

2.1.

2.2.

2.3.

Some of the functions appearing in Table 3.1.1, and in other examples and
problems are not single-valued in the complex plane. Brush up your Complex
Analysis, and find out how to define the branches, where these expansions are
valid, and (if necessary) define cuts in the complex plane that must not be
crossed. It turns out not to be necessary for these expansions. Why?

(a) If you have access to programs for functions of complex variables (or to
commands in some package for interactive computation), find out the conven-
tions used for functions like square root, logarithm, powers, arc tangent, etc.
If the manual does not give enough detail, invent numerical tests, both with
strategically chosen values of z and with random complex numbers in some
appropriate domain around the origin. For example, do you obtain

1
In <Z+ 1) —In(z+1)+In(z—1)=0, Vz?
- —
Or, what values of V22 — 1 do you obtain for z = 4+i? What values should
you obtain, if you want the branch which is positive for z > 17

(b) What do you obtain, if you apply Cauchy’s coefficient formula or the
Cauchy-FFT method to find a Laurent expansion for 1/z7? Note that /2 is

analytic everywhere in an annulus, but that does not help. The expansion is
likely to become weird. Why?

Apply (on a computer) the Cauchy—FFT method to find the Maclaurin coeffi-
cients a,, of (say) e, In(1—z) and (14 2)'/2. Make experiments with different
values of r and N, and compare with the exact coefficients. This presupposes
that you have access to good programs for complex arithmetic and FFT.
Try to summarize your experiences of how the error of a,, depends on r, N.
You may find some guidance in Example 3.2.2.

(a) Suppose that r is located inside the unit circle; ¢ is real. Show that

1—172

oo
T oreosiye — LH2D r"eosnt,

n=1
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(e] 0.5 1 1.5

Figure 3.2.5. The error of the expansion of f(z) = 1/(1 + x2) in a sum

of Chebyshev polynomials {T,,(x/1.5)}, n < 12.

2.4.

2rsint 2i " Ginnt
_ = r" sinnt.
1 —2rcost +r? —

Hint: First suppose that r is real. Set z = re’. Show that the two series

are the real and imaginary parts of (1 4+ 2)/(1 — z). Finally make analytic
continuation of the results.

(b) Let a be positive, x € [—a,a], while w is complex, w ¢ [—a,a]. Let
r =r(w), |r| <1 be a root of the quadratic > — (2w/a)r + 1 = 0. Show that
(with an appropriate definition of the square root)

wix—\/ﬁ.<l+2irnﬂl(§)), (w ¢ [—a, a], z € [—a,d]).

(c) Find the expansion of 1/(1 + 2?) for = € [~1.5,1.5] into the polynomials
T, (x/1.5). Explain the order of magnitude of the error and the main features
of the error curve in Figure 3.2.5.

Hint: Set w = 7, and take the imaginary part. Note that r becomes imaginary.

(a) Find the Laurent expansions for

fz)=1/(z=1)+1/(z - 2).

(b) How do you use the Cauchy-FFT method for finding Laurent expansions?
Test your ideas on the function in the previous subproblem (and on a few
other functions). There may be some pitfalls with the interpretation of the
output from the FFT program, related to so-called aliasing; see Sec. 4.6.6 and
Strang [303].

(c) As in Sec.3.2.1, suppose that F®) is of bounded variation in [—m, 7] and

denote the Fourier coefficients of F(®) by c§f ). Derive the following general-
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2.5.

2.6.

2.7.

2.8.

ization of (3.2.7):

()" R

2

FO(r) = FO(—x) P
(in)i+1 (in)?’

Cp =

0

<

and show that if we add the condition that F' € CV[—o00,00], j < p, then the
asymptotic results given in (and after) (3.2.7) hold.

(d) Let z = (w4 w™'). Show that [z — 1| + |z + 1| = |w| + |w| .
Hint: Use the parallelogram law, |p — ¢|> + [p + ¢|® = 2(|p|* + |¢|?).

(a) The expansion of arcsinht into powers of ¢, truncated after ¢7, is ob-

tained from Problem 3.1.6 (b). Using economization of a power series con-

struct from this a polynomial approximation of the form c;t + c3t? for the
11

interval ¢t € [~3,5]. Give bounds for the truncation error for the original

truncated expansion and for the economized expansion.
(b) The graph of Ty2(z) for z € [—1,1] is shown in Figure 3.2.1. Draw the
graph of Ty2(z) for (say) = € [-1.1,1.1].

Compute a few terms of the expansions into powers of € or k of each of the
roots of the following equations, so that the error is O(e?) or O(k~2) (e is
small and positive; k is large and positive). Note that some terms may have
fractional or negative exponents. Also try to fit an expansion of the wrong
form in some of these examples, and see what happens.

(a) (1+€)22—€e=0; (b)ex®>—2241=0; (¢c)ex®*—2+1=0;

(d) 2* — (K2 +1)22 — k2 =0, (k> > 1).

The solution of the boundary value problem

(1+ey" —ey=0, y(0)=0, y(1)=1,

has an expansion of the form y(t;€) = yo(t) + y1(t)e + y2(t)e? + .. ..

(a) By coefficient matching, set up differential equations and boundary condi-
tions for yo, y1, Y2, and solve them. You naturally use the boundary conditions
of the original problem for yg. Make sure you use the right boundary condi-
tions for yi, ya.

(b) Set R(t) = yo(t) + ey1(t) — y(t; €). Show that R(t) satisfies the (modified)
differential equation

(1+e)R" —eR= (Tt —t%)/6, R(0)=0, R(1)=0.

(a) Apply Kummer’s first identity (3.2.38) to the error function erf(z), to show
that

20 _ 2 3 2r 2 222 (22%)%  (22%)3
fa) = Lo (1,2,0%) = 2L (14 22
erf(z) = ¢ (157 N (1+ 3 T35 '35.7° )

Why is this series well conditioned? (Note that it is a bell sum; compare
Figure 3.2.3.) Investigate the largest term, rounding errors, truncation errors
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2.9.

and termination criterion, in the same way as in (a).
(b) erfc(z) has a semi-convergent expansion for z > 1 that begins

erfe(z) = 1 — erf(x ! 3 15 )

1o — 2 2
\/—/ \/_( 2:172+4x4 8x6+

Give an explicit expression for the coefficients, and show that the series di-
verges for every x. Where is the smallest term? Estimate its size.

Hint: Set t? = 22 + u, and proceed analogously to Example 3.2.8. See Prob-
lem 3.1.7(¢), « = %, about the remainder term. Alternatively, apply repeated
integration by parts. It may be easier to find the remainder in this way.

Other notations for series, with application to Bessel functions.
(a) Set
an® by Cn®
flay=>" P g(z) =" P hz) =" P
n=0 n=0 n=0
= o w™ L ypw”
p— n . . — n
ow) = Zo nin!’ Z n'n' ’ x(w) = ‘ nin!
n= = n=

Let h(z) = f(x) - g(x); x(w) = ¢(w) - P(w). Show that

=5 (o =3 () e

J= 7=0

Derive analogous formulas for series of the form Y jan,w™/(2n)!.
Suggest how to divide two power series in these notations.

(b) Let a; = (—=1)7af; g(z) = e*. Show that

=3 (5)-

Comment: By (3.2.1), this can can also be written ¢, = (—1)"A"ay. This
proves the mathematical equivalence of the preconditioners (3.1.55) and (3.1.59)
if P(x) =e*

(c) Set, according to Example 3.2.8 and (a) (of this problem), w = —2/4,

00 00 w” 50 ,ann
= n=0 n=0
Show that
n — —-1)’ = ( m /)’ )
= (5) () G T
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2.10.

2.11.

Hint: The first expression for v, follows from (a). It can be interpreted as the
coefficient of ¢™ in the product (1 —¢)™(1 +¢)™. The second expression for v,
is the same coefficient in (1 — t2)".

(d) The second expression for 7, in (c) is used in Example 3.2.8.59 Reconstruct
and extend the results of that example. Design a termination criterion. Where
is the largest modulus of a term of the preconditioned series, and how large
is it approximately? Make a crude guess in advance of the rounding error in
the preconditioned series.

*(e) Show that the power series of Jy(x) can be written in the form
> 2\n
—x
> oGt
= (2n)!
where a,, is positive and decreases slowly and smoothly.

Hint: Compute ay41/an.
*(f) It is known; see Lebedev [214, (9.13.11)], that

Jo(xz) =e M (%, 1; 21'3:) ,

where M(a,b,c) is Kummer’s confluent hypergeometric function, this time
with an imaginary argument. Show that Kummer’s first identity is unfortu-
nately of no use here for preconditioning the power series.

Comment: Most of the formulas and procedures in this problem can be gener-
alized to the series for the Bessel functions of the first kind of general integer
order, (z/2)"™Jp(x). These belong to the most studied functions of Applied
Mathematics, and there exist more efficient methods for computing them; see,
e.g., Press et al. [263, Chapter 6]. This problem shows, however, that precon-
ditioning can work well for a non-trivial power series, and it is worth to be
tried.

(a) Derive the expansion of Example 3.2.5 by repeated integration by parts.

(b) Derive the Maclaurin expansion with the remainder according to (3.1.5)
by the application of repeated integration by parts to the equation

f(z) = (0) = = / f(at) d(t —1).

Show the following generalization of Theorem 3.2.5. Assume that |f(z)| < M
for z € Er. Let |[¢| € €5, 1 < p <7 < R — €. Then the Chebyshev expansion
of f(() satisfies the inequality

S e ()] < 2M /R
}f@) - j_ZOCJTJ(C)} < - R

Hint: Set w = ( + /(2 — 1, and show that |T;(¢)| = |3 (w? + w ™) < p/.

691t is much better conditioned than the first expression. This may be one reason why multiple
precision is not needed here.
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3.3 Difference Operators and Operator Expansions

3.3.1 Properties of Difference Operators

Difference operators are handy tools for the derivation, analysis, and practical ap-
plication of numerical methods for many problems for interpolation, differentiation,
and quadrature of a function in terms of its values at equidistant arguments. The
simplest notations for difference operators and applications to derivatives were men-
tioned in Sec.1.1.5.

Let y denote a sequence {y,}. Then we define the shift operator E (or
translation operator) and the forward difference operator A by the relations

By = {ynt1}, Ay = {Ynt1 = Yn}s

E and A are thus operators which map one sequence to another sequence. Note,
however, that if y, is defined for a < n < b only, then Eyp is not defined, and the
sequence Ey has fewer elements than the sequence y. (It is therefore sometimes
easier to extend the sequences to infinite sequences, for example, by adding zeros
in both directions outside the original range of definition.)

These operators are linear, i.e. if «, 3 are real or complex constants and if
y, z are two sequences, then E(ay + (z) = aFy + SEz, and similarly for A.

Powers of F and A are defined recursively, i.e.

Efy = B(EF1y),  Afy=A(AF1y).

By induction, the first relation yields E¥y = {y,+1}. We extend the validity of this
relation to k& = 0 by setting E% = y and to negative values of k. AFy is called
the kth difference of the sequence y. We make the convention that A® = 1. There
will be little use of A* for negative values of k in this book, although A~! can be
interpreted as a summation operator.

Note that Ay = Ey — y, and Ey = y + Ay for any sequence y. It is therefore
convenient to express these as equations between operators:

A=F-1, E=1+A.

The identity operator is in this context traditionally denoted by 1. It can be shown
that all formulas derived from the axioms of commutative algebra can be used for
these operators, for example, the binomial theorem for positive integral k.

k k
k_(m_ 1)k — k=i (RN k_ k_ APV
AF=(E-1) Jz::o( 1) <j>E ., EF=(1+A4) JZ::O <j>A , (3.3.1)
giving
k ke k i ‘
(AF)n =D D" yntss Ynrn = (E*y)n = ) (ATy),.  (3.3.2)
y jz::o (J)y + Yn-tk y JZZ:O (J) y

We abbreviate the notation further and write, for example, Ey,, = y,+1 instead of
(EY)n = Yni1, and Ay, instead of (A¥y),. But it is important to remember that
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A operates on sequences and not on elements of sequences. Thus, strictly speaking,
this abbreviation is incorrect, though convenient. The formula for E* will, in the
next subsection, be extended to an infinite series for non-integral values of k, but
that is beyond the scope of algebra.

A difference scheme consists of a sequence and its difference sequences,
arranged in the following way:

Yo
Ayo
(0 Ay
Ay Ay
Y2 A%y Atyg
Ay Ay,
Y3 A2y2
Ays
Ya

A difference scheme is best computed by successive subtractions; the formulas in
(3.3.1) are used mostly in theoretical contexts.

In many applications the quantities y, are computed in increasing order
n =0,1,2,..., and it is natural that a difference scheme is constructed by means
of the quantities previously computed. One therefore introduces the backward
difference operator

Vin = Yn —Yn-1 = (1= E~ ")y,
For this operator we have
Vk=(1-EYH, EF*F=01-V" (3.3.3)

Note the reciprocity in the relations between V and E~!.

Any linear combination of the elements Yn, Yn—1,--- Yn—k can also be ex-
pressed as a linear combination of Yn, Viyn, ..., VF¥y,, and vice versa™. For exam-
ple,

Yn + Yn—1+ Yn—2 = 3Yn — 3Vyn + V?yn,
because 1+ E~'+ E72 =1+ (1-V)+ (1 —-V)? = 3—-3V + V2. By the reciprocity,
we also obtain y, + Vyn + VZ2yn = 3yn — 3Yn—1 + Yn—o.

In this notation the difference scheme reads

Yo
Vi
(7 V2ys
Vya V3ys
Y2 V2ys3 Viy,
Vys V34
Y3 V4
Vya
Ya
70 An analogous statement holds for the elements yn, Yn41,- - - s Yn+k and forward differences.
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In the backward difference scheme the subscripts are constant along diagonals di-
rected upwards (backwards) to the right, while, in the forward difference scheme,
subscripts are constant along diagonals directed downwards (forwards). Note, for
example, that V¥y, = A¥y,_r. In a computer, a backward difference scheme is
preferably stored as a lower triangular matrix.

Example 3.3.1.
Part of the difference scheme for the sequence y = {...,0,0,0,1,0,0,0,...} is
given below.

0 1 -7

0 1 —6 28
0 1 -5 21

0 1 —4 15 —56
1 -3 10 —35

1 —2 6 —-20 70
-1 3 —10 35

0 1 —4 15 —56
0 -1 5 —21

0 1 —6 28
0 -1 7

This example shows the effect of a disturbance in one element on the sequence
of the higher differences. Because the effect broadens out and grows quickly, dif-
ference schemes are useful in the investigation and correction of computational and
other errors, so-called difference checks. Notice that, since the differences are
linear functions of the sequence, a superposition principle holds. The effect of
errors can thus be estimated by studying simple sequences such as the one above.

Example 3.3.2.

The following is a difference scheme for a 5 decimal table of the function
f(z) = tanz, x € [1.30,1.36], with step h = 0.01. The differences are given with
10~° as unit.

x Y Vy Vi V3y Viy V°y VSy
1.30 3.60210
14498
1.31 3.74708 1129
15627 140
1.32  3.90335 1269 26
16896 166 2
1.33 4.07231 1435 28 9
18331 194 11
1.34 4.25562 1629 39
19960 233
1.35 4.45522 1862
21822
1.36 4.67344
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222 Chapter 3. Series, Operators and Continued Fractions

We see that the differences decrease roughly by a factor of 0.1—that indicates that
the step size has been chosen suitably for the purpose of interpolation, numeri-
cal quadrature, etc., until the last two columns, where the rounding errors of the
function values have a visible effect.

Example 3.3.3.
For the sequence y, = (—1)™ one finds easily that

vyn = 2yna szn = 4yn7 SERE) kan = 2kyn-

If the error in the elements of the sequence are bounded by €, it follows that the
errors of the kth differences are bounded by 2Fe. A rather small reduction of this
bound is obtained if the errors are assumed to be independent random variables (cf.
Problem 3.4.24).

It is natural also to consider difference operations on functions not just on
sequences. F and A map the function f onto functions whose values at the point
T are

Ef(x)=fx+h), Af(x)=fz+h)-f(z),

where h is the step size. Of course, Af depends on h; in some cases this should
be indicated in the notation. One can, for example, write Ay f(z), or Af(z;h). If
we set y, = f(zo + nh), the difference scheme of the function with step size h is
the same as for the sequence {y,}. Again it is important to realize that, in this
case, the operators act on functions, not on the values of functions. It would be
more correct to write f(xg + h) = (Ef)(zo). Actually, the notation (z¢)E f would
be even more logical, since the insertion of the value of the argument z¢ is the last
operation to be done, and the convention for the order of execution of operators
proceeds from right to left.”

Note that no new errors are introduced during the computation of the differ-
ences, but the effects of the original irregular errors, for example, rounding errors in
y, grow exponentially. Note that systematic errors, for example, truncation errors
in the numerical solution of a differential equation, often have a smooth difference
scheme. For example, if the values of y have been produced by the iterative solution
of an equation, where x is a parameter, with the same number of iterations for every
z and y and the same algorithm for the first approximation, then the truncation
error of y is likely to be a smooth function of x.

Difference operators are in many respects similar to differentiation operators.
Let f be a polynomial. By Taylor’s formula,

Af(@) = flo+h) = f(@) = hf'(@) + 27" (@) +

We see from this that deg Af = deg f — 1. Similarly for differences of higher order;
if [ is a polynomial of degree less than k, then

AF=Yf(2) = constant, APf(x) =0, Vp > k.

"1The notation [zo]f occurs, however, naturally in connection with divided differences; see
Sec.4.2.1.
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The same holds for backward differences.

The following important result can be derived directly from Taylor’s theorem
with the integral form of the remainder. Assume that all derivatives of f up to kth
order are continuous. If f € C¥,

AFf(z) =nF (), ¢ €z, z+ kh). (3.3.4)

Hence h™FAF f(z) is an approximation to f*)(z); the error of this approximation
approaches zero as h — 0 (i.e. as ( — x). As a rule, the error is approximately
proportional to h. We postpone the proof to Sec.4.2.1, where it appears as a
particular case of a theorem concerning divided differences.

Even though difference schemes do not have the same importance today that
they had in the days of hand calculations or calculation with desk calculators, they
are still important conceptually, and we shall also see how they are still useful also
in practical computing. In a computer it is more natural to store a difference scheme
as an array, with ¥, Vyn, V2¥n, ..., VFy, in a row (instead of along a diagonal).

Many formulas for differences are analogous to formulas for derivatives, though
usually more complicated. The following results are among the most important.

Lemma 3.3.1.
It holds that

AF(a®) = (a" —1)*a?, V(™) = (1 —a")ka®. (3.3.5)
For sequences, i.e. if h=1,

AFfa"} = (a — DF{a™},  AR{2"} = {2"}. (3.3.6)

Proof. Let ¢ be a given constant. For k£ = 1 we have
A(ca®) = ca™ ™ — ca® = ca®a" — ca® = c(a" — 1)a”

The general result follows easily by induction. The backward difference formula is
derived in the same way. [

Lemma 3.3.2 (Difference of a Product).

Aunvy) = upAvy, + Aty V1. (3.3.7)

Proof. We have

A(unvn) = Un+1Un+1 — UnUn

= un(anrl - Un) + (unJrl - un)anrl-

Compare the above result with the formula for differentials, d(uv) = udv + vdu.
Note that we have v,41 (not v,) on the right-hand side. O
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224 Chapter 3. Series, Operators and Continued Fractions

Lemma 3.3.3 (Summation by Parts).

N-1 N-1
Z U, AV, = UNUN — UQVg — Z Ay Vg1 (3.3.8)
n=0 n=0

Proof. (Compare the rule for integration by parts and its proof!) Notice that

N—-1
> Aw, = (wr —wo) + (w2 —wi) + ...+ (wy — wy_1)
n=0

= WN — Wop.

Use this on w, = u,v,. From the result in Lemma 3.3.1 one gets after summation,

N—-1 N-—1
UNUN — UV = E Un AUy, + E AtpUny,
n=0 n=0

and the result follows. (For an extension; see Problem 3.3.2(d).) O

3.3.2 The Calculus of Operators

Formal calculations with operators, using the rules of algebra and analysis, are
often an elegant means of assistance in finding approzimation formulas that are
exact for all polynomials of degree less than (say) k, and they should therefore be
useful for functions that can be accurately approximated by such a polynomial.
Our calculations often lead to divergent (or semi-convergent) series, but the way
we handle them can usually be justified by means of the theory of formal power
series, of which a brief introduction was given at the end of Sec.3.1.5. The opera-
tor calculations also provide error estimates, asymptotically valid as the step size
h — 0. Rigorous error bounds can be derived by means of Peano’s remainder
theorem in Sec. 3.3.3.

Operator techniques are sometimes successfully used (see Sec.3.3.4) in a way
that it is hard, or even impossible, to justify by means of formal power series. It
is then not trivial to formulate appropriate conditions for the success and to derive
satisfactory error bounds and error estimates, but it can sometimes be done.

We make a digression about terminology. More generally, the word operator
s in this book used for a function that maps a linear space S into another linear
space 8'. S can, for example, be a space of functions, a coordinate space, or a space
of sequences. The dimension of these spaces can be finite or infinite. For example,
the differential operator D maps the infinite-dimensional space C[a, b] of functions
with a continuous derivative, defined on the interval [a, b], into the space C|[a, ] of
continuous functions on the same interval.

In the following we denote by P,, the set of polynomials of degree less than n.
Note that P,, is an n-dimensional linear space, for which {1, z, 22,..., 2" '} is a

72

72Some authors use similar notations to denote the set of polynomials of degree less than or
equal to n.
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basis called the power basis; the coefficients (c1, ca,. .., ¢,) are then the coordinates
of the polynomial p defined by p(z) = Y, c;z* L.

For simplicity, we shall assume that the space of functions on which the op-
erators are defined is C°°(—00, 00), i.e. the functions are infinitely differentiable on
(—00,00). This sometimes requires (theoretically) a modification of a function out-
side the bounded interval where it is interesting. There are techniques for achieving
this, but they are beyond the scope of this book. Just imagine that they have been
applied.

We define the following operators:

Ef(z) = f(x+h) Shift (or translation) operator
Af(z) = f(z+h)— f(x) Forward difference operator
V()= f(x)— f(x—h) Backward difference operator
Df(zx) = f'(x) Differentiation operator

6f(z) = f(z+ 3h) — f(z — 3h) Central difference operator

x
pf(z) =1(f(z+1h) + f(z— 1h)) Averaging operator

Suppose that the values of f are given on an equidistant grid only, e.g., z; = x9+jh,
j=—M: N, (jis integer). Set f; = f(z;). Note that §f;, 6°f;..., (odd powers)
and pf; cannot be exactly computed; they are available halfway between the grid
points. (A way to get around this is given later; see (3.3.45)) The even powers
§2f;, 64 f; ..., and udf;, udf; ..., can be exactly computed. This follows from the
formulas

(f@+h)= flx—h)), w=3(A+V), &=A-V. (339

pif(r) = 3

Several other notations are in use. For example, in the study of difference methods
for partial differential equations Dy, Dop, and D_j, are used instead of A, pd, and
V, respectively.

An operator P is said to be a linear operator if

Plaf+Bg) = aPf+ Pg

holds for arbitrary complex constants «, 8 and arbitrary functions f,g. The above
six operators are all linear. The operation of multiplying by a constant «, is also a
linear operator.

If P and @ are two operators, then their sum and product can be defined in
the following way:

(P+Q)f=Pf+QF,
(P=Q)f=Pf-Qf,
(PQ)f = PQQf),
(aP)f = a(Pf),
P*f=P-P---Pf, n factors.
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226 Chapter 3. Series, Operators and Continued Fractions

Two operators are equal, P = Q if Pf = Qf, for all f in the space of functions
considered. Notice that A = F — 1. One can show that the following rules hold for
all linear operators:

P+Q=Q+P, P+(Q+R)=(P+Q)+R,
P(Q+ R) = PQ + PR, P(QR) = (PQ)R.

The above six operators, E, A, V, hD, §, and u, and the combinations of them by
these algebraic operations make a commutative ring, so PQ = QP holds for these
operators, and any algebraic identity that is generally valid in such rings can be
used.

If S =R" & = R™, and the elements are column vectors, then the linear
operators are matrices of size [m,n]. They do generally not commute.

If S’ = R or C, the operator is called a functional. Examples of functionals
are, if xo denotes a fixed (though arbitrary) point,

1 1
Lf = f(eo). Lf =), Lf= /0 e f(x) dr, /0 1 (@) ? d;

all except the last one are linear functionals.

There is a subtle distinction here. For example, E is a linear operator that
maps a function to a function. Ef is the function whose value at the point z is
f(z+h). If we consider a fixed point z, then (Ef)(zg) is a scalar. This is therefore
a linear functional. We shall allow ourselves to simplify the notation and to write
Ef(x0), but it must be understood that E operates on the function f, not on the
function value f(zg). This was just one example; simplifications like this will be
made with other operators than FE, and similar simplifications in notation were
suggested earlier in this chapter. There are, however, situations, where it is, for
the sake of clarity, advisable to return to the more specific notation with a larger
number of parentheses.

If we represent the vectors in R” by columns y, the linear functionals in R™ are
the scalar products o’z = Z?:l a;y;; every row a’ thus defines a linear functional.

Examples of linear functionals in Py, are linear combinations of a finite number
of function values, Lf = Y a;f(x;). If ©; = xo + jh the same functional can
be expressed in terms of differences, e.g., Za;Ajf(xo); see Problem 3.3.4. The
main topic of this section is to show how operator methods can be used for finding
approximations of this form to linear functionals in more general function spaces.
First, we need a general theorem.

Theorem 3.3.4.
Let 1, x9, ..., x be k distinct real (or complex) numbers. Then no non-
trivial relation of the form

k
Y aif(x;) =0 (3.3.10)
=1

can hold for all f € Py. If we add one more point (), there exists only one non-

trivial relation of the form Z?:o ajf(x;) = 0, (except that it can be multiplied by
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an arbitrary constant). In the equidistant case, i.e. if x; = xo + jh, then

k
Za;f(xj) = cA*f(xg), c¢#0.
3=0

Proof. 1f (3.3.10) were valid for all f € Py, then the linear system Z?:l xé-_laj =0,
i = 1 : k, would have a non-trivial solution (a1, as, ..., ay). The matrix of the
system, however, is a Vandermonde matrix™

1 1 1
i Il xz “ e 'rk
V=[N = (3.3.11)
xllcfl xlchl xﬁfl

Its determinant can be shown to equal the product of all differences, i.e.
det(V)= [ (@i—=)). (3.3.12)
1<i<j<k
This is nonzero if and only if the points are distinct.
Now we add the point xg. Suppose that there exist two relations,

k

bif(z;) =0, > ¢;f(x;)=0.

Jj=0 Jj=0

M-

with linearly independent coefficient vectors. Then we can find a (non-trivial) linear
combination, where xy has been eliminated, but this contradicts the result that we
have just proved. Hence the hypothesis is wrong; the two coefficient vectors must
be proportional.

We have seen above that, in the equidistant case, AFf(xy) = 0 is such a
relation. More generally, we shall see in Chapter 4 that, for £+ 1 arbitrary distinct
points, the kth order divided difference is zero for all f € Pr. 0O

Corollary 3.3.5.

Suppose that a formula for interpolation, numerical differentiation, or integra-
tion has been derived by an operator technique. If it is a linear combination of the
values of f(x) at k given distinct points xj, j = 1: k, and is exact for all f € Py,
this formula is unique. (If it is exact for all f € Py, m < k, only, it is not unique.)
In particular, for any {c; }";:1, a unique polynomial P € Py, is determined by
the interpolation conditions P(x;) =¢;, j=1:k.

Proof. The difference between two formulas that use the same function values
would lead to a relation that is impossible, by the theorem. 0O

73 Alexandre Théophile Vandermonde (1735-1796), a member of the French Academy of Sci-
ences, is regarded as the founder of the theory of determinants. What is now referred to as the
“Vandermonde matrix” does not seem to appear in his writings!
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Now we shall go outside of polynomial algebra and consider also infinite series
of operators. The Taylor series

h? h3
P+ 1) = f(@) +hf' () + 21" (@) + 5" (@) + .
can be written symbolically as

2 3
Ef = (1+hD+@+@+...)f.
We can here treat hD like an algebraic indeterminate, and consider the series inside
the parenthesis (without the operand) as a formal power series™
For a formal power series the concepts of convergence and divergence do not
exist. When the operator series acts on a function f, and is evaluated at a point ¢, we
obtain an ordinary numerical series, related to the linear functional Ef(c) = f(c+h).
We know that this Taylor series may converge or diverge, depending on f, ¢, and h.
Roughly speaking, the last part of Sec. 3.1.5 tells us that, with some care, “analytic
functions” of one indeterminate can be handled with the same rules as analytic func-
tions of one complex variable.

Theorem 3.3.6.
P =FE=1+A, ehP=fF71=1-V,
2sinh%hD = hP/2 _o=hD/2 _ 5

(1+A) = ("P)0 =P (h e R).

Proof. The first formula follows from the previous discussion. The second and the
third formulas are obtained in a similar way. (Recall the definition of d.) The last
formula follows from the first formula together with Lemma 3.1.9 (in Sec.3.1.5).
O

It follows from the power series expansion that
("P) f(z) = " P f(x) = f(a + Oh),
when it converges. Since E = e"? it is natural to define
E°f() = f(x +0h),

and we extend this definition also to such values of € that the power series for
e/"D f(x) is divergent. Note that, for example, the formula

E"E" f(x) = B0 f(x),

74We now abandon the bold-type notation for indeterminates and formal power series used in
Sec. 3.1.5 for the function e”?, which is defined by this series. The reader is advised to take a look
again at the last part of Sec.3.1.5.
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follows from this definition.

When one works with operators or functionals it is advisable to avoid notations
like Ax™, De®®, where the variables appear in the operands. For two important
functions we therefore set

F, : F,(x) = e®%; frn: fo(z) = 2™ (3.3.13)

Let P be any of the operators mentioned above. When applied to F, it acts like a
scalar that we shall call the scalar of the operator " and denote it by sc(P),

PF, =sc(P)F,.

We may also write sc(P;ha) if it is desirable to emphasize its dependence on ha.
(We normalize the operators so that this is true, for example, we work with hD
instead of D.) Note that

s¢(BP +7Q) = Psc(P) +7s¢(Q), (8,7 € C),
sc(PQ) = sc(P)sc(Q).

For our most common operators we obtain

sc(Ee) = efhe.

sc(V)=sc(l—E™ 1) =1—e "o
sc(A) =sc(E —1) = e — 1;
sc(6) = se(BE'? — E7V2) = eho/2 — emhe/2,

Let @y, be one of the operators hD, A, §, V. It follows from the last formulas that
sc(Qn) ~ ha, (h—0);  |sc(@n)| < |hajel"!

The main reason for grouping these operators together is that each of them has the
important property (3.3.4), i.e. QFf(c) = hFf*)(¢), where ¢ lies in the smallest
interval that contains all the arguments used in the computation of Q¥ f(c). Hence,

fFEPe = Qif=0, VYn>k (3.3.14)

This property 7% makes each of these four operators well suited to be the indetermi-
nate in a formal power series that, hopefully, will be able to generate a sequence of
approximations, Ly, Lo, L3 ..., to a given linear operator L. L,, is the nth partial
sum of a formal power series for L. Then

fE€Pr = Lnf=Lgf, Vn>k. (3.3.15)
We shall see in the next theorem that, for expansion into powers of Qp,
lim L, f(x)=Lf(x)

75In applied Fourier analysis this scalar is, for a = iw, often called the symbol of the operator.
76The operators E and p do not possess this property.
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if f is a polynomial. This is not quite self-evident, because it is not true for all
functions f, and we have seen in Sec. 3.1.5 that it can happen that an expansion
converges to a “wrong result”. We shall see more examples of that later. Conver-
gence does not necessarily imply validity.

Suppose that z is a complex variable, and that ¢(z) is analytic at the origin,
i.e. ¢(z) is equal to its Maclaurin series, (say)

H(2) =ag+ a1z +ax2® + ...,

if |z| < p for some p > 0. For multivalued functions we always refer to the principal
branch. The operator function ¢(Qy,) is usually defined by the formal power series,

P(Qn) = ap +a1Qp + a2Qp + .. .,

where @)}, is treated like an algebraic indeterminate.

Table 3.3.1. Bickley’s table of relations between difference operators.

E A 6 \Y hD
1
152 1 hD
E E 1+A 14162 +6,/1+ 162 < e
/ 1 152 hD
A E—l A 6 1+Z(52+§6 1_ e —1

5 EY?2 _E-Y2  AQ+A)"1/2 ) V(1 —V)~1/2 2sinh 1D
A
_ -1 = 152 _ 142 _ .—hD
v 1-E A Sy/1+ 262 - 16 v 1—e
hD InE In(1+ A) 2sinh ™! 16 —In(1 - V) hD
1+ 1A 1-1v
Lpi/z y g-1/2y 25 /14 152 2 1
p S(EY2P+E ) TEVNEE 1+ 46 v cosh hD

The operators E, hD, A, §, V and u are related to each others. See Table 3.3.1
that is adapted from an article by the eminent blind British mathematician W. G.
Bickley (1948). Some of these formulas follow almost directly from the definitions,
others are derived in this section. We find the value sc(-) for each of these operators
by substituting o for D in the last column of the table. (Why?)

Example 3.3.4.

The definition of V reads in operator form E~! = 1 — V. This can be looked
upon as a formal power series (with only two non-vanishing terms) for the reciprocal
of F with V as the indeterminate. By the rules for formal power series mentioned
in Sec. 3.1.5, we obtain uniquely

E=EH'=01-V)t1=1+V+Vi4+....

We find in the table an equivalent expression containing a fraction line. Suppose
that we have proved the last column of the table. So, sc(V) = 1 — e~"*, hence

sc((1— V)™ = (e7")71 = eh = 5¢(E).

2007/
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Example 3.3.5.

Suppose that we have proved the first and the last columns of Bickley’s table
(except for the equation hD = In E). We shall prove one of the formulas in the
second column, namely the equation

§=A(1+A)"12

By the first column, the right-hand side is equal to (E—1)E~Y/2 = E1/2_F~1/2 =,
Q.E.D.
We shall also compute sc(A(1 4+ A)~1/2). Since sc(A) = "™ — 1 we obtain

sc(A(1 4 A)7V2) = (ehe — 1)(eh)71/2 = ha/2 _ g=ha/2
= 2sinh %ha = sc(0).

With the aid of Bickley’s table, we are in a position to transform L into the
form ¢(Qn)Rp. (A sum of several such expressions with different indeterminates
can also be treated.)

® (), is the one of the four operators, hD, A, ¢, V, which we have chosen to be the
“indeterminate”.

Lf~¢(Qn)f = (a0 +a1Qn + a2Q5 + ...) f. (3.3.16)

The coefficients a; are the same as the Maclaurin coefficients of ¢(z), z € C if ¢(z)
is analytic at the origin. They can be determined by the techniques described in
Sec.3.1.4 and Sec. 3.1.5. The meaning of the relation ~ will hopefully be clear from
the following theorem.

o Ry, is, e.g., ud or E¥, k integer, or more generally any linear operator with the
properties that RpF, = sc(Rp)F., and that the values of Rjf(z,) on the grid
Ty, = xg + nh, n integer, are determined by the values of f on the same grid.

Theorem 3.3.7.
Recall the notation Qy, for either of the operators A, §, V, hD, and the nota-
tions Fy(x) = e*®, f,(x) = 2™. Note that

Folz) =) %Tfn (z). (3.3.17)
n=0

Also recall the scalar of an operator and its properties, for example,
LFy=sc(L)Fa, Q) Fa = (sc(Qn))’ Fa;

for the operators under consideration the scalar depends on ha.
Assumptions:

(i) A formal power series equation L = Z;io anfl has been derived.”” Further-
more, |sc(Qn)| < p, where p is the radius of convergence of the series > a;z7, z € C,

"TTo simplify the writing, the operator Ry, is temporarily neglected. See one of the comments
below.
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and

L) =Y a;(sc(Qn)). (3.3.18)
j=0
(ii) At a =0 it holds that

o o
Lo Falw) = 5—(LFa)()

Fo(x)da [ (LF,)(x)da
L /C - /C . (3.3.19)

or equivalently,

antl antl
where C' is any circle with the origin as center.
(iii) The domain of x is a bounded interval I in R.
Then it holds that

LF, = (Z ani)Fa, if [se(Qn)| < p. (3.3.20)
) =0
e
x) =Y a;Q)f(x), if f€ P, (3.3.21)

for any positive integer k.

A rigorous error bound for (3.3.21), if f ¢ Pk, is obtained in Peano’s Theo-
rem 3.3.8.

An asymptotic error estimate (as h — 0 for fized k) is given by the first
neglected non-vanishing term a,Q} f(z) ~ a.(hD)" f(z), r > k, if f € C"[I], where
the interval I must contain all the points used in the evaluation of Q' f(x).

Proof. By Assumption 1,
J—1

LF, =sc(L)F, = hm Zajsc Qh w = hm ZaJQh w = hm (Zanh) s

hence LF,, = (Z;io Qi)Fa This proves the first part of the theorem.
By (3.3.17), Cauchy’s formula (3.2.8) and Assumption (ii),

271 B Fo(x)da [ (LF,)(z)da

b =1 [ Fe = [ R
j )d a; ) Fy(z) da
/Z“Qhanﬂ R

Let € be any positive number. Choose J so that the modulus of the last term
becomes €6,27/n!, where |0,| < 1. This is possible, since |sc(Qr)| < p; see As-
sumption (i). Hence, for every z € I,

J—1 J—1

! [ Falx)d
Lfn(x)_eon_%z:aj@i/c%_z 0;Q) fu(z ZCLJQ

7=0 7=0
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The last step holds if J > k > n, because, by (3.3.14), Qflfn =0forj >n. It
follows that

k—1
’Lfn(x) — Zanflfn(:v)’ <e Ve>0,
7=0

and hence Lf, = Y5~ a;Q} fa.

If f € Pg, f is a linear combination of f,, n = 0 : k — 1. Hence Lf =
Zf;é a;Q7 f if f € Py. This proves the second part of the theorem.

The error bound is derived in Sec. 3.3.1. Recall the important formula (3.3.4)
that expresses the kth difference as the value of the kth derivative in a point lo-
cated in an interval that contains all the points used in the computation of the kth
difference. i.e. the ratio of the error estimate a,(hD)" f(x) to the true truncation
error tends to 1, as h — 0. 0O

Remark 3.3.1. This theorem is concerned with series of powers of the four oper-
ators collectively denoted (). One may try to use operator techniques also to find
a formula involving, for example, an infinite expansion into powers of the operator
E. Then one should try afterwards to find sufficient conditions for the validity of
the result. This procedure will be illustrated in connection with Euler—-Maclaurin’s
formula in Sec. 3.4.5.

Sometimes, operator techniques which are not covered by this theorem can,
after appropriate restrictions, be justified (or even replaced) by transform methods,
for example, z-transforms, Laplace or Fourier transforms.

The operator Ry, that was introduced just before the theorem, was neglected in
the proof, in order to simplify the writing. We now have to multiply the operands
by Ry in the proof and in the results. This changes practically nothing for F,,
since RpF, = sc(Rp)F,. In (3.3.21) there is only a trivial change, because the
polynomials f and Rjf may not have the same degree. For example, if Ry = ud
and f € Py, then Rpf € P,_1. The verification of the assumptions typically offers
no difficulties.

It follows from the linearity of (3.3.20) that it is satisfied also if F, is replaced
by a linear combination of exponential functions F,, with different c, provided that
Isc(Qp)] < p for all the occurring o. With some care, one can let the linear combi-
nation be an infinite series or an integral.

There are two things to note in connection with the asymptotic error estimates.
First, the step size should be small enough; this means in practice that, in the
beginning, the magnitude of the differences should decrease rapidly, as their order
increases. When the order of the differences becomes large, it often happens that
the moduli of the differences also become increasing. This can be due to two causes:
semi-convergence (see the next comment) and/or rounding errors.

The rounding errors of the data may have so large effects on the high order
differences™ that the error estimation does not make sense. One should then use a
smaller value of the order k, where the rounding errors have a smaller influence. An
advantage with the use of a difference scheme is that it is relatively easy to choose

78Recall Example 3.3.2
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the order k adaptively, and sometimes also the step size h.

This comment is of particular importance for numerical differentiation. Nu-
merical illustrations and further comments are given below in Example 3.3.6 and
Problem 3.3.7 (b), and in several other places.

The sequence of approximations to L f may converge or diverge, depending on
f and h. It is also often semiconvergent, recall Sec. 3.2.6, but in practice the round-
ing errors mentioned in the previous comment, have often, though not always, taken
over already, when the truncation error passes its minimum; see Problem 3.3.7 (b).

Example 3.3.6. The Backwards Differentiation Formula.

By Theorem 3.3.6, e~*” = 1 —V. We look upon this as a formal power series;
the indeterminate is Q, = V. By Example 3.1.11,

1 1
L:hD:—ln(l—V)=V+§V2+§V3+... (3.3.22)

Verification of the assumptions of Theorem 3.3.7: ™

(i) sc(V) =1— e "2 the radius of convergence is p = 1.

sc(L) = sc(hD) = hay ZSC(V)j/j = —In(1 - (1 —e ")) = ha.
j=1

The convergence condition |sc(V)| < 1 reads ha > —In2 = —0.69 if « is real,
|hw| < 7/3 if @ = w.
671
(ii) For a =0, Dﬂ(ew) = Dz" = nz""'. By Leibniz’ rule:
«
%(ae‘”) =0z" +na" "t

By the theorem, we now obtain a formula for numerical differentiation that

is exact for all f € Py.

1 1 1

hf/(l') = (V + §V2 + §V3 +...+ ﬁvk_l)f(:v) (3323)
By Theorem 3.3.4, this is the unique formula of this type that uses the values of f(z)
at the k points x,, : —h : x,_k4+1. The same approximation can be derived in many
other ways, perhaps with a different appearance; see Chapter 4. This derivation has
several advantages; the same expansion yields approximation formulas for every
k, and if f € C*, f ¢ Py, the first neglected term, i.e. V5 f(xy), provides an

asymptotic error estimate, if ) (z,) # 0.

We now apply this formula to the table in Example 3.3.2, where f(x) = tanz,
h=0.01, k=6,
0.0163 0.0019 0.0001 0.0004
2 3 1 5
" Recall the definition of the scalar sc(-), after (3.3.13).

0.01f/(1.35) ~ 0.1996 +
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i.e. we obtain a sequence of approximate results,
F(1.35) =~ 19.96, 20.78, 20.84, 20.84, 20.83.

The correct value to 3D is (cos 1.35)72 = 20.849. Note that the last result is worse
than the next to last. Recall the last comments to the theorem. In this case this is
due to the rounding errors of the data. Upper bounds for their effect of the sequence
of approximate values of f/(1.35) is, by Example 3.3.3, shown in the series

9 2 4 8 16

10 (1+2+3+4+ - +o0).
A larger version of this problem was run on a comp