
Programming
language
concepts
—Third edition

Carlo Ghezzi, Politecnico di Milano
Mehdi Jazayeri, Technische Universität Wien

John Wiley & Sons
New York Chichester Br isbane Toronto Singapore

2 Chap.

Copyright 1996 by Carlo Ghezzi and Mehdi Jazayeri.

All rights reserved.

ISBN 0-000-000000-0

ABCDEFGHIJ-DO-89

 3

T A B L E O F C O N T E N T S
TABLE OF CONTENTS 3

Introduction 15
Software development process 16
Languages and software development environments 17
Languages and software design methods 19
Languages and computer architecture 21
Programming language qualities 25
Languages and reliability 26
Languages and maintainabil ity 27
Languages and efficiency 28
A brief historical perspective 29
Early high-level languages: FORTRAN, ALGOL 60, and COBOL 33
Early schisms: LISP, APL, and SNOBOL4 33
Putting them all together: PL/I 35
The next leap forward: ALGOL 68, SIMULA 67, Pascal, and BASIC 35
C and the experiments in the 70’s 36
The 80’s: ML, Ada, C++ and object orientation 37
The present 38
A bird’s eye view of programming language concepts 39
A simple program 39
Syntax and semantics 41
Semantic elements 42
Program organization 44
Program data and algorithms 46
External environment 47
Bibliographic notes 48
Exercises 48

Syntax and semantics 51
Language definition 52
Syntax 52
Abstract syntax, concrete syntax and pragmatics 56
Semantics 57
Language processing 64
Interpretation 64
Translation 66
The concept of binding 68

 4

Variables 69
Name and scope 70
Type 72
l_value 76
r_value 77
References and unnamed variables 79
Routines 80
Generic routines 86
More on scopes: aliasing and overloading 87
An abstract semantic processor 89
Execution-time structure 92
C1: A language with only simple statements 93
C2: Adding simple routines 94
C3: Supporting recursive functions 99
C4: Supporting block structure 104
Nesting via compound statements 105
Nesting via locally declared routines 108
C5: Towards more dynamic behaviors 113
Activation records whose size becomes known at unit activation 113
Fully dynamic data allocation 114
Parameter passing 120
Data parameters 120
Routine parameters 125
Bibliographic notes 129
Exercises 130

Structur ing the data 135
Built -in types and primitive types 136
Data aggregates and type constructors 138
Cartesian product 139
Finite mapping 140
Union and discriminated union 144
Powerset 146
Sequencing 147
Recursion 147
Insecurities of pointers 148
Compound values 151
User-defined types and abstract data types 152
Abstract data types in C++ 153

 5

Abstract data types in Eiffel 155
Type systems 159
Static versus dynamic program checking 160
Strong typing and type checking 161
Type compatibil ity 162
Type conversions 165
Types and subtypes 167
Generic types 169
Summing up: monomorphic versus polymorphic type systems 170
The type structure of existing languages 173
Pascal 173
C++ 175
Ada 177
Implementation models 184
Built -in and enumerations 184
Structured types 186
Cartesian product 187
Finite mapping 188
Union and discriminated union 189
Powersets 191
Sequences 192
Classes 192
Pointers and garbage collection 193
Bibliographic notes 195
Exercises 196

Structur ing the computation 199
Expressions and statements 200
Conditional execution and iteration 205
Routines 212
Style issues: side effects and aliasing 214
Exceptions 220
Exception handling in Ada 222
Exception handling in C++ 225
Exception handling in Eiffel 228
Exception handling in ML 233
A comparative evaluation 234
Pattern matching 237
Nondeterminism and backtracking 240

 6

Event-driven computations 242
Concurrent computations 244
Processes 249
Synchronization and communication 251
Semaphores 251
Monitors and signals 254
Rendezvous 257
Summing up 260
Implementation models 262
Semaphores 265
Monitors and signals 266
Rendezvous 267
Bibliographic note 268
Exercises 269

Structur ing the program 273
Software design methods 275
Concepts in support of modularity 276
Encapsulation 277
Interface and implementation 279
Separate and independent compilation 281
Libraries of modules 282
Language features for programming in the large 283
Pascal 284
C 287
C++ 290
Encapsulation in C++ 291
Program organization 291
Grouping of units 293
Ada 296
Encapsulation in Ada 296
Program organization 297
Interface and implementation 299
Grouping of units 301
ML 303
Encapsulation in ML 303
Interface and implementation 305
Abstract data types, classes, and modules 306
Generic units 307

 7

Generic data structures 307
Generic algorithms 308
Generic modules 310
Higher levels of genericity 311
Summary 313
Bibliographic notes 313
Exercises 314

Object-or iented languages 317
Concepts of object-oriented programming 319
Classes of objects 320
Inheritance 321
Polymorphism 322
 Dynamic binding of calls to member functions 323
Inheritance and the type system 325
Subclasses versus subtypes 325
Strong typing and polymorphism 326
Type extension 327
Overriding of member functions 327
Inheritance hierarchies 331
Single and multiple inheritance 331
Implementation and interface inheritance 332
Object-oriented programming support in programming languages 333
C++ 333
Classes 334
Virtual functions and dynamic binding 335
Use of virtual functions for specification 336
Protected members 337
Overloading, polymorphism, and genericity 339
Ada 95 339
Tagged types 339
Dynamic dispatch through classwide programming 342
Abstract types and routines 342
Eiffel 343
Classes and object creation 343
Inheritance and redefinition 343
Smalltalk 345
Object-oriented analysis and design 345
Summary 346

 8

Bibliographic notes 347
EXERCISES 348

Functional programming languages 353
Characteristics of imperative languages 354
Mathematical and programming functions 355
Principles of functional programming 356
Values, bindings, and functions 357
Lambda calculus: a model of computation by functions 358
Representative functional languages 362
ML 362
Bindings, values, and types 363
Functions in ML 363
List structure and operations 365
Type system 366
Type inference 369
Modules 371
LISP 373
Data objects 373
Functions 374
Functional forms 376
LISP semantics 377
APL 377
Objects 377
Functions 378
Functional Forms 379
An APL Program 380
Functional programming in C++ 382
Functions as objects 382
Functional forms 383
Type inference 385
Summary 386
Bibliographic notes 386
Exercises 387

Logic and rule-based languages 389
The"what" versus "how" dilemma: specification versus implementation 389
A first example 391
Another example 393

 9

Principles of logic programming 395
Preliminaries: facts, rules, queries, and deductions 395
An abstract interpretation algorithm 400
PROLOG 407
Functional programming versus logic programming 411
Rule-based languages 413
Bibliographic notes 416
Exercises 416

Languages in context 419
Languages and their execution context 420
User interfaces 420
Interface with databases 421
Languages and the context of the application area 421
Embedded applications 421
Languages and the context of the software development 421
Conclusions 422

10 Chap.

 11

FIGURE 1. A Von Neumann computer architectur 22
FIGURE 2. Requirements and constraints on a language 23
FIGURE 3. Hierarchy of paradigms 25
FIGURE 4. A phone-list program 40
FIGURE 5. EBNF definition of a simple programming language

(a) syntax rules, (b) lexical rules 54
FIGURE 6. Syntax diagrams for the language described in Fig-

ure 5. 55
FIGURE 7. Language processing by interpretation (a) and trans-

lation (b) 65
FIGURE 8. User-defined type in C++ 74
FIGURE 9. A C function definition 81
FIGURE 10. A generic routine in C++ 87
FIGURE 11. The SIMPLESEM machine 92
FIGURE 12. A C1 program 94
FIGURE 13. Initial state of the SIMPLESEM machine for the C1

program in Figure 12 94
FIGURE 14. A C2 program 95
FIGURE 15. State of the SIMPLESEM executing the program of

Figure 14 97
FIGURE 16. Program layout for separate compilation 98
FIGURE 17. A C3 example 99
FIGURE 18. Structure of the SIMPLESEM D memory imple-

menting a stack 102
FIGURE 19. Two snapshots of the D memory 104
FIGURE 20. An example of nested blocks in C4’ 106
FIGURE 21. An activation record with overlays 107
FIGURE 22. Static nesting tree for the block structure of Figure

20 108
FIGURE 23. A C4" example (a) and its static nesting tree

(b) 108
FIGURE 24. A sketch of the run-time stack (dynamic links are

shown as arrowed lines) 109
FIGURE 25. The run-time stack of Figure 24 with static

links 110
FIGURE 26. Management of the D memory 116
FIGURE 27. An example of a dynamically scoped

language 118
FIGURE 28. A view of the run-time memory for the program of

Figure 27 119
FIGURE 29. A view of call by reference 121
FIGURE 30. An example of routine parameters 127
FIGURE 31. Declarations of list elements in C and Ada 148
FIGURE 32. An example of dangling pointers in C 150
FIGURE 33. A C++ class defining point 153
FIGURE 34. A C++ generic abstract data type and its

 12

instantiation 155
FIGURE 35. An Eiffel class defining point 156
FIGURE 36. An Eiffel class defining a point that may not lie on

the axes x and y 158
FIGURE 37. An Eiffel abstract data type definition 159
FIGURE 38. A sample program 163
FIGURE 39. Examples of Ada types and subtypes 169
FIGURE 40. A classification of polymorhism 171
FIGURE 41. An example of conformant arrays in Pascal 174
FIGURE 42. The type structure of Pascal 175
FIGURE 43. The type structure of C++ 177
FIGURE 44. The type structure of Ada 184
FIGURE 45. Representation of an integer variable 185
FIGURE 46. Representation of a floating-point variable 185
FIGURE 47. Representation of a Cartesian product 188
FIGURE 48. Representation of a finite mapping 189
FIGURE 49. Representation of a discriminated union 191
FIGURE 50. A circular heap data structure 194
FIGURE 51. An example of an Ada program which raises an

exception 224
FIGURE 52. And/or tree 241
FIGURE 53. An example of coroutines 246
FIGURE 54. Sample processes:roducer and a consumer 247
FIGURE 55. Operations to append and remove from a

buffer 247
FIGURE 56. Producer-consumer example with semaphores 252
FIGURE 57. Producer-consumer example with monitor 255
FIGURE 58. Overall structure of a Concurrent Pascal program

with two processes (a producer and a consumer) and
one monitor (a buffer) 256

FIGURE 59. An Ada task that manages a buffer 258
FIGURE 60. Sketch of the producer and consumer tasks in

Ada 259
FIGURE 61. A protected Ada type implementing a buffer 261
FIGURE 62. State diagram for a process 263
FIGURE 63. Data structures of the kernel 265
FIGURE 64. Interface of a dictionary module in C++ 278
FIGURE 65. Package specification in Ada 280
FIGURE 66. Package body in Ada 281
FIGURE 67. Sketch of a program composed of two units 282
FIGURE 68. Static nesting tree of a hypothetical Pascal

program 286
FIGURE 69. A rearrangement of the program structure of Figure

68. 286
FIGURE 70. Separate files implementing and using a stack in

C 289

 13

FIGURE 71. A C program modularization 289
FIGURE 72. Structure of a C module 290
FIGURE 73. Stack class in C++ 292
FIGURE 74. Illustration of the use of fr iend declarations in

C++ 294
FIGURE 75. Dictionary module in ML (types string and int are

not necessary but used for explanation here) 304
FIGURE 76. A signature defintion for specialized

dictionary 305
FIGURE 77. A polymorphic dictionary module in ML 311
FIGURE 78. Classes point and colorPoint 330
FIGURE 79. A C++ abstract class using pure virtual

functions 337
FIGURE 80. Example of class inheritance (derivation) in

C++ 338
FIGURE 81. An Ada 95 package that defines a tagged type

Planar_Object 340
FIGURE 82. Extending tagged types in Ada 95 341
FIGURE 83. An abstract type definition in Ada 95 343
FIGURE 84. Definition of factorial in C++ and ML 358
FIGURE 85. An abstract data type stack in ML 369
FIGURE 86. A stack module in ML 372
FIGURE 87. A signature for string stack module that hides

length 372
FIGURE 88. Outline of a function object in C++ 382
FIGURE 89. Outline of a partially instantiated function object in

C++ 384
FIGURE 90. A C++ generic max function 385
FIGURE 91. A C++ implementation of binary search 393
FIGURE 92. Unification algorithm 401
FIGURE 93. A nondeterministic interpretation algorithm 403
FIGURE 94. Different computations of the nondeterministic

interpreter 405
FIGURE 95. Search tree for the query clos (a, f) 406
FIGURE 96. Variations of a PROLOG program 408
FIGURE 97. Sample PROLOG fragments using cut 409
FIGURE 98. Factorial in PROLOG 411
FIGURE 99. A PROLOG database 412
FIGURE 100. An and-or tree representation of production

rules 415

14 Chap.

1

15

1
C H A P T E R 1

Introduction 1

This book is concerned with programming languages. Programming lan-
guages, however, do not exist in a vacuum: they are tools for writing soft-
ware. A comprehensive study of programming languages must take this role
into account. We begin, therefore, with a discussion of the software develop-
ment process and the role of programming languages in this process. Sections
1.1. through 1.5 provide a perspective from which to view programming lan-
guages and their intended uses. From this perspective, we wil l weigh the mer-
its of many of the language concepts discussed in the rest of the book.

Programming languages have been an active field of computer science for at
least four decades. The languages that exist today are rooted in such historical
developments, either because they evolved from previous versions, or
because they derived inspiration from their predecessors. Such developments
are likely to continue in the future. To appreciate this fragment of the history
of science, we provide an overview of the main achievements in program-
ming languages in Section 1.6.

Finally, Section 1.7 provides an overview of the concepts of programming
languages that will be studied throughout this book. This section explains
how the various concepts presented in the remaining chapters fit together.

16 Introduction Chap.1

1.1 Software development process

From the inception of an idea for a software system, until it is implemented
and delivered to a customer, and even after that, the software undergoes grad-
ual development and evolution. The software is said to have a life cycle com-
posed of several phases. Each of these phases results in the development of
either a part of the system or something associated with the system, such as a
fragment of specification, a test plan or a users manual. In the traditional
waterfall model of the software li fe cycle, the development process is a
sequential combination of phases, each having well-identified starting and
ending points, with clearly identifiable deliverables to the next phase. Each
step may identify deficiencies in the previous one, which then must be
repeated.

A sample software development process based on the waterfall model may be
comprised of the following phases:

Requirement analysis and specification. The purpose of this phase is to identify and
document the exact requirements for the system.These requirements are developed
jointly by users and software developers. The success of a system is measured by how
well the software mirrors these stated requirements, how well the requirements mirror
the users' perceived needs, and how well the users' perceived needs reflect the real
needs. The result of this phase is a requirements document stating what the system
should do, along with users' manuals, feasibilit y and cost studies, performance require-
ments, and so on. The requirements document does not specify how the system is going
to meet its requirements.
Software design and specification. Starting with the requirements document, software
designers design the software system. The result of this phase is a system design spec-
ification document identifying all of the modules comprising the system and their inter-
faces. Separating requirements analysis from design is an instance of a fundamental
“what/how” dichotomy that we encounter quite often in computer science. The general
principle involves making a clear distinction between what the problem is and how to
solve the problem. In this case, the requirements phase attempts to specify what the
problem is. There are usually many ways that the requirements can be met. The purpose
of the design phase is to specify a particular software architecture that will meet the stat-
ed requirements. The design method followed in this step can have a great impact on
the quality of the resulting application; in particular, its understandabilit y and modifi-
abili ty. It can also affect the choice of the programming language to be used in system
implementation.
Implementation (coding). The system is implemented to meet the design specified in the
previous phase. The design specification, in this case, states the “what” ; the goal of the
implementation step is to choose how, among the many possible ways, the system shall
be coded to meet the design specification. The result is a fully implemented and docu-
mented system.
Verification and validation. This phase assesses the quality of the implemented system,
which is then delivered to the user. Note that this phase should not be concentrated at

 17

the end of the implementation step, but should occur in every phase of software devel-
opment to check that intermediate deliverables of the process satisfy their objectives.
For example, one should check that the design specification document is consistent with
the requirements which, in turn, should match the user's needs. These checks are accom-
plished by answering the following two questions:
“Are we building the product right?”
“Are we building the right product?”
Two specific kinds of assessment performed during implementation are module testing
and integration testing. Module testing is done by each programmer on the module he
or she is working on to ensure that it meets its interface specifications. Integration test-
ing is done on a partial aggregation of modules; it is basically aimed at uncovering in-
termodule inconsistencies.
Maintenance. Following delivery of the system, changes to the system may become
necessary either because of detected malfunctions, or a desire to add new capabili ties or
to improve old ones, or changes that occurred in operational environment (e.g., the op-
erating system of the target machine). These changes are referred to as maintenance.
The importance of this phase can be seen in the fact that maintenance costs are typically
at least as large as those of all the other steps combined.

Programming languages are used only in some phases of the development
process. They are obviously used in the implementation phase, when algo-
rithms and data structures are defined and coded for the modules that form the
entire application. Moreover, modern higher-level languages are also used in
the design phase, to describe precisely the decomposition of the entire appli -
cation into modules, and the relationships among modules, before any
detailed implementation takes place. We will next examine the role of the
programming language in the software development process by illustrating
the relationship between the programming language and other software
development tools in Section 1.2 and the relationship between the program-
ming language and design methods in Section 1.3.

1.2 Languages and software development environments

The work in any of the phases of software development may be supported by
computer-aided tools. The phase currently supported best is the coding phase,
with such tools as text editors, compilers, linkers, and libraries. These tools
have evolved gradually, as the need for automation has been recognized.
Nowadays, one can normally use an interactive editor to create a program and
the file system to store it for future use. When needed, several previously cre-
ated and (possibly) compiled programs may be linked to produce an execut-
able program. A debugger is commonly used to locate faults in a program and
eliminate them. These computer-aided program development tools have
increased programming productivity by reducing the chances of errors.

18 Introduction Chap.1

Yet, as we have seen, software development involves much more than pro-
gramming. In order to increase the productivity of software development,
computer support is needed for all of its phases. By a software development
environment we mean an integrated set of tools and techniques that aids in the
development of software. The environment is used in all phases of software
development: requirements, design, implementation, verification and valida-
tion, and maintenance.

An idealized scenario for the use of such an environment would be the fol-
lowing. A team of application and computer specialists interacting with the
environment develops the system requirements. The environment keeps track
of the requirements as they are being developed and updated, and guards
against incompleteness or inconsistency. It also provides facili ties to validate
requirements against the customer’s expectations, for example by providing
ways to simulate or animate them. The environment ensures the currency of
the documentation as changes are being made to the requirements. Following
the completion of the requirements, system designers, interacting with the
environment, develop an initial system design and gradually refine it, that is,
they specify the needed modules and the module interfaces. Test data may
also be produced at this stage. The implementers then undertake to implement
the system based on the design. The environment provides support for these
phases by automating some development steps, by suggesting reuse of exist-
ing design and implementation components taken from a library, by recording
the relationships among all of the artifacts, so that one can trace the effect of a
change in–say–the requirements document to changes in the design document
and in the code. The tools provided by the software development environment
to support implementation are the most familiar. They include programming
language processors, such as editors, compilers, simulators, interpreters, link-
ers, debuggers, and others. For this ideal scenario to work, all of the tools
must be compatible and integrated with tools used in the other phases. For
example, the programming language must be compatible with the design
methods supported by the environment at the design stage and with the design
notations used to document designs. As other examples, the editor used to
enter programs might be sensitive to the syntax of the language, so that syntax
errors can be caught before they are even entered rather than later at compile
time. A facility for test data generation might also be available for programs
written in the language.

The above scenario is an ideal; it is only approximated by existing commer-

 19

cial support tools, known under the umbrella term of CASE (Computer Aided
Software Engineering), but the trend is definitely going into the direction of
better support and more complete coverage of the process.

1.3 Languages and software design methods

As mentioned earlier, the relationship between software design methods and
programming languages is an important one. Some languages provide better
support for some design methods than others. Older languages, such as FOR-
TRAN, were not designed to support specific design methods. For example,
the absence of suitable high-level control structures in early FORTRAN
makes it difficult to systematically design algorithms in a top-down fashion.
Conversely, Pascal was designed with the explicit goal of supporting top-
down program development and structured programming. In both languages,
the lack of constructs to define modules other than routines, makes it diff icult
to decompose a software system into abstract data types.

To understand the relationship between a programming language and a
design method, it is important to realize that programming languages may
enforce a certain programing style, often called a programming paradigm.
For example, as we will see, Smalltalk and Eiffel are object-oriented lan-
guages. They enforce the development of programs based on object classes as
the unit of modularization. Similarly, FORTRAN and Pascal, as originally
defined, are procedural languages. They enforce the development of pro-
grams based on routines as the unit of modularization. Languages enforcing a
specific programming paradigm can be called paradigm-oriented. In general,
there need not be a one-to-one relationship between paradigms and program-
ming languages. Some languages, in fact, are paradigm-neutral and support
different paradigms. For example, C++ supports the development of proce-
dural and object-oriented programs. The most prominent programming lan-
guage paradigms are presented in the sidebar on page 20.

Design methods, in turn, guide software designers in a system’s decomposi-
tion into logical components which, eventually, must be coded in a language.
Different design methods have been proposed to guide software designers.
For example, a procedural design method guides designers in decomposing a
system into modules that realize abstract operations that may be activated by
other procedural modules. An object-oriented method guides in decomposing
a system into classes of objects. If the design method and the language para-

20 Introduction Chap.1

digm are the same, or the language is paradigm-neutral, then the design
abstractions can be directly mapped into program components. Otherwise, if
the two clash, the programming effort increases. As an example, an object-
oriented design method followed by implementation in FORTRAN increases
the programming effort.

In general, we can state that the design method and the paradigm supported
by the language should be the same. If this is the case, there is a continuum
between design and implementation. Most modern high-level programming
languages, in fact, can even be used as design notations. For example, a lan-
guage like Ada or Eiffel can be used to document a system’s decomposition
into modules even at the stage where the implementation details internal to
the module are still to be defined.

sidebar start 1
Here we review the most prominent programming language paradigms, with
special emphasis on the unit of modularization promoted by the paradigm.
Our discussion is intended to provide a roadmap that anticipates some main
concepts that are studied extensively in the rest of the book.

Procedural programming. This is the conventional programming style,
where programs are decomposed into computation steps that per-
form complex operations. Procedures and functions (collectively
called routines) are used as modularization units to define such
computation steps.

Functional programming. The functional style of programming is rooted in
the theory of mathematical functions. It emphasizes the use of ex-
pressions and functions. The functions are the primary building
blocks of the program; they may be passed freely as parameters
and may be constructed and returned as result parameters of other
functions.

Abstract data type programming. Abstract-data type (ADT) programming
recognizes abstract data types as the unit of program modularity.
CLU was the first language designed specifically to support this
style of programming.

Module-based programming. Rather than emphasizing abstract-data types,
module-based programming emphasizes modularization units that
are groupings of entities such as variables, procedures, functions,
types, etc. A program is composed of a set of such modules. Mod-
ules can be used to define precisely which services are exported to
the outside world by the module. In principle, any kind of service

 21

can be provided by a module, not just the ability to generate and
use abstract data. Modula-2 and Ada support this style of pro-
gramming.

Object-oriented programming. The object-oriented programming style em-
phasizes the definition of classes of objects. Instances of classes
are created by the program as needed during program execution.
This style is based on the definition of hierarchies of classes and
run-time selection of units to execute. Smalltalk and Eiffel are rep-
resentative languages of this class. C++ and Ada 95 also support
the paradigm.

Generic programming. This style emphasize the definition of generic mod-
ules that may be instantiated, either at compile-time or runtime, to
create the entities—data structures, functions, and procedures—
needed to form the program. This approach to programming en-
courages the development of high-level, generic, abstractions as
units of modularity. The generic programming paradigm does not
exist in isolation. It can exist jointly with object-oriented program-
ing, as in Eiffel, with functional programming, as in ML. It also
exists in languages that provide more than one paradigm, like Ada
and C++.

Declarative programming. This style emphasizes the declarative descrip-
tion of a problem, rather than the decomposition of the problem
into an algorithmic implementation. As such, programs are close
to a specification. Logic languages, like PROLOG, and rule-based
languages, li ke OPS5 and KEE, are representative of this class of
languages.

sidebar end

1.4 Languages and computer architecture

Design methods influence programming languages in the sense of establish-
ing requirements for the language to meet in order to better support software
development. Computer architecture has exerted influence from the opposite
direction in the sense of restraining language designs to what can be imple-
mented eff iciently on current machines. Accordingly, languages have been
constrained by the ideas of Von Neumann, because most current computers
are similar to the original Von Neumann architecture (Figure 1).

22 Introduction Chap.1

The Von Neumann architecture, sketched in Figure 1, is based on the idea of
a memory that contains data and instructions, a CPU, and an I/O unit. The
CPU is responsible for taking instructions out of memory, one at a time.
Machine instructions are very low-level. They require the data to be taken out
of memory, manipulated via arithmetic or logic operations in the CPU, and
the results copied back to some memory cells. Thus, as an instruction is exe-
cuted, the state of the machine changes.

Conventional programming languages can be viewed as abstractions of an
underlying Von Neumann architecture. For this reason, they are called Von
Neumann languages. An abstraction of a phenomenon is a model which
ignores irrelevant details and highlights the relevant aspects. Conventional
programming languages keep their computation model from the underlying
Von Neumann architecture, but abstract away from the details of the indivual
steps of execution. Such a model consists of a sequential step-by-step execu-
tion of instructions which change the state of a computation by modifying a
repository of values. Sequential step-by-step execution of language instruc-
tions reflects the sequential fetch and execution of machine instructions per-
formed by hardware. Also, the variables of conventional programming
languages, which can be modified by assignment statements, reflect the
behavior of the memory cells of the computer architecture. Conventional lan-
guages based on the Von Neumann computation model are often called
imperative languages. Other common terms are state-based languages, or
statement-based languages, or simply Von Neumann languages.

The historical developments of imperative languages have gone through
increasingly higher levels of abstractions. In the early times of computing,

FIGURE 1. A Von Neumann computer architectur

I/O Memory CPU

fetch instr.
execute
store result

 23

assembly languages were invented to provide primitive forms of abstraction,
such as the abili ty to name operations and memory locations symbolically.
Thus, instead of writing a bit string to denote the increment the contents of a
memory cell by one, it is possible to write something like

INC DATUM
Many kinds of abstractions were later invented by language designers, such
as procedures and functions, data types, exception handlers, classes, concur-
rency features, etc. As suggested by Figure 2, language developers tried to
make the level of programming languages higher, to make languages easier to
use by humans, but still based the concepts of the language on those of the
underlying Von Neumann architecture.

Some programming languages, namely, functional and logic languages, have
abandoned the Von Neumann computation model. Both paradigms are based
on mathematical foundations rather than on the technology of the underlying
hardware: the theory of recursive functions and mathematical logic, respec-
tively. The conceptual integrity of these languages, however, is in conflict
with the goal of an eff icient implementation. This is not unexpected, since
concerns of the underlying architecture did not permeate the design of such
languages in the first place. To improve eff iciency, some imperative features
have been introduced in most existing unconventional languages.

FIGURE 2. Requirements and constraints on a language

VonNeumann
Architecture

Programmer’s

Programming
Language higher level

Needs

requirements

constraints

24 Introduction Chap.1

This book considers the prevalent languages of the last decades and the issues
that have influenced their design. The primary emphasis of chapters 2 through
6 is on imperative languages. We cover the important issues in functional pro-
gramming languages in Chapter 7 and logic languages in Chapter 8. Further
comments and clarifications on language paradigms are provided in the side-
bar on page 24.

sidebar start2
The paradigms discussed in the previous sidebar can be classified as in the
hierarchy of Figure 3, according to the concepts discussed in Section 1.4.

Imperative, functional, and logic paradigms reflect the different underlying
computation model of the language. The next level paradigms reflect the dif-
ferent organizational principles for program structuring supported by the lan-
guage. As such, level 2 paradigms can apply–al least in principle–to any
computation model. For example, ML provides a functional computation
model and abstract data type programming. CLOS is a functional language
that supports the object-oriented style. The languages supporting concurrent
programming, which will be studied in Chapter 4, can still be classified under
the imperative paradigm, even though the Von Neumann machine we saw in
Figure 1 is purely sequential. In fact, the underlying abstract machine for the
concurrent languages that will be studied in this book can be viewed as a a set
of cooperating Von Neumann machine. Other kinds of parallel languages
exist supporting parallelism at a much finer granularity, which do not fall
under the classification shown in Figure 3.

 25

1.5 Programming language quali ties

How can we define the quali ties that a programming language should exhibit?
In order to understand that, we should keep in mind that a programming lan-
guage is a tool for the development of software. Thus, ultimately, the quality
of the language must be related to the quality of the software.

Software must be reliable. Users should be able to rely on the software, i.e.,
the chance of failures due to faults in the program should be low.
As far as possible, the system should be fault-tolerant; i.e., it
should continue to provide support to the user even in the presence
of infrequent or undesirable events such as hardware or software
failures. The reliabilit y requirement has gained importance as
software has been called upon to accomplish increasingly compli -
cated and often criti cal tasks.

Software must be maintainable. Again, as software costs have risen and in-
creasingly complex software systems have been developed, eco-
nomic considerations have reduced the possibilit y of throwing
away existing software and developing similar applications from
scratch. Existing software must be modified to meet new require-
ments. Also, because it is almost impossible to get the real require-
ments right in the first place, for such complex systems one can
only hope to gradually evolve a system into the desired one.

Software must execute efficiently. Efficiency has always been a goal of any
software system. This goal affects both the programming lan-

Paradigms

Imperative Functional Logic

ADT

Module Object-Oriented

Generic

.

based

FIGURE 3. Hierarchy of paradigms

Procedural

26 Introduction Chap.1

guage (features that can be efficiently implemented on present-
day architectures) and the choice of algorithms to be used. Al-
though the cost of hardware continues to drop as its performance
continues to increase (in terms of both speed and space), the need
for eff icient execution remains because computers are being ap-
plied in increasingly more demanding applications.

These three requirements–reliability, maintainabili ty, and efficiency–can be
achieved by adopting suitable methods during software development, appro-
priate tools in the software development environment, and by certain charac-
teristics of the programming language. We will now discuss language issues
that directly support these goals.

1.5.1 Languages and reliabili ty

The reliabil ity goal is promoted by several programming language qualiti es.
A non-exhaustive list is provided hereafter. Most of them, unfortunately, are
based on subjective evaluation, and are difficult to state in a precise–let alone,
quantitative–way. In addition, they are not independent concepts: in some
cases they are overlapping, in others they are conflicting.

Writability. It refers to the possibili ty of expressing a program in a way that
is natural for the problem. The programmer should not be distract-
ed by details and tricks of the language from the more important
activity of problem solving. Even though it is a subjective criteri-
on, we can agree that higher-level languages are more writable
than lower-level languages (e.g., assembly or machine languages).
For example, an assembly language programmer is often distract-
ed by the addressing mechanisms needed to access certain data,
such as the positioning of index registers, and so on. The easier it
is to concentrate on the problem-solving activity, the less error-
prone is program writing and the higher is productivity.

Readability. It should be possible to follow the logic of the program and to
discover the presence of errors by examining the program. Read-
abili ty is also a subjective criterion that depends a great deal on
matters of taste and style. The provision of specific constructs to
define new operations (via routines) and new data types, which
keep the definition of such concepts separate from the rest of the
program that may use them, greatly enhance readabil ity.

Simplicity. A simple language is easy to master and allows algorithms to be
expressed easily, in a way that makes the programmer self-confi-
dent. Simplicity can obviously conflict with power of the lan-
guage. For example, Pascal is simpler, but less powerful than

 27

C++.
Safety. The language should not provide features that make it possible to

write harmful programs. For example, a language that does not
provide goto statements nor pointer variables eliminates two well -
known sources of danger in a program. Such features may cause
subtle errors that are diff icult to track during program develop-
ment, and may manifest themselves unexpectedly in the delivered
software. Again, features that decrease the dangers may also re-
duce power and flexibility.

Robustness. The language supports robustness whenever it provides the
abili ty to deal with undesired events (arithmetic overflows, invalid
input, and so on). That is, such events can be trapped and a suitable
response can be programmed to respond to their occurrence. In
this way, the behavior of the system becomes predictable even in
anomalous situations.

1.5.2 Languages and maintainabili ty

Programming languages should allow programs to be easily modifiable.
Readabilit y and simplicity are obviously important in this context too. Two
main features that languages can provide to support modification are factor-
ing and locality.

Factoring. This means that the language should allow programmers to fac-
tor related features into one single point. As a very simple exam-
ple, if an identical operation is repeated in several points of the
program, it should be possible to factor it in a routine and replace
it by a routine call. In doing so, the program becomes more read-
able (especially if we give a meaningful name to subprograms)
and more easily modifiable (a change to the fragment is localized
to the routine's body). As another example, several programming
languages allow constants to be given symbolic names. Choosing
an appropriate name for a constant promotes readabil ity of the
program (e.g., we may use pi instead of 3.14). Moreover, a future
need to change the value would necessitate a change only in the
definition of the constant, rather than in every use of the constant.

Locality. This means that the effect of a language feature is restricted to a
small, local portion of the entire program. Otherwise, if it extends
to most of the program, the task of making the change can be ex-
ceedingly complex. For example, in abstract data type program-
ming, the change to a data structure defined inside a class is
guaranteed not affect the rest of the program as long as the opera-
tions that manipulate the data structure are invoked in the same

28 Introduction Chap.1

way. Factoring and locality are strongly related concepts. In fact,
factoring promotes locali ty, in that changes may apply only to the
factored portion. Consider for example the case in which we wish
to change the number of digits used to represent pi in order to im-
prove accuracy of a geometrical computation.

1.5.3 Languages and efficiency

The need for efficiency has guided language design from the beginning.
Many languages have had efficiency as a main design goal, either implicitly
or explicitly. For example, FORTRAN originally was designed for a specific
machine (the IBM 704). Many of FORTRAN's restrictions, such as the num-
ber of array dimensions or the form of expressions used as array indices, were
based directly on what could be implemented eff iciently on the IBM 704.

The issue of efficiency has changed considerably, however. Efficiency is no
longer measured only by the execution speed and space. The effort required
to produce a program or system initially and the effort required in mainte-
nance can also be viewed as components of the efficiency measure. In other
words, in some cases one may be more concerned with productivity of the
software development process than the performance of the resulting products.
Moreover, productivity concerns can span over several developments than
just one. That is, one might be interested in developing software components
that might be reusable in future similar applications. Or one might be inter-
ested in developing portable software (i.e., software that can be moved to dif-
ferent machines) to make it quickly available to different users, even if an ad
hoc optimized version for each machine would be faster.

Eff iciency is often a combined quality of both the language and its implemen-
tation. The language adversely affects efficiency if it disallows certain opti-
mizations to be applied by the compiler. The implementation adversely
affects eff iciency if it does not take all opportunities into account in order to
save space and improve speed. For example, we will see that in general a
statement like

x = fun (y) + z + fun (y);
in C cannot be optimized as

x = 2* fun (y) + z;
which would cause just one call to function fun.

 29

As different example, the language can affect eff iciency by allowing multi -
threaded concurrent computations. An implementation adversely affects effi-
ciency if–say–it does not reuse memory space after it is released by the pro-
gram. Finally, a language that allows visibilit y of the underlying size of
memory or access to–say–the way floating-point numbers are stored would
impede portability, and thus saving in the effort of moving software to differ-
ent platforms.

1.6 A br ief histor ical perspective

This section examines briefly the developments in language design by fol-
lowing the evolution of ideas and concepts from a historical perspective.

The software development process originally consisted only of the implemen-
tation phase. In the early days of computing, the computer was used mainly in
scientific applications. An application was programmed by one person. The
problem to be solved (e.g., a differential equation) was well -understood. As a
result, there was not much need for requirements analysis or design specifica-
tion or even maintenance. A programming language, therefore, only needed
to support one programmer, who was programming what would be by today's
standards an extremely simple application. The desire to apply the computer
in more and more applications led to its being used in increasingly less under-
stood and more sophisticated environments. This, in turn, led to the need for
“ teams” of programmers and more disciplined approaches. The requirements
and design phases, which up to then essentially were performed in one pro-
grammer's head, now required a team, with the results being communicated to
other people. Because so much effort and money was being spent on the
development of systems, old systems could not simply be thrown away when
a new system was needed. Economic considerations forced people to enhance
an existing system to meet the newly recognized needs. Also, program main-
tenance now became an important issue.

System reliability is another issue that has gained importance gradually,
because of two major factors. One factor is that systems are being developed
for users with lit tle or no computer background; these users are not as tolerant
of system failures as the system developers. The second factor is that systems
are now being applied in critical areas such as chemical or nuclear plants and
patient monitoring, where system failures can be disastrous. In order to
ensure reliabil ity, verification and validation became vital.

30 Introduction Chap.1

The shortcomings of programming languages have led to a great number of
language design efforts. This book examines these influences on language
design and assesses the extent to which the resultant languages meet their
goals. Sections 1.6.1 through 1.6.6 describe the historical evolution of pro-
gramming languages. Table1 gives a genealogy of selected programming
languages discussed in this book. The year we associate with each language
should be taken as largely indicative: depending on the availability of the rel-
evant information, it may mean either the year(s) of the language design, of
its initial implementation, or of its first available published description.

Table 1: Genealogy of selected programming languages

Language Year Originator
Predecessor
Language

Intended
Purpose

Reference

FORTRAN 1954-57 J. Backus Numeric
computing

Glossary

ALGOL 60 1958-60 Committee FORTRAN Numeric
computing

Naur 1963

COBOL 1959-60 Committee Business
data pro-
cessing

Glossary

APL 1956-60 K. Iverson Array pro-
cessing

Iverson 1962

LISP 1956-62 J. McCarthy Symbolic
computing

Glossary

SNOBOL4 1962-66 R. Griswold String pro-
cessing

Griswold et al.
1971

PL/I 1963-64 Committee FORTRAN
ALGOL 60
COBOL

General
purpose

ANSI 1976

SIMULA 67 1967 O.-J.Dahl ALGOL 60 Simulation Birtwistle et al.
1973

ALGOL 68 1963-68 Committee ALGOL 60 General
purpose

vanWijngaarden
et al. 1976
Lindsay and van
der Meulen 1977

 31

Pascal 1971 N. Wirth ALGOL 60 Educa-
tional
and
gen. pur-
pose

Glossary

PROLOG 1972 A. Colmer-
auer

Artificial
intelli gence

Glossary

C 1974 D. Ritchie ALGOL 68 Systems
program-
ming

Glossary

Mesa 1974 Committee SIMULA 67 Systems
program-
ming

Geschke et al.
1977

SETL 1974 J. Schwartz Very high
level lang.

Schwartz et al.
1986

Concurrent
Pascal

1975 P. Brinch
Hansen

Pascal Concurrent
program-
ming

Brinch Hansen
1977

Scheme 1975 Steele and
Sussman
(MIT)

LISP Education
using func-
tional pro-
gramming

Abelson and Sus-
sman 1985

CLU 1974-77 B. Liskov SIMULA 67 ADT
program-
ming

Liskov et al. 1981

Euclid 1977 Committee Pascal Verifiable
programs

Lampson et al.
1977

Gypsy 1977 D. Good Pascal Verifiable
programs

Ambler et al.
1977

Modula-2 1977 N. Wirth Pascal Systems
program-
ming

Glossary

Table 1: Genealogy of selected programming languages

Language Year Originator
Predecessor
Language

Intended
Purpose

Reference

32 Introduction Chap.1

Ada 1979 J. Ichbiah Pascal
SIMULA 67

General
purpose
Embedded
systems

Glossary

Smalltalk 1971-80 A. Kay SIMULA 67
LISP

Personal
computing

Glossary

C++ 1984 B. Strous-
trup

C
SIMULA 67

General
purpose

Glossary

KEE 1984 Intellicorp LISP Expert sys-
tems

Kunz et al 1984

ML 1984 R. Milner LISP Symbolic
computing

Ullman 1995

Miranda 1986 D.A.Turner LISP Symbolic
computing

Turner 1986

Linda 1986 D. Gelernter Parallel/
distributed
program-
ming

Ahuja et al 1986

Oberon 1987 N. Wirth Modula-2 Systems
program-
ming

Reiser and Wirth
1992

Eiffel 1988 B. Meyer SIMULA 67 General
purpose

Meyer 1992

Modula-3 1989 Committee
(Olivetti
and DEC)

Mesa
Modula-2

Systems
program-
ming

Cardelli et al.
1989

TCL/TK 1988 J. K. Oust-
erhout

OS shell l an-
guages

Rapid
develop-
ment, GUIs

Ousterhout 1994

Java 1995 SUN Micro-
systems

C++ Network
computing

Glossary

Table 1: Genealogy of selected programming languages

Language Year Originator
Predecessor
Language

Intended
Purpose

Reference

 33

1.6.1 Ear ly high-level languages: FORTRAN, ALGOL 60, and COBOL

The first attempts towards definition of high-level languages date back to the
1950s. Language design was viewed as a challenging compromise between
the users' needs for expressiveness and the machine's limi ted power. How-
ever, hardware was very expensive and execution eff iciency concerns were
the dominant design constraint.

The most important products of this historical phase were FORTRAN,
ALGOL 60, and COBOL. FORTRAN and ALGOL 60 were defined as tools
for solving numerical scientific problems, that is, problems involving com-
plex computations on relatively few and simple data. COBOL was defined as
a tool for solving business data-processing problems, that is, problems
involving simple computations on large amounts of data (e.g., a payroll appli -
cation).

These languages are among the major achievements in the whole history of
computer science, because they were able to prove that the idea of a higher-
level language was technically sound and economically viable. Besides that,
each of these languages has brought up a number of important concepts. For
example, FORTRAN introduced modularity via separately developed and
compiled subprograms and possible sharing of data among modules via a glo-
bal (COMMON) environment. ALGOL 60 introduced the notion of block
structure and recursive procedures. COBOL introduced files and data descrip-
tions, and a very preliminary notion of programming in quasi-natural lan-
guage.

An even more convincing proof of the validity of these languages is that,
apart from ALGOL 60 which did not survive but spawned into heir lan-
guages, they are stil l among the most widely used languages in practice. To
be sure, there are other reasons for this long-term success, such as:

• the users' reluctance to move to newer languages, because of the need for compatibilit y
with existing applications or just the fear of change.

• the fact that these languages have been evolving. For example, the present FORTRAN
standard (FORTRAN 90) remains compatible with the previous standards (FORTRAN
77 and FORTRAN 66), but modernizes them and overcomes several of their major
deficiencies.

1.6.2 Ear ly schisms: L ISP, APL, and SNOBOL4

As early as in the 1960s there were attempts to define programming lan-

34 Introduction Chap.1

guages whose computation model could be based on some well -characterized
mathematical principles, rather than on for efficiency of implementation.

LISP is one such example. The language definition was based upon the theory
of recursive functions and lambda calculus, and gave foundation to a new
class of languages called functional (or applicative) languages. Pure LISP is
free from the Von Neumann concepts of modifiable variables, assignment
statements, goto statements, and so on. LISP programs are exactly li ke gen-
eral LISP data structures, and thus the LISP interpreter can be specified in
LISP in a fairly simple manner.

APL is another language that supports a functional programming style. Its
very rich set of operators, especially on arrays, relieves the programmer from
using lower-level iterative, element-by-element array manipulations.

SNOBOL4 is a language providing string manipulation facil ities and pattern
matching. The programming style it supports is highly declarative.

LISP, APL, and SNOBOL4 are heavy consumers of machine resources (time
and space). All of them require highly dynamic resource management that is
difficult to do eff iciently on conventional machines. Yet these languages have
become very successful in specialized application areas. Also, they have been
adopted by groups of very devoted users. For example, LISP has become the
most used language for artificial intell igence research and applications. APL
has been widely used for rapid prototyping and scientific applications involv-
ing heavy usage of matrix operations. SNOBOL4 has been used successfully
for text manipulations.

An important contribution of LISP and SNOBOL4 was the emphasis on sym-
bolic computation. As we mentioned, in the early stages of computing com-
puters were mainly used to solve numerical problems, such as systems of
equations. This is why FORTRAN, ALGOL 60, and APL are mostly oriented
towards numerical problem-solving. At present, however, only a small frac-
tion of application developments are in the area of numeric computation.
Major emphasis is on symbolic information processing, such as database que-
ries and reporting, text processing, financial planning, and so on. COBOL can
be seen as an initial step in this direction, because the language is more ori-
ented towards moving and formatting data than manipulating data through
complex numeric computation. It is only with LISP and SNOBOL4 that sym-

 35

bolic computation became the central concern of the language.

1.6.3 Putting them all together: PL/I

PL/I was designed in the mid 1960s with an ambitious goal: to integrate the
most fruitful and original concepts of previous languages into a truly general
purpose, universal programming language. Besides taking concepts from
FORTRAN (such as separate modules), ALGOL 60 (block structure and
recursive procedures), COBOL (data description facil ities), and LISP
(dynamic data structures), PL/I introduced less consolidated features, such as
exception handling and some primitive multitasking facilities.

PL/I was probably too early. It incorporates different features, but does not
really integrate them in a uniform manner. Also, newer features needed more
research and experimentation before being incorporated in the language. As a
result, the language is extremely large and complex. So, as time went by, it
gradually disappeared.

1.6.4 The next leap forward: ALGOL 68, SIMULA 67, Pascal, and BASIC

Other languages designed in the late 1960s brought up several interesting
concepts that influenced later language designs. We refer to ALGOL 68,
SIMULA 67, and Pascal.

ALGOL 68 was designed as a successor to ALGOL 60. It is based on the
principle of orthogonality: language features can be composed in a free, uni-
form, and non-interfering manner with predictable effects. ALGOL 68 is a
good case study to see how different language concepts can interact to pro-
vide computational power. Another important concept brought up by the
ALGOL 68 effort is the need for formal language specification. The ALGOL
68 Report is probably the first complete example of a formal specification for
a programming language. The “purity” of ALGOL 68, the intricacies that can
result from an orthogonal combination of language features, and the absence
of compromises with such mundane aspects as a user-friendly syntactic nota-
tion were responsible for the early decline of ALGOL 68. The language has
been used in universities and research institutions, especially in Europe, but
had only a few industrial applications.

SIMULA 67 was also a successor of ALGOL 60, designed to solve discrete
simulation problems. In addition to ad hoc constructs for simulation and
coroutines that provide a primitive form of parallel execution, the language

36 Introduction Chap.1

introduced the concept of class, a modularization mechanism that can group
together a set of related routines and a data structure. Classes can be orga-
nized as hierarchies of increasing specialization. The class concept has influ-
enced most languages designed after SIMULA 67, such as C++, CLU,
Modula-2, Ada, Small talk, and Eiffel.

Pascal has been the most successful among these languages. Primarily con-
ceived as a vehicle for teaching structured programming, there was a rapid
expansion of interest in Pascal with the advent of low-cost personal comput-
ers. The main appeal of the language is simplicity and support to disciplined
programming. The language has also undergone extensive changes and mod-
ernization, so that many Pascal dialects exist nowadays. In particular, the lan-
guage has been extended with modularization and object-oriented features to
support development of large programs and reuse of components.

BASIC is another language that was designed in the mid 1960s and has
spawned into many, widely used, dialects. The language has a simple alge-
braic syntax like FORTRAN and limited control and data structures. This
simplicity, and the ease and eff iciency of BASIC implementations, have
made the language extremely popular. The language itself does not introduce
any new linguistic concepts, but was among the first available tools support-
ing a highly interactive, interpretive programming style. Recent improve-
ment, li ke Visual BASIC, provide very high-level facil ities for the rapid
development of window-based interactive application.

1.6.5 C and the exper iments in the 70’s

In the 1970s, it became clear that the needs for supporting reliable and main-
tainable software imposed strong requirements on programming languages.
This gave impetus to new research, experimentation, and language evalua-
tions.

Among the most important language concepts investigated in this period
were: abstract data types and visibili ty control to modules, strong typing and
static program checking, relationship between language constructs and formal
proofs of correctness, generic modules, exception handling, concurrency, and
interprocess communication and synchronization. We will discuss most of
these concepts in depth in the rest of this text. Among the most influential lan-
guage experiments were CLU, Mesa, Concurrent Pascal, Euclid, and Gypsy.

 37

Other languages designed in the 1970s, which survived after their experimen-
tal stage and now are used extensively, are C and Modula-2. In particular, C
became very successful, partly due to the increasing availabili ty of computers
running the UNIX operating system, whose development motivated the initial
design of the language. C is now among the most widely used languages, both
because of its power and because of the availabili ty of eff icient implementa-
tions on a wide variety of machines.

On the non-conventional side, the family of functional languages continued to
flourish, producing several LISP dialects. Among them, Scheme has been
widely adopted for instructional purposes in introductory programming
courses, as an alternative to conventional languages.

A major contribution in the field of nonconventional languages was provided
in the early 70s by PROLOG. PROLOG was the starting point of a new lan-
guage family: logic programming languages. The language had limi ted suc-
cess at that time, but later in the early 80’s gained much popularity when the
so-called Fifth Generation Computer Project was launched by the Japanese
government, and logic programming was chosen as the basis for the new gen-
eration of machines. PROLOG extensions were designed and implemented,
such as PARLOG and Concurrent PROLOG), under the assumption that new
generations of parallel machines would be designed to implement execution
of logic programs efficiently. Although the revolution predicted by the
project did not happen, PROLOG (and other logic languages) found their role
in niche software development environments.

1.6.6 The 80’s: ML, Ada, C++ and object or ientation

Developments in functional programming continued in the 80s, producing
such languages as Miranda and ML. The important conceptual contribution of
ML was to show that programming languages can be made very powerful
computationally, and yet they can preserve the ability to prove the absence of
certain types of errors without executing programs.

New results were also achieved in the family of conventional languages. The
desire to unify the programming languages used in embedded computer
applications and the need for more reliable and maintainable software led the
U.S. Department of Defense in 1978 to set down the requirements for a pro-
gramming language to be used as a common language throughout the D.O.D.
Because no existing language met the requirements, the D.O.D. sponsored the

 38

design of a new language. The result of this process is the Ada programming
language, which can be viewed as the synthesis of state-of-the-art concepts of
conventional programming languages. Ada has now evolved into the current
version, Ada 95, which incorporates several amendments and improvements
over the original version, in particular to support object-oriented program-
ming.

The origins of object-oriented programming can be traced back to Simula 67.
The approach, however, became popular because of the success of Smalltalk
in the late 70’s and, in particular, of C++. C++ succeeded in implanting
object-oriented features into a successful and widely available language like
C. This allowed a large population of programmers to incrementally shift
from a conventional programming paradigm into an expected better one.
Eiffel is another object-oriented language, which aims at supporting program-
ming with underlying disciplined software engineering principles.

Recent advances in the Pascal and Modula-2 tradition are Modula-3 and
Oberon.

1.6.7 The present

For decades the search for the ideal programming language has been like the
quest for the Holy Grail of computer scientists. It is now universally accepted
that this approach tries to answer the wrong question. As we mentioned ear-
lier, programmers might be interested in different qualities, and different lan-
guages (and different implementations) may indeed provide different
answers. So we now realize that the choice of the right language depends on
the application. We need to learn how to live with a variety of languages, and
need to be able to move from language to language when needed, as the appli -
cations change.

In the world of information systems applications that was the traditional
domain of COBOL, there is an increasing number of application generators,
which can generate code directly from screen forms that specify the data that
should be searched in a database, or the reports that must be produced. In cer-
tain limited application domains, nonexpert programmers and end users can
use such tools to develop nontrivial, practical applications, without resorting
to a professional programmer. Programming tools of this kind are often called
fourth generation languages. Other useful tools for this class of applications
are personal productivity tools (such as spreadsheets). Production-rule based

 39

expert systems are also used in narrowly focused application domains to
solve problems stated in a declarative style.

Highly interactive applications can be rapidly developed with the aid of
visual languages, such as Visual BASIC or Visual C++. Scripting languages,
such as TCL/TK, which specify activation patterns for existing tool frag-
ments, are an increasingly popular support for rapid application development,
which can be useful to develop prototypes.

Specific tools, languages, and environments also exist for developing expert
systems, i.e., systems providing problem solving support in specific applica-
tion domains, based on an explicit representation of knowledge that charac-
terizes the domains. Examples are expert system shells, and languages such
as KEE.

Finally, C++ seems to gain increasing acceptance as a general-purpose pro-
gramming tool, both because it supports object-oriented programming and
because it does not force abandoning more conventional approaches, as more
strict approaches would. However, we do not expect the programming lan-
guage field to reach a stable stage where one language will eventually take
over. An important direction for new developments has started already in the
area of network-centric computing. Java, a derivative of C++ supporting code
mobilit y on the Internet, has signed the starting point of a new generation of
programming languages.

1.7 A bird’s eye view of programming language concepts

This chapter provides a bird’s eye view of the main concepts of programming
languages which will be the subjects of an in-depth investigation in all the
remaining chapters. Its purpose is to show how all the various concepts that
will be presented fit together in a coherent picture. Using a simple C/C++
program as an example, we look at the kinds of faciliti es that a programming
language must support and the different ways that languages go about provid-
ing these facilities.

1.7.1 A simple program

Figure 4 shows a part of a C/C++ program that manipulates a list of phone
numbers. As programmers, our inclination on encountering a program is to
try to uncover what the program does and how it does it. Our purpose in this

 40

book, however, is to learn about the concepts and structure of programming
languages. We are interested in the kinds of things one can do with program-
ming languages, rather than the specifics of a given program. What are the
inherent capabilit ies and shortcomings of different programming languages?
What makes one language fundamentally different from another and what
makes one language similar to another, despite apparent differences? We will
use the simple program in Figure 4 to start our exploration of the structure of
programming languages. Therefore, in looking at the program, we want to
look at not what it does, but what kinds of linguistic facilit ies were used to
write the program.

We have divided the program into three parts, separated from each other by
single blank lines. The first section consists of two “#include” statements; the
second part consists of three “declaration” statements; and, finally, the third
part is the actual code of a function called main that supposedly “does the
work” . We can say that the first part is used to organize the structure of the
program, in this case in terms of the various files that constitute the program.
The second part defines the environment in which the program will work by

#include <iostream.h>
#include “phone.h”

extern phone_list pb;
void insert();
number lookup ();

main()
{

int request;

cout << “Enter 1 to insert, 2 to lookup: \n” ;
cin >> request;

 if (request == 1)
insert();

else if (request == 2)
cout << lookup();

else
{ cout << “ invalid request.\n” ;
exit (1);
}

}

FIGURE 4. A phone-list program

 41

declaring some entities that will be used by the program in this file. These
declarations may import entities defined in other files. For example, the line

extern phone_list pb;
indicates that the variable pb of type phone_list is being used in this program
but has been created elsewhere. The third part deals with the actual computa-
tion. This is the part we most often associate with a program. It contains the
program’s data and algorithms. Some of the data and processing in this part
may use the entities defined in the environment established in the second part.
For example, in Figure 4 the routines insert and lookup are used in the main
program. Another example is the output statement:

cout << “Enter 1 to insert, 2 to lookup: \n” ;
which uses cout, the standard output device defined in the standard input-out-
put library iostream.h included in the first line of the program.

Even in this short, simple program, we see that a programming language pro-
vides many different kinds of facili ties. Let us look more closely at some of
the major facilities and the issues involved in designing such language facili -
ties.

1.7.2 Syntax and semantics

Any programming language specifies a set of rules for the form of valid pro-
grams in that language. For example, in the program of Figure 4, we see that
many lines are terminated by a semicolon. We see that there are some special
characters used, such as { and }. We see that every if is followed by a paren-
thesized expression. The syntax rules of the language state how to form
expressions, statements, and programs that look right. The semantic rules of
the language tell us how to build meaningful expressions, statements, and
programs. For example, they might tell us that before using the variable
request in the if-statement, we must declare that variable. They also tell us that,
the declaration of a variable such as request causes storage to be reserved for
the variable. On the other hand, the presence of the extern in the declaration of
the variable pb indicates that the storage is reserved by some other module
and not this one.

Characters are the ultimate syntactic building blocks. Every program is
formed by placing characters together in some well-defined order. The syn-
tactic rules for forming programs are rather straightforward. The semantic

 42

building blocks and rules, on the other hand, are more intricate. Indeed, most
of the deep differences among the various programming languages stem from
their different semantic underpinnings.

1.7.3 Semantic elements

In this section, we will look at some of the basic semantic concepts in pro-
gramming languages. The idea is to examine these notions not from a pro-
grammer’s point of view but from the language designer’s point of view. We
want to see what choices may be available to a language designer and how the
designer’s decisions affect the programmer.

Var iables
A variable is the most pervasive concept in traditional programming lan-
guages. A variable corresponds to a region of memory which is used to hold
values that are manipulated by the program. We refer to a variable by its
name. The syntactic rules specify how variables may be named, for example,
that they may consist of alphabetic characters. But there are many semantic
issues associated with variables. A declaration introduces a variable by giv-
ing it a name and stating some of its semantic properties. Among the impor-
tant semantic properties are:

• scope: what part of the program has access to the variable? For example, in the example
program, the scope of the variable request extends to the end of the function called main.
That is, the variable may be referred to in any part of the program from the declaration of
the variable to the end of the function main. By contrast, the scope of the variable pb, is
the entire file. That is, if there were other functions besides main, they could also refer to
the variable pb. Usually, the location of the variable declaration determines the start of the
scope of the variable.

• type: what kinds of values may be stored in the variable and what operations may be
performed on the variable? The variable request is declared to be of type int and the
variable pb is declared of type phone_list. Usually, there are a number of fundamental
types defined by the language and there are some facili ties for the user to define new
types. Languages differ both in terms of the fundamental types and in the faciliti es for
type definition. The fundamental types of traditional languages are dictated by the types
that are supported by the hardware. Typically, as in C++, the fundamental types are
integer, real, character. Pascal also has boolean types. There is a large body of work on
data types that deals both with the theoretical underpinnings as well as practical
implications. We will study many of these issues in detail i n Chapter 3.

• lifetime: when is the variable created and when is it discarded? As we said, a variable
represents some region of memory which is capable of holding a value. The question is
when is a memory area reserved, or allocated, for the variable? Some possibiliti es are:
when the program starts, when the declaration is encountered at execution time, when the
unit in which the declaration occurs is entered, or there could be a statement that explicitly

 43

requests the allocation of storage for the variable. Indeed, C++ has all of these kinds of
variables: automatic variables are allocated when the unit in which they are declared is
entered and deallocated when the unit terminates; static variables live throughout the
execution of the program; some variables may be created and destroyed explicitly by the
programmer using the operators new and delete.

These issues will be discussed in detail i n Chapter 2.

Values and references
Having defined some basic issues concerning variables, let us ponder a sim-
ple question: what is the value associated with a variable? Well , there are at
least two answers to this question. Consider an assignment statement of the
form:

x = y;
The value referred to by the name y is of a different kind from that referred to
by the name x. We have defined a variable as a region of memory. On the
right hand side of this assignment statement, we need the contents of that
memory and on the left hand side we need the address of, or a reference to,
that region. To enable us to refer to both of these kinds of values, we define
two notions: an l-value is a value that refers to a memory location, and, there-
fore, may be used on the left hand side of an assignment statement; an r-value
is a value that refers to the contents of a memory location, that is, a value that
may be used on the right-hand side of an assignment statement. Referring to
the assignment statement above, we need an r-value for y and an l-value for x.

In most languages, the conversions from l-values to r-values are implicit.
Some languages, such as C++, also have explicit operators to do the conver-
sions when necessary. For example, the & operator in C++ is the address-of
operator, which obtains the l-value of its operand. Therefore,

x = &y;
stores the address of y into x. The & is necessary because the default rule is
that on the right-hand side, the r-value is used.

Some contexts require a particular type of value. For example, the left-hand
side of an assignment statement requires an l-value. Therefore:

3 = y; //error, left-hand side requires l-value
is an error because literals in C++ do not have l-values. Instead,

y = 3;

 44

is legal since the li teral 3 is an r-value.

Expressions
Expressions are syntactic constructs that allow the programmer to combine
values and operations to compute new values. The language specifies syntac-
tic as well as semantic rules for building expressions. Depending on the lan-
guage, an expression may be constrained to produce a value of only one type
or of different types at different times. In the program of Figure 4, we see sev-
eral expressions of different types. For example, request == 1, is an expression
of type boolean; “invalid request.\n” is an expression of type string.

For example, in C or C++, an assignment statement produces a value and
therefore is also an expression and may be used as a constituent of another
expression. Consider:

a = b = c + d;
which assigns (first) to b the value of the expression c+d and then assigns the
same value to a. The language Pascal does not allow an assignment statement
to be used as part of an expression.

As can be seen from this example, the order in which operations are per-
formed in an expression may influence the value of the expression. Some lan-
guages specify the order strictly, for example right-to-left, and others leave it
to the implementer to decide the order. Leaving such issues to the implemen-
tation requires the programmer to be more careful because a program that
produces the correct result may not necessarily do so when compiled with a
different compiler.

The major semantic issue surrounding expressions is the allowable kinds of
expressions. Specifically, does the language support expressions that produce
only r-values or can expressions also result in l-values (or even functions)?
More on expressions wil l be said in Chapter 4 for conventional languages.
Chapter 7 wil l deal with functional languages, which can also be called
expression-oriented, since expressions play a central role in such languages.

1.7.4 Program organization

Programs that implement software systems and applications consist of thou-
sands, hundreds of thousands, or even millions of lines of code. These lines
together implement a particular system design that consists of many inter-

 45

related components, or modules. A programming language can provide mech-
anisms to help the programmer in managing this complexity. To some degree,
the structure of the design may be reflected in the structure of the program. As
we mentioned, this is straightforward whenever the design method and the
programming language paradigm match.

As an example, a program in C/C++ consists of a number of files. By conven-
tion, a programmer may implement each design module in one file. Even
more, some files may contain modules that are more generally available,
referred to as libraries. In the example of Figure 4, the program includes a file
called iostream.h, which provides the declarations to use the standard input-
output library provided by C/C++. The language does not have any particular
facilities for supporting input-output. Instead, a collection of routines make
up a library that support input-output operations. Programs that want to use
input/output include iostream.h. The other file included by the program is
called phone.h. This file is presumably more specific to this application and
contains information, such as type definitions, that are shared by different
modules of the program.

Being able to break a program into a number ofindependent parts has many
advantages. First, if the parts are independent, they may be implemented and
validated by different people. Program debugging and maintenance is also
simpli fied because changes may be isolated to independent modules. Second,
it is more practical to store the program in several files rather than one big
file. The ability to compile separate parts of the program is important in writ-
ing large applications.

In C/C++, the inclusion of f iles imposes an ordering relationships among the
modules of a program. The main program includes some files which may in
turn include other files and so on. Obviously, the included files must be writ-
ten before the files that include them. This relationship imposes a hierarchy
among the files that constitute the program. There are files that need no other
files. These are at the lowest level of the hierarchy—level 0. At the next level
are files that only include files from level 0. This file inclusion facility sup-
port the direct implementation of hierarchical designs.

Finally, if C++ is chosen, the language provides support both to procedural
and object-oriented programming. The program structure can therefore match
a design method based on both decomposition into abstract operations and

 46

hierarchies of abstract data types.

Similar considerations hold for Ada. Whereas the correspondence between
design modules and program files in C/C++ is rather loose and by conven-
tion, in Ada this correspondence is emphasized. Each module has a specifica-
tion and an implementation. Once the specification of a module is written,
other modules that use this module may be written and compiled. This
approach reduces the dependence among programmers in that more work
may be done in parallel. Ada also supports the concept of a library where
module specifications are stored. The language requires that interfaces across
independently compiled modules must be checked to ensure that the called
and the calling modules agree. On the other hand, the FORTRAN language
also supports independently developed (procedural) modules but does not
require type checking across such modules.

The program organization facil ities provided by a programming language are
dependent on the goals of the language. If the language is intended for writing
small programs, for example for the writing of mathematical algorithms to be
run on a calculator, such facil ities are not crucial. If , on the other hand, the
language is to be used to develop very large programs, these facili ties are
indispensable. Most modern languages today support at least the notion of a
module for breaking up a large program into several independent parts.
Where the languages differ is in the way the different modules have access to
each other’s internal entities and inthe types of entities that may be imported
from other modules. They also differ in the treatment of modules, e.g.,
whether they can be instantiated, whether they can be separately compiled,
etc. These are the specific topics addressed in Chapter 5.

1.7.5 Program data and algor ithms

Programming languages provide facili ties for implementing algorithms. The
algorithms operate on some data to produce some results. This is where pro-
gramming languages differ the most from each other. The majority of pro-
gramming languages, including C++, are imperative. As we can see in Figure
4, the main program consists of some variable declarations and some state-
ments that operate on these variables. There are also input-output statements.
The execution of statements modifies the values stored in the memory of the
underlying machine; i.e., it modifies the state of the computation.We wil l deal
with these in the next section. For now let us look at the issues relating to data
and computation.

 47

Data
There are many issues surrounding the idea of data. Look at the simple vari-
able request declared in our example program. It has a type, which in this case
is int. It tells us what kinds of values it may hold. Where can such a variable
declaration occur in a program? Only at the beginning of a program or any-
where? When is the variable created? Does it have an initial value? Is it
known to other procedures or modules of the program? How can variables be
exported to other modules?

Given some elementary data items such as variables, are there mechanisms to
combine them? For example, C++ provides arrays and records for building
aggregate data structures. What are the kinds of components that a data struc-
ture may contain? Can a function be an element of a record? In Pascal the
answer is no and in C++ the answer is yes.

Sophisticated mechanisms for data definition allow the programmer to modu-
larize the data in the program similarly to the way that the algorithms are
modularized. For example, in our program in Figure 4, we use a file phone.h to
store the basic definitions concerning phone data that are used by all other
modules. Object-oriented programming languages draw much of their power
from the mechanisms to define and refine complex data items. Chapters 4 and
7 are devoted to these topic.

Computation
We have already seen expressions as a mechanism for computing values.
Expressions are usually made up of elementary values and have a simple
structure. Control structures are used to structure more complicated computa-
tions. For example, mechanisms such as various kinds of loops provide for
repeated executions of a sequence of statements. Routine calls allow for the
execution of a computation defined elsewhere in the program. Combining
expressions, statements, control structures and routine calls in C++ and other
conventional languages allows the programmer to write algorithms using an
imperative computation paradigm.

Chapter 4 describes the programming language mechanisms used for struc-
turing computations.

1.7.6 External environment

Programs are seldom self-contained implementations of algorithms. The data

 48

they need and the results they expect to compute are normally transferred to
and from the program to the external environment. In the example of Figure
4, the user is asked to type in a request. In other cases, a program might need
to access an external database; a device driver program might need to acquire
the value of a particular signal.

How do programs communicate with the external environment? Some lan-
guages define specific constructs for input/output. Other languages, such as
C/C++, do not provide such faciliti es. Instead, they rely on libraries external
to the language to provide such facili ties. For example, iostream.h is the header
file that allows the input/output library to become accessible by the program
in Figure 4 allows the program to interact with the user. The same happens for
accessing an external database.

The advantage of language-supported faciliti es for communication with the
external environment is that the programmer has a complete model of the
environment and the compiler can do consistency checking. Supporting the
facilities in a library makes the language simpler and allows more flexibility.
For example, different libraries may be added as new devices, such as graphi-
cal ones, become available.

1.8 Bibliographic notes

Software development processes, environments and methods are covered in
software engineering textbooks, such as (Ghezzi et al. 1991).

For a historical perspective on programming language developments, see
(Wexelblat 1981). The Turing lectures by Backus (Backus 1978), Hoare
(Hoare 1981), and Wirth (Wirth 1985) provide stimulating reflections on pro-
gramming languages and their evolution. In particular, (Backus 1978) takes a
strong position in favor of functional languages as opposed to the Von Neu-
mann conventional approach.

1.9 Exercises

1. Write a short paper on the costs of programming. Discuss both the costs involved in
developing and maintaining programs, and the costs involved in running programs.
Discuss the role of the programming language in both.

2. List the main features of your favorite programming language that can help make
programs easily maintainable. Also discuss features that hinder maintainabilit y.

 49

3. Can you find reasons why the optimization mentioned in Section 1.5.3 cannot be done in
general for C?

4. 3Provide a succinct characterization of imperative vs. nonconventional (functional and
logic languages).

5. Take one or two languages you have used and discuss the types of expressions you can
write in the language.

6. Take one or two languages you have used and discuss the facil ities provided for program
organization.

7. Take one or two languages you have used and describe how the language supports
interaction with the external environment.

50 Introduction Chap.1

1

51

1
C H A P T E R 2

Syntax and semantics 2

A programming language is a formal notation for describing algorithms for
execution by computer. Like all formal notations, a programming language
has two major components: syntax and semantics. Syntax rules describe the
form of any legal program. It is a set of formal rules that specify the composi-
tion of programs from letters, digits, and other characters. For example, the
syntax rules may specify that each open parenthesis must match a closed
parenthesis in arithmetic expressions, and that any two statements must be
separated by a semicolon. The semantic rules specify “ the meaning” of any
syntactically valid program written in the language. Such meaning can be
expressed by mapping each language construct into a domain whose seman-
tics is known. For example, one way of describing the semantics of a lan-
guage is by giving a description of each language construct in English. Such a
description, of course, suffers from the informality, ambiguity, and wordiness
of natural language, but it can give a reasonably intuitive view of the lan-
guage. In order to provide complete formal description of language seman-
tics, syntactically valid programs are mapped onto mathematical domains.
We will provide a preliminary introduction to formal semantics in a sidebar in
this chapter. A full treatment of formal semantics, however, is out of the
scope of this text. Rather, we will provide a rigorous, yet informal, descrip-
tion of semantics by specifying the behavior of an abstract processor that exe-
cutes programs written in the language. This kind of semantic
characterization of a language is called operational semantics. It could be pre-
sented using a rigorous and formal notation. Instead, we wil l follow a more

52 Syntax and semantics Chap.2

traditional and informal approach, because it is more easily and intuitively
understood by computer programmers and provides a high-level view of the
problems found in implementing the language.

This chapter devoted syntax and operational semantics of programming lan-
guages. It is organized as follows: In Section 2.1, we discuss how the syntax
and semantics of a language can be defined. In Section 2.2 we discuss lan-
guage implementation and introduce the fundamental semantic concept of
binding. In Section 2.3 and Section 2.4 we discuss two important concepts of
programming languages–variables and routines–and their binding properties.
In Section 2.5 we define an abstract semantic processor that can be used to
specify operational semantics. In Section 2.6 we discuss how the abstract pro-
cessor implements the main run-time features of programming languages.

2.1 Language definition

When you read a program, how do you know if it is well formed? How do
you know what it means? How does a compiler know how to translate the
program? Any programming language must be defined in enough detail to
enable these kinds of issues to be resolved. More specifically, a language def-
inition should enable a person or a computer program to determine (1)
whether a purported program is in fact valid, and (2) if the program is valid,
what its meaning or effect is. In general, two aspects of a language-program-
ming or natural language-must be defined: syntax and semantics.

2.1.1 Syntax

Syntax is described by a set of rules that define the form of a language: they
define how sentences may be formed as sequences of basic constituents
called words. Using these rules we can tell whether a sentence is legal or not.
The syntax does not tell us anything about the content (or meaning) of the
sentence–the semantic rules tell us that. As an example, C keywords (such as
while, do, if, else,...), identifiers, numbers, operators, ... are words of the lan-
guage. The C syntax tells us how to combine such words to construct well -
formed statements and programs.

Words are not elementary. They are constructed out of characters belonging
to an alphabet. Thus the syntax of a language is defined by two sets of rules:
lexical rules and syntactic rules. Lexical rules specify the set of characters
that constitute the alphabet of the language and the way such characters can

 53

be combined to form valid words.

For example, Pascal considers lowercase and uppercase characters to be iden-
tical, but C and Ada consider them to be distinct. Thus, according to the lexi-
cal rules, “Memory” and “memory” refer to the same variable in Pascal, but
to distinct variables in C and Ada. The lexical rules also tell us that <> (or ¦) is
a valid operator in Pascal but not in C, where the same operator is represented
by !=. Ada differs from both, since “not equal” is represented as /=; delimiter
<> (called “box”) stands for an undefined range of an array index.

The distinction between syntactic and lexical rules is somewhat arbitrary.
They both contribute to the “external” appearance of the language. Often, we
will use the terms “syntax” and “syntactic rules” in a wider sense that
includes lexical components as well .

How does one define the syntax of a language? Because there are an infinite
number of legal and illegal programs in any useful language, we clearly can-
not enumerate them all. We need a way to define an infinite set using a finite
description. FORTRAN was defined by simply stating some rules in English.
ALGOL 60 was defined with a context-free grammar developed by John
Backus. This method has become known as BNF or Backus Naur form (Peter
Naur was the editor of the ALGOL 60 report.) BNF provides a compact and
clear definition for the syntax of programming languages. We ill ustrate an
extended version of BNF (EBNF) in the sidebar on page 53, along with the
definition of a simple language. Syntax diagrams provide another way of
defining syntax of programming languages. They are conceptually equivalent
to BNF, but their pictorial notation is somewhat more intuitive. Syntax dia-
grams are also described in the sidebar.

Sidebar-start-1
EBNF is a meta-language. A meta-language is a language that is used to
describe other languages. We describe EBNF first, and then we show how it
can be used to describe the syntax of a simple programming language (Figure
5(a)). The symbols ::=, <, >, *, +, (,), and | are symbols of the metalanguage:
they are metasymbols. A language is described in EBNF through a set of
rules. For example, <program> ::= { <statement>* } is a rule. The symbol
"::=" stands for “ is defined as” . The symbol “ *” stands for “an arbitrary
sequence of the previous element” . Thus, the rule states that a <program> is
defined as an arbitrary sequence of <statement> within brackets “ { ” and “ } ” .

54 Syntax and semantics Chap.2

The entities inside the metalanguage brackets “<” , and “>” are called nonter-
minals; an entity such as the “ } ” above is called a terminal. Terminals are
what we have previously called words of the language being defined, whereas
nonterminals are linguistic entities that are defined by other EBNF rules. In
order to distinguish between metasymbols and terminals, Figure 5 uses the
convention that terminals are written in bold. To complete our description of
EBNF, the metasymbol “+” denotes one or more repetitions of the previous
element (i.e., at least one element must be present, as opposed to “* ”). The
metasymbol “ |” denotes a choice. For example, a <statement> is described in
Figure 5(a) as either an <assignment>, a <conditional>, or a <loop>.

The lexical rules, which describe how identifiers, numbers, and operators
look like in our simple language are also described in EBNF, and shown in
Figure 5(b). To do so, <operator>, <identifier>, and <number>, which are
words of the language being defined, are detailed in terms of elementary sym-
bols of the alphabet.

Figure 6 shows the syntax diagrams for the simple programming language
whose EBNF has been discussed above. Nonterminals are represented by cir-
cles and terminals by boxes. The nonterminal symbol is defined with a transi-
tion diagram having one entry and one exit edge. A string of words is a valid
program if it can be generated by traversing the syntax diagram from the

FIGURE 5. EBNF definition of a simple programming language
(a) syntax rules, (b) lexical rules

 (a) Syntax rules

<program>::={ <statement>* }
<statement>::=<assignment> | <conditional> | <loop>
<assignment>::=<identifier> = <expr> ;
<conditional>::=if <expr> { <statement> + } |

if <expr> { <statement> + } else { <statement> + }
<loop>::=while <expr> { <statement> + }
<expr> ::=<identifier> | <number> | (<expr>) | <expr> <operator> <expr>

(b) Lexical rules

<operator>::= + | - | * | / | = | ¦ | < | > | ≤ | ≥
<identifier>::= <letter> <ld>*
<ld>::= <letter> | <digit>
<number>::= <digit>+
<letter>::= a | b | c | . . . | z

 55

entry to the exit edge. In this traversal, if a terminal (box) is encountered, that
word must be in the string being recognized; if a nonterminal (circle) is
encountered, then that nonterminal must be recognized by traversing the tran-
sition diagram for that nonterminal. When a branch in the path is encoun-
tered, any one edge may be traversed. Syntax diagrams are similar enough to
EBNF to allow you to understand the rules.

program

statement

statement
assignment

conditional

loop

{ }

assignment
identifier = expression

if expression statement{ }

else { statement }

conditional

while expression statement{ }
loop

expression expressionoperator
expression

identifier

number

FIGURE 6. Syntax diagrams for the language described in Figure 5.

expression()

56 Syntax and semantics Chap.2

sidebar-end

In conclusion, the syntactic description of a language has two primary uses:

(a) It helps the programmer know how to write a syntactically correct pro-
gram. For example, if one is unsure about the syntax of if statements, a look at
the EBNF or syntax diagrams can quickly settle any doubts.

(b) It can be used to determine whether a program is syntactically correct.
This is exactly what a compiler does. The compiler writer uses the grammar
to write a syntactic analyzer (also called parser) that is capable of recognizing
all valid programs. This process is now largely automated. In fact, there are
programs (“compiler generators”) that can use the grammar of the language
as input and produce the analyzer as output. LEX and YACC are two well -
known UNIX tools that generate lexical and syntax analyzers, respectively,
starting from a description of the lexical and syntactic rules of the language.
Several versions of these tools exist.

2.1.1.1 Abstract syntax, concrete syntax and pragmatics

Some language constructs in different programming languages have the same
conceptual structure but differ in their appearance at the lexical level. For
example, the C fragment

while (x != y) {
. . .

} ;
and the Pascal fragment

while x <> y do
begin

. . .
end

can both be described by simple lexical changes in the EBNF rules of Figure
5. They differ from the simple programming language of Figure 5 only in the
way statements are bracketed (begin ... end vs. { ... }), the “not equal” operator
(<> vs. !=), and the fact that the loop expression in C must be enclosed within
parentheses. When two constructs differ only at the lexical level, we say that
they follow the same abstract syntax, but differ at the concrete syntax level.
That is, they have the same abstract structure and differ only in lower-level
details.

 57

Although, conceptually, concrete syntax may be irrelevant, pragmatically it
may affect usabil ity of the language and readabili ty of programs. For exam-
ple, symbol ¦ is obviously more readable than !=. As another example, the
simple language of Figure 5 requires the body of while statements and the
branches of conditionals to be bracketed by { and }. Other languages, such as
C or Pascal, allow brackets to be omitted in the case of single statements. For
example, one may write:

while (x != y) do x = y + 1;
Pragmatically, however, this may be error prone. If one more statement needs
to inserted in the loop body, one should not forget to add brackets to group the
statements constituting the body. Modula-2 adopts a good concrete syntax
solution, by using the “end” keyword to terminate both loop and conditional
statements. A similar solution is adopted by Ada. The following are Modula-
2 examples:

if x = y then if x = y then while x = y do
.

end else end
. . .

end
In all three fragments, the “...” part can be either a single statement or a
sequence of statements separated by a semicolon.

2.1.2 Semantics

Syntax defines well -formed programs of a language. Semantics defines the
meaning of syntactically correct programs in that language. For example, the
semantics of C help us determine that the declaration

int vector [10];
causes ten integer elements to be reserved for a variable named vector. The
first element of the vector may be referenced by vector [0]; all other elements
may be referenced by an index i, 0 ≤ i ≤ 9.

As another example, the semantics of C states that the instruction

if (a > b) max = a; else max = b;
means that the expression a > b must be evaluated, and depending on its value,
one of the two given assignment statements is executed. Note that the syntax
rules tell us how to form this statement–for example, where to put a “ ;”–and
the semantic rules tell us what the effect of the statement is.

58 Syntax and semantics Chap.2

Actually, not all syntactically correct programs have a meaning. Thus, seman-
tics also separates meaningful programs from syntactically correct ones. For
example, according to the EBNF of the simple language described in Figure
5, one could write any expression as a condition of if and while statements.
The semantics of the language might require such expressions to deliver a
truth value (TRUE or FALSE, not–say–an integer value). In many cases, such
rules that further constrain syntactically correct programs can be verified
before a program’s execution: they constitute static semantics, as opposed to
dynamic semantics, which describes the effect of executing the different con-
structs of the programming language. In such cases, programs can be exe-
cuted only if they are correct both with respect to syntax and to static
semantics. In this section, we concentrate on the latter; i.e., any reference to
the term “semantics” implicitl y refers to “dynamic semantics” .

While syntax diagrams and BNF have become standard tools for syntax
description, no such tool has become widely accepted and standard for
semantic description. Different formal approaches to semantic definition
exist, but none is entirely satisfactory. A brief introduction to formal seman-
tics is provided in the sidebar page 59.

In this chapter, and throughout this book, we take an operational approach to
describing the semantics of programming languages. In this approach, the
behavior of a simple and intuitive abstract processor is used to describe the
effects of each language construct. We will describe such a machine in the
next subsection. We will t hen describe the semantics of programming lan-
guage constructs in terms of the operations of this machine.

Our machine is abstract. This means that it is not a real machine such as the
Apple Macintosh PowerBook Duo 270c or the HP 9000. It is designed to
show the run-time requirements of programming languages simply, rather
than to execute them efficiently. It can be used as a model for language imple-
mentation in the sense that one can derive straightforward, simple implemen-
tations by applying the concepts that we discuss here. The resulting
implementation, however, probably would be ineff icient. To achieve effi-
ciency, any real implementation will have to differ from the model in impor-
tant ways, for example, in how data structures are arranged and accessed and
in the set of machine instructions. The purpose of the model is simply to state
the effects of the language, given the structure of the abstract machine. A par-
ticular implementation of the language on a given real machine is in no way

 59

obligated to implement the structure of the abstract processor used to define
the semantics of the language; it is only required to implement the same
effects, given the restrictions and structure of the implementation machine.

It is important to separate the semantic issues of the language from the imple-
mentation issues (we will come back to this point later). This can be done by
keeping in mind which part of the description is a description (or restriction)
of the machine and which is of the language.

*** add sidebar on java byte code???***

Sidebar-start-2
A metalanguage for formal semantics must be based on well-understood and
simple mathematical concepts, so that the resulting definition is rigorous and
unambiguous. The ability to provide formal semantics makes language defi-
nitions independent from the implementation. The description specifies what
the language does, without any reference to how this is achieved by an imple-
mentation. Furthermore, it allows comparison of different programing lan-
guage features to be stated in unquestionable terms. Unfortunately, formality
does not go hand-in-hand with readabili ty. The absolute rigor of formal
semantics can be useful in a reference description, but for most practical uses
a rigorous–yet informal–description can suffice.

Here we briefly review two ways of formally specifying semantics: axiomatic
semantics and denotational semantics. We do not go deep into the two meth-
ods, but rather we try to provide a preliminary introduction that shows the
main differences between them. We base our description on the simple lan-
guage described in Figure 5.

Axiomatic semantics views a program as a state machine. Programming lan-
guage constructs are described by describing how their execution causes a
state change. A state is described by a first-order logic predicate which
defines the property of the values of program variables in that state. Thus the
meaning of each construct is defined by a rule that relates the two states
before and after the execution of that construct.

A predicate P that is required to hold after execution of a statement S is called
a postcondition for S. A predicate Q such that the execution of S terminates
and postcondition P holds upon termination is called a precondition for S and

60 Syntax and semantics Chap.2

P. For example, y = 3 is one possible precondition for statement

x = y + 1;
that leads to postcondition x > 0. The predicate y ≥ 0 is also a precondition for
the same statement and the same postcondition. Actually, y ≥ 0 is the weakest
precondition. A predicate W is called the weakest precondition for a statement
S and a postcondition P, if any precondition Q for S and P implies W. Among
all possible preconditions for statement S and postcondition P, W is the weak-
est: it specifies the fewest constraints. It is the necessary and sufficient pre-
condition for a given statement that leads to a certain postcondition. In the
example, it is easy to prove that any precondition (e.g., y = 3) implies the
weakest precondition (y ≥ 0). This can be stated in first-order logic as

y = 3 ⊃ y ≥ 0
Axiomatic semantics specifies each statement of a language in terms of a
function asem, called the predicate transformer, which yields the weakest pre-
condition W for any statement S and any postcondition P. It also provides
composition rules that allows the precondition to be evaluated for a given
program and a given postcondition. Let us consider an assignment statement

x = expr;
and a postcondition P. The weakest precondition is obtained by replacing each
occurrence of x in P with expression expr. We express this weakest precondi-
tion with the notation Px → expr. Thus1

asem (x = expr;, P) = Px → expr
Simple statements, such as assignment statements, can be combined into
more complex actions. For example, let us consider sequences, such as

S1; S2;
If we know that

asem (S1;, P) = Q
and

asem (S2;, Q) = R
then

asem (S2; S1;, P) = R

1. This characterization of assignments is correct for simple assignment statements (see Exercise 40).

 61

The specification of semantics of selection is straightforward. If B is a bool-
ean expression and L1, L2 are two statement lists, then let if-stat be the follow-
ing statement:

if B then L1 else L2
If P is the postcondition that must be established by if-stat, then the weakest
precondition is given by

asem (if-stat, P) = (B ⊃ asem (L1, P)) and (not B ⊃ asem (L2, P))
That is, function asem yields the semantics of either branch of the selection,
depending on the value of the condition. For example, given the following
program fragment (x, y, and max are integers)

if x >= y then max := x else max := y
and the postcondition

(max = x and x ≥ y) or (max = y and y > x)
the weakest precondition is easily proven to be true, that is, the statement sat-
isfies the postcondition without any constraints on variables.

The specification of semantics of loops is more complex. For simplicity, let
us assume that the program terminates, i.e., all l oops terminate. Let P be the
postcondition that must be established by

while B do L
where B is a boolean expression and L is a statement list. The problem is that
we do not know how many times the body of the loop is iterated. Indeed, if
we know, for example, that the number of iterations is n, the con- struct would
be equivalent to the sequential composition

L; L; . . .; L;
of length n. Thus the semantics of the statement would be straightforward.
Since that is unknown, we relax our requirements. Instead of providing the
weakest precondition, which gives the exact characterization of semantics, we
choose to provide just a precondition, i.e., a suff icient precondition that can
be derived for a given statement and a given postcondition. The constraint on
the state specified by a (non-weakest) precondition is stronger than that
strictly necessary to ensure a certain postcondition to hold after execution of a
statement, but nonetheless it provides a specification of what the loop does.
Such a precondition Q for a while statement and a postcondition P, must be

62 Syntax and semantics Chap.2

such that

• the loop terminates, and
• at loop exit, P holds.

Predicate Q can be written as Q = T and R, where T implies termination of the
loop and R implies the truth of P at loop exit. Let us ignore the problem of ter-
mination and let us focus on determining R. This cannot be done mechani-
cally, in general, but requires ingenuity from the programmer. A systematic
method consists of identifying a predicate I that holds both before and after
each loop iteration and such that, when the loop terminates (i.e., when the
boolean expression B is false), I implies P. I is called an invariant predicate for
the loop. Formally, I satisfies the following conditions

(i) I and B ⊃ asem (L, I)
(ii) I and not B ⊃ P

If we are able to identify a predicate I that satisfies both (i) and (ii), then we
can take I as the desired precondition R for the loop, because P holds upon ter-
mination if R = I holds before executing the loop. In conclusion, the method of
loop invariants allows us to approximate the evaluation of semantics of a
while statement; the precondition is one possible valid precondition, not nec-
essarily the weakest.

This approximation can be tolerated in practice. In fact, the main use of axi-
omatic semantics is proving programs correct, i.e., proving that under certain
specified constraints on input data (stated as an input predicate—the precon-
dition for the entire program), the program terminates in a final state satisfy-
ing a specified constraint on output data (stated as an output predicate).

Denotational semantics associates each language statement with a function
dsem from the state of the program before the execution to the state after exe-
cution. The state (i.e., the values stored in the memory) is represented by a
function mem from the set of program identifiers ID to values. Thus denota-
tional semantics differs from axiomatic semantics in the way states are
described (functions vs. predicates). For simplicity, we assume that values
can only belong to type integer.

Let us start our analysis from arithmetic expressions and assignments1. For an
expression expr, mem (expr) is defined as error if mem (v) is undefined for some

1. This characterization of assignments is correct for simple assignment statements (see Exercise 41).

 63

variable v occurring in expr. Otherwise mem (expr) is the result of evaluating
expr after replacing each variable v in expr with mem (v).

 If x = expr is an assignment statement and mem is the function describing the
memory before executing the assignment

dsem (x := expr, mem) = error
if mem (x) is undefined for some variable x occurring in expr. Otherwise

dsem (x: = expr, mem) = mem'
where mem' (y) = mem (y) for all y ¦ x, mem' (x) = mem (expr).

As axiomatic semantics, denotational semantics is defined compositionally.
That is, given the state transformation caused by each individual statement, it
provides the state transformation caused by compound statements and, even-
tually, by the entire program.

Let us consider a statement list, li ke

S1; S2;
If

dsem (S1, mem) = mem1
and

dsem (S2, mem1) = mem2
then

dsem (S1; S2;, mem) = mem2
The state error propagates implicitly, i.e. dsem (S, error) = error for any kind of
statement S.

Let if B then L1 else L2; be a conditional statement, where B is a boolean
expression, L1 and L2 are two statement lists. Semantics can be defined as fol-
lows:

dsem (if B then L1 else L2, mem) = U
where U = dsem (L1, mem), if the mem (B) = true; otherwise U = dsem (L2, mem).

Finally, let us consider a statement like while B do L.

64 Syntax and semantics Chap.2

dsem (while B do L, mem) = mem
if mem (B) = false (i.e., if the loop is not entered, there is no change of memory);
Otherwise

dsem (while B do L, mem) = dsem (while B do L, dsem (L, mem))
if mem (B) = true (i.e., a loop iteration is performed).

By applying the semantic rules provided above, given a simple program
described by the language of Figure 5, it is possible to compute the value of
function mem for the entire program.

sidebar-end

2.2 Language processing

Although in theory it is possible to build special-purpose computers to exe-
cute directly programs written in any particular language, present-day com-
puters directly execute only a very low-level language, the machine language.
Machine languages are designed on the basis of speed of execution, cost of
realization, and flexibil ity in building new software layers upon them. On the
other hand, programming languages often are designed on the basis of the
ease and reliabil ity of programming. A basic problem, then, is how a higher-
level language eventually can be executed on a computer whose machine lan-
guage is very different and at a much lower level.

There are generally two extreme alternatives for an implementation: interpre-
tation and translation.

2.2.1 Interpretation

In this solution, the actions implied by the constructs of the language are exe-
cuted directly (see Figure 7). Usually, for each possible action there exists a
subprogram–written in machine language–to execute the action. Thus, inter-
pretation of a program is accomplished by calling subprograms in the appro-
priate sequence.

 65

More precisely, an interpreter is a program that repeatedly executes the fol-
lowing sequence.

Get the next statement;
Determine the actions to be executed;
Perform the actions;

This sequence is very similar to the pattern of actions carried out by a tradi-
tional computer, that is:

8. Fetch the next instruction (i.e., the instruction whose address is specified by the
instruction pointer).

9. Advance the instruction pointer (i.e., set the address of the instruction to be fetched next).
10. Decode the fetched instruction.
11. Execute the instruction.

interpreter
input

data

output

data

(a) Interpretation

compiler
source

module
linker

loader interpreter

single relocatable
unit

input data

output

data

relocatable
machine code

executable
unit

(b) Translation (+ interpretation)

FIGURE 7. Language processing by interpretation (a) and translation (b)

program

66 Syntax and semantics Chap.2

This similarity shows that interpretation can be viewed as a simulation, on a
host computer, of a special-purpose machine whose machine language is the
higher level language.

2.2.2 Translation

In this solution, programs written in a high-level language are translated into
an equivalent machine-language version before being executed. This transla-
tion is often performed in several steps (see Figure 7). Program modules
might first be separately translated into relocatable machine code; modules of
relocatable code are linked together into a single relocatable unit; finally, the
entire program is loaded into the computer’s memory as executable machine
code. The translators used in each of these steps have specialized names:
compiler, linker (or linkage editor), and loader, respectively.

In some cases, the machine on which the translation is performed (the host
machine) is different from the machine that is to run the translated code (the
target machine). This kind of translation is called cross-translation. Cross-
translators offer the only viable solution when the target machine is a special-
purpose processor rather han a general-purpose one that can support a transla-
tor.

Pure interpretation and pure translation are two ends of a continuous spec-
trum. In practice, many languages are implemented by a combination of the
two techniques. A program may be translated into an intermediate code that is
then interpreted. The intermediate code might be simply a formatted repre-
sentation of the original program, with irrelevant information (e.g., comments
and spaces) removed and the components of each statement stored in a fixed
format to simpli fy the subsequent decoding of instructions. In this case, the
solution is basically interpretive. Alternatively, the intermediate code might
be the (low-level) machine code for a virtual machine that is to be later inter-
preted by software. This solution, which relies more heavily on translation,
can be adopted for generating portable code, that is, code that is more easily
transferable to different machines than machine language code. For example,
for portability purposes, one of the best known initial implementations of a
Pascal compiler was written in Pascal and generated an intermediate code,
called Pcode. The availabili ty of a portable implementation of the language
contributed to the rapid diffusion of Pascal in many educational environ-
ments. More recently, with the widespread use of Internet, code portability
became a primary concern for network application developers. A number of

 67

language efforts have recently been undertaken with the goal of supporting
code mobili ty over a network. Language Java is perhaps the best known and
most promising example. Java is first translated to an intermediate code,
called Java bytecode, which is interpreted in the client machine.

In a purely interpretive solution, executing a statement may require a fairly
complicated decoding process to determine the operations to be executed and
their operands. In most cases, this process is identical each time the statement
is encountered. Consequently, if the statement appears in a frequently-exe-
cuted part of a program (e.g., an inner loop), the speed of execution is
strongly affected by this decoding process. On the other hand, pure transla-
tion generates machine code for each high-level statement. In so doing, the
translator decodes each high-level statement only once. Frequently-used parts
are then decoded many times in their machine language representation;
because this is done efficiently by hardware, pure translation can save pro-
cessing time over pure interpretation. On the other hand, pure interpretation
may save storage. In pure translation, each high-level language statement
may expand into tens or hundreds of machine instructions. In a purely inter-
pretive solution, high-level statements are left in the original form and the
instructions necessary to execute them are stored in a subprogram of the inter-
preter. The storage saving is evident if the program is large and uses most of
the language's statements. On the other hand, if all of the interpreter's subpro-
grams are kept in main memory during execution, the interpreter may waste
space for small programs that use only a few of the language's statements.

Compilers and interpreters differ in the way they can report on run-time
errors. Typically, with compilation, any reference to the source code is lost in
the generated object code. If an error is generated at run-time, it may be
impossible to relate it to the source language construct being executed. This is
why run-time error messages are often obscure and almost meaningless to the
programmer. On the opposite, the interpreter processes source statements,
and can relate a run-time error to the source statement being executed. For
these reasons, certain programming environments contain both an interpreter
and a compiler for a given programming language. The interpreter is used
while the program is being developed, because of its improved diagnostic
facilities. The compiler is then used to generate eff icient code, after the pro-
gram has been fully validated.

Macro processing is a special kind of translation that may occur as the first

68 Syntax and semantics Chap.2

step in the translation of a program. A macro is a named source text fragment,
called the macro body. Through macro processing, macro names in a text are
replaced by the corresponding bodies. In C, one can write macros, handled by
a preprocessor, which generates source C code through macro expansion. For
example, one can use a macro to provide a symbolic name for a constant
value, as in the following fragment.

2.2.3 The concept of binding

Programs deal with entities, such as variables, routines, statements, and so on.
Program entities have certain properties called attributes. For example, a vari-
able has a name, a type, a storage area where its value is stored; a routine has
a name, formal parameters of a certain type, certain parameter-passing con-
ventions; a statement has associated actions. Attributes must be specified
before an entity is elaborated. Specifying the exact nature of an attribute is
known as binding. For each entity, attribute information is contained in a
repository called a descriptor.

Binding is a central concept in the definition of programming language
semantics. Programming languages differ in the number of entities with
which they can deal, in the number of attributes to be bound to entities, in the
time at which such bindings occur (binding time), and in the stability of the
binding (i.e., whether an established binding is fixed or modifiable). A bind-
ing that cannot be modified is called static. A modifiable binding is called
dynamic.

Some attributes may be bound at language definition time, others at program
translation time (or compile time), and others at program execution time (or
run time). The following is a (nonexhaustive) li st of binding examples:

• Language definition time binding. In most languages (including FORTRAN, Ada, C, and
C++) the type "integer" is bound at language definition time to its well -known
mathematical counterpart, i.e., to a set of algebraic operations that produce and
manipulate integers;

#define upper_limit 100
. . .
sum = 0;
for (index = 0; index < upper_lmit; index++)
{

sum += a [index];
}

 69

• Language implementation time binding. In most languages (including FORTRAN, Ada,
C, and C++) a set of values is bound to the integer type at language implementation time.
That is, the language definition states that type "integer" must be supported and the
language implementation binds it to a memory representation, which–in turn–determines
the set of values that are contained in the type.

• Compile time (or translation time) binding. Pascal provides a predefined definition of
type integer, but allows the programmer to redefine it. Thus type integer is bound a
representation at language implementation time, but the binding can be modified at
translation time.

• Execution time (or run time) binding. In most programming languages variables are
bound to a value at execution time, and the binding can be modified repeatedly during
execution.

In the first two examples, the binding is established before run time and can-
not be changed thereafter. This kind of binding regime is often called static.
The term static denotes both the binding time (which occurs before the pro-
gram is executed) and the stability (the binding is fixed). Conversely, a bind-
ing established at run time is usually modifiable during execution. The fourth
example illustrates this case. This kind of binding regime is often called
dynamic. There are cases, however, where the binding is established at run
time, and cannot be changed after being established. An example is a lan-
guage providing (read only) constant variables that are initialized with an
expression to be evaluated at run time.

The concepts of binding, binding time, and stabili ty help clarify many seman-
tic aspects of programming languages. In the next section we wil l use these
concepts to ill ustrate the notion of a variable.

2.3 Var iables

Conventional computers are based on the notion of a main memory consisting
of elementary cells, each of which is identified by an address. The contents of
a cell is an encoded representation of a value. A value is a mathematical
abstraction; its encoded representation in a memory cell can be read and (usu-
ally) modified during execution. Modification implies replacing one encoding
with a new encoding. With a few exceptions, programming languages can be
viewed as abstractions, at different levels, of the behavior of such conven-
tional computers. In particular, they introduce the notion of variables as an
abstraction of the notion of memory cells. the variable name as an abstraction
of the address. and the notion of assignment statements as an abstraction of
the destructive modification of a cell.

In most of this and the following chapters we basically will restrict our con-

70 Syntax and semantics Chap.2

siderations to these conventional, “assignment-based” programming lan-
guages. Alternative languages that support functional and declarative styles
of programming will be discussed in Chapters 7 and 8.

Formally, a variable is a 5-tuple <name, scope, type, l_value, r_value>, where

• name is a string of characters used by program statements to denote the variable;
• scope is the range of program instructions over which the name is known;
• type is the variable’s type;
• l_value is the memory location associated with the variable;
• r_value is the encoded value stored in the variable’s location.

These attributes are described below, in Section 2.3.1 through Section 2.3.4,
along with the different policies that can be adopted for attribute binding.
Section 2.3.5 discusses the special case of references and unnamed variables,
which diverge from the present model.

2.3.1 Name and scope

A variable’s name is usually introduced by a special statement, called declara-
tion and, normally, the variable’s scope extends from that point until some
later closing point, specified by the language. The scope of a variable is the
range of program instructions over which the name is known. Program
instructions can manipulate a variable through its name within its scope. We
also say that a variable is visible under its name within its scope, and invisible
outside it. Different programming languages adopt different rules for binding
variable names to their scope.

 71

For example, consider the following example of a C program:

The declaration int x, y; makes variables named x and y visible throughout pro-
gram main. The program contains an internal block, which groups a declara-
tion and statements. The declaration int temp; appearing in the block makes a
variable named temp visible within the inner block, and invisible outside.
Thus, it would be impossible to insert temp as an argument of operation printf.

In the example, if the inner block declares a new local variable named x, the
outer variable named x would not be visible in it. The inner declaration masks
the outer variable. The outer variable, however, continues to exist even
though it is invisible. It becomes visible again when control exits the inner
block.

Variables can be bound to a scope either statically or dynamically. Static
scope binding defines the scope in terms of the lexical structure of a program,
that is, each reference to a variable can be statically bound to a particular
(implicit or explicit) variable declaration by examining the program text,
without executing it. Static scope binding rules are adopted by most program-
ming languages, such as C, as we saw in the previous example.

Dynamic scope binding defines the scope of a variable's name in terms of pro-
gram execution. Typically, each variable declaration extends its effect over
all the instructions executed thereafter, until a new declaration for a variable
with the same name is encountered during execution. APL, LISP (as origi-
nally defined), and SNOBOL4 are examples of languages with dynamic

include <stdio.h>
main ()
{

int x, y;
scanf ("%d %d", &x, &y);

/* two decimal values are read and stored in the l_values of x and y * /
{

/* this is a block used to swap x and y*/
int temp;
temp = x;
x = y;
y = temp;

}
printf ("%d %d", x, y);

}

72 Syntax and semantics Chap.2

scope rules.

As an example, consider the following program fragment written in a C-like
notation.

{
/* block A * /
int x;
. . .

}
. . .
{

/* block B * /
int x;
. . .

}
. . .
{

/* block C * /
. . .
x = ...;
. . .

}
If the language follows dynamic scoping, an execution of block A followed
by block C would make variable x in the assignment in block C to refer to x
declared in block A. Instead, an execution of block B followed by block C

would make variable x in the assignment in block C refer to x declared in
block B. Thus, name x in block C refers either to the x declared in A or the one
declared in B, depending on the flow of control followed during execution.

Dynamic scope rules look quite simple and are rather easy to implement, but
they have disadvantages in terms of programming discipline and eff iciency of
implementation. Programs are hard to read because the identity of the particu-
lar declaration to which a given variable is bound depends on the particular
point of execution, and so cannot be determined statically.

2.3.2 Type

In this section we provide a preliminary introduction to types. The subject
will be examined in more depth in Chapters 3 and 6. We define the type of a
variable as a specification of the set of values that can be associated with the
variable, together with the operations that can be legally used to create,
access, and modify such values. A variable of a given type is said to be an
instance of the type.

 73

When the language is defined, certain type names are bound to certain classes
of values and sets of operations. For example, type integer and its associated
operators are bound to their mathematical counterpart. Values and operations
are bound to a certain machine representation when the language is imple-
mented. The latter binding may also restrict the set of values that can be rep-
resented, based on the storage capacity of the target machine.

In some languages, the programmer can define new types by means of type
declarations. For example, in C one can write

typedef int vector [10];
This declaration establishes a binding–at translation time–between the type
name vector and its implementation (i.e., an array of 10 integers, each accessi-
ble via an index in the subrange 0. .9). As a consequence of this binding, type
vector inherits all the operations of the representation data structure (the
array); thus, it is possible to read and modify each component of an object of
type vector by indexing within the array.

There are languages that support the implementation of user-defined types
(usually called abstract data types) by associating the new type with the set of
operations that can be used on its instances; the operations are described as a
set of routines in the declaration of the new type. The declaration of the new
type has the following general form, expressed in C-like syntax:

typedef new_type_name
{

data structure representing objects of type new_type_name;
routines to be invoked for manipulating data objects of type new_type_name;

}
To provide a preview of concepts and constructs that will be discussed at
length in this text, Figure 8 illustrates an example of an abstract data type (a
stack of characters) implemented as a C++ class1. The class defines the hid-
den data structure (a pointer s to the first element of the stack, a pointer top to
the most recently inserted character, and an integer denoting the maximum
size) and five routines to be used for manipulating stack objects. Routines
stack_of_char and ~stack_of_char are used to construct and destruct objects of
type stack_of_char, respectively. Routine push is used to insert a new element on
top of a stack object. Routine pop is used to extract an element from a stack

1. A note for the reader who is not familiar with C or C++. Expression *top++ is evaluated as * (top++). The
value of top++ is the value of top before it is incremented. Such value is used for dereferencing. Similarly, expres-
sion *--top is evaluated as * (--top). That is, top is decremented, and its new value is used for dereferencing.

74 Syntax and semantics Chap.2

object. Routine length yields the current size of a stack object.

Traditional languages, such as FORTRAN, COBOL, Pascal, C, C++, Mod-
ula-2, and Ada bind variables to their type at compile time, and the binding
cannot be changed during execution. This solution is called static typing. In
these languages, the binding between a variable and its type is specified by a
variable declaration. For example, in C one can write:

int x, y;
char c;

By declaring variables to belong to a given type, variables are automatically
protected from the application of illegal (or nonsensical) operations. For
example, in Ada the compiler can detect the application of the il legal assign-
ment I:= not A, if I is declared to be an integer and A is a boolean. Through this
check, the compiler watches for violations to static semantics concerning
variables and their types. The abili ty to perform checks before the program is
executed (static type checking) contributes to early error detection and
enhances program reliabili ty.

In some languages (such as FORTRAN) the first occurrence of a new vari-
able name is also taken as an implicit declaration. The advantage of explicit
declarations lies in the clarity of the programs and improved reliability,
because such things as spelling errors in variable names can be caught at
translation time. For example, in FORTRAN the declaration of variable
ALPHA followed by a statement such as ALPA = 7.3 intended to assign a value
to it, would not be detected as an error. ALPA would not be considered as an
incorrect occurrence of an undeclared variable (i.e., as a misspelled, ALPHA),

class stack_of_char{
int size;
char* top;
char* s;

public:
stack_of_char (int sz) {

top = s = new char [size =sz];
}
~stack_of_char () { delete [] s;}
void push (char c) { * top++ = c;}
char pop () { return * --top;}
int length () { return top - s;}

} ;

FIGURE 8. User-defined type in C++

 75

but as the implicit declaration of a new variable, ALPA.

Note that the issue of implicit type declarations is not a semantic one. Seman-
tically, C and FORTRAN are equivalent with respect to the typing of vari-
ables because they both bind variables to types at translation time.
FORTRAN has default rules to determine the particular binding but the time
of binding and its stability are the same in the two languages. The FORTRAN
rule that determines the type of a variable is quite simple. ML pushes the
approach to its extreme, by allowing most types not to be stated explicitl y,
and yet all expressions to be type checked statically. This is achieved through
a type inference procedure, which will be discussed in Chapter 7.

Assembly languages, LISP, APL, SNOBOL4, and Smalltalk are languages
that establish a (modifiable) run-time binding between variables and their
type. This binding strategy is called dynamic typing. Dynamically typed vari-
ables are also called polymorphic variables (li terally, from ancient Greek,
“multiple shape”) variables.

In most assembly languages, variables are dynamically typed. This reflects
the behavior of the underlying hardware, where memory cells and registers
can contain bit strings that are interpreted as values of any type. For example,
the bist string stored in a cell may be added to the bit string stored in a register
using integer addition. In such a case, the bit strings are interpreted as integer
values. In other languages, the type of a variable depends on the value that is
dynamically associated with it. For example, having assigned an integer value
to a variable, such value cannot be treated as if it were–say–a string of charac-
ters. That is, the binding is stil l dynamic, but once a value is bound to a vari-
able, an implicit binding with a type is also established, and the binding
remains in place until a new value is assigned.

As another example, in LISP, variables are not explicitly declared; their type
is implicitly determined by the value they currently hold during execution.
The LISP function CAR applied to a list L yields the first element of L, which
may be an atom (say, an integer) or a list of–say–strings, if L is a list of lists.
If the element returned by CAR is bound to a variable, the type of such vari-
able would be an integer in the former case, a string list in the latter. If such
value is added to an integer value, the operation would be correct in the
former case, but would be illegal in the latter. Moreover, suppose that the
value of the variable is to be printed. The effect of the print operation depends

76 Syntax and semantics Chap.2

on the type that is dynamically associated with the variable. It prints an inte-
ger in the former case; a list of strings in the latter. Such a print routine, which
is applicable to arguments of more than one type, is called a polymorphic rou-
tine.

In general, dynamic typing prevents programs from being statically type
checked: since the type is not known, it is impossible to check for type viola-
tions before executing the program. Type violations due to dynamic typing
can only be checked at run time, through dynamic type checking. In order to
perform dynamic type checking, information about the dynamic type of vari-
ables must be kept at run time in suitable descriptors. Such descriptors only
need to exist at translation time for statically typed languages. Perhaps sur-
prisingly, however, there are languages supporting both static type checking
and polymorphic variables and routines. This will be discussed at length in
Chapters 3, 6, and 7.

Programming languages that adopt dynamic typing are often implemented by
interpretation. In general, in fact, there is not enough information before run
time to generate object code that performs storage allocation, type checking,
and binding between operation invocations and their implementation.

2.3.3 l_value

The l_value of a variable is the storage area bound to the variable during exe-
cution. The lifetime, or extent, of a variable is the period of time in which
such binding exists. The storage area is used to hold the r_value of the vari-
able. We wil l use the term data object (or simply, object) to denote the pair
<l_value, r_value>.

The action that acquires a storage area for a variable–and thus establishes the
binding–is called memory allocation. The li fetime extends from the point of
allocation to the point in which the allocated storage is reclaimed (memory
deallocation). In some languages, for some kinds of variables, allocation is
performed before run time and storage is only reclaimed upon termination
(static allocation). In other languages, it is performed at run time (dynamic
allocation), either upon explicit request from the programmer via a creation
statement or automatically, when the variable's declaration is encountered,
and reclaimed during execution. Section 2.6 presents an extensive analysis of
these issues.

 77

In most cases, the li fetime of a program variable is a fraction of the program's
execution time. It is also possible, however, to have persistent objects. A per-
sistent object exists in the environment in which a program is executed and its
lifetime has no a-priori relation with any given program's execution time.
Files are an example of persistent objects. Once they are created, they can be
used by different program activations, and different activations of the same
program, until they are deleted through a specific command to the operating
system. Similarly, persistent objects can be stored in a database, and made
visible to a programming language through a specific interface. A discussion
of persistent objects will be taken up in Chapter 10.

2.3.4 r_value

The r_value of a variable is the encoded value stored in the location associ-
ated with the variable (i.e., its l_value). The encoded representation is inter-
preted according to the variable's type. For example, a certain sequence of
bits stored at a certain location would be interpreted as an integer number if
the variable’s type is int; it would be interpreted as a string if the type is an
array of char.

l_values and r_values are the main concepts related to program execution.
Program instructions access variables through their l_value and possibly
modify their r_value. The terms l_value and r_value derive from the conven-
tional form of assignment statements, such as x = y; in C. The variable appear-
ing at the left-hand side of the assignment denotes a location (i.e., its l_value
is meant).The variable appearing at the right-hand side of the assignment
denotes the contents of a location (i.e., its r_value is meant). Whenever no
ambiguity arises, we use the simple term “value” of a variable to denote its
r_value.

The binding between a variable and the value held in its storage area is usu-
ally dynamic; the value can be modified by an assignment operation. An
assignment such as b = a; causes a's r_value to be copied into the storage area
referred to by b’s l_value. That is, b’ s r_value changes. This, however, is true
only for conventional imperative languages, like FORTRAN, C, Pascal, Ada,
and C++. Functional and logic programming languages treat variables as their
mathematical counterpart: they can be bound to a value by the evaluation pro-
cess, but once the binding is established it cannot be changed during the vari-
able's li fetime.

78 Syntax and semantics Chap.2

Some conventional languages, however, allow the binding between a variable
and its value to be frozen once it is established. The resulting entity is, in
every respect, a user-defined symbolic constant. For example, in C one can
write

const float pi = 3.1415;
and then use pi in expressions such as

circumference= 2 * pi * radius;
Variable pi is bound to value 3.1416 and its value cannot be changed; that is,
the translator reports an error if there is an assignment to pi. A similar effect
can be achieved in Pascal.

Pascal and C differ in the time of binding between the const variable and its
value, although binding stabili ty is the same for both languages. In Pascal the
value is provided by an expression that must be evaluated at compile time;
i.e., binding time is compile time. The compiler can legally substitute the
value of the constant for its symbolic name in the program. In C and Ada the
value can be given as an expression involving other variables and constants:
consequently, binding can only be established at run time, when the variable
is created.

A subtle question concerning the binding between a (non const) variable and
its value is: What is the r_value bound to the variable immediately after it is
created? Some languages allow the initial value of a variable to be specified
when the variable is declared. For example, in C one can write

int i = 0, j = 0;
Similarly, in Ada one would write

i, j: INTEGER := 0;
But what if no initialization is provided? There are a number of possible
approaches that might be followed, but unfortunately most language defini-
tions fail to specify which one they choose. As a result, the problem is solved
differently by different implementations of the same language, and thus pro-
gram behavior depends on the implementation. Moving an apparently correct
program to a different platform may produce unforeseen errors or unexpected
results.

One obvious and frequently adopted solution to the problem is to ignore it. In

 79

this case, the bit string found in the area of storage associated with the vari-
able is considered its initial value. Another solution is to provide a system-
defined initialization strategy: for example, integers are initialized to zero,
characters to blank, and so on. Yet another solution consists of viewing an
uninitialized variable as initialized with a special undefined value, and trap-
ping any read accesses to such variables until a meaningful value is assigned
to the variable. This solution, by far the cleanest, can be enforced in different
ways. Its only drawback could be the cost associated with the run-time checks
necessary to ensure that a meaningless value is never used in the program.

2.3.5 References and unnamed var iables

Some languages allow unnamed variables that can be accessed through the
r_value of another variable. Such a r_value is called a reference (or a pointer)
to the variable. In turn, the reference can be the r_value of a named variable,
or it can be the r_value of a referenced variable. Thus, in general, an object
can be made accessible via a chain of references (called access path) of arbi-
trary length.

If A = <A_name, A_scope, A_type, A_l_value, A_r_value> is a named variable, object
<A_l_value, A_r_value> is said to be directly accessible through name A_name in
A_scope, with an access path of length 0. If B= <--, --, --, B_l_value, B_r_value>,
where -- stands for the “don’ t care value”, is a variable and B_l_value =

A_r_value, object <B_l_value, B_r_value> is said to be accessible through name
A_name in A_scope indirectly, with an access path of length 1. Similarly, one
can define the concept of an object indirectly accessible through a named
variable, with an access path of length i, i>1.

For example, in Pascal we can declare type PI (pointer to an integer):

type PI = ̂ integer;
We can then allocate an unnamed integer variable and have it pointed by a
variable pxi of type PI:

new (pxi);
In order to access the unnamed object referenced by pxi, it is necessary to use
the dereferencing operator ^, which can be applied to a pointer variable to
obtain its r_value, i.e., the l_value of the referenced object. For example, the
value of the unnamed variable can be set to zero by writing:

80 Syntax and semantics Chap.2

pxi^ := 0;
The unnamed variable can also be made accessible indirectly through a
“pointer to a pointer to an integer” , as sketched below:

type PPI = ̂ PI;
var ppxi: PPI;
. . .
new (ppxi);
^ppxi := pxi;

Here the r_value of variable ppxi is the l_value of an unnamed variable, whose
r_value is the l_value of variable x.

Other languages, like C, C++, and Ada, allow pointers to refer to named vari-
ables. For example, the following C fragment:

int x = 5;
int* px;
px = &x;

generates an integer object whose r_value is 5, directly accessible through a
variable named x and indirectly accessible (with an access path of length 1)
through px, declared as a pointer to integer. This is achieved by assigning to
px the value of the address of x (i.e., &x). Indirect access to x is then made pos-
sible by dereferencing px. In C (and C++) the dereferencing operator is
denoted by *. For example, the following C instruction

int y = *px;
assigns to y the r_value of the variable pointed at by px (i.e., 5).

Two variables are said to share an object if each has an access path to the
object. A shared object modified via a certain access path makes the modifi-
cation visible through all possible access paths. Sharing of objects is used to
improve eff iciency, but it can lead to programs that are hard to read, because
the value of a variable can be modified even when its name is not used. In the
previous C example, if one writes:

*px = 0;
the contents of the location pointed at by px becomes 0 and, because of shar-
ing, the value of x becomes 0 too.

2.4 Routines

Programming languages allow a program to be composed of a number of

 81

units, called routines. The neutral term “ routine” is used in this chapter in
order to provide a general treatment that enlightens the important principles
that are common to most programming languages, without committing to any
specific feature offered by individual languages. Routines can be developed
in a more or less independent fashion and can sometimes be translated sepa-
rately and combined after translation. Assembly language subprograms,
FORTRAN subroutines, Pascal and Ada procedures and functions, C func-
tions are well -known examples of routines. In this chapter we will review the
main syntactic and semantic features of routines, and in particular the mecha-
nisms that control the flow of execution among routines and the bindings
established when a routine is executed. Other, more general kinds of units,
such as Ada packages, Modula-2 modules, and C++ classes will be described
elsewhere.

In the existing programming language world, routines usually come in two
forms: procedures and functions. Functions return a value; procedures do not.
Some languages, e.g., C and C++, only provide functions, but procedures are
easily obtained as functions returning the null value void. Figure 9 shows the
example of a C function definition.

Like variables, routines have a name, scope, type, l_value, and r_value. A
routine name is introduced in a program by a routine declaration. Usually the
scope of such name extends from the declaration point on to some closing
construct, statically or dynamically determined, depending on the language.
For example, in C a function declaration extends the scope of the function till
the end of the file in which the declaration occurs.

/* sum is a function which computes the sum
of the first n positive integers, 1 + 2 + ... + n;
parameter n is assumed to be positive * /
int sum (int n)
{

int i, s;
s = 0;
for (i = 1; i <= n ; ++i)

s+= i;
return s:

}

FIGURE 9. A C function definition

82 Syntax and semantics Chap.2

Routine activation is achieved through a routine call, which names the rou-
tine and specifies the parameters on which the routine operates. Since a rou-
tine is activated by call, the call statement must be in the routine's scope.
Besides having their own scope, routines also define a scope for the declara-
tions that are nested in them. Such local declarations are only visible within
the routine. Depending on the scope rules of the language, routines can also
refer to nonlocal items (e.g., variables) other than those declared locally.
Nonlocal items that are potentially referenced by every unit in the program
are called global items.

The header of the routine defines the routine’s name, its parameter types, and
the type of the returned value (if any). In brief, the routine’s header defines
the routine type. In the example of Figure 9, the routine’s type is:

routine with one int parameter and returning int
A routine type can be precisely defined by the concept of signature. The sig-
nature specifies the types of parameters and the return type. A routine fun

which behaves like a function, with input parameters of types T1, T2, . . ., Tn
and returning a value of type R, can be defined by the following signature:

fun: T1 x T2 x . . .x Tn -> R

A routine call is type correct if it conforms to the corresponding routine type.
For example, the call

i = sum (10); /* i is declared as an int * /
would be correct with respect to the function definition of Figure 9. Instead,
the call

i = sum (5.3);
would be incorrect.

A routine’s l_value is a reference to the memory area which stores the routine
body (i.e., the routine’s executable statements). Activation causes execution
of the routine body, which constitutes the r_value that is currently bound to
the routine. In the above C example, the r_value is bound to the routine stati-
cally, at translation time. A more dynamic binding policy can be achieved by
languages which support the concept of variables of type routine, to which a
routine value can be assigned. Some languages support the notion of a
“pointer to a routine” and provide a way of getting a routine l_value, which
can be assigned (as a r_value) to a pointer. For example, the following C

 83

statement declares a pointer ps to a function with an int parameter and return-
ing an int:

int (*ps) (int);
The following assignment

ps = & sum;
makes ps point to the l_value of the previously defined routine sum. A call
may then be issued via ps as in the following example:

int i = (*ps) (5); /* this invokes the r_value of the routine that is currently referred to by
ps * /

The use of pointers to routines allows different routines to be invoked each
time a pointer is dereferenced. This provides a way to achieve a dynamic
binding policy, that cannot be achieved by directly calling a routine, which is
statically bound to its body. Languages that exploit the distinction between
routine l_value and r_value, and allow variables of type routine and pointers
to routines to be defined and manipulated, treat routines in much the same
way as variables: they are said to treat routines as first-class objects.

Some languages (like Pascal, Ada, C, and C++) distinguish between declara-
tion and definition of a routine. A routine declaration introduces the routine’s
header, without specifying the body. The name is visible from the declaration
point on, up to the scope end. The definition specifies both the header and the
body. The distinction between declaration and definition is necessary to allow
routines to call themselves in a mutual recursion scheme, as ill ustrated by the

84 Syntax and semantics Chap.2

following fragment.

A routine definition specifies a computational process. At invocation time, an
instance of the process is executed for the particular values of the parameters.
The representation of a routine during execution is called a routine instance.
A routine instance is composed of a code segment and an activation record.
The code segment, whose contents are fixed, contains the instructions of the
unit. The contents of the activation record (also called frame) are changeable.
The activation record contains all the information necessary to execute the
routine, including, among other things, the data objects associated with the
local variables of a particular routine instance. The relative position of a data
object in the activation record is called its offset. In order to support returning
the execution to the caller, the return point is saved as part of the activation
record at routine invocation time.

The referencing environment of a routine instance U consists of U's local
variables, which are bound to objects stored in U's activation record (local
environment), and U's nonlocal variables, which are bound to objects stored
in the activation records of other units (nonlocal environment). The modifica-
tion of a data object bound to a nonlocal variable is called a side-effect.

Routines can often be activated recursively, that is, a unit can call itself either
directly or indirectly through some other unit. In other words, a new activa-
tion can occur before termination of the previous. All the instances of the

int A (int x, int y); // declaratiuon of afunction with two int
 // parameters and returning an int
 // A is visible from this point on

float B (int z) //this is a definition of a function; B is visible from this point on
{

int w, u;
. . .
w = A (z, u); //calls A, which is visible at this point
. . .

} ;
int A (int x, int y) //this is A’s definition
{

float t;
. . .
t = B (x); //B is visible here
. . .

}

 85

same unit are composed of the same code segment but different activation
records. Thus, in the presence of recursion, the binding between an activation
record and its code segment is necessarily dynamic. Every time a unit is acti-
vated, a binding must be established between an activation record and its code
segment to form a new unit instance.

When a routine is activated, parameters may be passed from the caller to the
callee. Parameter passing allows for the flow of information among program
units. In most cases, only data entities may be passed. In some cases, routines
may also be passed. In particular, this feature is offered by languages where
routines are first-class objects.

Parameter passing and communication via nonlocal data are two different
ways of achieving inter-unit information flow. Unlike communication via
global environments, parameters allow for the transfer of different data at
each call and provide advantages in terms of readabili ty and modifiability.

It is necessary to distinguish between formal parameters (the parameters that
appear in the routine’s definition) and actual parameters (the parameters that
appear in the routine’s call). Most programming languages use a positional
method for binding actual to formal parameters in routine calls. If the rou-
tine’s header is

routine S (F1,F2, . . . Fn);
and the routine call is

call S (A1, A2,... An)
the positional method implies that the formal parameter Fi is to be bound to
actual parameter Ai, i = 1,2,... n. In some cases the number of actual and formal
parameters need not be the same. For example, in C++ formal parameters can
be given a default value, which is used in case the corresponding actual
parameters are not passed in the call .

For example, given the following function header:

int distance (int a = 0, int b =0);
the call distance () is equivalent to distance (0, 0), and the call distance (10) is
equivalent to distance (10, 0). For further comments, see Exercise42.

Besides the positional association method, Ada allows also a named parame-

86 Syntax and semantics Chap.2

ter association. For example, having defined a procedure with the following
header

procedure Example (A: T1; B: T2 := B1; C: T3);
--parameters A, B, and C are of types T1, T2, and T3, respectively;
--a default value is specified for parameter B, given by the value of B1

assuming X, Y, and Z to be of types T1, T2, and T3, respectively, the following
calls are legal:

Example (X, Y, Z);
--this is a pure positional association

Example (X, C => Z)
--X is bound to A positionally, B gets the default value
--Z is bound to C in a named association

Example (C => Z, A => X, B => Y);
--all correspondences are named here

We take up the issue of parameter passing in Section 2.6.6, where we give an
abstract implementation model and describe the different kinds of parameter
passing modes.

2.4.1 Gener ic routines

Routines factor a code fragment that is executed at different points of the pro-
gram in a single place and assign it a name. The fragment is then executed
through invocation, and customized through parameters. Often, however,
similar routines must be written several times, because they differ in some
detail aspects that cannot be factored through parameters. For example, if a
program needs both a routine to sort arrays of integers and arrays of strings,
two different routines must be written, one for each parameter type, even if
the abstract algorithm chosen for the implementation of the sort operation is
the same in both cases.

Generic routines, as offered by some programming languages, provide a solu-
tion to this problem. In this section we provide a view of generic routines as
they appear in languages like C++ or Ada. More complex schemes will be
discussed in Chapter 4 and in the case of ML functions in Chapter 8. A
generic routine can be made parametric with respect to a type. In the previous
example, the routine would be generic with respect to the type of the array
elements. Type parameters in a generic routine, however, differ from conven-
tional parameters, and require a different implementation scheme. A generic
routine is a template from which the specific routine is generated through
Instantiation, an operation that binds generic parameters to actual parameters

 87

at compile time. Such binding can be obtained via macroprocessing, which
generates a new instance (i.e., an actual routine) for each type parameter.
Other implementation schemes, however, are also possible.

Figure 10 shows an example of a generic swap routine in C++. Generic C++
units are called templates. More on generics, their effect on reusabili ty of pro-
gram components, and the features offered by C++ in support of these con-
cepts will be discussed in Chapter 7.

2.4.2 More on scopes: aliasing and over loading

As our discussion so far emphasized, a central issue of programming lan-
guage semantics has to do with the conventions adopted for naming. In pro-
grams, names are used to denote variables and routines. The language uses
special names (denoted by operators), such as + or * to denote certain pre-
defined operations. So far, we implicitly assumed that at each point in a pro-
gram a name denotes exactly one entity, based on the scope rules of the
language. Since names are used to identify the corresponding entity, the
assumption of unique binding between a name and an entity would make the
identification unambiguous. This restriction, however, is almost never true
for existing programming languages.

For example, in C one can write the following fragment:

int i, j, k;
float a, b, c;
...
i = j + k;
a = b + c;

In the example, operator + in the two instructions of the program denotes two
different entities. In the first expression, it denotes integer addition; in the
second, it denotes floating-point addition. Although the name is the same for

template <class T> void swap (T& a , T& b)
/* the function does not return any value; it is generic with respect to type T;
a and b refer to the the same locations as the actual parameters;
swap interchanges the two values* /
{

T temp = a;
a = b;
b = temp;

}
FIGURE 10. A generic routine in C++

88 Syntax and semantics Chap.2

the operator in the two expressions, the binding between the operator and the
corresponding operation is different in the two cases, and the exact binding
can be established at compile time, since the types of the operands allow for
the disambiguation.

We can generalize the previous example by introducing the concept of over-
loading. A name is said to be overloaded if more than one entity is bound to
the name at a given point of a program and yet the specific occurrence of the
name provides enough information to allow the binding to be uniquely estab-
lished. In the previous example, the types of the operands to which + is
applied allows for the disambiguation.

As another example, if the second instruction of the previous fragment would
be changed to

a = b + c + b ();
the two occurrences of name b would (unambiguously) denote, respectively,
variable b and routine b with no parameters and returning a float value (assum-
ing that such routine is visible by the assignment instruction). Similarly, if
another routine named b, with one int parameter and returning a float value is
visible, instruction

a = b () + c + b (i);
would unambiguously denote two calls to the two different routines.

Aliasing is exactly the opposite of overloading. Two names are aliases if they
denote the same entity at the same program point. This concept is especially
relevant in the case of variables. Two alias variables share the same data
object in the same referencing environment. Thus modification of the object
under one name would make the effect visible, maybe unexpectedly, under
the other.

Although examples of aliasing are quite common, one should be careful since
this feature may lead to error prone and difficult to read programs. An exam-
ple of aliasing is shown by the following C fragment:

int i;
int fun (int& a);
{

. . .
a = a + 1;

 89

printf ("%d", i);
. . .

}
main ()
{

. . .
x = fun (i);
. . .

}
When function f is executed, names i and a in fun denote the same data object.
Thus an assignment to a would cause the value of i printed by fun to differ
from the value held at the point of call .

Aliasing can easily be achieved through pointers and array elements. For
example, the following assignments in C

int x = 0;
int* i = &x;
int* j = &x;

would make * i, *j, and x aliases.

2.5 An abstract semantic processor

To describe the operational semantics of programming languages, we intro-
duce a simple abstract processor, called SIMPLESEM, and we show how lan-
guage constructs can be executed by sequences of operations of the abstract
processor. In this section, we provide the main features of SIMPLESEM;
additional details will be introduced incrementally, as additional language
features are introduced.

In its basic form, SIMPLESEM consists of an instruction pointer (the refer-
ence to the instruction currently being executed), a memory, and a processor.
The memory is where the instructions to be executed and the data to be
manipulated are stored. For simplicity, we will assume that these two parts
are stored into two separate memory sections: the code memory (C) and the
data memory (D). Both C's and D's initial address is 0 (zero), and both pro-
grams and data are assumed to be stored from the initial address. The instruc-
tion pointer (ip) is always used to point to a location in C; it is initialized to 0.

We use the notation D[X] and C[X] to denote the values stored in the X-th cell
of D and C, respectively. Thus X is an l_value and D[X] is the corresponding
r_value. Modification of the value stored in a cell i s performed by instruction

90 Syntax and semantics Chap.2

set, with two parameters: the address of the cell whose contents is to be set,
and the expression evaluating the new value. For example, the effect on the
data memory of instruction

set 10, D[20]
is to assign the value stored at location 20 into location 10.

Input/output in SIMPLESEM is achieved quite simply by using the set

instruction and referring to the special registers read and write, which provide
for communication of the SIMPLESEM machine with the outside world. For
example,

set 15, read
means that the value read from the input device is to be stored at location 15;

set write, D[50]
means that the value stored at location 50 is to be transferred to the output
device.

We are quite liberal in the way we allow values to be combined in expres-
sions; for example, D[15]+D[33]*D[41] would be a an acceptable expression,
and

set 99, D[15]+D[33]*D[41]
would be an acceptable instruction to modify the contents of location 99.

As we mentioned, ip is SIMPLESEM's instruction pointer, which is initialized
to zero at each new execution and automatically updated as each instruction is
executed. The machine, in fact, operates by executing the following steps
repeatedly, until it encounters a special halt instruction:

1. Get the current instruction to be executed (i.e., C[ip]);

2. Increment ip;

3. Execute the current instruction.
Notice, however, that certain programming language instructions might mod-
ify the normal sequential control flow, and this must be reflected by SIM-
PLESEM. In particular, we introduce the following two instructions: jump and
jumpt. The former represents an unconditional jump to a certain instruction.
For example,

 91

jump 47
forces the instruction stored at address 47 of C to be the next instruction to be
executed; that is, it sets ip to 47. The latter represents a conditional jump,
which occurs if an expression evaluates to true. For example, in:

jumpt 47, D[3] > D[8]
the jump occurs only if the value stored in cell 3 is greater than the value
stored in cell 8.

SIMPLESEM allows indirect addressing. For example:

set D[10], D[20]
assigns the value stored at location 20 into the cell whose address is the value
stored at location 10. Thus, if value 30 is stored at location 10, the instruction
modifies the contents of location 30. Indirection is also possible for jumps.
For example:

jump D[13]
jumps to the instruction stored at location 88 of C, if 88 is the value stored at
location 13.

SIMPLESEM, which is sketched in Figure 11, is quite simple. It is easy to
understand how it works and what the effects of executing its instructions are.
In other terms, we can assume that its semantics is intuitively known; it does
not require further explanations that refer to other, more basic concepts. The
semantics of programming languages can therefore be described by rules that
specify how each construct of the language is translated into a sequence of
SIMPLESEM instructions. Since SIMPLESEM is perfectly understood, the
semantics of newly defined constructs becomes also known. As we will see,
however, SIMPLESEM will also be enriched as new programming language
concepts are introduced. This wil l be done in this book incrementally, as we
address the semantics of new concepts.

92 Syntax and semantics Chap.2

2.6 Execution-time structure

In this section we discuss how the most important concepts related to the exe-
cution-time processing of programming languages may be explained using
SIMPLESEM. We wil l proceed gradually, from the most basic concepts to
more complex structures that reflect what is provided by modern general-pur-
pose programming languages. We will move through a hierarchy of lan-
guages that are based on variants of the C programing language. They are
named C1 through C5.

Our discussion will show that languages can be classified in several catego-
ries, according to their execution-time structure.

Static languages.
Exemplified by the early versions of FORTRAN and COBOL, these lan-
guages guarantee that the memory requirements for any program can be eval-
uated before program execution begins. Therefore, all the needed memory
can be allocated before program execution. Clearly, these languages cannot
allow recursion, because recursion would require an arbitrary number of unit
instances, and thus memory requirements could not be determined before
execution. (As we will see later, the implementation is not required to per-
form the memory allocation statically. The semantics of the language, how-
ever, give the implementer the freedom to make that choice.)

Section 2.6.1 and Section 2.6.2 wil l discuss languages C1, C2, and its variant
C2', all of which fall under the category of static languages.

D C

ip

FIGURE 11.The SIMPLESEM machine

 93

Stack-based languages
Historically headed by ALGOL 60 and exemplified by the family of so-called
Algol-like languages, this class is more demanding in terms of memory
requirements, which cannot be computed at compile time. However, their
memory usage is predictable and follows a last-in-first-out discipline: the lat-
est allocated activation record is the next one to be deallocated. It is therefore
possible to manage SIMPLESEM’s D store as a stack to model the execution-
time behavior of this class of languages. Notice that an implementation of
these languages need not use a stack (although, most likely, it will): dealloca-
tion of discarded activation records can be avoided if store can be viewed as
unbounded. In other terms, the stack is part of the semantic model we provide
for the language; strictly speaking, it is not part of the semantics of the lan-
guage.

Section 2.6.3 and Section 2.6.4 discuss languages C3 and C4, which fall
under the category of stack-based languages.

Fully dynamic languages
These languages have un unpredictable memory usage; i.e, data are dynami-
cally allocated only when they are needed during execution. The problem
then becomes how to manage memory eff iciently. In particular, how can
unused memory be recognized and reallocated, if needed. To indicate that
store D is not handled according to a predefined policy (li ke a FIFO policy for
a stack memory), the term “heap” is traditionally used. This class of lan-
guages is illustrated by language C5 in Section 2.6.5.

2.6.1 C1: A language with only simple statements

Let us consider a very simple programming language, called C1, which can
be seen as a lexical variant of a subset of C, where we only have simple types
and simple statements (there are no functions). Let us assume that the only
data manipulated by the language are those whose memory requirements are
known statically, such as integer and floating point values, fixed-size arrays,
and structures. The entire program consists of a main routine (main ()), which
encloses a set of data declarations and a set of statements that manipulate
these data. For simplicity, input/output is performed by invoking the opera-

94 Syntax and semantics Chap.2

tions get and print to read and write values, respectively.

A C1 program is shown in Figure 12 and its straightforward SIMPLESEM
representation before the execution starts is shown in Figure 12. The D por-
tion shows the activation record of the main program, which contains space
for all variables that appear in the program. The C portion shows the SIM-
PLESEM code.

2.6.2 C2: Adding simple routines

Let us now add a new feature to C1. The resulting language, C2, allows rou-

main ()
{

int i, j;
get (i, j);
while (i != j)

if (i > j)
i -= j;

else
j -= i;

print (i);
}

FIGURE 12.A C1 program

set 0, read

set 1, read

jump 8, D[0] = D[1]

jump 6, D[0] ð D[1]

set 0, D[0] - D[1]

jump 7

set 1, D[1] - D[0]

jump 2

set write, D[0]

halt

C D

cell reserved for i

cell reserved for j
program’s activation
record

0

ip

0

1

2

3

4

5

6

7

8

9

0

1

FIGURE 13.Initial state of the SIMPLESEM machine for the C1 program in Figure 12

 95

tines to be defined in a program and allows routines to declare their own local
data. A C2 program consists of a sequence of the following items:

• a (possibly empty) set of data declarations (global data);
• a (possibly empty) set of routine definitions and or declarations;
• a main routine (main ()), which contains its local data declarations and a set of statements,

that are automatically activated when the execution starts. The main routine cannot be
called by other routines.

Routines may access their local data and any global data that are not rede-
clared internally. For simplicity, we assume that routines cannot call them-
selves recursively, do not have parameters, and do not return values (these
restrictions wil l be removed later).

Figure 14 shows an example of a C2 program, whose main routine gets called
initially, and causes routines beta and alpha to be called in a sequence.

Under the assumptions we made so far, the size of each unit’s activation
record can be determined at translation time, and all activation records can be
allocated before execution (static allocation). Thus each variable can be bound
to a D memory address before execution. Static allocation is a straightforward

int i = 1, j = 2, k = 3;
alpha ()
{

int i = 4, l = 5;
...
i+=k+l;
...

} ;
beta ()
{

int k = 6;
...
i=j+k;
alpha ();
...

} ;
main ()
{

...
beta ();
...

}

FIGURE 14. A C2 program

96 Syntax and semantics Chap.2

implementation scheme which does not cause any memory allocation over-
head at run time, but can waste memory space. In fact, memory is allocated
for a routine even if it is never invoked. Since our purpose is to provide a
semantic description, not to discuss an efficient implementation scheme, we
assume static allocation. The run-time model described in Section 2.6.3 could
be adapted to provide dynamic memory allocation for the C2 class of lan-
guages.

Figure 15 shows the state of the SIMPLESEM machine after instruction i += k

+ l of routine alpha has been executed. The first location of each activation
record (offset 0) is reserved for the return pointer. Starting at location 1,
space is reserved for the local variables. In general, for an instance of unit A,
the return pointer wil l contain the address of the instruction that should be
executed after unit A terminates. This does not apply to main, which does not
return to a caller. On real computers, however, main is called by the operating
system, and after termination main must return control to the operating sys-
tem. Also notice that we maintain an activation record to keep global data at
the low address end of store D.

 97

So far, we implicitly assumed that in C2 the main program and its routines are
compiled in one monolithic step. It may be convenient instead to allow the
various units to be compiled independently. This is il lustrated by a variant of
C2 (called C2') which allows program units to be put into separate files, and
each file to be separately compiled in an arbitrary order. The file which con-
tains the main program may also contain global data declarations, which may
then be imported by other separately compiled units, which consist of single
routines. If any of such routines needs to access some globally defined data, it
must define them as external. Figure 16 shows the same example of Figure

set 6, 16

jump 100

jump D[3]

D

59

ip

14

15

...

...

...

49

50

 set 4, D[4]+D[2]+D[5]58

...

...

99

100

122

123

124

 set 0, D[1]+D[7]

 set 3, 125

 jump 50

...

jump D[6]

C

main
code
segment

alpha
code
segment

beta
code
segment

2

3

125

12

5

 16

6

 8
(j)

(i)

(k)

global
data

(ret. point)

(i)

(l)

(ret. point)

(k)

alpha
act. record

beta
act. record

0

1

2

3

4

5

6

7

...

FIGURE 15.State of the SIMPLESEM executing the program of Figure 14

98 Syntax and semantics Chap.2

14, using separate compilation.

As in the case of C2, a SIMPLESEM implementation can reserve the first
location of each activation record (except for main) for the pointer to the
caller’s instruction, to be executed upon return. Further consecutive locations
are then reserved for local variables, which can be bound to their offset within
the activation record, as each routine is independently compiled. Independent
compilation, however, does not allow variables to be bound to their absolute
addresses. Because of independent compilation, imported global variables
cannot even be bound to their offsets in the global activation record. Simi-
larly, routine calls cannot be bound to the starting address of the correspond-
ing code segments.

To resolve such unresolved addresses, a linker is used to combine the inde-
pendently translated modules into a single executable module. The linker
assigns the various code segments and activation records to stores C and D
and fill s any missing information that the compiler was unable to evaluate.

From this discussion we see that C2 and C2' do not differ semantically.
Indeed, once a linker collects all separately compiled components, C2' pro-
grams and C2 programs cannot be distinguished. Their difference is in terms
of the user-support they provide for the development of large programs. C2'
allows parallel development by several programmers, who might work at the
same time on different units.

Independent compilation, as offered by C2', is a simplified version of the
facility offered by several existing programming languages, such as FOR-
TRAN and C.

file 1

int i = 1, j = 2, k = 3;
extern beta ();
main ()
{

 beta ();
 . . .
}

 . . .

file 2

extern int k;
alpha ()
{

}
 . . .

file 3

extern int i, j;
extern alpha ();
beta ()
{

}

 . . .
 alpha ();
 . . .

FIGURE 16. Program layout for separate compilation

 99

2.6.3 C3: Suppor ting recursive functions

Let us add two new features to C2: the ability of routines to call themselves
(direct recursion) or to call one another in a recursive fashion (indirect recur-
sion), and the abili ty of routines to return values, i.e., to behave as functions.
These extensions define a new language, C3, which is illustrated in Figure 17
through an example.

As we mentioned in Section 2.4, in order to support mutual recursion between
two routines–say, A and B–the program must be written according to the fol-
lowing pattern:

A’s declaration (i.e., A’s header);
B’s definition (i.e., B’s header and body);
A’s definition;

Let us first analyze the effect of the introduction of recursion. Although each
unit's activation record has a known and fixed size, in C3 it is not known how
many instances of any unit wil l be needed during execution. As an example,
for the program shown in Figure 17, at a given point of execution two activa-
tions are generated for function fact if the read value of n is greater than or
equal to two. All different activations have the same code segment, since the
code does not change from one activation to another, but they need different
activation records, storing the different values of the local environment. As

int n;
int fact ()
{

int loc;
if (n > 1) {

loc = n--;
return loc * fact ();

}
else

return 1;
}
main ()
{

get (n);
if (n >= 0)

print (fact ());
else

print ("input error");
}

FIGURE 17. A C3 example

100 Syntax and semantics Chap.2

for C2, the compiler can bind each variable to its offset in the corresponding
activation record. However, as opposed to C2, it is not possible to perform the
further binding step which transforms it into an absolute address of the D
store until execution time. In fact, an activation record is allocated by the
invoking function for each new invocation, and each new allocation estab-
lishes a new binding with the corresponding code segment to form a new acti-
vation of the invoked function. Consequently, the final binding step which
adds the offset of a variable–known statically–to the starting address (often
called base address) of the activation record–known dynamically–can only
be performed at execution time. To make this possible, we will use the cell at
address zero in D to store the base address of the activation record of the cur-
rently executing unit (we also call this value CURRENT).

When the current instance of a unit terminates, its activation record is no
longer needed. In fact, no other units can access its local environment, and the
semantic rule of function invocation requires a new activation record to be
freshly allocated. Therefore, after a function completes its current instance, it
is possible to free the space occupied by the activation record and make it
available to store new activation records in the future. For example, if A calls
B which then calls C, the activation records for functions are allocated in the
order A, B, C. When C returns to B, C's activation record can be discarded;
B's activation record is discarded next, when B returns to A. Because the acti-
vation record that is freed is the one that was most recently allocated, activa-
tion records can be allocated with a last-in/first-out policy on a stack-
organized storage.

In order to make return from an activation possible, the following necessary
information is stored in the activation record: address of the instruction to be
executed (return point) and base address of activation record to become
active upon return. In the case of C2, only the return point needed to be saved,
because through it the (unique) activation record associated with the callee
also becomes known. If more than one activation may exist for a given unit,
this more general solution becomes necessary. Therefore we assume that the
cell at offset 0 of activation records contains the return point, while the cell at
offset 1 contains a pointer to the base address of the caller's activation record–
this pointer is called the dynamic link. The chain of dynamic links originating
in the currently active activation record is called the dynamic chain. At any
time, the dynamic chain represents the dynamic sequence of unit activations.

 101

In order to manage SIMPLESEM's D store as a stack, it is necessary to know,
at run time, the address of the first free cell of D, since a new activation
record is allocated from that point on. We wil l use D’s cell at address 1 to
keep this information (we call this value FREE). Finally, it is necessary to
provide memory space for the value returned by the routine, if it behaves as a
function. Since the routine’s activation record is deallocated upon return, the
returned value must be saved into the caller’s activation record. That is, when
a functional routine is called, the caller’s activation record is extended to pro-
vide space for the return value, and the callee writes the returned value into
that space (using a negative offset, since the location is in the caller’s activa-
tion record) before returning1.

Figure 18 provides an intuitive view of SIMPLESEM's D store. Activation
records are allocated one on top of the previous, and the allocated memory
grows from the upper part of the store (corresponding to low addresses)
downwards.

1. For further details concerning the management of return values, see Exercise 21.

activation record
of the caller

0

1

2

3

..

growth
of the stack

 dynamic

CURRENT

FREE
return
point

 link

activation record
of the currently
executing routine

(to C memory)

102 Syntax and semantics Chap.2

FIGURE 18. Structure of the SIMPLESEM D memory implementing a stack
Since recursive routines are the main additional features of C3, we now show
how the semantics of routine call and return are specified in terms of SIM-
PLESEM instructions.

Routine call

set 1, D[1] + 1 assume one cell i s suff icient to hold
the returned value

set D[1], ip + 4 set the value of the return point in
the callee’s
activation record

set D[1] + 1, D[0] set the dynamic link of the callee’s
activation record to point to the
caller’s activation record

set 0, D[1] set CURRENT, the address of the
currently executed activation record

set 1, D[1] + AR set FREE (AR is the size of the
callee’s activation record)

jump start_addr start_addr is an address of C where
the first instruction of the callee’s
code is stored.

Return from routine

set 1, D[0] set FREE
set 0, D[D[0] +1] set CURRENT
jump D[D[1]] jump to the stored return point

We assume that before the execution of a C3 program starts, ip is set to point
to the first instruction of main () and the D memory is initialized to contain
space for the global data and for the activation record of main (). Such activa-
tion record contains space just for local main’s variables (if any); space for the
address of the return instruction and for the dynamic link are not needed,
since the main routine does not return to a caller. Its termination simply means
that the execution terminates. The values stored in D[0] and D[1] are also
assumed to be initialized before execution. D[0] is set to the address of the
first location of main’ s activation record and D[1] must be set to the address of
the first free location after main’s activation record.

As an exercise, let us show how the program of Figure 17 is executed by the
SIMPLESEM machine. The code stored in the C memory is the following:

 103

0 set 2, read reads the value of n; 2 is the absolute address where
global variable n is stored

1 jumpt 10, D[2] < 0 tests the value of n
2 set 1, D[1] + 1 call to fact starts here; space for the result saved
3 set D[1], ip + 4
4 set D[1] + 1, D[0]
5 set 0, D[1]
6 set 1, D[1] + 3 3 is the size of fact’s activation record
7 jump 12 12 is the starting address of fact’s code
8 set write, D[D[1] - 1] D[1] - 1 is the address where the result of the call to fact

is stored
9 jump 13 end of the call
10 set write, “ input error”
11 halt this is the end of the code of main
12 jumpt 23, D[2] ð 1 tests the value of n
13 set D[0] + 2, D[2] assigns n to loc
14 set 2, D[2] - 1 decrements n
15 set 1, D[1] + 1 call to fact starts here; space for the result saved
16 set D[1], ip + 4
17 set D[1] + 1, D[0]
18 set 0, D[1]
19 set 1, D[1] + 3 3 is the size of fact’s activation record
20 jump 12 12 is the starting address of fact’s code
21 set D[0] - 1, D[D[0] + 2] * D[D[1] - 1] the returned value is stored in the

caller’s activation record
22 jump 24
23 set D[0] - 1, 1 return 1
24 set 1, D[0] this and the next 2 instructions correspond to the return

 from the routine
25 set 0, D[D[0] + 1]
26 jump D [D[1]]

Figure 19 provides two snapshots of the D memory: immediately after the
first call to fact (case (a)) and at the return point from the third activation of
fact when the initially read input value is 3 (case (b)). The reader is urged to
try the example on paper, going through all i ntermediate steps of execution.

Note that the stack-based abstract implementation scheme discussed in this
section also can be used for implementing C2. We discussed C2 in terms of
static memory allocation, but this was simply an implementation choice. The
advantage of a stack-based implementation would be that only the minimum
amount of data store is allocated at any given time. The disadvantage, of
course, is that a more complicated memory management scheme is needed.

104 Syntax and semantics Chap.2

2.6.4 C4: Suppor ting block structure

The structuring facilit ies offered by C3 allow programs to be defined as a
sequence of global declarations of data and routines. Routines may call them-
selves in a recursive fashion. In this section we discuss a new extension to our
language family, which collectively define a new family C4. The family C4
contains two members: C4' and C4". C4' allows local declarations to appear
within any compound statement. C4" supports the abil ity to nest a routine
definition within another. Conventionally, the new features offered by C4'
and C4'' are collectively called block structure. Block structure is used to con-
trol the scope of variables, to define their lifetime, and to divide the program
into smaller units. Any two blocks in the program may be either disjoint (i.e.,
they have no portion in common) or nested (i.e., one block completely
encloses the other).

0

1

2

3

4

5

6

CURRENT

FREE

n

ret. value

dyn. link

ret. point

loc

4

7

3

7

2

(a)

0

1

2

3

4

5
6

7

CURRENT

FREE

n

ret. value

dyn. link

ret. point

 loc

12

15

1

8

2

ret. value

dyn. link

ret. point

 loc

21

4

ret. value

dyn. link

ret. point

 loc

21

8

8

9

10

11

12

13

14

3

2

1

(b)

fact’s AR

FIGURE 19. Two snapshots of the D memory

fact’s AR

fact’s AR

fact’s AR

 105

2.6.4.1 Nesting via compound statements

In C4', blocks have the following form of compound statement, which can
appear wherever a statement can appear:

{ <declaration_list>; <statement_list>}
It is easy to realize that such compound statements follow the aforementioned
rule of blocks: they are either disjoint or they are nested. A compound state-
ment defines the scope of its locally declared variables: such variables are
visible within the compound, including any compound statement nested in it,
provided the same name is not redeclared. An inner declaration masks an
external declaration for the same name. Figure 20 shows an example of a C4'
function having nested compound statements. Function f has local declara-
tions for x, y, and w, whose scope extends from //1 to the entire function body,
with the following exceptions:

• x is redeclared in //2. From that declaration until the end of the while statement the outer
x is not visible;

• y is redeclared in //3. From that declaration until the end of the while statement, the outer
y is not visible;

• w is redeclared in //4. From that declaration until the end of the if statement, the outer
declaration is not visible.

Similarly, //2 declares variables x and z, whose visibil ity extends from the
declaration until the end of the statement, with one exception. Since x is rede-
clared in //4, the outer x is masked by the inner x, which extends from the dec-

106 Syntax and semantics Chap.2

laration until the end of the if statement.

A compound statement also defines the lifetime of locally declared data.
Memory space is bound to a variable x as the block in which it is declared is
entered during execution.The binding is removed when the block is exited.

In order to provide an abstract implementation of compound statements for
the SIMPLESEM machine, there are two options. One consists of statically
defining an activation record for a routine with nested compound statements;
another consists of dynamically allocating new memory space corresponding
to local data as each compound statement is entered during execution. The
former scheme is simpler and more time eff icient, while the latter can lead to
a more space efficient implementation. We will discuss the former scheme,
and leave the latter to the reader as an exercise, which can easily be solved
after reading Section 2.6.4.2 (see Exercise27).

Let us refer to the example of Figure 20. Note that the while block that

int f();
{ //block 1

int x, y,w; //1
while (...)
{ //block 2

int x, z; //2
. . .
while (. . .)
{ //block 3

int y; //3
. . .

} //end block 3
if (. . .)
{ //block 4

int x, w; //4
. . .

} //end block 3
} //end block 2
if (. . .)
{ //block 5

int a, b, c, d; //5
. . .

} //end block 5
} //end block 1

FIGURE 20. An example of nested blocks in C4’

 107

declares variables x and z and the if block that declares a, b, c, and d are dis-
joint; similarly, the while block that declares variable y and the if block that
declares x and z are disjoint. Since two disjoint blocks cannot be active at the
same time, it is possible to use the same memory cells to store their local val-
ues. Thus, the activation record of function f can be defined as shown in Fig-
ure 21. The figure shows that the same cells may be used to store a and x, b
and w, c and w, etc.; i.e., operator “ --” denotes an overlay. The definition of
overlays can be done at translation time. Having done so, the run-time behav-
ior of C4' is exactly the same as was discussed in the case of C3.

.

A block structure can be described by static nesting tree (SNT), which shows
how blocks are nested into one another. Each node of a SNT describes a
block; descendants of a node N which represents a certain block denote the
blocks that are immediately nested within the block. For example, the pro-
gram of Figure 20 is described by the static nesting tree of Figure 22.

FIGURE 21. An activation record with overlays

return pointer

dynamic link

 x in //1

 y in //1

 w in //1

 x in //2--a in //5

z in //2--b in //5

y in //3-x in //4-c in //5

w in //4--d in //5

108 Syntax and semantics Chap.2

2.6.4.2 Nesting via locally declared routines

As we mentioned, block structure may result from the ability to nest com-
pound statements within unnested routines, to nest routine definitions within
routines, or both. C and C++ only support the nesting of compound state-
ments within routines. Pascal and Modula-2 allow routine nesting, but do not
support nesting of compound statements. Ada allows both.

FIGURE 22.Static nesting tree for the block structure of Figure 20

block 1

block 2 block 5

block 3 block 4

FIGURE 23. A C4" example (a) and its static nesting tree (b)

int x, y, z;
f1 ()
{ //block 1

int t, u; // 1
f2 ()
{ //block 2

int x, w; // 2
f3 ()
{ //block 3

int y, w, t; // 3
. . .

} //end block 3
x = y + t + w + z;

} //end block 2
. . .
} //end block 1
main ();
{ //block 4

int z, t;
. . .

} //end block 4

(a)

block 0block 1 block4

block 2

block 3

(b)

block 4block 1

Block 0 is introduced to
represent the outermost
level of the program

 109

Let us examine how routine nesting might be incorporated into our language.
The resulting variation will be called C4". As shown in Figure 23 (a), in C4" a
routine may be declared within another routine. Routine f3 can only be called
within f2 (e.g., it would not be visible within f1 and main). A call to f3 within
f2’s body would be a local call (i.e., a call to a locally declared routine). Since
f3 is internal to f2, f3 can also be called within f3’ s body (direct recursion).
Such a call would be a call to a nonlocally declared routine, since f3 is
declared in the outer routine f2. Similarly, f2 can be called within f1’s body
(local call) and both within f2’ s and f3’ s bodies (nonlocal calls). Moreover,
the data declared in //1are visible from that point until the end of f1 (i.e., //6),
with one exception. If a declaration for the same name appears in internally
declared routines (i.e., in //2 or in//3), the internal declarations mask the outer
declaration. Also, within a routine, it is possible to access both the local vari-
ables, and nonlocal variables declared by enclosing outer routines, if they are
not masked. In the example, within f3's body, it is possible to access the non-
local variables x (declared in //2), u (declared in //1) and the global variable z.

As shown in Figure 23 (b), the concept of a static nesting tree can be defined
in this case too. Block 0 is introduced to represent the outermost level of the
program, which contains the declarations of variables x, y, z, and functions f1 (

) and main ().

Let us examine the effect of the following sequence of calls: main calls f1, f1

x, y, z

z, tmain

global
env.

t, u

x, w

y, w, t

x, w

f1

f2

f3

f2

CURRENT

FIGURE 24. A sketch of the run-time stack (dynamic links are shown as arrowed lines)

 110

calls f2, f2 calls f3, f3 calls f2. Figure 24 shows a portion of the activation
record stack corresponding to the example. The description is highly simpli -
fied, for readabili ty purposes, but shows all the relevant information. For each
activation record, we indicate the name of the corresponding routine, the
dynamic link, and the names of variables whose values are kept in it. Let us
suppose that the execution on the SIMPLESEM machine reaches the assign-
ment x = y + t + w + z in f2. The translation process we discussed so far is able to
bind variables x and w to offsets 2 and 3 of the topmost activation record
(whose initial address is given by D[0], i.e., CURRENT); but what about
variables y, t, and z? For sure, they should not be bound according to the most
recently established binding for such variable names, since such binding were
established by the latest activations of routines f3 (y and t) and main (z). How-
ever, the scope rules of C4" require variables y and z referenced within f2 to
be the ones declared globally, and variable t to be the one declared locally in
f1. In other words, the sequence of activation records stored in the stack repre-
sent the sequence of unit instances, as they are dynamically generated at exe-
cution time. But what determines the nonlocal environment are the scope
rules of the language, which depend on the static nesting of routine declara-
tions.

One way to make access to nonlocal variables possible is for each activation
record to contain a pointer (static link) up the stack to the activation record of
the unit that statically encloses it in the program text. We will use the location

x, y, z

z, tmain

global
env.

t, u

x, w

y, w, t

x, w

f1

f2

f3

f2 CURRENT

FIGURE 25. The run-time stack of Figure 24 with static links

(static links are shown as
dotted arrowed lines)

 111

of the activation record at offset 2 to store the value of the static link. Figure
25 shows the static links for the example of Figure 24. The sequence of static
links that can be followed from the active activation record is called the static
chain. Referencing nonlocal variables can be explained intuitively as a search
that traverses the static chain. To find the correct binding between a variable
and a stack location, the static chain is searched until a binding is found. In
our example, the reference to t is bound to a stack location within f1's activa-
tion record, whereas references to y and z are bound to a stack location within
the global environment–as indeed it should be. Notice that in this scheme, the
global environment is accessed in the same uniform way as any other nonlo-
cal environment. In such a case, the value of the static link for main’s activa-
tion record is assumed to be set automatically before execution. In order to
use the cell at offset 2 of main’ s activation record to hold the value of the static
link, as we do for any other activation record, the cells at offsets 0 and 1 are
kept unused. Alternatively, access to the global environment can be treated as
a special case, by using absolute addresses.

In practice, searching along the static chain, which would entail considerable
run-time overhead, is never necessary. A more eff icient solution is based on
the fact that the activation record containing a variable named in a unit U is
always a fixed distance from U's activation record along the static chain. If
the variable is local, the distance is obviously zero; if it is a variable declared
in the immediately enclosing unit, the distance is one; if it is a variable
declared in the next enclosing unit, the distance is 2, and so on. In general, for
each reference to a variable, we can evaluate a distance attribute between that
reference and the corresponding declaration. This distance attribute can be
evaluated and bound to the variable at translation time. Consequently, each
reference may be statically bound to a pair (distance, offset) within the activa-
tion record.

Based on the pair (distance, offset), it is possible to define the following
addressing scheme for SIMPLESEM. If d is the value of the distance, starting
from the address of the current activation record (CURRENT, the value stored
in D[0]), we traverse d steps along the static chain. The value of the offset is
then added to the address so found, and the result is the actual run-time
address to the nonlocal data object. We can define this formally in terms of a
recursive function fp (d), which can then be easily translated into SIM-
PLESEM. Function fp (d), which stands for the frame pointer–a pointer to an
activation record–that is d static links away from the active activation record,

 112

can be defined as:

fp(d) = if d=0 then D[0] else D [fp (d-1)+2]
For example, fp (0) is simply D[0], i.e., the address of the current (topmost)
activation record; and fp(1) is D[D[0]+ 2].

Using fp, access to a variable x, with <distance, offset> pair <d, o>, is provided
by the following address:

D[fp(d)+ o]
The semantics of function call defined in Section 2.6.3 needs to be modified
in the case of C4", in order to take into account the installation of static links
in activation records. This can be done in the following way. First, notice that,
as we did for variables, one can define the concept of distance between a rou-
tine call and the corresponding declaration. Thus, if f calls a local routine f1,
then the distance between the call and the declaration is 0. If f contains a call
to a function declared in the block enclosing f, the distance is 1. This, for
example, would be the case if f calls itself recursively. If f is local to function
g and f contains a call to a function h declared in the block enclosing g, the dis-
tance between the call and the declaration is 2, and so on. Therefore, the static
link to install for activation record of the callee, if the callee is declared at dis-
tance d, should point to the activation record that is d steps along the static
chain originating from the caller's activation record.

In conclusion, the semantics of routine call can be defined by the following
SIMPLESEM code:

Routine call

set 1, D[1] + 1 set space for the result of the
function call (assume 1 cell needed)

set D[1], ip + 5 set the value of the return point in
the callee’s activation record

set D[1] + 1, D[0] set the dynamic link of the callee’s
activation record to point to the
caller’s activation record

set D[1] + 2, fp(d) set the static link of the callee’s
activation record

set 0, D[1] set CURRENT, the address of the
currently executed
activation record

 113

set 1, D[1] + AR set FREE (AR is the size of the
callee’s activation record)

jump start_addr start_addr is an address of memory C
where the first instruction of the
callee’s code is stored.

2.6.5 C5: Towards more dynamic behaviors

So far we assumed that the data storage requirements of each unit are known
at compile time, so that the required amount of memory can be reserved when
the unit is allocated. Furthermore, the mapping of variables to storage within
the activation record can be performed at compile time; i.e., each variable is
bound to its offset statically. In this section we discuss language features that
invalidate this assumption, and we show how to define semantics of such fea-
tures.

2.6.5.1 Activation records whose size becomes known at unit activation

Let us first introduce language C5', by relaxing the assumption that the size of
all variables is known at compile time. Such is the case for dynamic arrays,
that is, arrays whose bounds become known at execution time, when the unit
(routine or compound statement) in which the array is declared is activated.

For example, in the Ada programming language, it is possible to define the
following type:

type VECTOR is array (INTEGER range <>); --defines arrays with unconstrained index

and declare the following variables:

A: VECTOR (1. .N);
B: VECTOR (1. .M); --N and M must be bound to some integer value when these two dec-
larations are processed at execution time

The abstract implementation that defines the semantics for this case is rather
straightforward. At translation time, storage can be reserved in the activation
record for the descriptors of the dynamic arrays. The descriptor includes one
cell i n which we store a pointer to the storage area for the dynamic array and
one cell for each of the lower and upper bounds of each array dimension. As
the number of dimensions of the array is known at translation time, the size of
the descriptor is known statically. All accesses to a dynamic array are trans-
lated as indirect references through the pointer in the descriptor, whose offset
is determined statically.

 114

At run time, the activation record is allocated in several stages.

1. The storage required for data whose size is known statically and for descriptors of
dynamic arrays are allocated.

2. When the declaration of a dynamic array is encountered, the dimension entries in the
descriptors are entered, the actual size of the array is evaluated, and the activation record
is extended (that is, FREE is increased) to include space for the variable. (This expansion
is possible because, being the active unit, the activation record is on top of the stack.)

3. The pointer in the descriptor is set to point to the area just allocated.
In the previous example, let us suppose that the descriptor allocated when
variable A is declared is at offset m. The cell at offset m will point at run time
to the starting address of A; the cells at offsets m+1 and m+2 will contain the
lower and upper bounds, respectively, of A’s index. The run-time actions cor-
responding to entry into the unit where A’s declaration appears will update
the value of D[1] (i.e., FREE) to allocate space for A, based on the known value
of N, and will set the values of the descriptor at offsets m, m+1, and m+2.

Any access to elements of A are translated to indirect references. Assuming
each integer occupies one location of D and supposing that I is a local variable
stored at offset s, instruction A [I] = 0 would be translated into SIMPLESEM
as:

2.6.5.2 Fully dynamic data allocation

Now let us consider another language variation, called C5", in which data can
be allocated explicitly, through an executable allocation instruction. In most
existing languages, this is achieved by defining pointers to data, and by pro-
viding statements that allocate such data in a fully dynamic fashion.

For example, in C++ we can define the following type for nodes of a binary
tree:

struct node {
int info;
node* left;
node* right:

} ;
The following instruction, which may appear in some code fragment:

 set [D[D[0] + m] + D[D[0] + s]], 0

denotes the value of Idenotes the base
address of A

 115

node* n = new node;
explicitly allocates a structure with the three fields info, left, and right, and
makes it accessible via the pointer n.

According to this allocation scheme, data are allocated explicitl y as they are
needed. We cannot allocate such data on a stack, as do automatically allo-
cated data. For example, suppose that a function append_left is called to gener-
ate a new node and make its accessible through field left of node pointed by n.
Also, suppose that n is visible by append_left as a nonlocal variable. If the node
allocated by append_left would be allocated on the stack, it would be lost when
append_left returns. The semantics of these dynamically allocated data, instead,
is that their lifetime does not depend on the unit in which their allocation
statement appears, but lasts as long as they are accessible, i.e.,they are
referred to by some existing pointer variables, either directly or indirectly.

An abstract implementation of this concept using SIMPLESEM can be very
simple, and consists of allocating dynamic data in D starting from the high-
address end. This area of D is also called the heap. New data are allocated in
the heap as the allocation instructions are executed, and we can assume that
the size of the SIMPLESEM D store is suff icient to hold all data that are
dynamically allocated via the new instruction. Figure 26 gives an overall view
of how memory D is handled, in order to support both a stack and a heap. We
will return to the practical issue of actually implementing dynamic allocation
in a memory-efficient way in Chapter 3. From a semantic viewpoint, this sim-
ple implementation scheme can be suff icient.

 116

Sidebar start The Structure of Dynamic Languages

The term “dynamic languages” implies many things. In general, it refers to
those languages that adopt dynamic rather than static rules. For example,
APL, SNOBOL4 and several LISP variants use dynamic typing and dynamic
scope rules. In principle, of course, a language designer can make these
choices independently of one another. For example, one can have dynamic
type rules but static scope rules. In practice, however, dynamic properties are
often adopted together.1

In this sidebar, we will examine how the adoption of dynamic rules changes
the semantics of the language in terms of run-time requirements. In general, a
dynamic property implies that the corresponding bindings are carried out at
run time and cannot be done at translation time. We will examine dynamic
typing and dynamic scoping.

In a language that uses dynamic typing, the type of a variable and therefore
the methods of access and the allowable operations cannot be determined at
translation time. In Section 2.6.5, we saw that we need to keep a run-time
descriptor for dynamic arrays variables, because we cannot determine the size
of or starting address of such variables at translation time. In that case, the

1. We already mentioned that there are dynamically typed languages (like ML and Eiffel) that support static
type checking.

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

stack

heap

FIGURE 26. Management of the D memory

 117

descriptor has to contain the information that cannot be computed at transla-
tion time, namely, the starting address and the array bounds. It was possible to
keep the descriptor in the activation record because the size of the descriptor
was fixed and known at translation time. In the case of dynamically typed
variables, we also need to maintain the type of the variable in the descriptor.
If the type of a variable may change at run time, then the size and contents of
its descriptor may also change. For example, if a variable changes from a
two-dimensional array to a three-dimensional array, then the descriptor needs
to grow to contain the values of the bounds for the new dimension. This is in
contrast to the descriptors of dynamic arrays whose contents were fixed at
unit activation time. Every access to a dynamic variable must be preceded by
a run-time check on the type of the variable, followed by appropriate address
computation, depending on the current type of the variable.

What is maintained for each variable in the activation record for a unit? Since
not only the variable's size may change during program execution, but so may
the size of its descriptor, descriptors must be kept in the heap. For each vari-
able, we maintain a pointer in the activation record that points to the variable's
descriptor in the heap which, in turn, may contain a pointer to the object itself
in the heap.

In order to discuss the effect of dynamic scope rules, let us consider the exam-
ple program of Figure 27. The program is written using a C-like syntax, but it
will be interpreted according to an APL-like semantics, i.e., according to

 118

dynamic scope rules.

A program consists of a number of routines and a main program. Each routine
declares its local variables (y in the case of sub1, x in the case of sub2, x, y, z in
the case of main). Any access to a variable that is not locally declared is
implicitl y assumed to be an access to a nonlocal variable. A variable declara-
tion does not specify the variable's type: it simply introduces a new name.
Routine names are considered as global identifiers.

Since scope rules are dynamic, the scope of a name is totally dependent on the
run-time call chain (i.e., on the dynamic chain), rather than the static structure
of the program. In the example shown in Figure 27 consider the point when
the call to sub1 is issued in main. The nonlocal references to x and z within the
activation of sub1 are bound to the global x and z defined by main. When func-
tion sub2 is activated from sub1, the nonlocal reference to y is bound to the

sub2 ()
{

declare x;
. . .
. . . x . . .;
. . . y . . .;
. . .

}
sub1 ()
{

declare y;
. . .
. . . x . . .;
. . . y . . .;
sub2 ();
. . .

}
main ()
{

declare x, y, z;
z = 0;
x = 5;
y = 7;
sub1;
sub2;
. . .

}

FIGURE 27. An example of a dynamically scoped language

 119

most recent definition of y, that is, to the data object associated to y in sub1's
activation record. Return from routines sub2 and then sub1 causes deallocation
of the corresponding activation records and then execution of the call to sub2
from main. In this new activation, the nonlocal reference to y from sub2, which
was previously bound to y in sub1, is now bound to the global y defined in
main.

An abstract implementation mechanism to reference nonlocal data can be
quite simple. Activation records can be allocated on a stack and joined
together by dynamic links, as we saw in the case of conventional languages.
Each entry of the activation record explicitl y records the name of the variable
and contains a pointer to a heap area, where the value can be stored. Alloca-
tion on a heap is necessary because the amount of storage required by each
variable can vary dynamically. For each variable–say, V–the stack is searched
by following the dynamic chain. The first association found for V in an acti-
vation record is the proper one. Figure 28 illustrates the stack for the program
of Figure $20 when sub2 is called by sub1, which is, in turn, called by main.

Although simple, this accessing mechanism is inefficient. Another approach

dynamic link

dynamic link

z

x

y

y

x

HEAP

main

sub1

sub2

FIGURE 28. A view of the run-time memory for the program of Figure 27

 120

is to maintain a table of currently active nonlocal references. Instead of
searching along the dynamic chain, a single lookup in this table is sufficient.
We will not discuss this solution any further but the reader should note that
this technique speeds up referencing nonlocal variables at the expense of
more elaborate actions to be executed at subprogram entry and exit. These
additional actions are necessary to update the table of active nonlocal refer-
ences.

Sidebar end

2.6.6 Parameter passing

So far we assumed that routines do not have parameters: we only assumed
that they can return a value (see Section 2.6.3). We will now remove this lim-
itation by discussing how parameter passing may be abstractly implemented
on SIMPLESEM. We first address the issue of data parameters, and then we
will analyze routine parameters.

2.6.6.1 Data parameters

There are different conventions for passing data parameters to routines. The
adopted convention is either predefined by the language, and therefore it is
part of the language semantics, or can be chosen by the programmer from
several options. In either case, it is important to know which convention is
adopted, because the choice made affects the meaning of programs. The same
program may in fact produce different results under different data parameter
passing conventions. Three conventions for data parameters are discussed
below: call by reference, call by copy, and call by name. Each of them is first
introduced informally, and then defined precisely in terms of SIMPLESEM
actions.

Call by Reference (or by Sharing)
The calling unit passes to the called unit the address of the actual parameter
(which is in the calli ng unit's referencing environment). A reference to the
corresponding formal parameter in the called unit is treated as a reference to
the location whose address is so passed. The effect of call by reference is intu-
itively described in Figure 29. If the formal parameter is assigned a value, the
corresponding actual parameter changes value. Thus, a variable that is trans-
mitted as an actual parameter is shared, that is, directly modifiable by the sub-
program. If an actual parameter is anything other than a variable, for example,
an expression or a constant, the subprogram receives the address within the

 121

calli ng unit's activation record of a temporary location that contains the value
of the actual parameter. Some languages treat this situation as an error.

Suppose that call by reference is being added to C4. In order to define a SIM-
PLESEM implementation that specifies semantics precisely, we need to
extend the actions described in Section 2.6.3. The callee's activation record
must contain one cell for each parameter. At procedure call the caller must
initialize the contents of the cell to contain the address of the corresponding
actual parameter. If the parameter cell is at offset off and the actual parameter,
which is bound to the pair (d, o), is not itself a by-reference parameter, the fol-
lowing action must be added for each parameter:

set D[0] + off, fp(d) + o
If the actual parameter itself is a by-reference parameter, the SIMPLESEM
action should be:

set D[0] + off, D[fp (d) + o]
When the routine body is executed, parameter reference is performed via
indirect addressing. Thus, if x is a formal parameter and off is its offset,
instruction

 x = 0;
is translated as

set D[D[0] + off], 0

Call by copy
In call by copy–unlike in call by reference–formal parameters do not share

actual parameter

formal parameter
Environment
of the caller

Environment
of the callee

FIGURE 29.A view of call by reference

 122

storage with actual parameters; rather, they act as local variables. Thus, call
by copy protects the calli ng unit from intentional or inadvertent modifications
of actual parameters. It is possible further to classify call by copy into three
modes, according to the way local variables corresponding to formal parame-
ters are initialized and the way their values ultimately affect the actual param-
eters. These three modes are call by value, by result, and by value-result.

In call by value, the call ing unit evaluates the actual parameters, and these
values are used to initialize the corresponding formal parameters, which act
as local variables in the called unit. Call by value does not allow any flow of
information back to the caller, since assignments to formal parameters (if per-
mitted) do not affect the calli ng unit.

In call by result, local variables corresponding to formal parameters are not
set at subprogram call , but their value, at termination, is copied back into the
corresponding actual parameter's location within the environment of the
caller. Call by result does not permit any flow of information from the caller
to the callee.

In call by value-result, local variables denoting formal parameters are both
initialized at subprogram call (as in call by value) and delivered upon termi-
nation (as in call by result). Information thus flows from the caller to the
callee (at the point of call) and from the callee to the caller (at the return
point).

A description of the semantics of call by value in terms of a SIPLESEM
implementation is trivial. The callee's activation record must contain space
for by-value parameters, as normal local data. The difference here is that the
call must provide for initialization of such data. We leave this and the other
two cases of call by copy as exercises for the reader.

One might wonder whether call by reference and call by value-result are
equivalent. If this were the case, implementing parameter passing in one
mode would be equivalent to implementing it in the other. It can be shown,
however, that call by reference may produce a different result from call by
value-result in the following cases:

• two formal parameters become aliases (i.e., the two different names denote the same
object);

 123

• a formal parameter and a nonlocal variable which is visible both by the caller and by the
callee become aliases.

We will provide two examples to motivate these statements. The first case
may happen if–say– a [i] and a [j] are two integer actual parameters corre-
sponding to the formal parameters x and y, and i happens to be equal to j at the
point of call. In such a case, the effect of call by reference is that x and y
would be aliased, since they would refer to the same array element. If the rou-
tine contains the following statements:

x = 0;
y ++;

the result of the call is that the array element of index i (and j) is set to 1. In the
case of call by value-result, let a [i] be 10 at the point of call . The call would
initialize x and y to the 10. Then x becomes 0 and y becomes 11, due to the
above assignment statements. Finally, upon return, first 0 is copied back into a
[i] and then 11 is copied back into the same cell , if copies are performed in this
order. As a result, the array element is set to 11.

As an example of the second case, suppose that a routine is called with one
integer actual parameter a which corresponds to the formal parameter x. Let a
be visible by the routine as a nonlocal variable. Suppose that the routine con-
tains the following statements:

a = 1;
x = x + a;

In the case of call by reference, the effect of the call i s that a is set to 2. In the
case of call by value-result, if a’s value is 10 at the call point, the value
becomes 11 upon return.

Call by name
As in call by reference, a formal parameter, rather than being a local variable
of the subprogram, denotes a location in the environment of the caller. Unlike
with call by reference, however, the formal parameter is not bound to a loca-
tion at the point of call; it is bound to a (possibly different) location each time
it is used within the subprogram. Consequently, each assignment to a formal
parameter can refer to a different location.

Basically, in call by name each occurrence of the formal parameter is
replaced textually by the actual parameter. This may be achieved by a simple
kind of macro processing, with one exception that will be discussed below.

 124

This apparently simple rule can lead to unsuspected complications. For exam-
ple, the following procedure, which is intended to interchange the values of a
and b (a and b are by-name parameters)

swap (int a, b);
int temp;
{
 temp = a;

a = b;
b = temp;

} ;
most likely produces an unexpected result when invoked by the call

swap (i, a [i])
The replacement rule specifies that the statements to be executed are

temp = i;
i = a [i];
a [i] = temp;

If i = 3 and a [3] = 4 before the call , i = 4 and a [4] = 3 after the call (a [3] is unaf-
fected)!

Another trap is that the actual parameter that is (conceptually) substituted into
the text of the called unit belongs to the referencing environment of the caller,
not to that of the callee. For example, suppose that procedure swap also counts
the number of times it is called and it is embedded in the following fragment.

int c;
. . .
swap (int a, b);
int temp;
{

temp = a; a = b;
b = temp; c ++;

}

y ();
int c, d;
{

swap (c, d);
} ;

When swap is called by y, the replacement rule specifies that the statements to
be executed are

temp = c;

 125

c = d;
d = temp;
c ++;

However, the location bound to name c in the last statement belongs to x's
activation record, whereas the location bound to the previous occurrences of c
belong to y's activation record. This shows that plain macro processing does
not provide a correct implementation of call by name if there is a conflict
between names of nonlocals in the routine’s body and names of locals at the
point of call. This example also shows the possible diff iculty encountered by
the programmer in foreseeing the run-time binding of actual and formal
parameters.

Call by name, therefore, can easily lead to programs that are hard to read. It is
also unsuspectedly hard to implement. The basic implementation technique
consists of replacing each reference to a formal parameter with a call to a rou-
tine (traditionally called thunk) that evaluates a reference to the actual param-
eter in the appropriate environment. One such thunk is created for each actual
parameter. The burden of run-time calls to thunks makes call by name costly.

Due to these difficulties, call by name has mostly theoretical and historical
interests, but has been abandoned by practical programming languages.

Call by reference is the standard parameter passing mode of FORTRAN. Call
by name is standard in ALGOL 60, but, optionally, the programmer can spec-
ify call by value. SIMULA 67 provides call by value, call by reference, and
call by name. C++, Pascal and Modula-2 allow the programmer to pass
parameters either by value (default case) or by reference. C adopts call by
value, but allows call by reference to be implemented quite easily via point-
ers. Ada defines parameter passing based on the intended use, as either in (for
input parameters), out (for output parameters), or inout (for input/output
parameters), rather than in terms of the implementation mechanism (by refer-
ence or by copy). If the mode is not explicitl y specified, in is assumed by
default. More on this will be discussed in Chapter 4.

2.6.6.2 Routine parameters

Languages supporting variables of type routine are said to treat routines as
first-class objects. In particular, they allow routines to be passed as parame-
ters. This facility is useful in some practical situations. For example, a routine
S that evaluates an analytic property of a function (e.g., derivative at a given

 126

point) can be written without knowledge of the function and can be used for
different functions, if the function is described by a routine that is sent to S as
a parameter. As another example, if the language does not provide explicit
features for exception handling (see Chapter 4), one can transmit the excep-
tion handler as a routine parameter to the unit that may raise an exception
behavior.

Routine parameters behave very differently in statically and dynamically
scoped languages. Here we concentrate on statically scoped languages. Hints
on how to handle dynamically scoped languages are given in a sidebar.

Consider the program in Figure 30. In this program, b is called by main (line
14) with actual parameter a; inside b, the formal parameter x is called (line
15), which in this case corresponds to a. When a is called, it should execute
normally just as if it had been called directly, that is, there should be no
observable differences in the behavior of a routine called directly or through a
formal parameter. In particular, the invocation of a must be able to access the
nonlocal environment of a (in this case the global variables u and v. Note that
these variables are not visible in b because they are masked by b's local vari-
ables with the same names.) This introduces a slight difficulty because our
current abstract implementation scheme does not work. As we saw in Section
2.6.4, the call to a routine is translated to several instructions. In particular, it
is necessary to reserve space for the activation record of the callee and to set
up its static link. In the case of “call x” in b, this is impossible at translation
time because we do not know what routine x is, let alone its enclosing unit.
This information, in general, will only be known at run time. We can handle
this situation by passing the size of the activation record and the needed static

 127

link at the point of call .

In general, how do we know this static link to pass? From the scope rules, we
know that in order for a unit x (in this case, main) to pass routine a to routine b,
x must either:

(a) Have procedure a within its scope, that is, a must be nonlocally visible or
local (immediately nested); or

(b) a must be a formal parameter of x, that is, some actual procedure was
passed to x as a routine parameter1.

The two cases can be handled in the following way:

Case (a): The static link to be passed is fp (d), a pointer to the activation record
that is d steps along the static chain originated in the calling unit, where d is
the distance between the call point where the routine parameter is passed and
its declaration (recall Section 2.6.4).

1. Case (b) cannot occur in the case where x is main, since main cannot be called by other routines.

1 int u, v;
2 a ()
3 {
4 int y;
5 . . .
6 } ;
7 b (routine x)
8 {
9 int u, v, y;
10 c ()
11 { ...
12 y = . . .;
13 . . .
14 } ;
15 x ();
16 b (c);
17 . . .
18 }
19 main ()
20 {
21 b (a);
22 } ;

FIGURE 30. An example of routine parameters

 128

Case (b): The static link to be passed is the one that was passed to the caller.

We leave the task of formulating these rules in terms of SIMPLESEM as an
exercise for the reader.

What about call ing a routine parameter? The only difference from calling a
routine directly is that both the size of the callee’s activation record and its
static link are simply copied from the parameter area.

The program in Figure 30 shows another subtle point: when routine parame-
ters are used in a program, nonlocal variables visible at a given point are not
necessarily those of the latest allocated activation record of the unit where
such variables are locally declared. For example, after the recursive call to b
when c is passed (line 16), the call to x in b (line 15) will invoke c recursively.
Then the assignment to y in c (line 12) will not modify the y in the latest acti-
vation record for b but in the one allocated prior to the latest one. Figure 30
shows this point.

Let us review the impact of procedural parameters. First, we ha d to extend
the basic procedure call mechanism to deal with the additional semantic com-
plexity. Procedure calls now have to deal with different cases of objects. Both
the procedure call's semantic description and its implementation have
increased in complexity. Contrast this with, say, adding a new arithmetic
operator to a language that requires hardly any changes to our semantic
description at all . We can say that the abili ty to pass procedures as parameters
adds to the semantic power (and complexity) of a language. On the other
hand, it makes the language more uniform in the way the different language
constructs are handled: routines are first-class objects, and can be treated uni-
formly as any other objects of the language.

This is an example of a general property of languages, called orthogonality.
This term describes the abil ity of a language to support any combination of
basic constructs to achieve any degree of power, without restrictions and
without “special cases” .

sidebar-start Routine parameters in dynamically scoped languages

Routines passed as parameters sometimes cause a peculiar problem in lan-
guages with dynamic scope rules, such as early versions of LISP. If we con-

 129

sider the program in Figure 30 under dynamic scope rules, when routine a is
called through x, references to u and v in a will be bound to the u and v in b and
not to those in main. This is diff icult to use and confusing since when the rou-
tine a was written, it was quite reasonable to expect access to u and v in main

but because b happens to contain variables with the same names, they mask
out the variables that were probably intended to be used.

Simply stated, the problem is that the nonlocal environment, and therefore the
behavior of the routine, is dependent on the dynamic sequence of calls that
have been made before it was activated. Consider several programmers work-
ing on different parts of the same program. A seemingly innocuous decision,
what to name a variable, can change the behavior of the program entirely.

The problem, however, was discovered very early in the development of
LISP and a new feature was added to the language to allow a routine to be
passed along with its naming environment. If a routine is preceded by the
keyword FUNCTION, the routine is passed along with its nonlocal environ-
ment at the point of call. When such a procedure is invoked, the environment
information passed with the parameter is used to set up the current nonlocal
environment. This is a rather complicated mechanism, but it seems to be the
only reasonable way for procedural parameters to access the nonlocal envi-
ronment. Of course, a different–and more radical–solution to the problem
would be to change the language semantics, and adopt static scope rules for
the entire language, as most modern LISPs do.

sidebar end

2.7 Bibliographic notes

In this chapter we have studied programming language semantics in an infor-
mal but systematic way, by describing the behavior of an abstract language
processor. Formal approaches to the definition of semantics are also possible,
as we briefly discussed. (Meyer 1991) provides a view of the theoretical foun-
dations of programming languages and their semantics. Our view here is ori-
ented towards language implementation, in order to allow the reader to
appreciate the resources that may needed, and the costs that may be involved,
in running a program. We have emphasized the important concepts of bind-
ing, binding time, and binding stabilit y. This viewpoint is taken by other text-
books on programming languages, from a classic (Pratt 1984) to a recent one

 130

(Ben Ari 1996). Johnston (Johnston 1971) presents the contour model, an
interesting operational model that describes the concepts of binding without
referring to the stack-based abstract machine. The reader who might be inter-
ested in the details of language implementation should refer to compiler text-
books, li ke (Waite and Goos 1984), (Aho et al. 1986), and (Fisher and
LeBlanc 1988).

2.8 Exercises

1. Provide syntax diagrams for the lexical rules of the language described in Figure 5.
2. In the example of Figure 5 a semicolon is used to terminate each statement in a sequence.

That is a sequence is written as{ stat1; stat2; . . .; statn;} . Modify the syntax so that the
semicolon would be used as a separator between consecutive statements, that is: { stat1;
stat2; . . .; statn} . Pragmatically, can you comment on the differences between these two
choices?

3. Modify both the EBNF and the syntax diagrams of Figure 6 to represent Modula-2 if and
while statements.

4. Briefly describe scope binding for Pascal variables. Does the language adopt static or
dynamic binding?

5. In Section 2.2 we say “Perhaps surprisingly, there are languages supporting both static
type checking and polymorphic variables and routines” . Why should one expect, in
general, static type checking to be impossible for polymorphic variables and routines?

6. Following the definition of static binding given in Section 2.3, specify the time and
stabilit y of the binding between a C (or C++) const variable and its value. How about
constants in Pascal?

7. Can the l_value of a variable be accessed only when its name is visible (i.e., within
scope)?
Why? Why not?

8. What is the solution adopted by C, Ada, Modula-2, and Eiffel to the problem of
uninitialized variables?

9. In general, it is not possible to check statically that the r_value of an unitialized variable
will not be used. Why?

10. Does Pascal allow a named variable and a pointer share the same data object? Why? Why
not?

11. C and C++ distinguish between declaration and definition for variables. Study this
language feature and write a short explanation of why this can be useful.

12. C++ also allows functions to accept more parameters than are specified in the function
definition. Why and how is this possible? Write a program to check this feature.

13. What is the difference between macros and routines? Explain it in terms of the concept of
binding.

14. Describe if and how routines may be passed as parameters in C/C++.
15. Describe the two ways (named vs. positional) provided by Ada to associate actual and

formal parameters.
16. Discuss the EQUIVALENCE statement of FORTRAN in the light of aliasing.

 131

17. A routine may be history-sensitive if it can produce different results when activated twice
with the same values as parameters and accessible nonlocal variables. Explain why a
language with static memory allocation allows writing history-sensitive routines.

18. Define an algorithm that performs the linkage step for C2'.
19. Write the sequence of SIMPLESEM instructions corresponding to a functional routine

call and return to take into account return values. For simplicity, you may assume that
return values may be stored in a single SIMPLESEM cell .

20. Write a simple C3 program with two mutually recursive routines, describe their
SIMPLESEM implementation, and show snapshots of the D memory.

21. In Section 2.6.3 we assumed function routines to return their output value in a location
within the caller’s activation record. A number of detail aspects were left out from our
discussion. For example, we implicitly assumed the cells allocated to hold the result to be
released when the caller routine returns. This, however, implies a waste of memory space
if a large number of calls is performed. Also, we did not provide a systematic way of
generating SIMPLESEM code for the evaluation of expressions that contain multiple
function calls, as in

 a = f (x) + b + g (y, z);

Discuss how these problems may be solved.

22. For the following C3 program fragment, describe each stage in the life of the run-time
stack until routine beta is called (recursively), by alpha. In particular, show the dynamic
and static links before each routine call .

int i = 1, j = 2, k = 3;
beta ();
alpha ()
{

int i = 4, l = 5;
...
i+=k+l;
beta ();
...

} ;
beta ()
{

int k = 6;
...
i=j+k;
alpha ();
...

} ;
main ()
{

...
beta ();
...

}
23. Based on the treatment of recursive functions, discuss dynamic allocation in the case of

C2 and show how the scheme works for the example of the Section 2.6.2.

 132

24. In our treatment of C4' using SIMPLESEM, we said “ In order to provide an abstract
implementation of compound statements for the SIMPLESEM machine, there are two
options. The former consists of statically defining an activation record for a routine with
nested compound statements; the latter consists of dynamically allocating new memory
space corresponding to local data as each compound statement is entered during
execution. The former scheme is simpler and more time efficient, while the latter can lead
to a more space eff icient actual implementation.” Write a detailed comment justifying
such a statement.

25. Consider the following extension to C3. A variable local to a routine may be declared to
be own. An own variable is allocated storage the first time that its enclosing routine is
activated, and its storage remains allocated until program termination. Normal scope rules
apply, so that the variable is known only within the unit in which it is declared. In essence,
the effect of the own declaration is to extend the li fetime of the variable to cover the entire
program execution. Outline an implementation model for own variables. For simplicity,
you may assume that own variables can only have simple (unstructured) types.

26. Referring to the previous exercise, assume that own variables are not automatically
initialized to certain default values. Show that this limits their usefulness greatly. Hint:
Show, as an example, how an own variable can be used to keep track of the number of
times a routine has been called.

27. Discuss a SIMPLESEM abstract implementation using dynamic allocation for C4' nested
blocks.

28. Explain why the static and dynamic links have the same value for blocks.
29. Translate function fp (Section 2.6.4) into SIMPLESEM code.
30. An implementation technique for referencing the nonlocal environment in C4", which

differs from the use of static links as presented in Section 2.6.4.2, is based on the use of a
display. The display is an array of variable length that contains, at any point during
program execution, pointers to the activation records of the routines that form the
referencing environment–that is, exactly those pointers that would be in the static chain.
Let an identifier be bound to the (distance, offset) pair <d, o>. The display is set up such
that display [d] yields the address of the activation record which contains the identifier at
offset o.

• (a) Show pictorially the equivalent of Figure 25 when displays are used instead of static
links. Assume that, like current and free, the display is kept in the initial portion of the
data memory.

• (b) Show the SIMPLESEM actions that are needed to update the display when a routine
is called and when a routine returns. Pay special attention to routine parameters.

• (c) Displays and static chains are two implementation alternatives for the same semantic
concept. Discuss the relative advantages and disadvantages of each solution.

31. Check a guage of your choice (e.g., Pascal or C++) to see if it allows expressions to be
passed by reference. Specify in what cases (if any) this is allowed and provide a concise
justification of the behavior. In cases where it does not (if any), write (and run) simple
programs which demonstrate the reason.

32. Provide a full description of a SIMPLESEM implementation of call by value.
33. Provide a full description of a SIMPLESEM implementation of call by result. Note that

the semantics can be different if the address of the actual result parameter is evaluated at
the point of call or at the return point. Why? Show an example where the effect would be
different.

 133

34. Can a constant be passed as a by-reference parameter? Check this in a language of your
choice.

35. Provide a full SIMPLESEM implementation for call by value-result. Can the abstract
implementation for call by reference be used as a semantic description of call by value
result?

36. Consider the example program shown below. Discuss call by reference and call by value-
result for swap (a[i], a[j]). What happens if i = j?

 swap (int x, int y);
{

x = x +y;
y = x - y;
x = x - y;

}
37. Write a short paper on C macros, comparing them with routines. What are the binding

policies adopted by the language? How do you compare parameter handling for macros
with the general parameter passing mechanisms described in this chapter?

38. Precisely discuss how call by reference can be implemented in C++.
39. Study parameter passing mechanisms in Ada and write a short paper discussing them and

comparing them with respect to conventional parameter passing modes.
40. Explain why the axiomatic definition of semantics of assignment statements, given in

terms of function asem, is inaccurate in the presence of side-effects in the evaluation of
the right-hand side expression and aliasing for the left-hand side variable.

41. Explain why the denotational definition of semantics of assignment statements, given in
terms of function dsem, is inaccurate in the presence of side-effects in the evaluation of
the right-hand side expression and aliasing for the left-hand side variable.

42. We observed that in C++ formal parameters can be given a default value, which is used
in case the corresponding actual parameters are not passed in the call . For example, given
the following function header: int distance (int a = 0, int b =0); the call distance (); is
equivalent to distance (0, 0); and the call distance (10); is equivalent to distance (10, 0);.
Explain why this language feature interacts with overloading and how this interaction is
solved by C++.

134 Syntax and semantics Chap.2

1

135

1
C H A P T E R 3

Structur ing the data 3

Computer programs can be viewed as functions that are applied to values of
certain input domains to produce results in some other domains. In conven-
tional programming languages, this function is evaluated through a sequence
of steps that produce intermediate data that are stored in program variables.
Languages do so by providing features to describe data, the flow of computa-
tion, and the overall program organization. This chapter is on mechanisms for
structuring and organizing data values; Chapter 4 is on mechanisms for struc-
turing and organizing computations; Chapter 5 is on the mechanisms that lan-
guages provide for combining the data and computation mechanisms into a
program.

Programming languages organize data through the concept of type. Types are
used as a way to classify data according to different categories. They are
more, however, than pure sets of data. Data belonging to a type also share cer-
tain semantic behaviors. A type is thus more properly defined as a set of val-
ues and a set of operations that can be used to manipulate them. For example,
the type BOOLEAN of languages like Ada and Pascal consists of the values
TRUE and FALSE; Boolean algebra defines operators NOT, AND, and OR
for BOOLEANs. BOOLEAN values may be created, for example, as a result
of the application of relational operators (<, ð, >, Š, +, ¦) among INTEGER
expressions.

Programming languages usually provide a fixed, built -in set of data types,

136 Structuring the data Chap.3

and mechanisms for structuring more complex data types starting from the
elementary ones. Buil t-in types are discussed in Section 3.1. Constructors that
allow more complex data types to be structured starting from built-in types
are discussed in Section 3.2. Section 3.3 is about type systems, i.e., on the
principles that underlie the organization of a collection of types. The type sys-
tem adopted by a language affects the programming style enforced by the lan-
guage. It may also have a profound influence on the reliability of programs,
since it may help prevent errors in the use of data. Moreover, understanding
the type system of a language helps us understand subtle and complicated
semantic issues. Section 3.4 reviews the type system of existing programming
languages. Finally, Section 3.5 is about implementation models.

3.1 Built-in types and pr imitive types

Any programming language is equipped with a finite set of built-in types (or
predefined) types, which normally reflect the behavior of the underlying
hardware. At the hardware level, values belong to the untyped domain of bit
strings, which constitutes the underlying universal domain of computer data.
Data belonging to such universal domain are then interpreted differently by
hardware instructions, according to different types. At the hardware level, a
type may thus be considered as a view under which data belonging to the uni-
versal type may be manipulated. As an example of a hypothetical microcom-
puter, the bit string "01001010" might be interpreted as integer "74" (coded in
two’s complement representation) when it is the argument of the machine
instruction ADD (which does integer addition). However, it would be inter-
preted as a bit string by the machine instruction CPL (which does bitwise
complement). It might be interpreted as ASCII character "I" if printed by
instruction PCH (which prints an ASCII character).

The buil t-in types of a programming language reflect the different views pro-
vided by typical hardware. Examples of built-in types are:

• booleans, i.e., truth values TRUE and FALSE, along with the set of operations defined by
Boolean algebra;

• characters, e.g., the set of ASCII characters;
• integers, e.g., the set of 16-bit values in the range <-32768, 37767>; and
• reals, e.g., floating point numbers with given size and precision.

Let us analyze what makes buil t-in types a useful concept. This discussion
will help us identify the properties that types in general (i.e., not only the
built-in ones) should satisfy. Built-in types can be viewed as a mechanism for

 137

classifying the data manipulated by a program. Moreover, they are a way of
protecting the data against forbidden, or nonsensical, maybe unintended,
manipulations of the data. Data of a certain type, in fact, are only manipulable
by the operations defined for the type. In more detail , the following are
advantages of buil t-in types:

1. Hiding of the underlying representation. This is an advantage provided by the
abstractions of higher-level languages over lower-level (machine-level) languages. The
programmer does not have access to the underlying bit string that represents a value of a
certain type. The programmer may change such bit string by applying operations, but the
change is visible as a new value of the built -in type, not as a new bit string. Invisibility of
the underlying representation has the following benefits:

Programming style. The abstraction provided by the language increases program
readabilit y by protecting the representation of objects from undisciplined
manipulation. This contrasts with the underlying conventional hardware, which does
not enforce protection, but usually allows any view to be applied on any bit string. For
example, a location containing an integer may be added to one containing a character,
or even to a location containing an instruction.
Modifiability. The implementation of abstractions may be changed without affecting
the programs that make use of the abstractions. Consequently, portabili ty of programs
is also improved, that is, programs can be moved to machines that use different internal
data representations. One must be careful, however, regarding the precision of data
representation, that might change for different implementations. For example, the
range of representable integer values is different for 16- and 32-bit machines.

Programing languages provide features to read and write values of built-in types, as well
as for formatting the output. Such features may be either provided by language instruc-
tions or through predefined routines. Machines perform input/output by interacting with
peripheral devices in a complicated and machine-dependent way. High-level languages
hide these complications and the physical resources involved in machine input/output
(registers, channels, and so on).

2. Correct use of variables can be checked at translation time. If the type of each variable is
known to the compiler, ill egal operations on a variable may be caught while the program
is translated. Although type checking does not prevent all possible errors to be caught, it
improves our reliance on programs. For example, in Pascal or Ada, it cannot ensure that
J wil l never be zero in some expression I/J, but it can ensure that it will never be a
character.

3. Resolution of overloaded operators can be done at translation time. For readabilit y
purposes, operators are often overloaded. For example, + is used for both integer and real
addition, * is used for both integer and real multiplication. In each program context,
however, it should be clear which specific hardware operation is to be invoked, since
integer and real arithmetic differ. In a statically typed language, where all variables are
bound to their type at translation time, the binding between an overloaded operator and
its corresponding machine operation can be established at translation time, since the types
of the operands are known. This makes the implementation more efficient than in
dynamically typed languages, for which it is necessary to keep track of types in run-time
descriptors.

138 Structuring the data Chap.3

4. Accuracy control. In some cases, the programmer can explicitly associate a specification
of the accuracy of the representation with a type. For example, FORTRAN allows the user
to choose between single and double-precision floating-point numbers. In C, integers can
be short int, int, or long int. Each C compiler is free to choose appropriate size for its
underlying hardware, under the restriction that short int and int are at least 16 bits long,
long int is at least 32 bits long, and the number of bits of short int is no more than the
number of bits of int, which is no more than the number of bits of long int. In addition, it
is possible to specify whether an integer is signed or unsigned. Similarly, C provides both
float (for single-precision floating point numbers) and double (for double precision
floating point numbers). Accuracy specification allows the programmer to direct the
compiler to allocate the exact amount of storage that is needed to represent the data with
the desired precision.

Some types can be called primitive (or elementary). That is, they are not built
from other types. Their values are atomic, and cannot be decomposed into
simpler constituents. In most cases, built-in types coincide with primitive
types, but there are exceptions. For example, in Ada both Character and String

are predefined. Data of type String have constituents of type Character, how-
ever. In fact, String is predefined as:

type String is arr ay (Positive range <>) of Character
It is also possible to declare new types that are elementary. An example is
given by enumeration types in Pascal, C, or Ada. For example, in Pascal one
may write:

type color = (white, yellow, red, green, blue, black);
The same would be written in Ada as

type color is (white, yellow, red, green, blue, black);
Similarly, in C one would write:

enum color { white, yellow, red, green, blue, black} ;
In the three cases, new constants are introduced for a new type. The constants
are ordered; i.e., white < yellow < . . . < black. In Pascal and Ada, the built-in suc-
cessor and predecessor functions can be applied to enumerations. For exam-
ple, succ (yellow) in Pascal evaluates to red. Similarly. color’pred (red) in Ada
evaluates to yellow.

3.2 Data aggregates and type constructors

Programming languages allow the programmer to specify aggregations of
elementary data objects and, recursively, aggregations of aggregates. They do
so by providing a number of constructors. The resulting objects are called
compound objects. A well-known example is the array constructor, which

 139

constructs aggregates of homogeneous-type elements. An aggregate object
has a unique name. In some cases, manipulation can be done on a single ele-
mentary component at a time, each component being accessible by a suitable
selection operation. In many languages, it is also possible to manipulate (e.g.,
assign and compare) entire aggregates.

Older programming languages, such as FORTRAN and COBOL, provided
only a limited number of constructors. For example, FORTRAN only pro-
vided the array constructor; COBOL only provided the record constructor. In
addition, through constructors, they simply provided a way to define a new
single aggregate object, not a type. Later languages, such as Pascal, allowed
new compound types to be defined by specifying them as aggregates of sim-
pler types. In such a way, any number of instances of the newly defined
aggregate can be defined. According to such languages, constructors can be
used to define both aggregate objects and new aggregate types.

Since in this chapter we concentrate on data types, we review constructors
that generate compound data. One should not ignore, however, that routines
can also be seen as constructors which allow elementary instructions to be
combined to form new operations. In addition, the distinction between data
and routines vanishes in the case of programming languages that treat rou-
tines as first class objects, which can be assigned, passed as parameters, be
members of data structures, etc.

Type constructors are discussed and exemplified in Section 3.2.1 through
Section 3.2.6. Section 3.2.7 discusses how structured data values can be
denoted in some languages. Section 3.2.8 will discuss how new types can be
defined not only through composition of more elementary types, but also by
specifying the operations to be used for their manipulation. In the discussion,
we will first describe the constructors abstractly in terms of a mathematical
model, and then we will show how different programming languages provide
concrete constructs to represent the abstract model.

3.2.1 Cartesian product

The Cartesian product of n sets A1, A2, . . ., An, denoted A1 x A2 x . . . x An, is a
set whose elements are ordered n-tuples (a1, a2, . . ., an), where each ak belongs
to Ak. For example, regular polygons might be described by an integer–the
number of edges–and a real–the length of each edge. A polygon would thus
be an element in the Cartesian product integer x real.

140 Structuring the data Chap.3

Programming languages view elements of a Cartesian product as composed
of a number of symbolically named fields. In the example, a polygon could be
declared as composed of an integer field (no_of_edges) holding the number of
edges and a real field (edge_size) holding the length of each edge.

Examples of Cartesian product constructors in programming languages are
structures in C, C++, Algol 68 and PL/I, records in COBOL, Pascal, and
Ada. COBOL was the first language to introduce Cartesian products, which
proved to be very useful in data processing applications. For example, in a
payroll transaction, employees are described by an n-tuple of attributes (such
as name, address, social security number, salary, etc.), some of which–in
turn–may be described by an n-tuple of attributes (e.g., an address is com-
posed of street name, number, city, state, and zip code). Such an aggregation
can be described by a record.

As an example of a Cartesian product constructor, consider the following C
declaration, which defines a new type reg_polygon and two objects a_pol and
b_pol;

struct reg_polygon {
int no_of_edges;
float edge_size;

} ;
struct reg_polygon pol_a, pol_b = { 3, 3.45} ;

The two regular polygons pol_a and pol_b are initialized as two equilateral tri-
angles whose edge is 3.45. The notation { 3, 3.45} is used to implicitl y define a
constant value (also called a compound value) of type reg_polygon (the polygon
with 3 edges of length 3.45).

The fields of an element of a Cartesian product are selected by specifying
their name in an appropriate syntactic notation. In the C example, one may
write:

pol_a.no_of_edges = 4;
to make pol_a quadrilateral. This syntactic notation for selection, which is
common in programming languages, is called the dot notation.

3.2.2 Finite mapping

A finite mapping is a function from a finite set of values of a domain type DT

onto values of a range type RT. Such function may be defined in programming

 141

languages through the use of the mechanisms provided to define routines.
This would encapsulate in the routine definition the law associating values of
type RT to values of type DT. This definition is called intensional. In addition,
programming languages, provide the array constructor to define finite map-
pings as data aggregates. This definition is called extensional, since all the
values of the function are explicitl y enumerated. For example, the C declara-
tion

char digits [10];
defines a mapping from integers in the subrange 0 to 9 to the set of characters,
although it does not state which character corresponds to each element of the
subrange. The following statements

for (i = 0; i < 10; ++i)
digits [i] = ’ ’ ;

define one such correspondence, by initializing the array to all blank charac-
ters. This example also shows that an object in the range of the function is
selected by indexing, that is, by providing the appropriate value in the domain
as an index of the array. Thus the C notation digits [i] can be viewed as the
application of the mapping to the argument i. Indexing with a value which is
not in the domain yields an error. Some languages specify that such an error is
to be trapped. Such a trap, however, may in general only occur at run time.

C arrays provide only simple types of mappings, by restricting the domain
type to be an integer subrange whose lower bound is zero. Other program-
ming languages, such as Pascal, require the domain type to be an ordered dis-
crete type. For example, in Pascal, it is possible to declare

var x: array [2. .5] of integer;
which defines x to be an array whose domain type is the subrange 2. .5.

As another example of Pascal, having defined a type computer_manufacturer by
enumeration

type computer_manufacturer = (ibm, dec, hp, sun, apple, compaq);
one may use the array type constructor to define the following new type to
represent data about each computer manufacturer

type c_m_data = array [computer_manufacturer] of integer
and then the following data objects

142 Structuring the data Chap.3

var c_m_profits, c_m_employees: c_m_data;
For example, c_m_employees[hp] would give the number of employees of com-
puter manufacturer hp. If only the data regarding profits are needed, one could
simply define an array data aggregate instead of defining a new type, of
which many instances can be generated:

var c_m_profits: array [computer_manufacturer] of integers;
Languages that allow variables to be initialized when they are declared may
also provide a way to initialize array objects. For example, in C arrays may be
initialized through a compound value, as shown by the following example

char digits [10] = { ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ } ;
where { ’ ’ , ’ ’ , ’ ’ , ’ ’ , ’ ’ } is a compound value of type "array of 5 characters."

Similarly, in Ada one might write

X: array (INTEGER range 2. .6) of INTEGER := (0, 2, 0, 5, -33);
to define an array whose index is in the subrange 2. .5, where X(2) = 0, X(3) = 2,

X(4) = 0, X(5) = 5, X(6) = -33.

It is interesting to note that Ada uses brackets "(" and ")" instead of "[" and "]"
to index arrays. This makes indexing an array syntactically identical to calling
a function. As a consequence, the fact that a mapping is defined extensionally
or intentionally does not affect the way the mapping is used, but depends only
on how the mapping is defined; that is, it hides the implementation of the
mapping abstraction from the user.

Notice that an array element can–in turn–be an array. This allows multidi-
mensional arrays to be defined. For example, the C declaration

int x[10][20];
declares an integer rectangular array of 10 rows and 20 columns.

In some languages, such as APL, Algol 68, and Ada, indexing can be used to
select more than one element of the range. For example, in Ada X(3. .5)
selects a subarray of the previously declared array. This operation is called
slicing, that is, it selects a slice of the array. Slicing is not provided by C.

In a dynamically typed language like SNOBOL4, the array construct does not
require that the elements of the range set be all of the same type (or, equiva-

 143

lently, domain and range types of mappings are unions of all types). For
example, one element might be an integer, another a real, and yet a third a
string. In other words, the range set can be viewed as the union of all
SNOBOL4 types. The TABLE construct provided by SNOBOL4 further
extends this notion, by allowing the domain type to be the union of all
SNOBOL4 types. For example, the following statements create a TABLE and
assign values to some of its elements:

T = TABLE ()
T<’RED’> = ’WAR’
T<6> = 25
t<4.6> = ’PEACE’

The TABLE construct is quite powerful because it provides the capabil ity of
associative retrieval, such as T<’RED’>, which yields ’WAR’ , or T<6>, which
yields 25. Such aggregates are called associative data structures.

The domain of a finite mapping is often defined as a finite subset of a (theo-
retically) infinite set. For example, an array whose index is in the range 0. .9
defines a finite mapping whose domain is a finite subset of integers. The strat-
egy for binding the domain of a finite mapping to a specific finite subset of a
given type varies according to the language. Basically, there are three possi-
ble choices:

1. Compile-time binding. The subset is fixed when the program is written and it is frozen at
translation time. This restriction was adopted by FORTRAN, C, and Pascal.

2. Object-creation time binding. The subset is fixed at run time, when an instance of the
variable is created. In Section 2.6.5.1 we called finite mappings of this kind dynamic
arrays. As an example, in Ada it is possible to declare an unconstrained array type by
using symbol <> (the box) which stands for unspecified range. When a variable of the
unconstrained array type is declared, the bounds must be stated as expressions to be
computed at run time. Once the binding is established at run time, however, it cannot be
changed (i.e., the binding is static).

type INT_VECTOR is array (INTEGER range <>) of INTEGER;
. . .
X: INT_VECTOR (A. .B*C);

3. Object-manipulation time binding. This is the most flexible and the most costly choice in
terms of run-time execution. For these so-called flexible arrays, the size of the subset can
vary at any time during the object’s li fetime. This is typical of dynamic languages, like
SNOBOL4 and APL. Of compiled languages, only Algol 68 and CLU offer such features.
The 1995 proposed C++ standard library contains vectors, which are flexible C++ arrays.
Since the memory space required for such data may change during execution, allocation
must use the heap memory.

144 Structuring the data Chap.3

3.2.3 Union and discr iminated union

Cartesian products defined in Section 3.2.1 allow an aggregate to be con-
structed through the conjunction of its fields. For example, we saw the exam-
ple of a polygon, which was represented as an integer (the number of edges)
and a real (the edge size). In this section we explore a constructor which
allows an element (or a type) to be specified by a disjunction of fields.

For example, suppose we wish to define the type of a memory address for a
machine providing both absolute and relative addressing. If an address is rela-
tive, it must be added to the value of some INDEX register in order to access
the corresponding memory cell . Using C, we can declare

union address {
short int offset;
long unsigned int absolute;

} ;
The declaration is very similar to the case of a Cartesian product. The differ-
ence is that here fields are mutually exclusive.

Values of type address must be treated differently if they denote offsets or
absolute addresses. Given a variable of type address, however, there is no
automatic way of knowing what kind of value is currently associated with the
variable (i.e., whether it is an absolute or a relative address). The burden of
remembering which of the fields of the union is current rests on the program-
mer. A possible solution is to consider an address to be an element of the fol-
lowing type:

struct safe_address {
address location;
descriptor kind;

} ;
where descriptor is defined as an enumeration

enum descriptor { abs, rel} ;
A safe address is defined as composed of two fields: one holds an address, the
other holds a descriptor. The descriptor field is used to keep track of the cur-
rent address kind. Such a field must be updated for each assignment to the
corresponding location field.

This implementation corresponds to the abstract concept of a discriminated
union. Discriminated unions differ from unions in that elements of a discrim-

 145

inated union are tagged to indicate which set the value was chosen from.
Given an element e belonging to the discriminated union of two sets S and T, a
function tag applied to e gives either ’S’ or ’T’ . Element e can therefore be
manipulated according to the value returned by tag.

Type checking must be performed at run time for elements of both unions and
discriminated unions. Nothing prevents programs to be written (and compiled
with no error) where an element is manipulated as a member of type T while
it is in fact a member of type S or vice-versa. Discriminated unions, however,
are potentially safer since they allow the programmer to explicitly take the tag
field into consideration before applying an operation to an element, although
they cannot prevent the programmer from breaching safety by assigning the
tag field a value which is inconsistent with the other fields.

There are languages that get close to properly supporting the notion of dis-
criminated union. For example, Pascal offers variant records to represent dis-
criminated unions. The following Pascal declarations define a safe address:

type natural = 0. .maxint;
address_type = (absolute, offset);
safe_address = record

case kind: address_type of
absolute: (abs_addr: natural);
offset: (off_addr: integer)

end
Type natural (defined as a subrange of non-negative integers) is introduced to
represent absolute addresses. Type address_type is the enumeration of the pos-
sible values of the tag. Field kind of the variant record is called the tag field.
According to the value of the tag field kind, either field abs_addr or field
off_addr can be accessed. Access to field off_addr when the value of the tag
field is absolute would result in a run-time error; similarly, access to field
abs_addr when the value of the tag field is offset would result in a run-time
error.

While Pascal allows the concept of discriminated union to be more naturally
represented than in C, it does not make the implementation safer. In Pascal,
the tag and the variant parts may be accessed in the same way as ordinary
components. After the tag field of a safe address representing an offset is
changed to absolute, it is possible to access field abs_addr. In principle, this
should result in a run-time error, because the field should be considered as
uninitialized. In practice, however, most Pascal implementations do not per-

146 Structuring the data Chap.3

form such a check, for run-time efficiency reasons. Moreover, the conven-
tional implementation of variant records consists of overlapping all variants
over the same storage area. Therefore, by changing the tag field, the machine
interprets the string of bits stored in this area under the different views pro-
vided by the types of each variant.

This is an insecure–although in some cases practical–use of variant records.
Viewing the same storage area under different types may be useful in model-
ing certain practical applications. For example, a program unit that reads from
an input device might view a sequence of bytes according to the type of data
that is required. In general, however, this is an unsafe programming practice,
and should be normally avoided.

3.2.4 Powerset

It is often useful to define variables whose value can be any subset of a set of
elements of a given type T. The type of such variables is powerset (T), the set of
all subsets of elements of type T. Type T is called the base type. For example,
suppose that a language processor accepts the following set O of options

• LIST_S, to produce a listing of the source program;
• LIST_O, to produce a listing of the object program;
• OPTIMIZE, to optimize the object code;
• SAVE_S, to save the source program in a file;
• SAVE_O, to save the object program in a file;
• EXEC, to execute the object code.

A command to the processor can be any subset of O, such as

{ LIST_S, LIST_O}

{ LIST_S, EXEC}

{ OPTIMIZE, SAVE_O, EXEC}
That is, the type of a command is powerset (O).

Variables of type powerset (T) represent sets. The operations permitted on such
variables are set operations, such as union and intersection.

Although sets (and powersets) are common and basic mathematical concepts,
only a few languages–notably, Pascal and Modula-2–provide them through
built-in constructors and operations. Also, the set-based language SETL
makes sets the very basic data structuring mechanism. For most other lan-

 147

guages, set data structures are provided through libraries. For example, the
C++ standard library provides many data structures, including sets.

3.2.5 Sequencing

A sequence consists of any number of occurrences of elements of a certain
component type CT. The important property of the sequencing constructor is
that the number of occurrences of the component is unspecified; it therefore
allows objects of arbitrary size to be represented.

It is rather uncommon for programming languages to provide a constructor
for sequencing. In most cases, this is achieved by invoking operating system
primitives which access the file system. It is therefore diff icult to imagine a
common abstract characterization of such a constructor. Perhaps the best
example is the file constructor of Pascal, which models the conventional data
processing concept of a sequential file. Elements of the file can be accessed
sequentially, one after the other. Modifications can be accomplished by
appending a new values at the end of an existing file. Files are provided in
Ada through standard libraries, which support both sequential and direct files.

Arrays and recursive list definitions (defined next) may be used to represent
sequences, if they can be stored in main memory. If the size of the sequence
does not change dynamically, arrays provide the best solution. If the size
needs to change while the program is executing, flexible arrays or li sts must
be used. The C++ standard library provides a number of sequence implemen-
tations, including vector and list.

3.2.6 Recursion

Recursion is a structuring mechanism that can be used to define aggregates
whose size can grow arbitrarily and whose structure can have arbitrary com-
plexity. A recursive data type T is defined as a structure which can contain
components of type T. For example, a binary tree can be defined as either
empty or as a triple composed of an atomic element, a (left) binary tree, and a
(right) binary tree. Formally, if we assume that nil denotes the empty (or null)
tree, int_bin_tree (the set of all binary trees of integers) may be described using
the union and Cartesian product of sets:

int_bin_tree = { nil } U (integer x int_bin_tree x int_bin_tree)
As another example, a li st of integers may be described recursively as

148 Structuring the data Chap.3

int_list = { nil } U integer x int_list
where nil here denotes the empty list.

Conventional programming languages allow recursive data types to be imple-
mented via pointers. Each component of the recursive type is represented by a
location containing a pointer to the data object, rather than the data object
itself. Thus, in the int_list example, the implementation would be a structure,
where one field contains an integer and the other field points to a structure of
the same type, and so on. The list itself would be identified by another loca-
tion containing the pointer to the first element of the list.

The C and in Ada fragments in Figure 31 define the type of an integer li st and
a variable that can point to the head of a specific integer list instance.

Similar implementations of recursive types can be provided in C++, Pascal,
and Modula-2.

Functional languages, as we will see in Chapter 7, provide a more abstract
way of defining and manipulating recursive types, which masks the underly-
ing pointer-based implementation. For example, in ML a list can be denoted
as either [] (the empty list) or as [x: :xs], the list composed of the head element
x and the tail li st xs. In order to find an element in a list, we can write the fol-
lowing self-explaining high-level function:

fun find (el, []) = false
| find (el, [el: :els]) = true
| find (el, [y: : ys] = find (el, ys)

3.2.6.1 Insecurities of pointers

Pointers are a powerful, but low-level, programming mechanism that can be

struct int_list {
int val;
int_list* next;

} ;
int_list* head;

type INT_LIST_NODE;
type INT_LIST_REF is access INT_LIST_NODE;
type INT_LIST_NODE is

record
VAL: INTEGER;
NEXT: INT_LIST_REF;

end;
HEAD: INT_LIST_REF;

(C) (Ada)

FIGURE 31.Declarations of li st elements in C and Ada

 149

used to build complex data structures. In particular, they allow recursive data
structures to be defined. As any low level mechanism, however, they often
allow obscure and insecure programs to be written. Just as unrestricted goto
statements broaden the context from which any labelled instruction can be
executed, unrestricted pointers broaden the context from which a data object
may be accessed. Let us review a number of cases of insecurities that may
arise and possible ways of controlli ng them.

1. Some languages, like Pascal or Ada, require pointers to be typed. For example, a Pascal
variable p declared of type ̂ integer, is restricted to point to objects of type integer. This
allows the compiler to type heck the correct use of pointers and objects pointed to by
pointers to be type checked for correct use by the compiler. On the other hand, other
languages, like PL/I, treat pointers as untyped data objects, i.e., they allow a pointer to
address any memory location, no matter what the contents of that location is. In such a case,
dynamic type checking should be performed to avoid manipulation of the object via
nonsensical operations.

2. C requires pointers to be typed but, unlike Pascal, it also allows arithmetic operations to
be applied to pointers. For example, having declared int* p (p is a pointer to objects of
type int), one can write p = p + i;, where i is an int variable. This would make x refer to
the memory location which is i integer objects beyond the one p is currently pointing to.
It is up to the programmer to guarantee that the object pointed by x is an integer. For
example, consider the following C fragment:

int x = 10;
float y = 3.7;
int* p = & x; /* &x denotes the address of x; thus p points to x * /
p ++; /* makes p point to the next location, which contains a float value * /
p += x; / increments by 10 the value of y, interpreted as an int * /
printf ("%f", y); /* reinterprets the modified contents of cell y as a float * /

Although potentially unsafe, pointer arithmetic can be useful in practice. In fact, C point-
ers and arrays are closely related. The name of an array can also be used as a pointer to
its first element and any operation that can be achieved by array subscripting can also be
done with pointers.

Accessing arrays via pointers is in general faster than using the more readable array nota-
tion, unless the compiler generates optimized code. It is therefore preferable when eff i-
ciency is crucial, thus trading readability for performance. As an example of using a
pointer to access an array, consider the following fragment:

int n, vect [10]; /*declares an integer vector * /
int* p = &vect[0]; /* p points to the first element of p * /
for (n = 0; n < 10; n++) /* initializes array elements to zero */

*p++= 0;

Incrementing a pointer may done efficiently by a single machine instruction. Thus access
to an array element may be faster than using the standard code generated to access an
array element indexed by an expression.

3. The r_value of a pointer is an address, i.e., an l_value of an object. If such object is not
allocated, we say that the pointer is dangling. A dangling pointer is a serious insecurity,

150 Structuring the data Chap.3

because it refers to a location that is no longer allocated for holding a value of interest.
Dangling pointers may arise in languages, like C, which allow the address of any variable
to be obtained (via the & operator) and assigned to a pointer. In the fragment shown in
Figure 32, since px is a global variable and x is deallocated when function trouble returns,
px is left dangling since the object it points to no longer exists. In order to avoid this
problem, languages like Algol 68 require that in an assignment the scope of the object
being pointed be at least as large as that of the pointer itself. This restriction, however, can
only be checked at run time. For example, consider a routine with two formal parameters:
x, an integer, and px, a pointer to integers. Whether the assignment of px = &x in the
routine is legal depends on the actual parameters and obviously is unknown at compile
time. As usual, checking the error at run time slows down the execution of the program;
not checking the error leaves dangling pointers uncaught.

More on this will be said for Ada in Section 3.4.3.

4. To avoid the above insecurities, some languages (like Pascal, Modula-2) further restrict
the use of pointers. Pointers are typed; they cannot be manipulated through arithmetic
operators; there is no way to get the address of a named variable. Yet other sources of
insecurity may arise in such languages because of storage deallocation. Since the amount
of heap storage allocated by an executing program can become very large, it is important
to provide mechanisms for releasing heap storage as it becomes unreferenced, to allow
such storage to be later allocated for new heap variables. Some languages rely on
automatic storage reclamation to make unused heap storage available as later allocation
requests are issued (see Section 3.5.2.7). Other languages provide a standard operator to
explicitly deallocate heap storage. For example, Pascal provides a standard routine
dispose; C++ provides delete. The operator must be explicitly used by the programmer as
necessary. Unfortunately, however, the programmer can request deallocation of a heap
variable while there are still pointers to it, which creates dangling pointers. This error is
difficult to check, and most implementations do not provide such facility.

5. Languages that allow pointers to be components of a union may cause further insecurities.
For example, if we declare a variable bad of the following type trouble, bad can be
assigned an integer value, which is then interpreted as a pointer to access some
unpredictable location:

union trouble {
int int_var;
int* int_ref;

void trouble (int* px)
{

int x;
... px = & x; ...
return;

}
main ()
{

int* P;
... trouble (p); ...

}

FIGURE 32.An example of dangling pointers in C

 151

}

In the case of C, this is the same as the result of pointer arithmetic. But in a language that
does not support pointer arithmetic, union types may cause pointer insecurities. For
example, the same undesirable effect may occur in Pascal using variant records.

3.2.7 Compound values

Besides supporting the abilit y to define structured variables, some languages
allow constant values of compound (or composite) objects to be denoted. For
example, in C++ one can write:

char hello[] = { ’h’ , ’e’ , ’ l’ , ’ l, ’o’ , ’ \0’ } ;
struct complex {

float x, y;
} ;
complex a = { 0.0, 1.1} ;

This fragment initializes array hello to the array value { ’h’ , ’e’ , ’ l’ , ’ l,’ ’ o’ , ’ \0’ } ,
i.e., the string "hello" (’ \0’ is the null character denoting the end of the string).
Structure a is initialized to the structure value { 0.0, 1.1} .

Ada provides a rich and elaborate set of facilities to define values of com-
pound objects. For example, the following expressions denote objects of the
type INT_LIST_NODE defined in Section 3.2.6.

(VAL => 5, NEXT => new INT_LIST_NODE (0, null))
--field NEXT of the object points to a child node which contains value 0
--and has null NEXT pointer
--the child node is defined positionally; i.e., 0 is the value of f ield VAL and null
--is the value of f ield NEXT

(10, null);
--this record value is described positionally

Array objects can also be denoted in Ada. For example, a variable Y of the
following type

type BOOL_MATRIX is arr ay (0. .N, 0. .M);
can be initialized in the following way:

Y := (1. .N - 1 => (0. .M => TRUE), others => FALSE);
--all rows except for the first and the last are initialized to TRUE
--the first and the last are initialized to FALSE

This is an equivalent way of initializing the array:

Y := (0 | M => (0. . N => FALSE), others => TRUE);

152 Structuring the data Chap.3

--row 0 and M are initialized to FALSE; others are initialized
The abil ity of compound objects to be directly denoted is a nice syntactic
shorthand that frees the programmer from accessing each component at a
time. Moreover, it favors a sound programming practice such that every vari-
able is initialized as it is declared.

3.2.8 User-defined types and abstract data types

Modern programming languages provide many ways of defining new types,
starting from built-in types. The simplest way, mentioned in Section 3.1, con-
sists of defining new elementary types by enumerating their values. The con-
structors reviewed in the previous sections go one step further, since they
allow complex data structures to be composed out of the built-in types of the
language. Modern languages also allow aggregates built through composition
of buil t-in types to be named as new types. Having given a type name to an
aggregate data structure, one can declare as many variables of that type as
necessary by simple declarations.

For example, after the C declaration which introduces a new type name com-

plex

struct complex {
float real_part, imaginary_part;

}
any number of instance variables may be defined to hold complex values:

complex a, b, c, . . .;
By providing appropriate type names, program readabili ty can be improved.
In addition, by factoring the definition of similar data structures in a type dec-
laration, modifiability is also improved. A change that needs to be applied to
the data structures is applied to the type, not to all variable declarations. Fac-
torization also reduces the chance of clerical errors and improves consistency.

The ability to define a type name for a user defined data structure is only a
first step in the direction of supporting data abstractions. As we mentioned in
Section 3.1, the two main benefits of introducing types in a language are clas-
sification and protection. Types allow the (otherwise unstructured) world of
data to be organized as a collection of different categories. Types also allow
data to be protected from undesirable manipulations by specifying exactly
which operations are legal for objects of a given type and by hiding the con-
crete representation. Of these two properties, only the former is achieved by

 153

defining a user-defined data structure as a type. What is needed is a construct
that allows both a data structure and operations to be specified for user-
defined types. More precisely, we need a construct to define abstract data
types. An abstract data type is a new type for which we can define the opera-
tions to be used for manipulating instances, while the data structure that
implements the type is hidden to the users. In what follows we briefly review
the constructs provided by C++ and by Eiffel to define abstract data types.
Further elaboration of the concepts presented here wil l be discussed in Chap-
ter 5 and 6. The way abstract data types can be defined in ML is presented in
Chapter 7.

3.2.8.1 Abstract data types in C++

Abstract data types can be defined in C++ through the class construct. A class
encloses the definition of a new type and explicitl y provides the operations
that can be invoked for correct use of instances of the type. As an example,
Figure 33 shows a class defining the type of the geometrical concept of point.

A class can be viewed as an extension of structures (or records), where fields
can be both data and routines. The difference is that only some fields
(declared public) are accessible from outside the class. Non-public fields are
hidden to the users of the class. In the example, the class construct encapsu-
lates both the definition of the data structure defined to represent points (the
two integer numbers x and y) and of the operations provided to manipulate
points. The data structure which defines a geometrical point (two integer
coordinates) is not directly accessible by users of the class. Rather, points can
only be manipulated by the operations defined as public routines, as shown by
the following fragment:

class point {
int x, y;

public:
point (int a, int b) { x = a; y = b; } // initializes the coordinates of a point
void x_move (int a) { x += a; } // moves the point horizontally
void y_move (int b){ y += b; } // moves the point vertically
void reset () { x = 0; y = 0; } // moves the point to the origin

} ;

FIGURE 33.A C++ class defining point

154 Structuring the data Chap.3

point p1 (1, 3); // instantiates p1 and initializes its value
point p2 (55, 0); // instantiates p2 and initializes its value
point* p3 = new point (0, 0); // p3 points to the origin
p1.x_move (3); // moves p1 horizontally
p2.y_move (99); // moves p2 vertically
p1.reset (); // positions p1 at the origin

The fragment shows how operations are invoked on points by means of the
dot notation; that is, by writing “object_name.public_routine_name”. The
only exceptions are the invocations of constructors and destructors. We dis-
cuss constructors below; destructors wil l be discussed in a later example.

A constructor is an operation that has the same name of the new type being
defined (in the example, point). A constructor is automatically invoked when
an object of the class is allocated. In the case of points p1 and p2, this is done
automatically when the scope in which they are declared is entered. In the
case of the dynamically allocated point referenced by p3, this is done when
the new instruction is executed. Invocation of the constructor allocates the
data structure defined by the class and initializes its value according to the
constructor’s code.

A special type of constructor is a copy constructor. The constructor we have
seen for point builds a point out of two int values. A copy constructor is able to
build a point out of an existing point. The signature of the copy construtor
would be:

point (point&)
The copy constructor is fundamentally a different kind of constructor because
it allows us to build a new object from an existing object without knowing the
components that constitute the object. That is what our first constructor does.
When a parameter is passed by value to a procedure, copy construction is
used to build the formal parameter from the argument. Copy construction is
almost similar to assignment with the difference that on assignment, both
objects exist whereas on copy construction, a new object must be created first
and then a value assigned to it.

It is also possible to define generic abstract data types, i.e., data types that are
parametric with respect to the type of components. The construct provided to
support this feature is the template. As an example, the C++ template in Fig-
ure 34 implements an abstract data type stack which is parametric with
respect to the type of elements that it can store and manage according to a
last-in first-out policy. The figure also describes a fragment that defines data

 155

objects of instantiated generic types:

The template also shows an example of a destructor. A destructor is recog-
nized by having the name of the class, prefixed by ~ (which stands for “ the
complement of the constructor”). The purpose of a destructor is to perform a
cleanup after the last use of an object. In the example, the cleanup deallocates
the array used to store the stack. It is called automatically for automatic
objects (i.e., objects allocated in the runtime stack) upon exit from the scope
in which the objects are declared. It must be called explicitly for dynamic
objects allocated in the heap in order to free the memory when the object
becomes inaccessible. This operation, as we already mentioned, may generate
dangling references if the object being released is still referenced. If no con-
structors and/or destructors are explicitly specified for a class, the language
provides for implicit construction/destruction which depends on the types of
the encapsulated data.

3.2.8.2 Abstract data types in Eiffel

Eiffel provides a class construct to implement abstract data types. Figure 35
describes the abstract data type POINT in Eiffel.

template<class T> class Stack{
int size;
T* top;
T* s;

public:
Stack (int sz) { top = s = new T [size = sz];}
~Stack () { delete [] s;} //destructor
void push (T el) { * top++ = el;}
T pop () { return *--top;}
int length () { return top - s;}

} ;

void foo () {
Stack<int> int_st (30);
Stack<item> item_st (100);
. . .
int_st.push (9);
. . .

}

FIGURE 34.A C++ generic abstract data type and its instantiation

156 Structuring the data Chap.3

Another class can become a client of POINT by declaring references to
objects of type POINT:

p1, p2: POINT;
Objects can be created and bound to such references, and then manipulated
according to the type’s operations:

p1.make_point (4, 7);
p2.make_point (55, 0);
p1.move_x (3);
p2.move_y (99);
p1.reset ();

C++ instances of an abstract data type can be either stack objects or heap

class POINT expor t
x_move, y_move, reset

creation
make_point

feature
x, y: INTEGER;
x_move (a: INTEGER) is

-- moves the point horizontally
do

x := x + a
end; --x_move
y_move (b: INTEGER) is

-- moves the point vertically
do

y := x + b
end; --y_move
reset is

-- moves the point to the origin
do

x = 0;
y = 0

end; -- reset
make_point (a, b: INTEGER) is

-- sets the initial coordinates of the point
do

x := a;
y := b

end -- make_point
end; -- POINT

FIGURE 35. An Eiffel class defining point

 157

objects. That is, they can be associated both with automatic variables or be
dynamically allocated and referred to by pointers. In the example in Figure
33, the objects associated with variables p1 and p2 are (automatically) allo-
cated on the stack; the objects to which p3 points is dynamically allocated on
the heap. In Eiffel, all objects (except for built -in elementary values like inte-
gers) are implicitly allocated on the heap and made accessible via pointers. In
the example of Figure 35, p1 and p2 are in fact pointers to objects, which are
allocated (and initialized) by the invocation of the creation operation.

The Eiffel make_point is analogous to the C++ constructor but must be called
explicitly to create the object. The C++ concept of copy construction—creat-
ing a new object from an existing like object—is not associated with each
object. Rather, the langauge provides a function named clone which can be
called with an object of any type to create a new object which is a copy of the
original object.

The Eiffel language assumes a set of principles that should guide program-
mers in a disciplined and methodical development of programs. It is possible
to associate a class with an invariant property, i.e., a predicate that character-
izes all possible correct instances of the type. For example, consider a variant
NON_AXIAL_INT_POINT of class POINT which describes the set of points with
integer coordinates that do not belong to the axes x and y. The x- and y-coor-
dinates of the elements of class NON_AXIAL_INT_POINT cannot be zero; that
is, the invariant property for such class is written as:

x * y /= 0
To ensure that the invariant is satisfied, suitable constraints must apply to the
exported routines of the class. This is stated in Eiffel by defining two predi-
cates: a precondition and a postcondition. These two predicates characterize
the states in which the routine can start and should end its execution. A class
is said to be consistent if it satisfies the following conditions:

1. for every creation routine, if its precondition holds prior to execution, the invariant holds
upon termination

2. for every exported routine, if the precondition and the invariant hold prior to execution,
the postcondition and the invariant hold upon termination.

If these two rules are satisfied, by simple induction one can prove that the
invariant will always be true for all reachable object states.

158 Structuring the data Chap.3

Class NON_AXIAL_INT_POINT is presented in Figure 36. The reader should be
able to verify manually that the above conditions 1. and 2. for class consis-
tency are verified.

Eiffel does not prescribe that facilities be provided by the language imple-
mentation to check that all classes are consistent. It does not even force pro-
grammers to provide preconditions, postconditions, and invariants: assertions

class NON_AXIAL_POINT expor t
x_move, y_move

creation
make_point

feature
x, y: INTEGER;
x_move (a: INTEGER) is

-- moves the point horizontally
require

x + a /= 0
do

x := x + a
ensure

x /= 0
end; --x_move
y_move (b: INTEGER) is

-- moves the point vertically
require

y + b /= 0
do

y := x + b
ensure

y /= 0
end; --y_move
make_point (a, b: INTEGER) is

-- sets the initial coordinates of the point
require

a * b /= 0
do

x := a;
y := b

end -- make_point
invar iant

x * y /= 0
end; -- NON_AXIAL_POINT

FIGURE 36.An Eiffel class defining a point that may not lie on the axes x and y

 159

are optional, although their use is good programming practice. If they are
present, an Eiffel implementation can check such properties at runtime. This
is an effective way of debugging Eiffel programs. As we will see in Chapter
4, it also supports systematic programmed ways of error handling.

Eiffel supports the implementation of generic abstract data types, via generic
classes. As an example, Figure 37 shows an implementation of a generic
stack abstract data type in Eiffel. The definition of preconditions, postcondi-
tions, and invariants are left to the reader as an exercise.

3.3 Type systems

Types are a fundamental semantic concept of programming languages. More-
over, programming languages differ in the way types are defined and behave,
and typing issues are often quite subtle. Having discussed type concepts
informally in different languages so far, we now review the foundations for a
theory of types. The goal is to help the reader understand the type system

class STACK [T] expor t
push, pop, length

creation
make_stack

feature
store: ARRAY [T];
length: INTEGER;

make_stack (n: INTEGER) is
do store.make (1, n); --this operation allocates an array with bounds 1, n

length := 0;
end; --make_stack

push (x: T) is
do length := length + 1;

put (x, length); --element x is stored at index length of the array
end; --push

pop: T is
do Result := store@ (length);

-- the element in the array whose index is length is copied in the
-- predefined object Result, which contains the value returned by the
-- function
length := length - 1;

end; --pop
end --class STACK

FIGURE 37.An Eiffel abstract data type definition

160 Structuring the data Chap.3

adopted by a language, defined as the set of rules used by the language to
structure and organize its collection of types. Understanding the type system
adopted by a language is perhaps the major step in understanding the lan-
guage’s semantics.

Our treatment in this section is rather abstract, and does not refer to any spe-
cific programming language features. The only assumption made is that a
type is defined as a set of values and a set of operations that can be applied to
such values. As usual, since values in our context are stored somewhere in the
memory of a computer, we use the term object (or data object) to denote both
the storage and the stored value. The operations defined for a type are the
only way of manipulating its instance objects: they protect data objects from
any il legal uses. Any attempt to manipulate objects with ill egal operations is a
type error. A program is said to be type safe (or type secure) if all operations
in the program are guaranteed to always apply to data of the correct type, i.e.,
no type errors wil l ever occur.

3.3.1 Static versus dynamic program checking

Before focusing our discussion on type errors, a brief digression is necessary
to discuss more generally the kinds of errors that may occur in a program, the
different times at which such errors can be checked, and the effect of check-
ing times on the quality of the resulting programs.

Errors can be classified in two categories: language errors and application
errors. Language errors are syntactic and semantic errors in the use of the
programming language. Application errors are deviations of the program
behavior with respect to specifications (assuming specifications capture the
required behavior correctly). The programming language should facil itate
both kinds of errors to be identified and removed. Ideally, it should help pre-
vent them from being introduced in the program. In general, programs that
are readable and well structured are less error prone and easier to check.
Hereafter we concentrate on language errors. A discussion of application
errors is out of the scope of this book: software design methods address appli -
cation errors. Therefore, here the term “error” implicitl y refers to “ language
error” .

Error checking can be accomplished in different ways, that can be classified
in two broad categories: static and dynamic. Dynamic checking requires the
program to be executed on sample input data. Static checking does not. In

 161

general, if a check can be performed statically, it is preferable to do so instead
of delaying the check to run-time for two main reasons. First, potential errors
are detected at run time only if one can provide input data that cause the error
to be revealed. For example, a type error might exist in a portion of the pro-
gram that is not executed by the given input data. Second, dynamic checking
slows down program execution.

Static checking is often called compile-time (or translation-time) checking.
Actually, the term “compile-time checking” may not be an accurate synonym
of “static checking” , since programs may be subject to separate compilation
and some static checks might occur at link time. For example, the possible
mismatch between a routine called by one module and defined in another
might be checked at link time. Conventional l inkers, unfortunately, seldom
perform such checks. For simplicity, we wil l continue to use the terms static
checking and compile-time (or translation-time) checking interchangeably.

Static checking, though preferable to dynamic checking, does not uncover all
language errors. Some errors only manifest themselves at run time. For exam-
ple, if div is the operator for integer division, the compiler might check that
both operands are integer. However, the program would be erroneous if the
value of the divisor is zero. This possibil ity, in general, cannot be checked by
the compiler.

3.3.2 Strong typing and type checking

The type system of a language was defined as the set of rules to be followed
to define and manipulate program data. Such rules constrain the set of legal
programs that can be written in a language. The goal of a type system is to
prevent the writing of type unsafe programs as much as possible. A type sys-
tem is said to be strong if it guarantees type safety; i.e., programs written by
following the restrictions of the type system are guaranteed not to generate
type errors. A language with a strong type system is said to be a strongly
typed language. If a language is strongly typed, the absence of type errors
from programs can be guaranteed by the compiler. A type system is said to be
weak if it is not strong. Similarly, a weakly typed language is a language that
is not strongly typed.

In Chapter 3 we introduced the concept of a statically typed language. Such
languages are said to obey to a static type system. Precisely, such a type sys-
tem requires that the type of every expressions be known at compile time. An

162 Structuring the data Chap.3

example of a static type system can be achieved by requiring that

1. only built -in types can be used;
2. all variables are declared with an associated type;
3. all operations are specified by stating the types of the required operands and the type of

the result.
A statically typed language is a strongly typed language, but there are
strongly typed languages that are not statically typed. For example, we will
show in Chapters 6 and 7 examples of languages where the binding between a
variable and its type cannot be established at compile time, and yet the rules
of the type system guarantee type safety; i.e., they guarantee that correctly
compiled programs will execute without generating type errors.

In general, we may observe that many strong type systems exist. Since all of
them guarantee type safety, how should a language designer choose a type
system when defining a new programming language? There are two conflict-
ing requirements to be accommodated in such a design decision: the size of
the set of legal programs and the eff iciency of the type checking procedure
performed by the compiler. Since a type system restricts the set of programs
that can be written, we might come out with rules that allow only very simple
programs. In principle, a type system which restricts the set of legal programs
to the empty set is a strong type system. It is also trivial to check. But it is
obviously useless. The previous example of static typing allows for a simple
checking procedure, but it is overly restrictive. Dynamic typing, as we will
demonstrate in Chapters 7 and 8, is a very powerful programming facili ty that
can be combined with strong typing. In such a case, however, the is required
to perform a complex type checking procedure.

3.3.3 Type compatibil ity

A strict type system might require operations that expect an operand of a type
T to be invoked legally only with a parameter of type T. Languages, however,
often allow more flexibility, by defining when an operand of another type–
say Q–is also acceptable without violating type safety. In such a case, we say
that the language defines whether, in the context of a given operation, type Q
is compatible with type T. Type compatibilit y is also sometimes called con-
formance or equivalence. When compatibil ity is defined precisely by the type
system, a type checking procedure can verify that all operations are always
invoked correctly, i.e., the types of the operands are compatible with the types
expected by the operation. Thus a language defining a notion of type compat-

 163

ibilit y can stil l have a strong type system.

Figure 38 shows a sample program fragment written in a hypothetical pro-
gramming language.

The strict conformance rule where a type name is only compatible with itself
is called name compatibility. Under name compatibil ity, in the above exam-
ple, instruction (2) is type correct, since a and x have the same type name.
Instruction (1) contains a type error, because a and b have different types.
Similarly, instructions (3) and (4) contain type errors. In (3) the function is
called with an argument of incompatible type; in (4) the value returned by the
function is assigned to a variable of an incompatible type.

Structural compatibility is another possible conformance rule that languages
may adopt. Type T1 is structurally compatible with type T2 if they have the

struct s1{
int y;
int w;

} ;
struct s2{

int y;
int w;

} ;
struct s3 {

int y;
} ;
s3 func (s1 z)
{
. . .
} ;
. . .
s1 a, x;
s2 b;
s3 c;
int d;
. . .
a = b; --(1)
x = a; --(2)
c = func (b); --(3)
d = func (a); --(4)

FIGURE 38. A sample program

164 Structuring the data Chap.3

same structure. This can be defined recursively as follows:

• T1 is name compatible with T2; or
• T1 and T2 are defined by applying the same type constructor to structurally compatible

corresponding type components.
According to structural equivalence, instructions (1), (2), and (3) are type cor-
rect. Instruction (4) contains a type error, since type s3 is not compatible with
int. Note that the definition we gave does not clearly state what happens with
the field names of Cartesian products (i.e., whether they are ignored in the
check or they are required to coincide and whether structurally compatible
fields are required to occur in the same order or not). For simplicity, we
assume that they are required to coincide and to occur in the same order. In
such a case, if we rename the fields of s2 as y1 and w1, or permute their occur-
rence, s2 would no longer be compatible with s1.

Name compatibili ty is easier to implement than structural compatibility,
which requires a recursive traversal of a data structure. Name compatibili ty is
also much stronger than structural compatibility. Actually, structural compat-
ibilit y goes to the extreme where type names are totally ignored in the check.
Structural compatibility makes the classification of data objects implied by
types exceedingly coarse.

For example, having defined the following two types:

struct complex {
float a;
float b;

} ;
struct point {

float a;
float b;

} ;
the programmer can instantiate variables to represent–say–points on a plane
and values of a.c. voltage. The type system allows to use them interchange-
ably, although most likely the programmer has chosen two different type
names in order to keep the different sets of objects separate. In conclusion,
name compatibility is often preferable. It prevents two types to be considered
compatible just because their structure happens to be identical by coinci-
dence.

Often programming languages do not take much care in defining the adopted

 165

notion of type compatibility they adopt. This issue is left to be defined by the
implementation. An unfortunate consequence is that different implementa-
tions may adopt different notions, and thus a program accepted by a compiler
might be rejected by another. This unfortunate case happened, for example,
when Pascal was originally defined, although later ISO Pascal defined type
compatibility rigorously, mainly based on name compatibili ty. C adopts
structural compatibili ty for all types, except structures, for which name com-
patibility is required.

Type compatibili ty in Ada is defined via name compatibilit y. Since the lan-
guage introduces the concept of a subtype (see also Section 3.3.5), objects
belonging to different subtypes of the same type are compatible. In Ada,
when a variable is defined by means of a constructor, as in

IA: array (INTEGER range 1. .100) of INTEGER;
a brand new anonymous type is implicitl y introduced, followed by a variable
declaration:

type ANONYMOUS_1 is array (INTEGER range 1. .100) of INTEGER;
IA: ANONYMOUS_1;

Thus, if two variables IA and IB are declared:

IA: array (INTEGER range 1. .100) of INTEGER;
IB: array (INTEGER range 1. .100) of INTEGER;

the two variables are considered to have noncompatible types, since their
anonymous type names would be different.

3.3.4 Type conversions

Suppose that an object of type T1 is expected by some operation at some point
of a program. Also, suppose that an object of type T2 is available and we wish
to apply the operation to such object. If T1 and T2 are compatible according to
the type system, the application of the operation would be type correct. If they
are not, one might wish to apply a type conversion from T2 to T1 in order to
make the operation possible.

More precisely, let an operation be defined by a function fun expecting a
parameter of type T1 and evaluating a result of type R1:

fun: T1 -> R1

Let x2 be a variable of type T2 and y2 of type R2. Suppose that T1 and T2 (R1 and

166 Structuring the data Chap.3

R2) are not compatible. How can fun be applied to x2 and the result of the rou-
tine be assigned to y2? This would require two conversion functions to be
available, t21 and r12, transforming objects of type T2 into objects of type T1

and objects of type R1 into objects of type R2, respectively:

t21: T2 -> T1
r12: R1 -> R2

Thus, the intended action can be performed by first applying t21 to x2, evaluat-
ing fun with such argument, applying r12 to the result of the function, and
finally assigning the result to y2. That is:

(i) y2 = r12(fun (t21(x2)))

For some languages any required conversions are applied automatically by
the compiler. Following the Algol 68 terminology, we will call such auto-
matic conversions coercions. In the example, if coercions are available, the
programmer might simply write

(ii) y2 = fun (x2)

and the compiler would automatically convert (ii) into (i).

In general, the kind of coercion that may occur at a given point (if any)
depends on the context. For example, in C if we write

x = x + z;
where z is float and x is int, x is coerced to float to evaluate the arithmetic oper-
ator + (which stands for real addition), and the result is coerced to int for the
assignment. That is, the arithmetic coercion is from int to float, but the assign-
ment coercion is from float to int.

C provides a simple coercion system. In addition, explicit conversions can be
applied in C using the cast construct. For example, a cast can be used to over-
ride an undesirable coercion that would otherwise be applied in a given con-
text. For example, in the above assignment, one can force a conversion of z to
int by writing

x = x + (int) z;
Such an explicit conversion in C is semantically defined by assuming that the
expression to be converted is implicitly assigned to an unnamed variable of
the type specified in the cast, using the coercion rules of the language.

 167

Ada does not provide any coercions. Whenever a conversion is allowed by
the language, it must be invoked explicitl y. For example, if X is declared as a
FLOAT variable and I is an INTEGER, assigning X to I can be accomplished by
the instruction

I := INTEGER(X);
The conversion function INTEGER provided by Ada computes an integer from
a floating point value by rounding to the nearest integer.

The existence of coercion rules in a language has both advantages and disad-
vantages. The advantage is that many desirable conversions are automatically
provided by the implementation. The disadvantage is that since implicit trans-
formations happen behind the scenes, the language becomes complicated and
programs may be obscure. In addition, coercions weaken the usefulness of
type checking, since they override the declared type of objects with default,
context sensitive transformations. For example, Algol 68 consistently applies
the principle of implicit conversions to the extreme. The type of the value
required at any given point in an Algol 68 program can be determined from
the context. But the way coercions interact with other constructs of the lan-
guage can make programs quite hard to understand. Unexpected diff iculties,
in particular, arise because of the interaction between coercions and overload-
ing of operators and routines.

3.3.5 Types and subtypes

If a type is defined as a set of values with an associated set of operations, a
subtype can be defined to be a subset of those values (and, for simplicity, the
same operations). In this section we explore this notion in the context of con-
ventional languages, ignoring the abil ity to specify user-defined operations
for subtypes. The concept of subtype will have a richer semantics in the con-
text of object-oriented languages, as wil l be discussed in Chapter 6.

If ST is a subtype of T, T is also called ST’ s supertype (or parent type). We
assume that the operations defined for T are automatically inherited by ST. A
language supporting subtypes must define:

1. a way to define subsets of a given type;
2. compatibilit y rules between a subtype and its supertype.

Pascal was the first programming language to introduce the concept of a sub-
type, as a subrange of any discrete ordinal type (i.e., integers, boolean, char-

168 Structuring the data Chap.3

acter, enumerations, or a subrange thereof). For example, in Pascal one may
define natural numbers and digits as follows:

type natural = 0. .maxint;
 digit = 0. .9;
 small = -9. .9;

where maxint is the maximum integer value representable by an implementa-
tion.

A Pascal program can only define a subset of contiguous values of a discrete
type. For example, it cannot define a subtype EVEN of all even integers or
multiples of ten in the range -1000. .1000. Different subtypes of a given type
are considered to be compatible among themselves and with the supertype.
However, type safe operations are not guaranteed to evaluate with no error.
No error arises if an object of a subtype is provided in an expression where an
object of its supertype is expected. For example, if an expression requires an
integer, one may provide a natural; if it expects a natural, one might provide a
digit. If , however, a small is provided where a digit is expected, an error
arises if the value provided is not in the range expected. That is, if an argu-
ment of type T is provided to an operation expecting an operand of type R, the
expression is type safe if either R or T is a subtype of the other, or both are
subtypes of another type Q. No value error wil l occur at run time if T is a sub-
type of R. In all other cases, the operation must be checked at run time and an
error may arise if the value transmitted does not belong to the expected type.

Ada provides a richer notion of subtype than Pascal. A subtype of an array
type can constrain its index; a subtype of a variant record type can freeze the
variant; a subtype of a discrete ordinal type is a finite subset of contiguous
values. Examples of Ada types and subtypes are shown in Figure 39.

 169

Ada subtypes do not define new types. All values of all subtypes of a certain
type T are of type T. The subtype construct can be viewed as a way to signal
that certain run-time checks must be inserted by the compiler to ensure that
objects of a given subtype always receive the specified restricted set of val-
ues.

3.3.6 Gener ic types

As we mentioned, modern languages allow parameterized (generic) abstract
data types to be defined. A typical example is a stack of elements of a param-
eter type T, whose operations have the following signatures:

push: stack (T) x T -> stack (T) --pushes an element on top of the stack
pop: stack (T) -> stack (T) x T --extracts the topmost element from the stack
length: stack (T) -> int --compute the length of the stack

An implementation of this example was il lustrated in Section 3.2.8 for C++
and Eiffel. In the example, the abstract data type being defined is parametric
with respect to a type, and the operations of the generic type are therefore
defined as generic routines. The operations defined for the type stack(T) are
supposed to work uniformly for any possible type T. However, since the type
is not known, how can such routines be type checked to guarantee type
safety?

type Int_Vector is arr ay (Integer range < >) of Integer;
type Var_Rec (Tag: Boolean) is
record X: Float;

case Tag of
when True => Y: Integer;

Z: Real;
when False=> U: Char;

end case;
end record;
subtype Vec_100 is Int_Vector (0. .99);

--this subtype constrains the bounds of the array to 0. .99
subtype X_true is X (True);

--this subtype freezes the variant where Tag = True; objects of the subtype thus
--have fields X, Y, and Z;

subtype SMALL is Integer range -9. .9;
--this subtype defines a small set of integers

FIGURE 39.Examples of Ada types and subtypes

170 Structuring the data Chap.3

A possibil ity is provided by languages like Ada, C++, and Eiffel, where
generic types must be explicitly instantiated at compile time by binding
parameter types to “ real” types, that are known at compile time. This achieves
static typing for each instance of each generic type, and therefore each
instance is statically checked to ensure type safety. Instantiation, however, is
not required in languages like ML. As we will see in Chapter 7, however, the
language still ensures type safety statically.

3.3.7 Summing up: monomorphic versus polymorphic type systems

A simple strong type system can be provided by a statically typed language
where every program entity (constant, variable, routine) has a specific type,
defined by a declaration, and every operation requires that an operand of
exactly the type that appears in the operation definition can be provided. For
such a language, it is possible to verify at compile time that any occurrence of
that constant, variable, or routine is type correct. Such a type system is called
monomorphic (from ancient Greek, “single shape”): every object belongs to
one and only one type. By contrast, in a polymorphic (“multiple shape”) pro-
gramming languages every constant and every variable can belong to more
than one type. Routines (e.g., functions) can accept as a formal parameter
actual parameters of more than one type.

By examining closely traditional programming languages like C, Pascal, or
Ada, however, we have seen in the previous secions that all deviate from
strict monomorphism in one way or another. Compatibility, discussed in Sec-
tion 3.3.3, is a first departure from strict monomorphism, since it allows any
compatible type to be accepted where a certain type is needed. Coercion, dis-
cussed in Section 3.3.4, is also a deviation from strict monomorphism. In fact,
it allows an operand of one type to be used when an object of a different type
is expected. Subtyping, discussed in Section 3.3.5, provides yet another
example of deviation, since an element of the subtype also belongs to the
supertype. As yet another example, overloading (introduced in Section 3.3.2)
allows operators, li ke + or *, to be applied to both integer operands and real
operands.

Since polymorphic features creep in most–if not all–existing languages, a dis-
tinction between monomorphic and polymorphic languages is of no practical
use. All practical languages have some degree of polymorphism. Conse-
quently, the important questions to answer are: Can different kinds (or
degrees) of polymorphism be identified? How far can we go with polymor-

 171

phism, and yet retain strong typing? Understanding the possible different
forms of polymorphism can help us appreciate the sometimes profound
semantic differences among them. Moreover, it will help us organize con-
cepts like coercion, subtyping, and overloading, which were examined in pre-
vious sections separately, into a coherent conceptual framework.

Polymorphism can be classified as shown in Figure 40. For the sake of sim-
plicity and abstraction, let us discuss Figure 40 in the case of polymorphic
functions, i.e., mathematical functions whose arguments (domain and range)
can belong to more than one type.

A first distinction is between universal polymorphism and ad-hoc polymor-
phism. Ad-hoc polymorphism does not really add to the semantics of a mono-
morphic language. Ad-hoc polymorphic functions work on a finite and often
small set of types and may behave differently for each type. Universal poly-
morphism characterizes functions that work uniformly for an infinite set of
types, all of which have some common structure. Whereas an ad-hoc poly-
morphic function can be viewed as a syntactic abbreviation for a small set of
different monomorphic functions, a universal polymorphic function executes
the same code for arguments of all admissible types.

The two major kinds of ad-hoc polymorphism are overloading and coercion.

polymorphism

universal

ad-hoc

parametric

inclusion

overloading

coercion

FIGURE 40. A classification of polymorhism

172 Structuring the data Chap.3

In overloading, the same function name can be used in different contexts to
denote different functions, and in each context the function actually denoted
by a given name is uniquely determined. A coercion is an operation that con-
verts the argument of a function to the type expected by the function. In such
a case, polymorphism is only apparent: the function actually works for its pre-
scribed type, although the argument of a different type may be pased to it, but
it is automatically transformed to the required type prior to function evalua-
tion. Coercions can be provided statically by code inserted by the compiler in
the case of statically typed languages, or they are determined dynamically by
run-time tests on type descriptors, in the case of dynamically typed lan-
guages.

Overloading and coercion can be il lustrated by the C example of the arith-
metic expression a + b. In C, + is an ad-hoc polymorphic function, whose
behavior is different if it is applied to float values or int numbers. In the two
cases, the two different machine instructions float+ (for real addition) or int+

would be needed. If the two operands are of the same type–say, float–the +
operator is bound to float+; if both are bound to int, + is bound to int+. The fact
that + is an overloaded operator is a purely syntactic phenomenon. Since the
types of the operands are known statically, one might eliminate overloading
statically by substituting the overloaded + operator with float+ or int+, respec-
tively. If the types of the two operands are different (i.e., integer plus real or
real plus integer), however, the float+ operator is invoked after converting the
integer operand to real.

Figure 40 defines two kinds of universal polymorphism: parametric and
inclusion polymorphism. Subtyping, discussed in Section 3.3.5, is an example
of inclusion polymorphism. A function is indeed applicable to any type that is
a subtype of a given type. This concept is applicable not only to the case of
subtyping of Section 3.3.5, but also the more general concept that will be dis-
cussed in the context of object oriented languages in Chapter 6.

Parametric polymorphism is perhaps the most genuine form of universal
polymorphism. In this case the polymorphic function works uniformly on a
range of types that are specified as parameters. Generic routines, as in the
case of ML functions, are examples of parametric polymorphic functions. In a
language like Ada for which, as anticipated in Section 3.3.6, generic routines
are instantiated at compile time, with full binding of type parameters to spe-
cific types, genericity is only an apparent kind of polymorphism; that is, it can

 173

be viewed as a case of ad-hoc polymorphism.

The term dynamic polymorphism is also frequently used to denote the case
where the binding between language entities and the form they can take var-
ies dynamically. Languages that support unrestricted forms of dynamic poly-
morphism cannot provide a strong type system. By providing suitable forms
of inclusion and/or parametric polymorphism, however, languages can pre-
servea strong type system. We will discuss this in Chapter 6 for object-ori-
ented languages, which can support inclusion polymorphism, and in Chapter
7 for the functional language ML, which supports parametric polymorphism.

3.4 The type structure of existing languages

In this section we review the type structure of a number of existing program-
ming languages. The description provides an overall hierarchical taxonomy
of the features provided by each language for data structuring. For a full
understanding of language semantics, such description must be comple-
mented by a precise understanding of the rules of the type system (strong typ-
ing, type compatibil ity, type conversion, subtyping, genericity, and
polymorphic features), according to the concepts discussed in Section 3.3.
Our discussion will touch on the main features of type structures. Other com-
ments were given in previous parts of this chapter. Moreover, the reader is
urged to refer to language manuals for a discussion of all details and subtle-
ties that cannot be addressed in this treatment.

3.4.1 Pascal

The type structure of Pascal is described in Figure 42. A different decomposi-
tion of unstructured types would be in terms of ordinal types and real types.
Ordinal types comprise integers, booleans, characters, enumerations, and sub-
ranges. Ordinal types are characterized by a discrete set of values, each of
which has (at most) a unique predecessor and a unique successor, evaluated
by the built-in functions pred and succ, respectively.

Figure 42 shows how structured types can be built i n Pascal. Recursive data
structures are defined via pointers. Cartesian products are defined by records.
Unions and discriminated unions are described by variant records. Comments
on these constructs, and particularly on their possible insecurities, were given
earlier. Finite mappings are described by arrays, whose index type must be an
ordinal type. The size of an array is frozen when the array type is defined, and

174 Structuring the data Chap.3

cannot change during execution. Pascal regards arrays with different index
types as different types. For example, a1 and a2 below are different types.

type a1 = arr ay [1. .50] of integer;
 a2 = arr ay [1. .70] of integer;

This was a serious problem in Pascal as originally defined. Because proce-
dures require formal parameters to have a specified type, it was not possible,
for example, to write a procedure capable of sorting both arrays of type a1 and
type a2. During the standardization of Pascal by ISO, a new feature was added
to solve this problem. This feature, called the conformant array, allows the
formal array parameter of a procedure to conform to the size of the actual
array parameter. The actual and formal parameters are required to have the
same number of indexes and the same component type. The example ill us-
trates the use of conformant arrays.

When the procedure sort is called with a one-dimensional array parameter, low

and high assume the values of the lower and upper bounds of the actual param-
eter, respectively.

Another solution, not available in Pascal, could have been based on genericity
(i.e., allowing a procedure to be generic with respect to the array bounds).

procedure sort (var a: array [low. .high: integer] of CType);
var i: integer;

more: boolean;
temp: CType;

begin
more := true;
while more do begin

more := false;
for i := low to high - 1 do begin

if a [i] > a [i + 1] then begin { move down element}
temp := a [i];
a [i] := a [i + 1];
a [i + 1] := temp;
more := true

end
end

end
end;

FIGURE 41.An example of conformant arrays in Pascal

 175

More generally, Pascal provides only limited forms of ad-hoc polymorphism.
Some built-in operators, like + or succ, are overloaded. In fact, succ is applica-
ble to operators of any ordinal type. Similarly, + can be applied to integer
operands, real operands, or even sets (in which case it denotes the union oper-
ator). The language also defines cases of coercion. For example, if an integer
is added to a real, the integer is coerced to a real, and the addition is per-
formed.

As we mentioned earlier, Pascal is not a strongly typed language. For exam-
ple, its original definition did not carefully define the concept of type compat-
ibilit y. Moreover, subtypes are defined by the language as new types, and
thus the type of an expression may in general depend on the values of the
operands at run time.

3.4.2 C++

The type structure of C++ is given in Figure 43. C++ distinguishes between to
categories of types: fundamental types and derived type. Fundamental types
are either integral or floating. Integral types comprise char, short int, int, long int,
which can be used for representing integers of different sizes. Floating-point
types comprise float, double, and long double. New integral types may be
declared via enumerations. For example

enum my_small_set { low = 1, medium = 5, high = 10}
Arrays are declared by providing a constant expression, which defines the
number of elements in the array. For example

Pascal types

unstructured structuredpointers

enumeration

subrangebuilt-in
- integer
- real
- char
- boolean

recursive
data types

file
sequence

set
power set

array
finite mapping

- record

- variant record
Cartesian product

discriminated union

FIGURE 42. The type structure of Pascal

176 Structuring the data Chap.3

float fa [15];
declares an array of floating-point numbers that can be indexed with a value
in the range 0. .14.

C++ distinguishes between pointers and references. A reference is an alias for
an object. Therefore, once a reference is bound to an object, it cannot be made
to refer to a different object. For example, having declared

int i = 5;
int& j = i;

i and j denote the same object, which contains the value 5.

When the reference’s li fetime starts, it must be bound to an object. Thus, for
example, one cannot write the following declaration

int& j;
It is possible, however, to bind a reference to an object through parameter
passing. This is actually the way C++ supports parameter passing by refer-
ence. For example, according to the following routine declaration

void fun (int& x, float y)
x represents a by-reference parameter, which is bound to its corresponding
actual parameter when the routine gets called.

Pointers are quite different. A pointer is a data object whose value is the
address of another object. A pointer can be made to refer a different objects
during its li fetime. That is, it is possible to assign a new value to a pointer, not
only to the object referenced by the pointer. Of course, it is possible to use
pointers also in the case where a reference would do. In fact, references are
not provided by C, but were added to the language by C++. As we mentioned,
however, pointers are extremely powerful, but diff icult to manage, and often
dangerous to use. They should be used only when necessary. References
should be used in all other cases.

Another major distinctive feature of the C++ type system is the abili ty to
define new types through the class construct. As we discussed, this allows
abstract data type implementations to be provided. If no protection is needed
on the data declared in a class, classes without default access restrictions can
be defined as structures, via the struct construct.

 177

Finally, two other kinds of types can be derived in C++ by using the function
and the union constructs. As we already observed, the function construct
defines a new data object. It is thus possible to define pointers and references
to functions, pass functions as parameters, etc. The union construct defines a
structure that is capable of containing objects of different types at different
times.

3.4.3 Ada

The type structure of Ada is described in Figure 44. Such structure is dis-
cussed and evaluated in this section, except for concurrency related types,
which are discussed in Chapter 4, and tagged types, which are discussed in
Chapters 5 and 6.

Unstructured (scalar) types can be both numeric (i.e., integers and reals) and
enumerations. All scalar types are ordered, i.e., relational operators are
defined on them. Enumeration types are similar to those provided by Pascal.
Integer types comprise a set of consecutive integer values. An integer type
may be either signed or modular. Any signed integer type is a subrange of Sys-

tem.Min_Int. .System.Max_Int, which denote the minimum and maximum integer
representable in a given Ada implementation. A modular integer is an abso-
lute value, greater than or equal to zero. The Ada language predefines a
signed integer type, called Integer. Other integer types, such as Long_Integer or
Short_Integer, may also be predefined by an implementation. Programmer-

C++ types

fundamental derived

floatingintegral
union

pointer to

function

array

object/function/
reference to
object/function

class

structure

FIGURE 43. The type structure of C++

class member

178 Structuring the data Chap.3

defined integer types may be specified as shown by the following examples:

type Small_Int is range -10. .10; -- range bounds may be any static expressions
type Two_Digit is mod 100; --the values range from 0 to 99;

 --in general, the bound must be a static expression
As we mentioned, Ada allows subtypes to be defined from given types. Sub-
types do not define a new type. They conform to the notion of subtype we dis-
cussed in Section 3.3.5. Two subtypes of Integer are predefined in Ada:

subtype Natural is Integer range 0. .INTEGER’LAST;
subtype Positive is Integer range 1. .INTEGER’LAST;

Ada provides a rich and elaborate set of faciliti es for dealing with real values;
only the basic aspects will be reviewed here. Real types provided by the lan-
guage are just an approximation of their mathematical counterpart (universal
real, in the Ada terminology). In fact, the fixed number of bits used by the
implementation to represent real values makes it possible to store the exact
value of only a limited subset of the universal reals. Other real numbers are
approximated. Real types in Ada come in two forms: floating point and fixed
point. A floating-point real type approximates a universal real with an error
that is relative to the number’s absolute value. A fixed-point real approxi-
mates a universal real with an error that is independent of the value being rep-
resented. The language predefines one floating-point real type, called Float. It
is left to the implementation whether additional real types, such as Short_Float

or Long_Float, should be provided. The programmer can define additional
floating-point real types, such as:

type Float_1 is digits 10;
The digits clause specifies the minimum number of significant decimal digits
required for the type. Such minimum number of digits defines the relative
error bound in the approximate representation of universal reals. Given a
floating point real type, attribute Digits gives the minimum number of digits
associated with the type. Thus, Float_1’Digits yields 10, whereas Float’Digits

yields an implementation dependent value.

Fixed-point real types provide another way of approximating universal reals,
where the approximation error is independent of the value being represented.
Such error bound is specified as the delta of the fixed-point real. An ordinary
fixed-point real type is declared in Ada as:

type Fix_Pt is delta 0.01 range 0.00. .100;
The declaration defines both the delta and the range of values.

 179

A decimal fixed-point type is specified by providing the delta and the number
of decimal digits. For example

type Dec_Pt is delta 0.01 digits 3;
includes at least the range -99.9. .99.9

Ada’s structured (or composite) types comprise arrays and records. Arrays
can have statically known bounds, as in Pascal. For example

type Month is (JAn, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, Dec);
type Yearly_Pay is arr ay (Month) of Integer;
type Summer_Pay is arr ay (Month range Jul. .Sep) of Integer;

Such array types are also said to be constrained. Constraints, however, do not
need to be statically defined; that is, Ada supports dynamic arrays as we show
next. First, one can declare unconstrained array types by stating an unspeci-
fied range, indicated by the symbol <> (box):

type Some_Period_Pay is arr ay (Month range <>) of Integer;
type Int_Vector is arr ay (Integer range <>) of Integer;
type Bool_Matrix is arr ay (Integer range <>, Integer range <>) of Boolean;

In Ada, array types are characterized by the types of the components, the
number of indices, and the type of each index; the values of the bounds are
not considered to be a part of the array type, and thus may be left unspecified
at compile-time. The values of the bounds, however, must become known
when an object is created. For example, one can declare the following vari-
ables:

Spring_Salary: Some_Period_Pay (Apr. .Jun);
Z: Int_Vector (-100. .100);
W: Int_Vector (20. .40);
Y: Bool_Matrix (0. .N, 0. .M);

Notice that the values of the bounds need not be given by a static expression.
It is only required that the bounds be known at run time when the object dec-
larations are processed.

An interesting way of instantiating the bounds of an array is by parameter
passing. For example, the following function receives an object of type
Int_Vector and sums its components:

function Sum (X: Int_Vector) return Integer;
Result: Integer := 0; --declaration with initialization
begin

 180

for I in X’First. .X’Last loop
--attributes First and Last provide the lower and upper bounds of the index
Result := Result + X (I);

end loop;
return Result;

end Sum;
The function can thus be called with array parameters of different sizes; for
example

A := Sum (Z) + Sum (W);
Ada views strings as arrays of characters of the following predefined type:

type String is arr ay (Positive range <>) of characters;
A line of 80 characters, initialized with all blanks, can be declared as follows:

Line: String (1. .80) := (1. .80 => ’ ’) ;
Similar to Pascal, Ada records can support both Cartesian products and (dis-
criminated) unions. An example of a Cartesian product is

type Int_Char is
X: Integer range 0. .100;
Y: Character;

end record;
Ada provides a safe version of discriminated unions through variant records.
For example, one may write the following Ada declarations (corresponding to
the example discussed in Section 3.2.3)

type Address_Type is (Absolute, Offset);
type Safe_Address is record (Kind: Address_Type := Absolute)

case Kind is
when Absolute =>

Abs_Addr: Natural);
when Offset =>

Off_Addr: Integer;
end case;

end record;
Type Safe_Address has a discriminant Kind that defines the possible variants of
an address. The default initial value of the discriminant is declared in the
example to be Absolute. Thus an object declared as

X: Safe_Address;
is an absolute address by default. The discriminant of a variable initialized by
default can be changed only by assignment of the record as a whole, not by
assignment to the discriminant alone. This forbids the producing of inconsis-

 181

tent data objects, and makes variant records a safe representation of discrimi-
nated unions.

The discriminant of a variable can also be initialized explicitl y when a vari-
able is declared, as in the following case:

Y: Address (Offset);
In such a case, the variant for the object is frozen, and cannot be changed
later. The compiler can reserve the exact amount of space required by the
variant for the constrained variable. The following assignments

X := Y;
X := (Kind => Offset, Off_Addr => 10);

are legal and change the variant of variable X to Offset. The following assign-
ment, which would change the variant for Y, is illegal

Y := X;
Access to the variant of an object whose discriminant is initialized by default,
such as

X.Off_Addr := X.Off_Addr + 10;
requires a run-time check to verify that the object is accessed correctly
according to its current variant. In the example, if the address is not an offset,
the error exception Constraint_Error is raised.

Access types (pointers) are used mainly to allocate and deallocate data
dynamically. As an example, the following declarations define a binary tree:

type Bin_Tree_Node; --incomplete type declaration
type Tree_Ref is access Bin_Tree_Node;
type Bin_Tree_Node is

record
Info: Character;
Left, Right: Tree_Ref:

end;
(Note that an incomplete type declaration is needed when recursive types are
being defined.)

If P and Q are two pointers of type Tree_Ref, the Info component of the node
referenced by P is P.Info. The node itself is P.all . Thus, assignment of the node
pointed by P to the node pointed by Q is written as

 182

Q.all := P.all;
If T is a pointer of type TREE_REF, allocation of a new node pointed by T can
be accomplished as follows:

T := new Bin_Tree_Node;
The following assignment

T.all := (Info => 0, Left => null , Right => null);
initializes T to point to a node whose Left and Right pointers are null, i.e., they
do not refer to any entity. The language defined value null denotes a null
pointer value.

Ada also allows pointers to refer to routines. For example, the following dec-
laration defines type Message_Routine to be any procedure with an input param-
eter of type String

type Message_Routine is access procedure (M: String);
If Print_This is a previously defined procedure with an input parameter M of
type String, one can write

Give_Message: Message_Routine; --declares a pointer to a routine
. . .
Give_Message := Print_This’Access; --access yields a reference to the routine
. . .
Give_Message.all (’This Is A Serious Error’);

--invokes Print_This; ".all " (dereferencing) is optional
Finally, it is also possible in Ada to define pointers which refer to named
objects, fields of records, or array elements. Such referenceable objects (or
parts of an object) must be declared as aliased (dynamically allocated data are
aliased). As the name indicates, such elements are accessible via several pos-
sible names (aliases). If an element is declared as aliased, the attribute Access

can be applied to provide a pointer to the element. For example, having
declared the following data

Structure: arr ay (1. .10) of aliased Component;
--Component is a previously defined type

Mine, Yours: Component;
. . .
Mine := Structure (1)’Access; --Mine points to the first element of the array
Yours := Structure (2)’Access; --Yours points to the second element of the array

As we discussed in Section 3.2.6, allowing pointers to refer to named data
objects (or parts thereof) can generate dangling references. This is avoided in
Ada by run-time checking that an object referenced by a pointer is allocated

 183

in an activation record that is more recently allocated than the activation
record of the unit in which the access type is declared. This check ensures that
the object wil l live at least as long as the access type, which in turn ensures
that the access values cannot refer to objects that do not exist.

The Ada type system is largely based on Pascal, but is richer, more complex,
and more systematic. It also solves several of the problems and insecurities of
the original Pascal definition. As a result, the language gets close to the goal
of strong typing. Type compatibility (based on name compatibili ty) is explic-
itly specified. The notion of subtype and the necessary run-time checks are
precisely defined. If a new type is to be defined from an existing type, a
derived type construct is provided. For example

type Celsius is new Integer;
type Farenheit is new Integer;

define two new type; Integer is their parent type. New types inherit all proper-
ties (values, operations, and attributes) from their parent type, but they are
considered as different types.

Overloading and coercion are widely available in Ada. The language also
provides for inclusion polymorphism in the case of subtypes and type exten-
sions (see Chapter 6).

Finally, Ada makes extensive use of attributes. Attributes are used to desig-
nate properties of data objects and types. As we saw in many examples so far,
the value of an attribute is retrieved by writing the name of the entity whose
attribute is being sought, followed by a ’ and the name of the attribute. Ada
predefines a large number of attributes; more can be defined by an implemen-
tation.

 184

3.5 Implementation models

This section reviews the basic implementation models for data objects. The
description is language independent. It is intended to complement the concep-
tual model of programming language processing provided in Chapter 2, by
showing how data can be represented and manipulated in a machine. It is not
intended, however, to provide a detailed account of eff icient techniques for
representing data objects within a computer, which can be highly dependent
on the hardware structure. Rather, straightforward solutions will be presented,
along with some comments on alternative, more eff icient representations.

Following Chapter 2, data will be represented by a pair consisting of a
descriptor and a data object. Descriptors contain the most relevant attributes
that are needed during the translation process. Additional attributes might be
appropriate for specific purposes. Typically, descriptors are kept in a symbol
table during translation, and only a subset of the attributes stored there needs
to be saved at run time. Again, we will pay little attention to the physical lay-
out of descriptors, which depends on the overall organization of the symbol
table.

3.5.1 Built-in and enumerations

Integers and reals are hardware-supported on most conventional computers,

Ada types

unstructured (scalar) structuredaccess (pointer)

realdiscrete
recursive
data type concurrency

tagged

array
finite mapping

- record

- variant record
Cartesian product

discriminated union

enumeration

integer

- character
- boolean
- other enum.

- signed integer
- modular integer

sequence (string)

related
- tasks
- protected

- to object

- to routine

floating
point fixed point

- ordinary
- decimal

FIGURE 44. The type structure of Ada

 185

which provide fixed and floating-point arithmetic. Existing computers may
also provide different lengths for the supported arithmetic types. In a lan-
guage like C, these are reflected by long and short prefixes. If the language pro-
vides different lengths for arithmetic types and the underlying hardware does
not, an implementation is usually free to ignore the prefixes. In the case of C,
it is only required that short should not be longer than int, which should not be
longer than long. If we ignore the issue of different lengths for arithmetic
types, for simplicity, integer and real variables may be represented as shown
in Figure 45 and Figure 46.

 Values of an enumeration type ENUM can be mapped, one-to-one, to integer
values in the range 0. .n-1, n being the cardinality of ENUM. This mapping
does not introduce any possibility of mixing up values of type ENUM with
values of any other enumeration type, if all run-time accesses are routed via a
descriptor containing the type information. The use of the descriptor is of
course not necessary for typed languages. Note that, in a language like C, the
mapping of enumeration types to integers is not just part of the implementa-

descriptor

integer
sign
bit

memory word

FIGURE 45.Representation of an integer variable

descriptor

real

sign bit for mantissa

memory word

sign bit for exponent

k bit exponent h bit mantissa

FIGURE 46.Representation of a floating-point variable

 186

tion of the type (and as such, invisible to the programmer), but it is explicitl y
stated in the language definition. This allows the programmer to take advan-
tage of this knowledge, and find ways to break the protection shield provided
by the type to access the representation directly.

Booleans and characters can be viewed as enumeration types, and imple-
mented as above. To save space, characters and booleans can be stored in
storage units smaller than a word (e.g., bits or bytes), which might be addres-
sable by the hardware, or may be packaged into a single word and then
retrieved by suitable word manipulation instructions that can disassemble the
contents of a word. In such a case, accessing individual characters of bool-
eans may be less efficient, but it would save memory space. Thus the choice
of the implementation model depends on a trade-off between speed and
space.

3.5.2 Structured types

In this section we review how to represent structured types, built via the con-
structors discussed in Section 3.2. Our discussion will not be dependent on
the specific syntax adopted by an existing language. Rather, it wil l refer to a
hypothetical, self-explaining, programming notation. For simplicity, we will
assume that variables are declared by providing an explicit type name. For
example, this means that a declaration of–say– a finite mapping X:

X: float array [0. .10];
is a shorthand for a declaration of a type followed by a declaration of an array
variable:

type X_type is float array [0. .10];
X: X_type;

Similarly, we assume that if a type declaration contains a structured compo-
nent, such component is separately defined by a type declaration. For exam-
ple, if a field of a Cartesian product is a finite mapping, there are two type
declarations: the declaration of an array type T and the declaration of a struc-
ture, with a field of type T. As a consequence of these assumptions, each com-
ponent of a structured type is either a built-in type, or it is a user-defined type.

As for built-in types, each variable is described by a descriptor and its storage
layout. The descriptor contains a description of the variable’s type. In an
actual implementation, for efficiency reasons, all variables of a given type

 187

might have a simpli fied descriptor which points to a separately stored
descriptor for that type.

Section 3.5.2.1 deals with Cartesian products. Section 3.5.2.2 deals with finite
mappings. Unions and discriminated unions are discussed in Section 3.5.2.3.
Powersets and sequences are discussed in Sections 3.5.2.4 and 3.5.2.5. Sec-
tion 3.5.2.6 discusses user-defined types through a simple class construct.
Finally, Section 3.5.2.7 contains an introduction to the management of the
heap memory, which is needed for dynamically allocated objects, li ke those
defined by a recursive type, and implemented via pointers.

3.5.2.1 Cartesian product

The standard representation of a data object of a Cartesian product type is a
sequential layout of components. The descriptor contains the Cartesian prod-
uct type name and a set of triples (name of the selector, type of the field, ref-
erence to the data object) for each field. If the type of the field is not a built -in
type, the type field points to an appropriate descriptor for the field.

Figure 47 illustrates the representation for the following case of a variable of
Cartesian product type with a field which is itself of a Cartesian product type:

type another_type Y is struct{
float A;
int B;

} ;
type sample_type is struct {

int X;
another_type Y;

} ;
sample_type X;

Note that each component of the Cartesian product occupies a certain number
of addressable storage units (e.g., words). In a statically typed language, if
each component is guaranteed to occupy a fixed memory size, known by the
compiler, the descriptor is not needed at run time, and the reference to each
field can be evaluated statically by the compiler as a fixed offset with respect
to the initial address of the composite object.

 188

3.5.2.2 Finite mapping

A conventional representation of a finite mapping allocates a certain number
of storage units (e.g., words) for each component. The descriptor contains the
finite-mapping type name; the name of the domain type, with the values of
the lower and upper bound; the name of the range type (or the reference to its
descriptor); the reference to the first location of the data area where the data
object is stored.

For example, given the declarations

type X_type is float array [0. .10];
X_type X;

sample_type

struct

X

int

Y

another_type

struct

A

float

B

int

integer value

floating point value

integer value

type

constructor

selector

type

reference

selector

type

reference

type

constructor

selector

type

reference

selector

type

reference

FIGURE 47.Representation of a Cartesian product

 189

the corresponding representation is given in Figure 48.

A reference to X[I] is computed as an offset from the address A_X of the first
location of the array. Let the domain type be the integer subrange M. .N. Let K
be the number of words occupied by each element of the array (this is known
from the type of the range, but might be stored in the descriptor to avoid com-
puting such value each time it is necessary). The offset to be evaluated for
accessing A[I] is K(I - M).

In a statically typed language with arrays of statically known index bounds,
the descriptor does not need to be saved at run time. The only exception are
index bounds, which may be used to check at run time that the index value
belongs to the stated range.

As we discussed in Chapter 2 (Section 2.6.5), in a language that supports
dynamic arrays, the value of the array in the activation record is composed of
two parts. The first part (often called dope vector) contains a reference to the
data object (which, in general, can only be evaluated at run time) and the val-
ues of the bounds (to be used for index checking). The second part is the array
itself, which is accessed indirectly through the dope vector.

3.5.2.3 Union and discriminated union

Union types do not require any special new treatment to be represented. A
variable of a union type has a descriptor that is a sequence of the descriptors

 X_type

 array

int

 0

float

10

data object

0
1

10

type

constructor

index type

lower bound

upper bound

range type

reference

FIGURE 48. Representation of a finite mapping

 190

of the component types. Instances of the values of the component types share
the same storage area.

Discriminated union types are provided by existing programming languages
as extensions of the Cartesian product. For example Pascal and Ada provide
discriminated unions as variant records. The variant record is a construct can
be viewed as the conjunction of several fields plus a disjunction of fields, pre-
fixed by the definition of a tag field. When the conjunction of f ields is empty,
we obtain a discriminated union. As an example, the reader may consider the
following Pascal-li ke fragment. Since all variants share the same storage area,
a variable Z of type Z_type can be represented as in Figure 49. Note that the
various variants are accessible via a case table, according to the value of the
tag field.

type X_type is float array [0. .10];
type Z_type = record

case kind: BOOLEAN of
TRUE: (a: integer);
FALSE: (b: X_type)

 end

 191

3.5.2.4 Powersets

Powersets can be implemented efficiently, in terms of access time, manipula-
tion time, and storage space, provided that a machine word has at least as
many bits as there are potential members of the set. (i.e., the cardinality of the
base type). The presence of the i-th element of the base type in a certain set S
is denoted by a “1” as the value of the i-th bit of the word associated with S.
The empty set is represented by all zeros in the word. The union between sets
is easily performed by an OR between the two associated words, and the
intersection by an AND. If the machine does not allow bit-level access, test
for membership requires shifting the required bit into an accessible word
position (e.g., the sign bit), or using a mask. The existence of such an appeal-
ing representation for powersets is responsible for the implementation-
defined limits for the cardinality of representable sets, which is normally

 Z_type

kind

boolean

type

constructor

selector

type

reference

case table

variant record

boolean value

case table

TRUE

FALSE

 X_type

 array

int

 0

float

10

type

constructor

index type

lower bound

upper bound

range type

reference

selector a

type

selector

reference

b

int

FIGURE 49.Representation of a discriminated union

 192

equal to the size of a memory word.

3.5.2.5 Sequences

Sequences of elements of arbitrary length on a secondary storage are repre-
sented as files. File management is ignored here, being out of scope. Strings,
as supported by many languages, are just array of characters. In other lan-
guages, such as SNOBOL4 and Algol 68, strings may vary arbitrarily in
length, having no programmer-specified upper bound. This kind of array with
dynamically changing size must be allocated in the heap (see Chapter 2, Sec-
tion 2.5.2.6).

3.5.2.6 Classes

User-defined types specified via the simple class construct introduced in Sec-
tion 3.2.8 are easy to represent as extensions of structures. The differences
are:

1. only public fields are visible outside the construct. Such fields must be tagged as public
in the descriptor.

2. some fields may be routines. It is thus necessary to be able to store routine signatures in
descriptors.

The reader can easily extend the representation scheme presented in Section
3.5.2.1 to keep these new requirements into account. Since the code of the
routines encapsulated in a class is shared by all class instances, routine fields
are represented as pointers to the routines.

Objects that are instances a new type defined by a class are treated as any
other data object. Some languages allow the programmer to choose whether
class-defined objects must be allocated on the stack or on the heap. For exam-
ple, in C++ after class point is declared as in Figure 33, the following declara-
tions are possible in some function f:

point x (1.3, 3.7);
point* p = new point (1.1, 0.0);

In the first case, x is a named variable that is allocated in f’s activation record
on the stack. In the second, p is allocated in f’ s activation record, while the
data structure for the point is allocated on the heap. Heap management is dis-
cussed next.

 193

3.5.2.7 Pointers and garbage collection

A pointer holds as a value the address of an object of the type to which the
pointer is bound to. Pointers usually can have a special null value (e.g., void in
C and C++, nil in Pascal). Such a null value can be represented by an address
value that would cause a hardware-generated error trap to catch an inadvert-
ent reference via a pointer with null value. For example, the value might be an
address beyond the physical addressing space into a protected area.

Pointer variables are allocated as any other variable on the activation record
stack. Data objects that are allocated via the run-time allocation primitive new
are allocated in the heap. Heap management is a crucial aspect of a program-
ming language implementation. In fact, the free storage might quickly be
exhausted, unless there is some way of returning allocated storage to the free
area.

The memory allocated to hold a heap object can be released for later reuse if
the object is no longer accessible. Such an object is said to be garbage. Pre-
cisely, an object is garbage if no variable in the stack points to it and–recur-
sively–no other garbage points to it. There are two main aspects involved in
heap management. One is the recognition that some portion of allocated
memory is garbage; the other is to recycle such memory for new memory
allocation requests issued by the user.

Garbage recognition often relies on the programmer, who is required to notify
the system that a given object became useless. For example, in order to state
that the object pointed by p is garbage, in C++ one would write delete(p) and in
Pascal one would write dispose(p). As we mentioned, there is no guarantee that
only objects that become unreferenced be defined as garbage: the correct use
of delete (or dispose) entirely relies on the programmer’s responsibility. Should
the programmer inadvertently mark an object as garbage, the pointer to it
becomes dangling.

Another strategy is to let the run-time system take care of discovering gar-
bage, by means of a suitable automatic garbage collection algorithm. Auto-
matic garbage collection is vital for languages that make heavy use of
dynamically generated variables, li ke LISP. In fact, garbage collection was
invented for implementing the first LISP systems. Eiffel, which uniformly
treats all objects as referenced by pointers, provides an automatic garbage
collector. Although the subject is usually treated in courses on data structures,

 194

we provide a brief and simpli fied view of possible strategies for automatic
garbage collection.

Garbage collection can be performed incrementally by using a reference
counting scheme. Under such a scheme, each heap allocated object is sup-
posed to have an extra descriptor field, to store the current number of pointers
to it. Whenever a pointer variable is deallocated from the stack, the reference
count of the heap object pointed by it is decreased by one. When the reference
count becomes zero, the object is declared to be garbage, and the reference
count of any object pointed by it is decreased by one. This method thus
releases an object as soon as it is found to become unreferenced. The problem
with this method, however, is that it does not work for circular heap data
structures (see Figure 50). If a pointer to the head of a circular li st is deallo-
cated, the nodes of the list are not found to be garbage, because the reference
count for each node is one.

A non-incremental strategy for automatic garbage collection consists of allo-
cating free cells from the heap until the free space is exhausted. Only at that
point the system enters a garbage collecting phase. We describe one such
scheme under the simplifying assumption that:

• the heap data objects have fixed size
• it is known a-priori which fields of a heap object contain pointers to other heap data

objects, and
• it is possible to find all the pointers from the stack into the heap.

The following method for garbage collection allows all reachable heap data
objects to be distinguished from garbage objects. To do so, a working set of
pointers T may be used. Initially, T contains the stack values which point into
the heap. An element E is repeatedly extracted from T, the objects referenced
by E are marked, and E is replaced by the pointers to the node(s) contained in

FIGURE 50. A circular heap data structure

 195

E, if they are not marked. When T becomes empty, all reachable heap data
objects have been marked. All other objects are garbage.

A number of variations have been proposed in the literature to make this gar-
bage collection method more efficient. Its main problem, however, is that
“useful” processing time is lost when the garbage collector is invoked. In an
interactive system, this may be perceived by the programmer as an unex-
pected slow-down of the application, which occurs at unpredictable times. In
a real-time system, this can be particularly dangerous, because an urgent
request for service might arrive from the environment just after the garbage
collector has started its rather complex activity. Garbage collection time is
distributed more uniformly over processing time by using the reference
counting scheme, but unfortunately such scheme works only partially. An
appealing solution, which cannot be reviewed here, is based on a parallel exe-
cution scheme, where the garbage collector and the normal language proces-
sor execute in parallel.

Having discovered which heap data objects are garbage (either by explicit
notification by the programmer, or by running a garbage collector), one
should decide how to recycle them by adding them to the free storage. One
possibili ty is to link all free areas in a free list. In such a case, each block
would contain at least two cells: one for the block size, and one for the pointer
to the next block. It is convenient to keep the list ordered by increasing block
address, so that as a block is ready to be added to the list, it can be merged
with possible adjacent blocks in the list. As a new storage area is to be allo-
cated, the free list is searched for a matching block., according to some pol-
icy.

3.6 Bibliographic notes

The systematic view of data aggregates and the classification of type con-
structors presented in Section 3.2 is taken from a paper of C.A.R. Hoare in
(Dahl et al. 1972).

Programming language research in the 70’s emphasized the need for taming
(or eliminating) insecure constructs, which can cause programs to be diff icult
to write and evaluate, and therefore potentially unreliable. Several works con-
centrated on evaluating the type structure of existing languages to find inse-
curities. For example, (Welsh et al. 1977) and (Tennent 1978) provide a

 196

critical assessment of the original Pascal definition. Another research direc-
tion concentrated on new language constructs that could solve the insecurities
that were found in existing languages. The work on Euclid (Popek et al.
1977), which was briefly illustrated in this chapter, is a notable example of
this research stream. Other language experiments emphasized the need to
support program reliability through language constructs that favor modularity
and information hiding. The concept of abstract data type was introduced, and
languages like CLU (Liskov and Zill es 1975, Liskov and ***) were designed
and implemented to support program decomposition through abstract data
types. CLU, as we mentioned, is based on the early seminal work on SIM-
ULA 67 (Dahl et al. 1970). The SIMULA 67 experience, and the language
experiments made in the 70’s, can be viewed as the origin of later develop-
ments both in the direction of modular languages (like Modula-2 and Ada)
and object-oriented languages (like C++, Smalltalk and Eiffel). More on these
concepts will be discussed in Chapters 6 and 7.

Language experiments and developments proceeded in parallel with more
theoretical work which laid the semantic foundations of the concepts of type,
subtype, polymorphism, strong typing, etc. We gave a cursory introduction to
such work in Section 3.3. The interested reader should refer to (Cardelli and
Wegner 1985) for a deeper treatment of the subject. (Cleveland 1986) is
another good source for many of these concepts.

For a detailed understanding of the type systems of different languages, the
reader should refer to the language manuals referenced in the Glossary.
Implementation models for data objects are analyzed in the aforementioned
paper by Hoare in (Dahl et al. 1972) and in most compiler textbooks, such as
(Aho et al. 1986) and (Fisher and LeBlanc 1988). Garbage collection is sur-
veyed in (Cohen 1981) and (Appel 1990). It is also briefly discussed in most
textbooks on data structures, such as (Wood 1993).

3.7 Exercises

1. Ada supports discriminated unions through variant records. Write a short report
describing how Ada does this, and how it differs from Pascal and C.

2. Discuss the possible strategies adopted by a programming language to bind a finite
mapping to a specific finite domain (i.e., to bind an array to a specific size). Also, give
examples of languages adopting each different strategy.

3. Show how a variant record type in Pascal or Ada can be used to define a binary tree of
either integer or string values.

 197

4. Write a short report il lustrating how array manipulation facilities are richer in Ada than
in Pascal (or C).

5. What is a dangling reference? How can it arise during execution? Why is it dangerous?
6. Consider the C++ class in Figure 3.2. What happens if the size of the array used to store

the stack is exceeded by the push operation?
7. Add assertions to the Eiffel program in Figure 3.5. Discuss what happens when the length

of the array is exceeded by a call to push, and what happens when pop is called for an
empty stack.

8. Eiffel does not provide destructor operations (similar to C++). What does the language do
when an object should be destroyed? When does this happen in Eiffel?

9. Define a C++ or an Eiffel implementation for the a generic abstract data type defining a
first-in first-out queue, whose operations have the following signatures

enqueue: fifo (T) x T -> fifo (T) --adds an element to the queue
dequeue: fifo (T) -> fifo (T) x T --extracts an element from the queue
length: fifo (T) -> int --computes the length of the queue

10. Discuss the truth or falsity of the following statement, and discuss its relevance. “A
program can be unsafe and yet execute without type errors for all possible input data.”

11. An index check verifies that the index of an array is in the bounds declared for the array.
Can index check be performed statically? Why? Why not?

12. What is a strong type system? Why is it useful?
13. Is a static type system strong? And, conversely, is a strong type system static?
14. What kind of type compatibility does the typedef construct of C introduce?
15. In Section 3.3.4, we made the following statement “Unexpected difficulties, in particular,

arise because of the interaction between coercions and overloading of operators and
routines.” Provide examples that justify this statement.

16. Define monomeric and polymorphic type systems.
17. Compare genericity in Ada (or C++) and in ML. Which can be defined as an example of

parametric polymorphism?
18. Check in the Pascal manual if procedures and functions can be overloaded.
19. Justify through examples the following statement on Pascal “since subtypes are defined

by the language as new types, strong typing is not strictly enforced by the language”.
20. In C++, what is the difference between assigning a value to a pointer or to a reference?
21. In C++, what is the difference between taking the address (via operator &) of a pointer or

of a reference?
22. Figure 5.9, which describes the C++ type system, shows the existence of pointers to class

members. Study the language manual and provide an example that shows the use of this
feature.

23. In C++, each class has an associated default assignment operator which does a
memberwise copy of the source to the target. But when a new object of class T is declared
this way:

T x = y;

the copy constructor of x is used to construct x out of y. Why can the assignment opera-
tion not be used? What is the difference between assignment and copy construction?

24. In Eiffel, each object has a feature called copy which is used for assignment to the object.
For example, a.copy(b) assigns the value of object b

25. Write a short report comparing variant records in Pascal, C++, and Ada.

 198

26. Discuss how storage is allocated for class instances in C++ and in Eiffel.
27. Justify or confute the following statement: “Ada attributes support program portabili ty” .
28. How can the following union variable X be represented?

type X_type is union Y_type, W_type;
type Y_type is float array [0. .10];
type W_type is struct{

float A;
int B;

} ;
X_type X;

29. Instead of having only one free list for unused heap storage areas, one could keep several
free lists, one for each object type. Discuss advantages and disadvantages of this
alternative implementation.

30. Write a recursive algorithm to do the marking of all reachable heap objects.
31. Write a short report on possible different policies for extracting a block from the heap free

list as a new storage area needs to be allocated. In order to survey the possible solutions,
you may refer to books on data structures.

32. The simplest possible reaction of the run-time system to a statement like dispose (in
Pascal) is to ignore it. That is, storage is not freed for later reuse. How would you design
an experiment to check what a language implementation actually does? Perform the
experiment on an available implementation of Pascal

33. Referring to the implementation schemes discussed in Section 3.5, write an abstract
algorithm to perform structural type compatibility. Hint: Be careful not to cause the
algorithm to loop forever.

1

199

1
C H A P T E R 4

Structur ing the
computation 4

This chapter is devoted to a detailed analysis of how computations are struc-
tured in a programming languages in terms of the flow of control among the
different components of a program. We start in Section 4.1 with a discussion
of the elementary constituents of any program: expressions (which play a fun-
damental role in all programming languages, including functional and logic)
and statements (which are typical of conventional statement-based lan-
guages). Our discussion wil l then be based primarily on conventional pro-
gramming languages. We wil l first analyze statement-level control structures
(Section 4.2), which describe how individual statements can be organized
into various patterns of control flow to construct program units.

Programs are often decomposed into units. For example, routines provide a
way of hierarchically decomposing a program into units representing new
complex operations. Once program units are constructed, it becomes neces-
sary to structure the flow of computation among such units. Different kinds of
unit-level control structures are discussed in Section 4.3 through Section 4.8.
The simplest kind of unit-level control regime is the routine call and return
(Section 4.3). Another kind of control regime is exception handling (Section
4.4), which supports the abil ity to deal with anomalous situations which may
arise even asynchronously, as the program is being executed. Features sup-
porting advanced control regimes are then introduced in Section 4.5 (pattern
matching, which supports case-based analysis), Section 4.6 (nondeterminism
and backtracking), and Section 4.7 (event-driven control structures). Such

200 Structuring the computation Chap.4

features are quite common in nonprocedural languages, like ML and PRO-
LOG, and will in fact be taken up in the presentation of such languages in
Chapters 7 and 8. Finally, Section 4.8 provides an introduction to the control
structures needed for concurrent programming, where units execute largely
independently.

4.1 Expressions and statements

Expressions define how a value can be obtained by combining other values
through operators. The values from which expresions are evaluated are either
denoted by a literal, as in the case of the real value 57.73, or they are the
r_value of a variable.

Operators appearing in an expression denote mathematical functions. They
are characterized by their aritiy (i.e., number of operands) and are invoked
using the function’s signature. A unary operator is applied to only one oper-
and. A binary operator is applied to two operands. In general, a n-ary operator
is applied to n operands. For example, ’ -’ can be used as a unary operator to
transform–say–the value of a positive expression into a negative value. In
general, however, it is used as a binary operator to subtract the value of one
expression from the value of another expression. Functional routine invoca-
tions can be viewed as n-ary operators, where n is the number of parameters.

Regarding the operator’s notation, one can distinguish between infix, prefix,
and postfix. Infix notation is the most common notation for binary operators:
the operator is written between its two operands, as in x + y. Postfix and prefix
notations are common especially for non-binary operators. In prefix notation,
the operator appears first, and then the operands follow. This is the conven-
tional form of function invocation, where the function name denotes the oper-
ator. In postfix notation the operands are followed by the corresponding
operator. Assuming that the arity of each operator is fixed and known, expres-
sions in prefix and postfix forms may be written without resorting to paren-
theses to specify subexpressions that are to be evaluated first. For example,
the infix expression

a * (b + c)
can be written in prefix form as

* a + b c
and in postfix form as

 201

a b c + *
In C, the increment and decrement unary operators ++ and -- can be written
both in prefix and in postfix notation. The semantics of the two forms, how-
ever, is different; that is, they denote two distinct operators. Both expressions
++k and k++ have the side effect that the stored value of k is incremented by
one. In the former case, the value of the expression is the value of k incre-
mented by one (i.e., first, the stored value of k is incremented, and then the
value of k is provided as the value of the expression). In the latter case, the
value of the expression is the value of k before being incremented.

Infix notation is the most natural one to use for binary operators, since it
allows programs to be written as conventional mathematical expressions.
Although the programmer may use parentheses to explicitly group subexpres-
sions that must be evaluated first, programming languages complicate matters
by introducing their own conventions for operator associativity and prece-
dence. Indeed, this is done to facilitate the programmer’s task of writing
expressions by reducing redundancy, but often this can generate confusion
and make expressions less understandable, especially when switching lan-
guages. For example, the convention adopted by most languages is such that

a + b * c
is interpreted implicitly as

a + (b * c)
i.e., multiplication has precedence over binary addition (as in standard mathe-
matics). However, consider the Pascal expression

a = b < c
and the C expression

a == b < c
In Pascal, operators < and = have the same precedence, and the language
specifies that application of operators with the same precedence proceeds left
to right. The meaning of the above expression is that the result of the equality
test (a=b), which is a boolean value, is compared with the value of c (which
must be a boolean variable). In Pascal, FALSE is assumed to be less than
TRUE, so the expression yields TRUE only if a is not equal to b, and c is TRUE;
it yelds FALSE in all other cases. For example, if a, b and c are all FALSE, the
expression yields FALSE.

202 Structuring the computation Chap.4

In C, operator "less than" (<) has higher precedence than "equal" (==). Thus,
first b < c is evaluated. Such partial result is then compared for equality with
the value of a. For example, assuming a = b = c = false (represented in C as
zero), the evaluation of the expression yields 1, which in C stands for true.

Some languages, like C++ and Ada, allow operators to be programmer
defined. For example, having defined a new type Set, one can define the oper-
ators + for set union and - for set difference. The abil ity of providing pro-
grammer-defined operators, as any other feature that is based on overloading,
can in some cases make programs easier to read, and in other cases harder.
Readabilit y is improved since the programmer is allowed to use familiar stan-
dard operators and the infix notation also for newly defined types. The effect
of this feature, however, is such that several actions happen behind the scenes
when the program is processed. This is good whenever what happens behind
the scenes matches the programmer’s intuition; it is bad whenever the effects
are obscure or counterintuitive to the programmer.

Some programming languages support the ability of writing conditional
expressions, i.e., expressions that are composed of subexpressions, of which
only one is to be evaluated, depending on the value of a condition. For exam-
ple, in C one can write

(a > b) ? a : b
which would be written in a perhaps more conventionally understandable
form in ML as

if a > b then a else b
to yield the maximum of the values of a and b.

ML allows for more general conditional expressions to be written using the
"case" constructor, as shown by the following simple example.

case x of
1 => f1 (y)

| 2 => f2 (y)
| _ => g (y)

In the example, the value yielded by the expression is f1 (y) if x = 1, f2 (y) if x =

2, g (y) otherwise.

Functional programming languages are based heavily on expressions. In such

 203

languages, a program is itself an expression, defined by a function applied to
operands, which may themselves be defined by functions applied to operands.
Conventional languages, instead, make the values of expressions visible as a
modification of the computation’s state, through assignment of expressions to
variables. An assignment statement, like x = y + z in C, changes the state by
associating a new r_value with x, computed as y + z. To evaluate the expres-
sion, the r_values of variables y and z are used. The result of the expression
(an r_value) is then assigned to a memory location by using the l_value of x.
Since the assignment changes the state of the computation, the statement that
executes next operates in the new state. Often, the next statement to be exe-
cuted is the one that textually follows the one that just completed its execu-
tion. This is the case of a sequence of statements, which is represented in C
as

statement_1;
statement_2;
. . .
statement_n;

The sequence can be made into a compound statement by enclosing it
between the pair of brackets { and }. In other languages, li ke Pascal and Ada,
the keywords begin and end are used instead of brackets.

In many conventional programming languages, like Pascal, the distinction
between assignment statements and expressions is sharp. In others, like C, an
assignment statement is actually an expression with a side-effect. The value
returned by an assignment statement is the one that is stored in the left oper-
and of the assignment operator "=". A typical example is given by the follow-
ing loop which reads successive input characters until the end of f ile is
encountered:

while ((c = getchar ()) != EOF)
/* assigns the character read to c and yields the read value, which is compared to the

end of f ile symbol * /
. . .

Furthermore, in C the assignment operator associates from right to left. That
is, the statement

a = b = c = 0;
is interpreted as

a = (b = (c = 0))

204 Structuring the computation Chap.4

Many programing languages, li ke Pascal, require the left-hand side of an
assignment operator to be a simple denotation for an l_value. For example, it
can be a variable name, or an array element, or the cell pointed by some vari-
able. More generally, other languages, like C, allow any expression yielding a
modifiable l_value to appear on the left-hand side. Thus, it is possible to write
the following kind of statement

(p > q) ? p* : q* = 0;
which sets to zero the element pointed by the maximum of p and q.

As another example, one can write

*p++ = *q++;
The right-hand side expression yields the value pointed by q. The left-hand
side is an expression which provides the r_value of p, which is the a reference,
i.e., an l_value. So the overall effect is that the value of the object pointed by
q is copied into the object pointed by p. Both pointers are also incremented as
a side effect. Since the above assignment is an expression, the value of the
expression is that of the object pointed by q. For example, the following con-
cise piece of code copies a sequence of integers terminated by zero pointed by
p into a sequence pointed by q.

while ((*p++ = *q++) != 0) { } ;
Sequences, as shown before, are the simplest form of compound statements.
Often, the syntax of the language requires each statement in a sequence to be
saparated from the next by a semicolon. For example, in Pascal a sequence
can be written as:

begin
stat_1;
stat_2;
 . .
stat_n

end
Other languages, instead, require each statement to be terminated by a semi-
colon, and therefore do not need any special separator symbol. For example,
in C we would write

{
stat_1;
stat_2:

. . .

 205

stat_n;
}

Although the choice between the two syntactic forms has no deep implica-
tions, pragmatically the latter can be more convenient, because one does not
need to distinguish between the last statement of a sequence (which does not
require the separator, and any other statements, since all are terminated by a
semicolon.

Programming languages provide other kinds of compound statements in addi-
tion to sequences. We wil l survey them in Section 5.2. In the rest of this chap-
ter, we implicitly concentrate on conventional languages, unless explicitl y
stated otherwise. Functional languages, which are not based on computations
defined by successive state changes, will be studied in Chapter 7.

4.2 Conditional execution and iteration

Conditional execution of different statements can be specified in most lan-
guages by the if statement. Languages differ in several important syntactic
details concerning the way such a construct is offered. Semantically, how-
ever, they are all alike. Syntactic details are not irrelevant: as we mentioned in
Section 3.1.1, the syntactic appearance of a program may contribute to its
readabil ity, ease of change and, ultimately, to its reliability.

Let us start with the example of the if statement as originally provided by
Algol 60. Two forms are possible, as shown by the following examples:

if i = 0 if i = 0
then i := j; then i := j

else begin i := i + 1;
j := j - 1

end
In the first case, no alternative is specified for the case i ¦ 0, and thus nothing
happens if i ¦ 0. In the latter, two alternatives are present. Since the case where
i ¦ 0 is described by a sequence, it must be made into a compound statement by
bracketing it between begin and end.

The selection statement of Algol 60 raises a well-known ambiguity problem,
illustrated by the following example

if x > 0 then if x < 10 then x := 0 else x := 1000
It is unclear if the else alternative is part of the innermost conditional (if x < 10

206 Structuring the computation Chap.4

. . .) or the outermost conditional (if x > 0 . . .). The execution of the above state-
ment with x = 15 would assign 1000 to x under one interpretation, but leave it
unchanged under the other. To eliminate ambiguity, Algol 60 requires an
unconditional statement in the then branch of an if statement. Thus the above
statement must be replaced by either

if x > 0 then begin if x < 10 then x := 0 else x := 1000 end
or

if x > 0 then begin if x < 10 then x := 0 end else x := 1000
The same problem is solved in C and Pascal by automatically matching an
else branch to the closest conditional without an else. Even though this rule
removes ambiguity, however, nested if statements are diff icult to read, espe-
cially if the program is written without careful indentation (as shown above).

A syntactic variation that avoids this problem is adopted by Algol 68, Ada,
and Modula-2, which use a special keyword as an enclosing final bracket of
the if statement (fi in the case of Algol 68, end if in the case of Ada, end in the
case of Modula-2). Thus, the above examples would be coded in Modula-2 as

if i = 0
then i := j
else i := i + 1;

j := j - 1
end

and

if x > 0 then if x < 10 then x := 0 else x := 1000 end end
or

if x > 0 then if x < 10 then x := 0 end else x := 1000 end
depending on the desired interpretation.

Choosing among more than two alternatives using only if-then-else state-
ments may lead to awkward constructions, such as

if a
then S1
else

 if b
then S2
else

 207

if c
then S3
else S4

end
end

end
To solve this syntactic inconvenience, Modula-2 has an else-if construct that
also serves as an end bracket for the previous if. Thus the above fragment
may be written as

if a
then S1

else if b
then S2

else if c
then S3

else S4
end

C, Algol 68, and Ada provide similar abbreviations.

Most languages also provide an ad-hoc construct to express multiple-choice
selection. For example, C++ provides the switch construct, illustrated by the
following fragment:

switch (operator) {
case ’+’ :

result = operand1 + operand2;
break;

case ’ * ’ :
result = operand1 * operand2;
break;

case ’- ’ :
result = operand1 - operand2;
break;

case ’ /’ :
result = operand1 / operand2;
break;

default:
break; --do nothing

} ;
Each branch is labelled by one (or more) constant values. Based on the value
of the switch expression, the branch labelled by the same value is selected. If
the value of the switch expression does not match any of the labels, the
(optional) default branch is executed. If the default branch is not present, no
action takes place. The order in which the branches appear in the text is
immaterial. In the above example, an explicit break statement is used to termi-

208 Structuring the computation Chap.4

nate each branch; otherwise execution would fall into the next branch.

The same example may be written in Ada as

case OPERATOR is
when ’+’ => result = operand1 + operand2;
when ’ * ’ => result = operand1 * operand2;
when ’ -’ => result = operand1 - operand2;
when ’ /’ => result = operand1 / operand2;
when others => null ;

end case
In Ada, after the selected branch is executed, the entire case statement termi-
nates.

Iteration allows a number of actions to be executed repeatedly. Most pro-
gramming languages provide different kinds of loop constructs to define iter-
ation of actions (called the loop body). Often, they distinguish between loops
where the number of repetitions is known at the start of the loop, and loops
where the body is executed repeatedly as long as a condition is met. The
former kind of loop is usually called a for loop; the latter is often called the
while loop.

For-loops are named after a common statement provided by languages of the
Algol family. For statements define a control variable which assumes all val-
ues of a given predefined sequence, one after the other. For each value, the
loop body is executed.

Pascal allows iterations where control variables can be of any ordinal type:
integer, boolean, character, enumeration, or subranges of them. A loop has
the following general appearance:

for loop_ctr_var := lower_bound to upper_bound do statement
A control variable assumes all of its values from the lower to the upper
bound. The language prescribes that the control variable and its lower and
upper bounds must not be altered in the loop. The value of the control vari-
able is also assumed to be undefined outside the loop.

As an example, consider the following fragment:

type day = (sun, mon, tue, wed, thu, fri, sat);
var week_day: day;

 209

. . .
for week_day := mon to fri do . . .

As another example, let us consider how for-loops can be written in C++, by
examining the following fragment, where the loop body is executed for all
values of i from 0 to 9

for (int i = 0; i < 10; i++) { . . .}
The statement is clearly composed of three parts: an initialization and two
expressions. The initialization provides the initial state for the loop execution.
The first of the two expressions specifies a test, made before each iteration,
which causes the loop to be exited if the expression becomes zero (i.e., false).
The second specifies the incrementing that is performed after each iteration.
In the example, the statement also declares a variable i. Such variable’s scope
extends to the end of the block enclosing the for statement.

In C++, either or both of the expressions in a for loop can be omited. This is
used to write an endless loop, as

for (; ;) { . . .}
While loops are also named after a common statement provided by languages
of the Algol family. A while loop describes any number of iterations of the
loop body, including zero. They have the following general form

while condition do statement
For example, the following Pascal fragment describes the evaluation of the
greatest common divisor of two variables a and b using Euclid’s algorithm

while a ¦ b do
begin

if a > b then
a := a - b

else
b := b - a

end
The end condition (a ¦ b) is evaluated before executing the body of the loop.
The loop is exited if a is equal to b, since in such case a is the greatest common
divisor. Therefore, the program works also when it is executed in the special
case where the initial values of the two variables are equal.

In C++, while statements are similar. The general form is:

while (expression) statement

210 Structuring the computation Chap.4

Another way to write an endless loop in C++ is therefore

while (1) { . . .}
Often languages provide another similar kind of loop, where the loop control
variable is checked at the end of the body. In Pascal, the construct has the fol-
lowing general form

repeat
statement

until condition
In a Pascal repeat loop, the body is iterated as long as the condition evaluates
to false. When it becomes true, the loop is exited.

C++ provides a do-while statement which behaves in a similar way:

do statement while (expression);
In this case the statement is executed repeatedly until the value of the expres-
sion becomes zero (i.e., the condition is false).

Ada has only one general loop structure, with the following form

iteration_specification loop
loop_body

end loop
where iteration_specification is either

while condition
or

for counting_var in discrete_range
or

for counting_var in reverse discrete_range
An example is provided by the following fragment:

for K in Index_Range while A (K) /= 0 do
B (K) := B (K) / A (K);

Endless loops are easy to write, since iteration_specification is optional. In addi-
tion, loops can be terminated by an unconditional exit statement

exit;
or by a conditional exit statement

 211

exit when condition
If the loop is nested within other loops, it is possible to exit an inner loop and
any number of enclosing loops.

Main_Loop:
loop

. . .
loop

. . .
exit Main_Loop when A = 0;
. . .

end loop;
. . .

end loop Main_Loop;
-- after the exit statement execution continues here

In the example, control is transferred to the statement following the end of
Main_Loop when A is found to be equal to zero in the inner loop. The exit state-
ment is used to specify a premature termination of a loop.

C++ provides a break statement, which causes termination of the smallest
enclosing loop and passes control to the statement following the terminated
statement, if any. It also provides a continue statement, which causes the termi-
nation of the current iteration of a loop and continuation from the next itera-
tion (if there is one). A continue statement can appear in any kind of loop (for
loop, and both kinds of while loops).

In some cases, it is useful to allow the programmer to define a mechanism to
step through the elements of a given collection. To do so, a programming lan-
guage might provide support for user-defined control structures, in much the
same way as it provides support for user-defined types and operations. For
example, having defined a set, the programmer might need to sequence
through all elements in the set. User-defined control structures which
sequence through elements of user-defined collections are sometimes called
iterators. Languages providing constructs for the implementation of abstract
data types easily allow iterators to be defined. For example, in C++ let the
generic "collection of elements of type T" be defined by a template. To define
an iterator, we can design three operations that are exported by the template:
start (), which initializes the loop by positioning a cursor on the first element
of the collection (if any), more (), which yields true if there are elements left
to examine in the collection, and next (), which yields the current element and
positions the cursor on the next element of the collection (if any). A typical
iteration on an instantiated collection X of elements of type T would be

212 Structuring the computation Chap.4

T y;
. . . ;
X.start ();
while (X . more ()) {

y = X . next ();
. . . // manipulate y

} ;
This solution works for user-defined types, provided they define operations
start, more, and next. It does not work for collections defined by built -in con-
structors (such as arrays), for which these operations are not defined. In
Chapter 5, we will see a more general way of defining iterators which work
for any kinds of collections.

4.3 Routines

Routines are a program decomposition mechanism which allows programs to
be broken into several units. Routine calls are control structures that govern
the flow of control among program units. The relationships among routines
defined by calls are asymmetric: the caller transfers control to the callee by
naming it explicitly. The callee transfers control back to the caller without
naming it. The unit to which control is transfered when a routine R terminates
is always the one that was executing immediately before R. Routines are used
to define abstract operations. Most modern languages allow such abstract
operations to be defined recursively. Moreover, many such languages allow
generic operations to be defined.

Chapter 2 presented the basic runtime modeling issues of routine activation,
return, and parameter passing. In this section we review how routines can be
written in different languages and what style issues arise in properly structur-
ing programs.

Most languages distinguish between two kinds of routines: procedures and
functions. A procedure does not return a value: it is an abstract command
which is called to cause some desired state change. The state may change
because the value of some parameters transmitted to the procedure gets modi-
fied, or because some nonlocal variables are updated by the procedure, or
because some actions are performed on the external environment (e.g., read-
ing or writing). A function corresponds to its mathematical counterpart: its
activation is supposed to return a value, which depends on the value of the
transmitted parameters.

 213

Pascal provides both procedures and functions. It allows formal parameters to
be either by value or by reference. It also allows procedures and functions to
be parameters, as shown by the following example of a procedure header:

procedure example (var x: T; y: Q; function f (z: R): integer);
In the example, x is a by-reference parameter of type T; y is a by-value param-
eter of type Q; f is a function parameter which takes one by-value parameter z
of type R and returns an integer.

Ada provides both procedures and functions. Parameter passing mode is spec-
ified in the header of an Ada routine as either in, out, or in out. If the mode is
not specified, in is assumed by default. A formal in parameter is a constant
which only permits reading of the value of the corresponding actual parame-
ter. A formal in out parameter is a variable and permits both reading and
updating of the value of the associated actual parameter. A formal out param-
eter is a variable and permits updating of the value of the associated actual
parameter. In the implementation, parameters are passed either by copy or by
reference. Except for cases that are explicitly stated in the language standard,
it is left to the implementation to choose whether a parameter should be
passed by reference or by copy. As we discussed in Section 3.6.6, in the pres-
ence of aliasing, the two implementations may produce different results. In
such a case, Ada defines the program to be erroneous; but, unfortunately, the
error can only be discovered at run time.

In C all routines are functional, i.e., they return a value, unless the return type
is void, which states explicitly that no value is returned. Parameters can only
be passed by value. It is possible, however, to achive the effect of call by ref-
erence through the use of pointers. For example, the following routine

void proc (int* x, int y);
{

*x = *x + y;
}

increments the object referenced by x by the value of y. If we call proc as fol-
lows

proc (&a, b); /* &a means the address of a * /
x is initialized to point to a, and the routine increments a by the value of b.

C++ introduced a way of directly specifying call by reference. This frees the

214 Structuring the computation Chap.4

programmer from the lower level use of pointers to simulate call by reference.
The previous example would be written in C++ as follows.

void proc (int& x, int y);
{

x = x + y;
}

proc (a, b); -- no address operator is needed in the call
While Pascal only allows routines to be passed as parameters, C++ and Ada
get closer to treating routines as first-class objects. For example, they provide
pointers to routines, and allow pointers to be bound dynamically to different
routines at run time.

4.3.0.1 Style issues: side effects and aliasing

In Chapter 3 we defined side effects as modifications of the nonlocal environ-
ment. Side effects are used principally to provide a method of communication
among program units. Communication can be established through nonlocal
variables. However, if the set of nonlocal variables used for this purpose is
large and each unit has unrestricted access to the set of nonlocal variables, the
program becomes diff icult to read, understand, and modify. Each unit can
potentially reference and update every variable in the nonlocal environment,
perhaps in ways not intended for the variable. The problem is that once a glo-
bal variable is used for communication, it is diff icult to distinguish between
desired and undesired side effects. For example, if unit u1 calls u2 and u2 inad-
vertently modifies a nonlocal variable x used for communication between
units u3 and u4, the invocation of u2 produces an undesired side effect. Such
errors are difficult to find and remove, because the symptoms are not easily
traced to the cause of the error. (Note that a simple typing error could lead to
this problem.) Another diff iculty is that examination of the call i nstruction
alone does not reveal the variables that can be affected by the call. This
reduces the readabil ity of programs because, in general, the entire program
must be scanned to understand the effect of a call.

Communication via unrestricted access to nonlocal variables is particularly
dangerous when the program is large and composed of several units that have
been developed independently by several programmers. One way to reduce
these difficulties is to use parameters as the only means of communication
among units. The overhead caused by parameter passing is almost always tol-
erable, except for critical applications whose response times must be within

 215

severe bounds. Alternatively, it must be possible to restrict the set of nonlocal
variables held in common by two units to exactly those needed for the com-
munication between the units. Also, it can be useful to specify that a unit can
only read, but not modify some variable.

Side effects also are used in passing parameters by reference. In such a case, a
side effect is used to modify the actual parameter. The programmer must be
careful not to produce undesired side effects on actual parameters. The same
problem arises with call by name. A more substantial source of obscurity in
call by name is that each assignment to the same formal parameter can affect
different locations in the environment of the calli ng unit. Such problems do
not arise in call by copy.

Languages that distinguish between functions and procedures suggest a pro-
gramming style in which the use of side effects is restricted. Side effects are
an acceptable programming practice for procedures. Indeed, this should be
the way a procedure sends results back to the caller. Side effects, however,
are unadvisable for function subprograms. In fact, function subprograms are
invoked by writing the subprogram name within an expression, as in

v : = x+ f (x, y) + z
In the presence of side effects –in Pascal, for example–the call to f might pro-
duce a change to x or y (if they are passed by reference), or even z (if z is glo-
bal to the function) as a side effect. This reduces the readabil ity of the
program, since a reader expects a function to behave like a mathematical
function. Also, one cannot rely on the commutativity of addition in general.
In the example, if f modifies x as a side effect, the value produced for w is dif-
ferent if x is evaluated before or after calli ng f.

Besides affecting readabilit y, side effects can prevent the compiler from gen-
erating optimized code for the evaluation of certain expressions. In the exam-
ple

u: = x+ z+ f (x, y) + f (x, y) + x+ z
the compiler cannot evaluate function f and subexpression x+ z just once.

The recognition that side effects on parameters are undesirable for functions
affected the design of Ada, which allows only in formal parameters for func-
tions.

216 Structuring the computation Chap.4

In Chapter 2 we defined two variables to be aliases if they denote (share) the
same data object during a unit activation. A modification of the data object
under one variable name is automatically visible through all alias variables
that share the object. An example is provided by the FORTRAN EQUIVA-

LENCE statement. For instance, the statements

EQUIVALENCE (A, B)
A=5.4

bind the same data object to A and B and set its value to 5.4. Consequently,
the statements

B=5.7
WRITE(6, 10)A

print 5.7, even though the value explicitly assigned to A was 5.4. The assign-
ment to B affects both A and B.

As we observed in Chapter 2, aliasing may arise during the execution of a
procedure when parameters are passed by reference. Consider the following
C++ procedure, which is supposed to interchange the values of two integer
variables without using any local variables.

void swap (int& x, y)
{

x += y;
y = x - y;
x -= y;

}
Before proceeding, examine the procedure and decide whether or not it works
properly.

The answer is "generally yes"; in fact, the procedure works properly except
when the two actual parameters are the same variable, as in the call

swap (a, a);
In this case, the procedure sets a to zero, because x and y become aliases and
thus any assignments to x and y within the procedure affect the same location.
The same problem may arise from the call

swap (b [i], b [j]);
when the index variables i and j happen to be equal.

Pointers can cause the same problems. In fact, the call

 217

swap (*p, *q)
does not interchange the values pointed at by p and q if p and q happen to point
to the same data object.

The above aliases occur because of the following two conditions.

• Formal and actual parameters share the same data objects; and
• Procedure calls have overlapping actual parameters.

Aliasing also may occur when a formal (by reference) parameter and a global
variable denote the same or overlapping data objects. For example, if proce-
dure swap is rewritten as

void swap (int & xr)
{

x += a;
a = x - a;
x -= a;

}
where a is a global variable, the call

swap (a)
generates an incorrect result, because of the aliasing between x and a. Aliasing
does not arise if parameters are passed by value result; such parameters act as
local variables within the procedure and the corresponding actual parameters
become affected only at procedure exit. This is the reason of the semantic dif-
ference between call by reference and call by value-result.

The disadvantages of aliasing affect programmers, readers, and language
implementers. Subprograms can become hard to understand because, occa-
sionally, different names denote the same data object. This problem cannot be
discovered by inspecting the subprogram: rather, discovery requires examin-
ing all the units that may invoke the subprogram. As a consequence of alias-
ing, a subprogram call may produce unexpected and incorrect results.

Aliasing also impairs the possibility of generating optimized code. For exam-
ple, in the case

a := (x - y * z) + w;
b := (x - y * z) + u;

the subexpression x - y * z cannot be evaluated just once and then used in the
two assignments if a is an alias for x, y, or z.

218 Structuring the computation Chap.4

Although side effects and aliasing can cause diff iculties and insecurities , pro-
grammers using conventional languages need to learn how to live with them.
In fact, it is not possible to eliminate from a language all features which can
cause them, such as pointers, reference parameters, global variables, and
arrays. This would leave us with a very lean and impractical language indeed.
Other approaches were taken in experimental languages (such as Euclid–see
sidebar), but they did not become practically acceptable.

**** sidebar start on Euclid

The approach taken by Euclid is to place restrictions on the use of such fea-
tures as pointers, reference parameters, global variables, and arrays to rule out
the possibil ity of aliasing. For reference parameters, the problems only arise
if actual parameters are overlapping. If the actual parameters are simple vari-
ables, it is necessary to ensure that they are all distinct. Thus the procedure
call

p(a, a)
is considered illegal by Euclid. Passing an array and one of its components
also is prohibited. For example, the call

p (b [1], b)
to a procedure whose formal by-reference parameters are an integer x and an
integer array y of indexes 1. .10 is ill egal because y [1] and x are aliases. These
forms of il legal aliasing can be caught at translation time.

However, the call

swap (b [i], b [j])
to the procedure swap generates aliasing only if i is equal to j. Euclid specifies
that in such a case the condition i ¦ j be generated by the translator as a legality
assertion. In the testing phase, legality assertions can be compiled automati-
cally into run-time checks by using a suitable compiler option. If at run-time
an assertion evaluates to false, execution is aborted and a suitable error mes-
sage is produced. The main use of legality assertions, however, is in program
verification. The Euclid system, in fact, includes a program verifier, and a
Euclid program is considered correct only if the truth of all legality assertions
is proven by the verifier.

Handling aliasing in the presence of pointers is more complex. Consider the

 219

following program fragment, written in C++ instead of Euclid for simplicity

T* p, q;
p = new T;
q = p

The problem of aliasing between *p and *q is handled in the same way that
arrays and array elements are handled, that is, *p and *q may be viewed as
selectors that reference components of an implicitl y defined collection of
data–the set of all data objects of type T– the same way that b [i] and b [j] refer-
ence components of array b. An assignment to b [i] or b [j] is viewed as an
assignment to the entire data object b, which happens to change the value
stored in only one portion of b. Similarly, an assignment to *p or *q may be
viewed as a modification of the set of components of type T.

This might appear to be an ingenious but tricky way of looking at the problem
of aliasing for pointers. In fact, different data structures might be composed
of dynamically generated components of the same type T. View-ing an
assignment to *p as an assignment to the set of data objects of type T, that is,
as a modification of any of such data structures, is not really helpful. To allow
an extra level of checking for nonoverlapping pointers, Euclid introduces the
concept of a collection. The programmer is required to divide all dynamic
objects into separate collections and indicate which pointers can point into
which collections. Each pointer can be bound to only one collection. An
assignment between two pointers is legal only if the two pointers point into
the same collection.

Detecting illegal aliasing between pointers caused by procedure calls is now
similar to the case of arrays. In fact, a collection C and a pointer bound to C
are similar to an array and a variable used as an index. Dereferencing is
exactly li ke indexing within an array. For example, if p and q point into the
same collection, and *p and *q are both passed, the nonoverlapping rule
requires the test p ¦ q to be produced as a legality assertion.

Aliasing also can occur between global variables and formal parameters of a
procedure. In Euclid, detection of aliasing in such cases does not require any
additional work. In fact, global variables must be explicitly imported by a
subprogram if they are needed, and they must be accessible in every scope
from which the subprogram is called. For each imported variable, it is also
necessary to indicate whether it can be read or written or both. Thus, modifi-
able global variables can be treated by the aliasing detection algorithm as

220 Structuring the computation Chap.4

implicit additional parameters passed by reference.

The explicit importation of global variables allows the programmer to restrict
the set of variables visible within a procedure to any subset of the (non-
masked) variables declared in the outer scopes. The translator thus can ensure
that only visible variables are accessed in a unit and such accesses are legal,
for example, that a read-only variable cannot be modified. This is an advan-
tage over the pure ALGOL–like scope rules–especially for large programs, in
which inner procedures automatically inherit all the (non-masked) variables
declared in the enclosing scopes and can modify them in an uncontrolled way.

Finally, Euclid functions–as opposed to procedures–are not allowed to have
by-reference parameters and can import only read variables. Thus, their exe-
cution cannot cause side effects, and they behave like mathematical func-
tions.

An important consequence of disallowing aliasing in procedures is that pass-
ing parameters by reference is equivalent to passing them by value-result.
Therefore, the choice of how to implement parameter passing can be made by
the translator based exclusively on efficiency considerations.

The Euclid approach is certainly interesting, the adopted solutions are clean
and favor reliable programming. Some restrictions imposed by Euclid cannot
be enforced by a traditional compiler and require a program development
environment that includes a program verifier. In particular, all l egality asser-
tions need to be proven by the verifier. This certainly adversely affected the
practical acceptance of the language. More generally, Euclid is a good exam-
ple to illustrate the tradeoffs that a language designer should achieve between
freedom and flexibili ty, on the one side, and strict enforcement of program-
ming discipline, on the other. Euclid goes definitely in the latter direction,
whereas widely used languages like C++ go in the former.

4.4 Exceptions

Programmers often write programs under the optimistic assumption that noth-
ing will go wrong when the program executes. Unfortunately, however, there
are many reasons which may invalidate this assumption. For example, it may
happen that under certain conditions an array is indexed with a value which
exceeds the declared bounds. An arithmetic expression may cause a division

 221

by zero, or the square root operation may be executed with a negative argu-
ment. A request for new memory allocation issued by the run-time system
might exceed the amount of storage available for the program execution. Or,
finally, an embedded application might receive a message from the field
which overrides a previously received message, before this message has been
handled by the program.

Often programs fail unexpectedly, maybe simply displaying some obscure
message, as an erroneous program state is entered. This behavior, however, is
unacceptable in many cases. To improve reliability, it is necessary that such
erroneous conditions can be recognized by the program, and certain actions
are executed in response to the error. To do so, however, the conventional
control structures we have discussed so far are simply inadequate. For exam-
ple, to check that an index never exceeds the array bounds, one would need to
explicitly test the value of the index before any indexing takes place, and
insert appropriate response code in case the bounds are violated. Alterna-
tively, one would like the run-time machine to be able to trap such anomalous
condition, and let the response to it be programmable in the language. This
would be more eff icient under the assumption that bound violations are the
exceptional case.

To cope with this problem, programming languages provide features for
exception handling. According to the standard terminology, an exception
denotes an undesirable, anomalous behavior which supposedly occurs rarely.
The language can provide facili ties to define exceptions, recognize them, and
specify the response code that must be executed when the exception is raised
(exception handler).

Exceptions have a wider meaning than merely computation errors. They refer
to any kind of anomalous behavior that, intuitively and informally, corre-
sponds to a deviation from the expected course of actions, as envisioned by
the programmer. The concept of "deviation" cannot be stated in absolute and
rigorous terms. It represents a design decision taken by the programmer, who
decides that certain states are "normal", and "expected", while others are
"anomalous". Thus, an exception does not necessarily mean that we are in the
presence of a catastrophic error. It simply means that the unit being executed
is unable to proceed in a manner that leads to its normal termination as speci-
fied by the programmer. For example, consider a control system which pro-
cesses input messages defined by a given protocol. The normal course of

222 Structuring the computation Chap.4

actions consist of parsing the input message and performing some actions that
depend on its contents. The arrival of a message which does not match the
expected syntax might be considered as an exception, to be handled by an
exception handler, a clearly identifiable piece of code that is separate from the
rest of the program that handles the normal case.

Earlier programming languages (except PL/I) offered no special help in prop-
erly handling exceptional conditions. Most modern languages, however, pro-
vide systematic exception-handling features. With these features, the concern
for anomalies may be moved out of the main line of program flow, so as not
to obscure the basic algorithm.

To define exception handling, the following main decisions must be taken by
a programming language designer:

4. What are the exceptions that can be handled? How can they be defined?

5. What units can raise an exception and how?

6. How and where can a handler be defined?

7. How does control flow after an exception is raised in order to reach its handler?

8. Where does control flow after an exception has been handled?
The solutions provided to such questions, which can differ from language to
language, affect the semantics of exception handling, its usabil ity, and its ease
of implementation. In this section, we will analyze the solutions provided by
C++, Ada, Eiffel, and ML. The exception handling facil ities of PL/I and CLU
are shown in sidebars.

4.4.1 Exception handling in Ada

Ada provides a set of four predefined exceptions that can be automatically
trapped and raised by the underlying run-time machine:

• Constraint_Error: failure of a run-time check on a constraint, such as array index out of
bounds, zero right operand of a division, etc.;

• Program_Error: failure of a run-time check on a language rule. For example, a function is
required to complete normally by executing a return statement which transmits a result
back to the caller. If this does not happen, the exception is raised;

• Storage_Error: failure of a run-time check on memory avaliabil ity; for example, it may be
raised by invocation of new;

• Tasking_Error: failure of a run-time check on the task system (see Section 5.8).
 A program unit can declare new exceptions, such as

 223

Help: exception;
which can be explicitl y raised in their scope as

raise Help;
Once they are raised, built-in and programmer-defined exceptions behave in
exactly the same way. Exception handlers can be attached to a subprogram
body, a package body, or a block, after the keyword exception. For example

begin --this is a block with exception handlers
... statements ...
exception when Help =>handler for exception Help

when Constraint_Error => handler for exception
Constraint_Error, which might be raised by a
division by zero

when others => handler for any other exception that is not Help
nor Constraint_Error

end;
In the example, a list of handlers is attached to the block. The list is prefixed
by the keyword exception, and each handler is prefixed by the keyword when.

If the unit that raises the exception provides a handler for it, control is trans-
ferred immediately to that handler: the actions following the point at which
the exception is raised are skipped, the handler is executed, and then the pro-
gram continues execution normally from the statement that follows the han-
dler. If the currently executing unit U does not provide a handler, the unit
terminates and the exception is propagated. The precise effect of termination
and propagation depend on the kind of unit that raises the exception. If U is a
block, its termination transfers control to the immediately enclosing unit, in
which the exception is implicitly reraised. If U is a routine body, its termina-
tion causes the routine to return to the caller and the exception is implicitl y
reraised at the point of call. If U is a package body (see Chapter 5), it acts like
a routine that is implicitl y called when the package declaration is processed.
If U is a task body (see Section 4.8) the exception is not propagated further;
that is, the task terminates abnormally. If there is no handler associated with
the package body, execution of the body is abandoned and execution contin-
ues in the unit that contains the package declaration, where the exception is
implicitl y reraised. In general, if a propagated exception is not handled at the
point where it was transferred, it is further propagated, and this process might
eventually lead to the end of the program. If a handler is found for an excep-
tion, after its execution the processing proceeds normally from the statement
that follows the handler. Exceptions can also be explicitly reraised, via state-

224 Structuring the computation Chap.4

ment raise. For example, an exception handler that can only partly handle the
exception might perform some recovery actions, and then might explicitl y
reraise the exception.

As an example, consider the program sketched in Figure 51. The figure shows
the overall structure of the program, ignoring all i nternal details. In particular,
procedures are described by showing the scope they define by using solid
lines, while blocks’ scopes are shown by dashed lines. Suppose that the fol-
lowing sequence of unit activations occurs:

• Main is activated

• block 1 is entered

• block 2 is entered

• Proc1 is called

• Proc2 is called

• block 3 is entered

• block 4 is entered
If an exception is raised at this stage, execution of block 4 is abandoned and a

check is performed to see if the block provides an exception handler that can
handle the exception. If a handler is found, the handler is executed and, if no
further exceptions are raised, execution continues from the statements that

FIGURE 51.An example of an Ada program which raises an exception

Main Proc2
Proc1

block1

block 2

block 3

block 4

block 5

instruction raising
the exception

call to Proc1

call to Proc2

 225

follow block 4. If not, the exception is propagated to the enclosing block 3.
That is, execution of block 3 is abandoned, and a check for an exception han-
dler provided by block 3 is performed. If a handler is provided, and its execu-
tion terminates normally, procedure Proc2 returns to its caller normally. If not,
the exception is propagated to the caller, and thus execution of block 2 is
abandoned. If no exception handlers are provided by procedure Proc1, block 2,
and block 1, eventually the Main program terminates abnormally.

To provide an abstract implementation model of exception handling, each
declared exception (including built-in ones) can be bound to an internal
exception name at compile time. The internal exception name should distin-
guish between two exceptions having the same name, but having different
scopes. At run time, the binding between an exception code raised by a unit
and the corresponding handler is dynamic, and follows the chain of unit acti-
vations. A possible solution consists of having in each activation record a
fixed-contents handler table, which contains the descriptors of all the han-
dlers that appear in the unit. (For simplicity, let us assume an implementation
model of blocks which allocates a new activation record on the stack as the
block is entered–see Chapter 2.) Each descriptor in the table contains

1. the internal exception name handled by the handler;
2. a pointer to the handler body.

When an exception is raised, its code is used to search for a handler in the
handler table. If it is found there, control is transferred to its body. If not, the
activation record is deleted from the stack, and the search is performed in the
caller’s handler table using the address of the return point.

By unwinding the dynamic chain in the propagation process, an exception can
be propagated outside its scope. In such a case, it can only be handled by a
catch all handler (when others ...). The static scope rules of the language
ensure that it cannot be handled by any other locally declared exception
which, by coincidence, has the same name. The implementation scheme
sketched above ensures this by giving them different internal exception
names.

4.4.2 Exception handling in C++

Exceptions may be generated by the run-time environment (e.g., due to a divi-
sion by zero) or may be explicitly raised by the program. An exception is
raised by a throw instruction, which transfers an object to the corresponding

226 Structuring the computation Chap.4

handler. A handler may be attached to any piece of code (a block) which
needs to be fault tolerant. To do so, the block must be prefixed by the key-
word try. As an example, consider the following simple case:

class Help { . . . } ; // objects of this class have a public attribute "kind" of type enumeration
 // which describes the kind of help requested, and other public fields

which
 // carry specific information about the point in the program where help
 // is requested

class Zerodivide { } ; // assume that objects of this class are generated by the run-time sys-
tem
. . .
try {

// fault tolerant block of instructions which may raise help or zerodivide exceptions
. . .

}
catch (Help msg) {

// handles a Help request brought by object msg
switch (msg.kind) {
case MSG1:

. . .;
case MSG2:

. . .;
. . .
}
. . .

}
catch (Zerodivide) {

// handles a zerodivide situation
. . .

}
Suppose that the above try block contains the statement

throw Help (MSG1);
A throw expression causes the execution of the block to be abandoned, and
control to be transferred to the appropriate handler. It also initializes a tempo-
rary object of the type of the operand of throw and uses the temporary to ini-
tialize the variable named in the handler. In the example, Help (MSG1) actually
invokes the constructor of class Help passing a parameter which is used by the
constructor to initialize field kind. The temporary object so created is used to
initialize the formal parameter msg of the matching catch, and control is then
transferred to the first branch (case MSG1) of the switch in the first handler
attached to the block.

The above block might call routines which, in turn may raise exceptions. If

 227

one such routine raises a–say–help request and does not provide a handler for
it, the routine’s execution is abandoned and the exception is propagated to the
point of call within the block. Execution of the block, in turn, is abandoned,
and control is transferred to the handler as in the previous case. In other
terms, C++, li ke Ada, propagates unhandled exceptions. Like Ada, a caught
exception can be propagated explicitly, by simply saying throw. Also, as in
Ada, after a handler is executed, execution continues from the statement that
follows the one to which the matched handler is attached.

Unlike Ada, any amount of information can flow along with an exception. To
raise an exception, in fact, one can throw an object, which contains data that
can be used by the handler. For example, in the previous example, a help
request was signalled by providing an object which contained specific infor-
mation on the kind of help requested. If the data in the thrown object are not
used by the handler, the catch statement can simply specify a type, without
naming an object. This happens in our example for the division by zero.

C++ routines may list in their interface the exeception they may raise. This
feature allows a programmer to state the intent of a routine in a precise way,
by specifying both the expected normal behavior (the data it can accept and
return), and its abnormal behaviors. For example

void foo () throw (Help, Zerodivide);
might be the interface of a function foo which is called within the above fault
tolerant block. Knowing that the used function foo may indeed raise excep-
tions, the client code may guard against anomalous behaviors by providing
appropriate exception handling facili ties, as we did.

The problem here is what happens if foo terminates by raising another excep-
tion that is not listed in its interface. This might happen, for example, because
an error other than a division by zero is caught by the run-time machine (e.g.,
an underflow). In such a case, a special function unexpected () is automatically
called. Its default behavior, which could be redefined by the programmer,
eventually causes abort () to be called, which terminates the program execu-
tion.

The list of possible exceptions raised by a routine, however, is not required to
be included in the routine interface. If no list is provided, it means that any
possible exception can be propagated. Instead, if the empty list throw () is pro-

228 Structuring the computation Chap.4

vided, this means that no exception is propagated by the routine.

If an exception is repeatedly propagated and no matching handler is ever
found, the special function terminate () is called automatically. Its default
behavior, which can be redefined by the programmer, eventually aborts the
program execution.

Since the exceptions that can be raised in C++ are expressions of a given
type, one can use the general facil ities available to structure types (and
abstract data types) to organize exceptions. For instance, one can use enumer-
ations to structure and classify exceptions in groups. In the previous exam-
ples, if only the specific kind of needed help must be provided to handle
exceptions of type Help, the following definition would suff ice

enum Help { MSG1, MSG2, ...} ;
and the corresponding catch statement would be rewritten as

catch (Help msg) {
switch (msg) {
case MSG1:

. . .;
case MSG2:

. . .;
. . .
}
. . .

}
Other interesting ways of organizing exceptions can be achieved by organiz-
ing the corresponding classes according to subtype hierarchies, by means of
subclasses (see Chapter 6).

Intuitively, an abstract implementation of the C++ mechanism can be similar
to what we outlined for Ada. When an exception is raised, the dynamic chain
is unwound until the appropriate handler is found. Further comments will be
provided in Section 4.4.5.

4.4.3 Exception handling in Eiffel

The features provided by Eiffel to support exception handling have been
strongly influenced by a set of underlying software design principles that pro-
grammers should follow. A key notion of such design principles is called the
contract. Each software component has obligations with respect to other com-

 229

ponents, since such components may rely on it to provide their own services.
Syntactically, such obligations are described by the interface of the compo-
nent (a class), i.e., by the features exported to the other classes. Semantically,
they are specified by the preconditions and postconditions of every exported
routines and by the invariant condition. Once the program compiles correctly,
syntactic obligations are guaranteed to have been verified. What may happen,
however, is that semantic obligations are not fulfilled during execution. This
is how exceptions may arise in Eiffel.

Thus, exceptions may arise in Eiffel because an assertion is violated (assum-
ing that the program has been compiled under the option that sets runtime
checking on). They can also arise because of anomalous states caught by the
underlying abstract machine (memory exhausted, dereferencing an uninitial-
ized pointer, ...). Finally, they can arise because a called routine fails (see
below for what this means).

To respond to an exception, an exception handler (rescue clause) may be
attached to any routine. There are two possible approaches to exception han-
dling, which comply with the contract-based methodology underlying Eiffel
programming. The first approach is called organized panic. Following this
approach, the routine raising the exception fails; that is, as an exception is
raised, the routine’s execution is abandoned and control is transferred to the
corresponding rescue clause, if any. The handler performs some clean up of
the object’s state and then terminates signalling failure. The clean up should
leave the object in a consistent state, i.e., the invariant should be true when
the handler terminates. If no rescue clause is attached to the routine, it is as if a
rescue clause with an empty list of clean up statements were attached to it.
Routine failure, in turn, causes an exception to be propagated to the caller.
Thus, if all exceptions are handled according to organized panic, all routines
eventually fail; that is, any failure causes an orderly shut down of the execut-
ing program.

As an example, consider the abstract data type NON_AXIAL_INT_POINT that
was defined in Figure 4.4 and suppose that the program is compiled with the
option "check assertion" on. If any of the operations is called by a client mod-
ule with parameters that do not satisfy the corresponding precondition (e.g.,
one of the parameters of make_point is zero), control is transferred to the
implicit empty rescue clause that is attached to all exported operations. This
causes propagation of the failure to the object that called the operation with

230 Structuring the computation Chap.4

improper arguments. To explain the reason of the failure to the programmer,
one might attach rescue clauses to the routines of the class in Figure 4.4
which print out a message describing the reason for the failure, i.e., violation
of the precondition.

An alternative approach to organized panic is called retrial. This means that
the handler can find an alternative way to fulfil the object’s contract. This is
achieved by a statement retry which may appear in the rescue clause and
would cause re-execution of the routine’s body. In such a case, if re-execution
does not raise an exception, the routine does not fail and the object’s contract
would be fulfil led. As an example, suppose that several methods are available
to solve a specific task, so that if one of them fails, another can be tried
instead; the task only fails if none of the available methods succeeds. This
strategy can be stated in Eiffel according to the following scheme:

try_several_methods is
local

i: INTEGER;
--it is automatically initialized to 0

do
try_method (i);

rescue
i := i + 1;
if i < max_trials then

--max_trials is a constant
retry

end
end

It is easy to verify that routine try_several_methods only fails if all possible
methods fail . Otherwise, if one of the methods succeeds, the routine returns
normally to its caller.

****** start sidebar PL/I******

PL/I was the first language to introduce exception handling. Exceptions are
called CONDITIONS in PL/I. Exception handlers are declared by ON state-
ments:

ON CONDITION (exception_name) exception_handler
where exception_handler can be a simple statement or a block. An exception is
explicitly raised by the statement

 231

SIGNAL CONDITION (exception_name);
The language also defines a number of built -in exceptions and provides sys-
tem-defined handlers for them. Built -in exceptions are automatically raised
by the execution of some statements (e.g., ZERODIVIDE is raised when a
divide by zero is attempted). The action performed by a system-provided han-
dler is specified by the language. This action can be redefined, however, as
with user-defined exceptions:

ON ZERODIVIDE BEGIN;
. . .

END;
Handlers are bound to exceptions dynamically. When an ON unit is encoun-
tered during execution, a new binding takes place between an exception and a
handler. Once this binding is established, it remains valid until it is overrid-
den by the execution of another ON statement for the same exception, or until
termination of the block in which the ON statement is executed. If more than
one ON statement for the same exception appears in the same block, each new
binding overrides the previous one. If a new ON statement for the same excep-
tion appears in an inner block, the new binding remains in force only until the
inner block is terminated. When control exits a block, the bindings that
existed prior to block entry are reestablished.

When an exception is raised (either automatically or by a SIGNAL statement),
the handler currently bound to the exception is executed as if it were a sub-
program invoked explicitl y at that point. Therefore, unless otherwise speci-
fied by the handler, control subsequently will return to the point that issued
the SIGNAL.

PL/I does not allow the programmer to pass any information from the point
raising the exception to the exception handler. If this is necessary, the pro-
grammer must resort to global variables, which can be an unsafe program-
ming practice. Furthermore, use of global variables is not always possible.
For example, when a STRING-RANGE exception is raised, indicating an
attempt to access beyond a string's bounds, there is no practical way for the
exception handler to know which string is involved if two or more strings are
visible in the scope.

PL/I exception-handling mechanisms can be complicated further by explicitl y
enabling and disabling built-in exceptions; user-defined exceptions cannot be
disabled, because they must be explicitly signaled anyway. Most built -in

232 Structuring the computation Chap.4

exceptions are enabled by default and bound to the standard system-provided
error handler. Enabling a previously disabled exception (or an exception that
is not enabled by default) can be specified by prefixing a statement, block, or
procedure with the exception name, for example

(ZERODIVIDE) : BEGIN
. . .

END;
The scope of the prefix is static; it is the statement, block, or procedure to
which it is attached. An enabled exception can be explicitl y disabled by pre-
fixing a statement, block, or procedure with NO exception_name. For example

(NOZERODIVIDE) : BEGIN;
. . .

END
****** end sidebar PL/I******

*** sidebar start Exception handling in CLU

In CLU, exceptions can only be raised by procedures. That is, if a statement
raises an exception, the procedure containing the statement returns abnor-
mally by raising the exception. A procedure cannot handle an exception
raised by its execution: its caller should be in charge of handling it. The
exceptions that a procedure may raise are to be declared in the procedure’s
header. This choice is a consequence of the design method that CLU wishes
to enforce. CLU views a procedure as the implementation of an abstract oper-
ation, whose meaning should be visible by other units through the operation’s
interface (defined by the header). The exceptions that a procedure may raise
characterize the abstract behavior of the procedure, and thus should be known
to the caller. Exceptions may be raised explicitl y by means of a signal
instruction. Built -in exceptions are raised automatically; for example, an
exception is raised if the value of the denominator is zero in a division.

Exception handlers can be attached to statements by except clauses having
the following syntactic form

<statement> except <handler_list> end
where <statement> can be any (compound) statement of the language. If the
execution of a procedure invocation within <statement> raises an exception,
control is transferred to <handler_list>. A<handler_list> has the following
form

 233

when <exception_list_1>: <statement_1>
. . .
when <exception_list_n>: <statement_n>

If the raised exception belongs to <exception_list_i>, then <statement_i>
(the handler body) is executed. When the execution of the handler body is
completed, control passes to the statement that follows the one to which the
handler is attached. If statement_i> contains a call to a unit, another excep-
tion may be raised. In such a case, control flows to the except statement that
encloses <statement>. If the raised exception is not named in the exception
list that should handle it, it is propagated to the enclosing statements. If no
handler is found within the procedure that issued the call, the procedure
implicitly signals a language-defined exception failure and returns.

*** sidebar end

4.4.4 Exception handling in ML

The functional language ML allows exceptions to be defined, raised, and han-
dled. There are also exceptions that are predefined by the language and raised
automatically by the runtime machine while the program is being executed.

As an example, the following declaration introduces an exception

exception Neg
which can be raised subsequently in the following function declaration

fun fact (n) =
if n < 0 then raise Neg
else if n = 0 then 1
else n * fact (n - 1)

A call such as fact (-2) would cause the evaluation of the function to be aban-
doned, the exception raised and, since no handler is provided, the program to
stop by writing the message "Failure: Neg".

Suppose we wish to handle the exception by returning 0 when the function is
called with a negative argument. This can be done, for example, by defining
the following new function

fun fact_0 (n) = fact (n) handle Neg => 0;
which uses fact as a subsidiary function. Exceptions that are not handled in a
chain of function calls are implicitly propagated. That is, suppose that func-
tion fact is called by some function f which does not provide a handler for Neg;

234 Structuring the computation Chap.4

function f, in turn is called by function g, which provides a handler for Neg, in
the same way as function fact_0 does. In such a case, if the evaluation of the
following expression:

g (f (fact (-33)))
results in 0.

4.4.5 A comparative evaluation

The languages we surveyed in the previous sections are good representatives
of the different approaches followed by programming languages to provide
exception handling. Although the field has matured in the past years and the
main design decision to be faced by language designers are now basically
restricted to a limited number of possible choices, still there are differences
and there is no consensus on a common scheme that languages should adopt.
We wil l compare and evaluate the different solutions adopted by existing lan-
guages by examining the questions we posed at the beginning of our discus-
sion, that is:

1. What are the exceptions that can be handled? How can they be defined?

2. What units can raise an exception and how?

3. How and where can a handler be defined?

4. How does control flow after an exception is raised in order to reach its handler (if
any)?

5. Where does control flow after an exception has been handled?
Regarding questions 1 and 2, all languages (except Eiffel) are quite similar.
They all allow both built-in and programmer-defined exceptions. The main
differences are whether an exception can carry information and how it can do
so. In Ada (and PL/I) an exception is basically a named signal, and thus it
does not allow any additional information to be passed to the handler along
with it. In C++ any desirable data may be passed along with the exception1.

Eiffel follows an original approach in that exception handling has been
designed to fit a precise program development discipline. According to such
discipline, an exception arises only if a routine fails because of some error.
The language also explicitly and precisely defines what may cause a routine
to fail. Thus, in most cases there is no need for naming exceptions, nor for
providing a raise statement. All that matters is whether a failure that would

1. Actuall y in Ada it is possible to pass to the handler information about the exception occurrence, and a
number of predefined operations are provided to extract some limited information from the exception occurrence.

 235

violate the object’s contract occurred in a routine1.

Exception handlers in both Ada and C++ can be attached to any block. In
Eiffel it can be attached to any routine. As an exception is raised, control is
transferred to the appropriate handler. To match the raised exception with the
corresponding handler, Ada and C++ unwind the run-time stack by following
the dynamic chain until the relevant handler (if any) is found. In Eiffel, each
routine provides its own handler (either explicitl y or implicitly), and the stack
is unwound only if the routine fails.

The combination of static scope rules for exception declarations, adopted by
languages like Ada and C++, with dynamic binding between an exception
raised by some unit and its handler cause subtlelties that can make programs
hard to read. We illustrate the point in the case of C++, in order to show the
reader how different language features may interfere with each other, thus
making language semantics and language implementation more complex.

Consider two separate files, which contain parts of a program. File 1 contains
the following definitions:

class A { } ;
void f () {

. . .
throw A ();

}
File 2 contains the following declarations and definitions

extern void f ();
class A { } ;
void foo () {

. . .
try {

. . .
f ();
. . .

}
catch (A a) {

. . .
}

}
If when f is called by foo the exception is thrown and not handled by f, propa-

1. To provide finer control over the handling of exceptions, Eiffel also provides a Kernel Library class
EXCEPTIONS, through which exceptions may also be named and raised explicitly.

236 Structuring the computation Chap.4

gation reaches the catch point in File 2. The scope rules of the language, how-
ever, are such that the parameter of the catch and the object thrown are bound
to different types, and therefore the match does not occur, and the exception
is further propagated. Besides affecting understandabil ity, ease and eff iciency
of the implementation are also affected. Type information, in fact, must be
kept to perform the required run-time binding.

The last important point about exception handling is where control should
flow after an exception is handled. There are essentially two possible solu-
tions, which corresponds to different styles of handling exception: termina-
tion and resumption. The resumption scheme implies that the handler’s code
may cause control to return to the point where the exception was raised,
whereas the termination scheme does not allow that. Of the languages dis-
cussed here, only PL/I fully supports the resumption scheme. Ada and C++
support termination. Although for many years the debate on termination ver-
sus resumption gave no clear indication of which approach is superior, termi-
nation has now gained wider acceptance. Practical experience with languages
providing resumption has shown that the resumption mechanism is more
error-prone. Furthermore, it can promote the unsafe programming practice of
removing the symptom of an error without removing the cause. For example,
the exception raised for an unacceptable value of an operand could be han-
dled by arbitrarily generating an acceptable value and then resuming the com-
putation. CLU is even stricter than the other languages in that it does not even
allow the unit that raises an exception to try to handle it. Rather, the unit (a
procedure) terminates abnormally and places the burden of handling the
exception upon its caller. The caller expects the exception to be possibly
raised, since it is li sted in the unit’s interface definition.

Eiffel is different from all other languages with respect to termination and
resumption. Termination in Eiffel is stronger than in other languages. In fact,
after control is transferred to a rescue clause which does not contain a retry,
completion of the clause implies that the routine fails, and the failure is noti-
fied to the caller. In C++, on the other hand, if a catch clause terminates with-
out raising another exception, execution continues from the statement that
follows the one to which the currently completed handler is attached. Further-
more, Eiffel provides an explicit way of describing a disciplined form of
resumption (retry). The retry statement provided by Eiffel does not fully corre-
spond to the above definition of resumption, since the statement executed
after the handler terminates in not the one that caused the exception. Rather,

 237

retry allows a routine that failed to be retried as a whole.

4.5 Pattern matching

Pattern matching is a high level way of stating conditions, based on which,
different actions are specified to occur. Pattern matching is the most impor-
tant control structure of the string manipulation programming language
SNOBOL4 (see sidebar). Pattern matching is also provided by most modern
functional programming languages, like ML, Miranda, SASL, and is also pro-
vided by the logical language PROLOG and by rule-based systems.

Let us start by discussing the following simple definitions of a data type and a
function:

datatype day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
fun day_off (Sun) = true

|day_off (Sat)= true
|day_off (_) = false

In the example, function day_off is defined by a number of cases. Depending
on the value of the parameter with which the function will be invoked, the
appropriate case will be selected. Cases are checked sequentially, from the
first one on. If the first two cases are not matched by the value of the parame-
ter with which the function is called, the third alternative wil l be selected,
since the so-called wild card "_" matches any argument.

As another example, consider the following function definition:

fun reverse (nil) = nil
| reverse (head::tail) = reverse(tail) @ [head]

In this case, if the argument is an empty list, then reverse is defined to return
the empty list. Otherwise, suppose that the argument is the list [1, 0, 5, 99, 2].
As a result of pattern matching [1, 0, 5, 99, 2] with head::tail, head is bound to
1 and tail is bound to [0, 5, 99, 2]. Thus the result of reverse is the concatenation
(operator @) of reverse ([0, 5, 99, 2]) with the list [1].

As a final example, suppose that a new operation to reverse lists is to be
defined, such that a (sub)list remains unchanged if its first element is zero.
The following function rev would do the job:

fun rev(nil) = nil
| rev(0::tail) = [0] @ tail

238 Structuring the computation Chap.4

| rev(head::tail) = rev(tail) @ [head]

In this case, since pattern matching examines the various alternatives sequen-
tially, if the function is invoked with a non-empty list whose first element is
zero, the second alternative would be selected. Otherwise, for a non-empty
list whose first element is not zero, the third alternative would be selected.

As the example shows, pattern matching has a twofold effect. On the one
hand, it chooses the course of action based on the argument; on the other,
since the pattern can be an expression with variables, it binds the variables in
the pattern (if any) with the values that match. The same bound variables can
then be used in the expression that defines the value of the function. Pattern
matching can thus be viewed as a generalization of conventional parameter
passing. The value of actual parameters is used to match the pattern appearing
in the formal parameter part. Thus the case selected by pattern matching can
vary from call to call .

More wil l be said on pattern matching for ML in Chapter 7. Chapter 8
addresses pattern matching in the case of Prolog.

*** sidebar start Pattern matching in SNOBOL4

SNOBOL4 is a string-oriented language in that character strings are the most
important primitive data type with many built-in operations. A pattern is a
data structure that specifies a set of strings. A pattern is used in pattern-
matching statements to examine a subject string for the presence of a pattern.
For example, the statement

MESSAGE PAT
means "search the string MESSAGE for the occurrence of the pattern PAT." If,
previous to this statement, we had executed these two assignment statements:

MESSAGE = 'THERE ARE NO ERRORS HERE.'
PAT = 'ERROR'

then the above pattern-matching statement will succeed. The notion of suc-
cess and failure of statements is used in SNOBOL4 to control the flow of exe-
cution in a program. Each statement can specify labels of target state- ments
for success, failure, or unconditionally. For example

MESSAGE PAT : S (OK) F (NOTFOUND)

 239

will transfer control to the statement labelled OK if the pattern-matching suc-
ceeds and to NOTFOUND otherwise. The pattern PAT is the simplest kind of
pattern we can have–simply one string. We may specify a pattern as a choice
among a number of patterns:

SUBJECT = 'I' | 'YOU' | 'WE'
Now SUBJECT wil l match any string that contains 'I', ’YOU’ or 'WE'. A pattern
may be defined also as a concatenation of other patterns:

SENTENCE = SUBJECT VERB OBJECT '.'
The pattern SENTENCE will match any string that contains the patterns SUB-

JECT, VERB, OBJECT, followed by a period. We can then define patterns for
SUBJECT, VERB, and OBJECT:

VERB = 'EAT' | 'TAKE'
OBJECT = 'FOOD' | 'THE SPOON' | 'THE CAR'

The set of patterns defines the grammar of a tiny and highly simpli fied subset
of the English language. For example, the grammar can represent strings such
as

I TAKE THE CAR
YOU EAT FOOD

Pattern matching can recognize the sentences that are grammatically correct.
In fact, the statement

TEST SENTENCE
will succeed if a valid sentence (according to our grammar) occurs in the
string TEST. This pattern will actually match a sentence anywhere in the string
but SNOBOL4 provides facilit ies to constrain the pattern further, for exam-
ple, to have one sentence and nothing more.

What we have seen so far is actually only a small sample of SNOBOL4’s pat-
tern matching power. One of the interesting features is the unevaluated
expression that can be used to build recursive patterns. The unary operator ’ * ’
delays the evaluation of its operand. The expression *E is called an unevalu-
ated expression. The unevaluated expression is evaluated when the interpreter
encounters it as part of a pattern-matching operation. Consider the pattern
PAT defined with assignment statement:

PAT = * PAT 'B' | 'A'
The value of PAT is stored as PAT 'B' | 'A', postponing the evaluation of PAT (in

240 Structuring the computation Chap.4

*PAT) to pattern-matching time. At pattern-matching time, this pattern will
match either 'A' or *PAT 'B', which at this time causes the pat- tern matcher to
substitute a value for PAT. The current value of PAT is *PAT 'B' | 'A'. There-
fore, PAT also will match 'AB' or *PAT 'BB'. Thus, we have a recursive defini-
tion for PAT, which causes it to match strings of the form A AB ABB ABB.. B.
Now, recall from Section 3.1 that to specify the syntax of any interesting lan-
guage, we need to use recursive rules. Suppose that we want to write a
SNOBOL4 program to recognize arithmetic expressons as defined by the
grammar we introduced in Chapter 2. The following two statements, which
closely mirror the EBNF definition of arithmetic expressions, will do exactly
what we want:

OPERATOR = '+', '-', '* ', '/'
EXPRESSION = '(' *EXPRESSION ')' | *EXPRESSION OPERATOR *EXPRESSION |
IDENTIFIER

All these examples emphasize the declarative nature of the language. In
SNOBOL4, we declare the structure pattern and leave it to the underlying
implementation–the SNOBOL4 interpreter–to find a way to search for the
existence of the pattern. If we were solving the same problem in a more con-
ventional language, li ke C, we would spend most of our effort describing the
procedures for the search. The declarative style supported by SNOBOL4
allows the language to be seen as a precursor of the paradigm provided by
logic languages, which will be examined in Chapter 8.

*** sidebar end

4.6 Nondeterminism and backtracking

Problem solutions can often be described via and-or decompositions into sub-
problems. For example, to solve problem A, one needs to solve either B, C, or
D; to solve–say–C, one needs to solve E, F, and G. This can be represented as
an and/or tree (see Figure 52). Node A, which has no incoming arcs, is called
a root node; nodes B, D, E, F, and G, which have no exiting arcs, are called leaf
nodes. And/or decompositions can also be described–in the hypothetical syn-
tax of some programming language–as

A if B or
C or
D;

C if E and
F and
G;

 241

The solution of A is described as a disjunction of subproblems; the solution of
C is described as a conjunction of subproblems. We can further assume B, D,
E, F, and G to be problem solving routines, which can terminate in either a
success or a failure state.

If the order in which subproblems are solved is unspecified (and irrelevant as
far as the problem statement is concerned), we say that the program is nonde-
terministic. In the example, this means that the order in which B, C, or D are
tried does not matter. Similarly, the way in which E, F, and G are tried does
not matter. The only thing that matters is that a solution be found, if it exists,
or a notification of failure is delivered to the request to solve A, if no solution
exists. The latter case happens if all three subproblems in the disjunct fail ,
which means also that at least one of the subproblems of the conjunction
failed.

An and/or problem decomposition can be viewed as a high-level design of a
problem solution, which is then implemented in any progrmming language
using the conventional constructs it provides. However, there are program-
ming languages (like logic languages of the Prolog family or the string
manipulation language Icon) which support this way of decomposing prob-
lems directly. Since features of this kind are very high level, a programming
language incorporating them is extremely powerful. As one can imagine,
however, these features are hard to implement efficiently. Abstractly, this is
the theme of problem solving by exploring a large search space for solutions.
Possible strategies to deal with it are described in textbooks on artificial intel-
ligence and computer algorithms.

A

B C D

E F G

and

or

FIGURE 52.And/or tree

242 Structuring the computation Chap.4

One solution strategy is to explore the and/or tree in parallel, in order to make
the search for the solution time eff icient. In such a case, subproblems B, D, E,
F, and G would be solved in parallel. Another more classical strategy for a
sequential implementation of the search is based on backtracking. Backtrack-
ing means that to find a solution, a choice is made at each branch of the tree.
The choice can be fixed, arbitrary, or based on some heuristic knowledge of
the problem being solved. If a subproblem solution fails, backtracking
implies that another possible subproblem solution be tried. This ensures that
the overall problem solution fails only if there is no way of solving the prob-
lem without failure. Thus, through backtracking, one needs to guarantee com-
pleteness of the search.

More on backtracking will be said in Chapter 8 in the case of logic and rule-
based languages.

*** maybe in bibliographic remarks say that Icon combines backtracking and
pattern matching.***

4.7 Event-dr iven computations

In some cases, programs are structured conveniently as reactive systems, i.e.,
systems where certain events occurring in the environment cause certain pro-
gram fragments to be executed. An example is provided by modern user inter-
faces where a number of small graphical devices (called widgets) are often
displayed to mediate human-computer interaction. By operating on such wid-
gets (e.g., by clicking the mouse on a push-button) the user generates an
event. The event, in turn causes a certain application fragment to be executed.
Execution of such a fragment may cause further screen layouts to be gener-
ated with a new context of available widgets on it. The events that can be gen-
erated in any given state are defined by the context.

The entire application can be viewed as a system which reacts to events by
dispatching them to the appropriate piece of code that is responsible for han-
dling the event. As a consequence, the application is structured as a set of
fragments that are responsible for handling specific events.

This conceptual view of an application can be viewed as a way of structuring
its high-level design, which would then need to be detailed by a conventional
implementation. There are languages, however, that directly support this con-

 243

ceptual view, by providing the necessary abstractions. For example, lan-
guages like Visual Basic, Visual C++, or Tcl/Tk allow one to separately
design the widgets and the code fragments, and to bind events on a widget to
the fragments which respond to the event. More on such tools wil l be said in
Chapter 9.

Another common event-driven control paradigm is the one based on so-called
triggers. Triggers became popular in recent years, in conjunction with new
developments in the field of so-called active data bases. Since there is no pre-
cise and universal definition of a trigger, we will give examples based on a
hypothetical language syntax. An active data base consists of a conventional
underlying (passive) data base and a set of active rules (or triggers) of the fol-
lowing form

on event
when condition
do action

When the event associated with the rule occurs, we say that the rule is trig-
gered. A triggered rule is then checked to see if the condition holds. If this is
the case, the rule can be executed.

As an example, the following trigger specifies that the total number of
employees should be updated as a new employee record is inserted in the data
base.

on insert in EMPLOYEE
when TRUE
do emp_number ++

As another example, in a database application, triggers may be used to spec-
ify some constraints that must be verified as new elements are inserted or
existing elements are updated or deleted from the database. For example, a
constraint might be that no employee can have a salary that is more than the
average salary of managers. A trigger might watch that no insertion, update,
or deletion violates the constraint; if that happens, some appropriate action
would be undertaken.

A trigger-based problem solution can be viewed as a high-level design, which
is then implemented in any programming language using the conventional
constructs it provides. In the above example, the check that trigger conditions
become true might be explicitl y associated with the start and the end of each

244 Structuring the computation Chap.4

class member routine, along with the execution of the corresponding code
fragment. However, there are languages where trigggers are directly available
as a built-in language construct; i.e., they are implemented by the underlying
run-time machine. As an example, the forthcoming SQL standard includes
triggers as one of its features.

4.8 Concurrent computations

Sometimes it is convenient to structure our software as a set of concurrent
units which execute in parallel. This can occur when the program is executed
on a computer with multiple CPU’s (multiprocessor). In such a case, if the
number of processors coincides with the number of concurrent units, we say
that underlying machine that executes the program provides for physical par-
allelism: each unit is in fact executed by its dedicated processor. Parallelism,
however, may be simply logical. For example, if the underlying machine is a
uniprocessor, the logical view of parallel execution may be provided by
switching the CPU from one unit to another in such a way that all units appear
to progress simultaneously. The switching of the execution of the uniproces-
sor among the various units can be performed by a software layer, imple-
mented on top of the physical machine, which provides the programmer with
a view of an abstract parallel machine where all units are executed simulta-
neously. Once such abstract machine is in place, one can in fact abstract away
from the physical architecture of the underlying hardware, where components
are actually executed. The hardware structure might be a multiprocessor, with
each processor dedicated to a single unit, or it might be a multiprogrammed
uniprocessor. Allowing for the possibil ity of different machines means that
the correctness of a concurrent system cannot be based on an assumption of
the speed of execution of the units. Indeed, the speed can differ greatly if
every unit is executed by a dedicated processor, or if a single processor is
shared by several units. Moreover, even if the architecture is known, it is dif-
ficult to design a system in such a way that its correctness depends upon the
speed of execution of the units. We wil l return to these points in the discus-
sion of implementation models for concurrency.

Concurrency is an important area of computer science, which is often studied
in different context: machine architectures, operating systems, distributed
systems, databases, etc. In this section we give an overview of how program-
ming languages support concurrency. Concurrent programs support concur-
rency by allowing a number of units (called processes) to execute in parallel

 245

(logically or physically).

If the abstract machine that executes the program does not support concur-
rency, it is possible to simulate it by transferring control explicitly from one
unit to another. This low-level approach is supported bycoroutines, reviewed
in the sidebar.

*** Coroutine sidebar start

Coroutines are a low-level construct for describing pseudo-concurrent units.
They can be used to simulate parallelism on a uniprocessor by explicitl y
interleaving the execution of a set of units. Therefore, they do not describe a
set of concurrent units, but a particular way of sharing the processor to simu-
late concurrency.

Coroutines can be viewed as program units that activate one another explic-
itly, via a resume primitive. At any time, only one unit is executing. When a
unit is executing, control may be explicitl y transferred to another unit (via
resume), which resumes execution at the place where it last terminated. Conse-
quently, units activate each other explicitly in an interleaved fashion, accord-
ing to a predefined pattern of behavior.

As an example, consider the the two coroutines client and give_me_next shown
in Figure 53, written in a hypothetical, self-explaining programing language.
Unit client repeatedly activates unit give_me_next to get the next value of a vari-
able. Each reactivation of unit give_me_next produces a new value, which
depends on the previously generated value. The two units resume one
another. There is a global variable i, which is shared by client and give_me_next.
Unit main, which is activated initially, resumes client.

246 Structuring the computation Chap.4

An abstract implementation model of coroutines differs from the case of rou-
tines. When a coroutine A issues a resume to a coroutine B, one must save (in
A's activation record) the pointer to the instruction following the in-struction
resume B. Moreover, A's activation record is not deallocated. If coroutines can
have nested units that may be activated recursively, each coroutine requires
an activation record stack that can grow and shrink independently of the other
stacks. In addition, as in the example, they may access the global environ-
ment.

*** Coroutine end

To support correct interaction among processes, a language should provide
suitable synchronizition statements (or primitives). We introduce this concept
through an example. Suppose that a certain system contains concurrent activ-
ities of the following two kinds: producers and consumers. A producer pro-
duces a stream of values and places them into a suitable data structure (a
buffer of a certain size, N). A consumer reads these values from the buffer in
the same order as they are produced and then processes such values according
to some policy. This example is a classic standard problem that exhibits many
relevant issues of concurrency. An abstract description of two producer and
consumer processes is shown in Figure 54. A given system might contain
many such processes, and all might interact through the same buffer.

unit client {
int stop_value = . . .;
...

while (i != stop_value) {
. . .
resume give_me_next;
}

}

FIGURE 53. An example of coroutines

unit give_me_next {
int step () {
. . .
} ;
. . .
for (; ;) {

i += step ();
resume client;

}
main {

resume client;
}

 int i = 0; //global variable

 247

The two processes in Figure 54 are described by cyclic and, ideally, nonter-
minating program units, which cooperate to achieve the common goal of
transferring data from the producer (which could be reading them from an
input device) to the consumer (which could be storing them in a file). The
buffering mechanism allows the two processes to proceed at their own
speeds, by smoothing the effect of their variations. To guarantee the correct-
ness of the cooperation, however, the programmer must enssure that no mat-
ter how quickly or slowly the producer and the consumer progress, there will
be no attempts to write into a full buffer or to read from an empty buffer. This
can be accomplished by the use of synchronization statements. In general,
synchronization statements allow a process to be delayed in the execution of
an operation, whenever that is necessary for correct cooperation with other
concurrent units. In the example, when the buffer is full , the producer is
delayed if it tries to append an element, until the consumer removes at least
one element. Similarly, when the buffer is empty, the consumer is delayed if
it tries to remove an item, until the producer appends at least one new ele-
ment.

Another, more subtle, need for synchronization may arise when several activ-
ities can legally have access to the same buffer. For example, suppose that
append and remove are implemented by the fragments in Figure 55:

where t represents the total number of elements stored in the buffer, next_in

and next_out are two operations that yield the value of the buffer index where

repeat forever {
produce an element;
append the element to the buffer;

}

Process Producer

repeat forever {
produce an element;
append the element to the buffer;

}

Process Consumer

FIGURE 54.Sample processes:roducer and a consumer

Append Remove

t++;
i = next_in ();
buffer [i] = x;

t--;
j = next_out ();
x = buffer [out];

FIGURE 55.Operations to append and remove from a buffer

248 Structuring the computation Chap.4

the next element can be stored and where the next element is to be read from,
respectively. Let us assume that the individual statements in Figure 55 are
indivisible instructions of the abstract machine, in the sense that if one such
action starts to execute, it is guaranteed to finish before any other instruction
execution is started. The sequences, however, cannot be assumed to be indi-
visible, i.e., the execution of their constituent actions may be interleaved by
the underlying machine. As an example, suppose that the buffer is initially
empty. A producer might start depositing into the buffer by performing the
first two actions. The total number of buffered items becomes 1 and the index
of the position where the item should be deposited is evaluated. Suppose that
at this point another producer gets access to the buffer (since the buffer is not
full). If this producer completes all three actions, the value will be deposited
in the second buffer slot (since the first one was acquired by the first producer
who did not complete its own deposit). At this point, a consumer might access
the buffer (which is not empty, since t = 2). This is an error, however, because
the consumer would read its value from the position which was assigned to
the first producer, but no assignment was ever performed to such position. To
avoid this error, we say that the two statement sequences must be executed in
mutual exclusion; synchronization primitives must allow mutual exclusion to
be specified.

In general, synchronization primitives may be viewed as mechanisms that
constrain the order in which operations performed by different processes are
executed. Let { P1, P2, . . ., Pn} be a set of concurrent processes. Each process
can be assigned for execution to an abstract machine, like SIMPLESEM that
was discussed in Chapter 2. Let ipi be the value of the instruction pointer of
the i-th abstract machine which executes Pi; ipi yields the address of the
instruction Ci(ipi) which is to be executed next in each process i. If the pro-
cesses are logically independent, at any instant, all machines can execute
Ci(ipi). Synchronization, however, may force some abstract machines to
remain in idle until some condition is met that allows them to resume execu-
tion.

Besides synchronization, programming languages must provide faciliti es to
describe communication among processes. Communication allows informa-
tion to flow from one process to another. It is through synchronization and
communication that processes cooperate in problem solving. Communication
can be achieved in different ways, depending on the underlying computation
model. The traditional way to achieve communication is via a shared mem-

249 Structuring the computation Chap.4

ory. According to such model, all concurrent processes have access to a com-
mon set of variables. This model reflects an underlying abstract
multiprocessor architecture with a common memory area where all proces-
sors can read and write. Another paradigm for communication is message
passing. In such a case, the model reflects more closely an underlying decen-
tralized architecture where processors are connected by a network on which
messages can flow. Both paradigms, of course, can be implemented on any
underlying architecture, although implementation of–say–the shared memory
paradigm on a physically distributed architecture is much less natural and
requires considerably more support than implementing the message passing
paradigm.

The rest of this chapter is organized as follows. Section 4.8.1 illustrates how
processes may be defined in programming languages, using the Ada language
as a case-study. In Section 4.8.2 we review two kinds of synchronization
mechanisms–semaphores and signals–and discuss communication via shared
memory. We also discuss communication via message passing and the ren-
dezvous mechanism. Finally, Section 5.8.3 discusses implementation models.
Our presentation does not go into details of this last point, which goes beyond
the scope of this book, and is usually discussed in textbooks on operating sys-
tems.

4.8.1 Processes

A concurrent programming language must provide constructs to define pro-
cesses. Processes can belong to a type, of which several instances can be cre-
ated. The language must define how and by whom a process is initiated, i.e., a
new independent execution flow is spawned by an executing unit. It also need
to address the issue of process termination, i.e., how can a process be termi-
nated, what happens after a process terminates, etc.

In this section we will briefly review the main concepts and solutions pro-
vided by Ada. In Ada, processes are called tasks. The execution of an Ada
program consists of the execution of one or more tasks, each representing a
separate computation that proceeds concurrently with other tasks, with which
it may interact through synchronization statements.

Tasks can be defined by a task type, of which many instances can be declared.
It is also possible to declare a task object (shortly, a task) directly. The decla-
ration of a task (type) specifies how the task (or all instances of the type) can

250 Structuring the computation Chap.4

interact with other tasks. As we will see shortly, interaction with a task can be
achieved by calling one of its entries, which must appear in its declaration.
Thus, the declaration of a task type is a declaration of an abstract data type;
entries represent the operations available for interaction with task objects. In
Ada, the body of the task (type) , which describes the implementation of the
task’s internal code, can be described separately from its declaration.

This is an example of a task type declaration:

task type SERVER is
entry NEXT_REQUEST (NR: in REQUEST);
entry SHUT_DOWN;

end SERVER;

task SERV_PTR is access SERVER; --declares a pointer to a SERVER
These are examples of task object declarations:

MY_SERVER: SERVER;

task CHECKER is
entry CHECK (in T: TEXT);
entry END;

end CHECKER;

HIS_SERVER_PTR: SERV_PTR := new SERVER;
The execution of task consists of executing its body. The mechanism for acti-
vating a task is similar to the mechanism that allocates storage to variables.
For example, consider the following fragment

procedure P is
A, B: SERVER;
HER_SERVER_PTR: SERV_PTR;

begin
. . .
HER_SERVER_PTR := new SERVER;
. . .

end P;
Tasks A and B are activated as the block in which they are locally declared is
entered at run time. The task pointed at by HER_SERVER_PTR is activated by
the execution of the new operation.

The concept of task termination is more complex, and will not described in all
its subtelties. For simplicity, let us assume that a task can terminate when it
reaches the last statement of its body and (1) all of the locally declared task

251 Structuring the computation Chap.4

objects have terminated, and (2) tasks allocated by a new and referenced only
by pointers local to the task have terminated.

4.8.2 Synchronization and communication

In this section we present some elementary mechanisms for process synchro-
nization and interprocess communication: semaphores , signals and monitors,
and rendezvous. Semaphores are low level synchronization mechanisms that
are mainly used when interprocess communication occurs via shared vari-
ables. Monitors are higher level constructs that define abstract objects used
for interprocess communication; synchronization is achieved via signals.
Finally, rendevous is another mechanism that combines synchronization and
communication via message passing.

4.8.2.1 Semaphores

A semaphore is a data object that can assume an integer value and can be
operated on by the primitives P and V. The semaphore is initialized to a cer-
tain integer value when it is declared.

The definitions of P and V are

P (s): if s>0 then s = s - 1
else suspend current process

V (s): if there is a process suspended on the semaphore
then wake up process
else s = s + 1

The primitives P and V are assumed to be indivisible, atomic operations; that
is, only one process at a time can be executing P or V operations on the same
semaphore. This must be guaranteed by the underlying implementation,
which should make P and V behave like elementary machine instructions.

The semaphore has (1) an associated data structure where the descriptors of
processes suspended on the semaphore are recorded, and (2) a policy for
selecting one process to be woken up when required by the primitive V. Usu-
ally, the data structure is a queue served on a first-in/first-out basis. However,
it is also possible to assign priorities to processes and devise more complex
policies based on such priorities.

The simple producer-consumer example of Figure 54 can be solved using
semaphores as shown in (as usual, we adopt an arbitrary, self-explanatory C-

252 Structuring the computation Chap.4

like notation).

The keyword process starts the segments of code that can proceed concur-
rently. Three semaphores are introduced. Semaphores spaces and in are used to
guarantee the logical correctness of the accesses to the buffer. In particular,
spaces (number of available free positions in the buffer) suspends the producer
when it tries to insert a new item into a full buffer. Similarly, in (number of
items already in the buffer) suspends the consumer if it tries to remove an
item from an empty buffer. Semaphore mutex is used to enforce mutual exclu-
sion of accesses to the buffer. We can see that semaphores are used both for
pure synchronization, as in mutex, to ensure that only one process may use the
buffer at a time, and for a kind of communication among processes. For

int n = 20;
buffer buf; // a global buffer variable, with operations append and remove which up-
date

// t, total number of buffered items;
semaphore mutex = 1; // used to guarantee mutual exclusion

in = 0; // semaphore to control the reading from the buffer
spaces = n; // semaphore to control the writing into the buffer

process producer {
int i;
for (; ;) {

produce (i);
P (spaces); -- wait for free spaces
P (mutex); -- wait for buffer availability

--the buffer must be used in mutual exclusion
buffer . append (i);
V (mutex); -- finished accessing buffer
V (in) -- one more item in buffer

} ;
} ;
process consumer {

int j;
for (; ;) {

 P (in); -- wait for item in buffer
P (mutex); -- wait for buffer availability

--the buffer must be used in mutual exclusion
 j = buffer.remove ();
V (mutex); -- finished accessing buffer
V (spaces) -- one more space in buffer

} ;
}

FIGURE 56.Producer-consumer example with semaphores

253 Structuring the computation Chap.4

example, V (spaces) by the consumer communicates to the producer that it has
consumed an item and that more space is now available in the buffer.

Programming with semaphores requires the programmer to associate one
semaphore with each synchronization condition. Our example shows that
semaphores are a simple but low-level mechanism, their use can be awkward
in practice, and the resulting programs are often diff icult to design and under-
stand. Moreover, little checking can be done statically on programs that use
semaphores. For example, a compiler would not be able to catch the incorrect
use of a semaphore, such as one resulting from a change of V (mutex) into P
(mutex) in the producer process (see Exercise 16). Catching such an error is
impossible because it requires the translator to know the semantics of the pro-
gram, that is, that the operations on the buffer are to be executed in mutual
exclusion, and mutex is used to guarantee such mutual exclusion. Therefore,
semaphores require considerable discipline on the part of the programmer.
For example, one should not forget to execute a P before accessing a shared
resource, or neglect to execute a V to release it.

Using semaphores for synchronization purposes other than mutual exclusion
is even more awkward. In the producer-consumer example, process consumer
suspends itself by executing P (spaces) when the buffer is full . It is the respon-
sibili ty of some other piece of code, the consumer in this case) to provide the
matching V operation. If the programmer forgets to write a V (spaces) after
each consumption, the producer will become blocked forever.

Semaphores are often provided by operating systems to support systems pro-
gramming. They have also been integrated into a number of existing pro-
gramming languages, such as PL/I and Algol 68 (see sidebar).

*** sidebar start

PL/I was the first language to allow concurrent units, called tasks. A proce-
dure may be invoked as a task, in which case it executes concurrently with its
caller. Tasks also can be assigned priorities. Synchronization is achieved by
the use of events, which are binary semaphores that only can assume one of
two values: '0'B and '1'B (Boolean constants 0 and 1). A P operation on a
semaphore is represented by a WAIT operation on the completion of an event
E: WAIT (E). A V operation is represented by signaling the completion of the
event: COMPLETION (E) = '1'B. PL/I extends the notion of semaphores by

254 Structuring the computation Chap.4

allowing the WAIT operation to name several events and an integer expression
e. The process will be suspended until any e events have been completed. For
example, WAIT (El, E2, E3) (1) indicates the waiting for any one of the events:
El, E2, or E3.

ALGOL 68 supports concurrent processes in a parallel clause whose constitu-
ent statements are elaborated concurrently. Synchronization can be provided
by semaphores, which are data objects of type sema.

*** Sidebar end

4.8.2.2 Monitors and signals

Concurrent Pascal introduced the signal and monitor constructs into the pro-
gramming languages. Signals are synchronization primitives; monitors
describe abstract data types in a concurrent environment. The operations that
manipulate the data structure are guaranteed to be executed in mutual exclu-
sion by the underlying implementation. Cooperation in accessing the shared
data structure must be programmed explicitly by using the monitor signal
primitives delay and continue.

Using the notation of Concurrent Pascal, the program in Figure 57 il lustrates
the use of monitors in the producer-consumer example.

255 Structuring the computation Chap.4

An instance of the monitor (i.e., a buffer) can be declared as

var buffer: fifostorage
and can be created by the statement init buffer. Monitor instances are abstract
objects through which interprocess communication and synchronization is
coordinated.

The init statement allocates storage for the variables defined within the moni-
tor definition (i.e., contents–the contents of the buffer, tot–the total number of
buffered items, and in and out–the positions at which the next items will be
appended and removed, respectively) and executes the initialization part
(which sets tot to zero, and in and out to one). The monitor defines the two pro-
cedures, append and remove. They are declared with the keyword entry, which
means that they are the only exported procedures that can be used to manipu-
late monitor instances. Cooperation between the producer and the consumer
is achieved by using the synchronization primitive signals delay and continue.

type fifostorage =
monitor

var contents: array [1. .n] of integer; { buffer contents}
tot: 0. .n; { number of items in buffer}
in, { position of item to be added next}
out: 1. .n; { position of item to be removed next}
sender, receiver: queue;

procedure entry append (item: integer);
begin if tot = n then delay (sender);

contents [in] := item;
in := (in mod n)+1;
tot := tot + 1;
continue (receiver)

end;
procedure entry remove (var item: integer);
begin if tot = 0 then delay (receiver);

item := contents[out];
out := (out mod n) + 1;
tot := tot - 1;
continue (sender)

end;
begin { initialization part}

tot := 0; in := 1; out := 1
end

FIGURE 57.Producer-consumer example with monitor

256 Structuring the computation Chap.4

The operation delay (sender) suspends the executing process (e.g., the producer)
in the queue sender. The process loses its exclusive access to the monitor's data
structure and its execution is delayed until another process (e.g., the con-
sumer) executes the operation continue (sender). Similarly, with delay (receiver) a
consumer process is delayed in the queue receiver if the buffer is empty, until
the producer resumes it by executing the instruction continue (receiver). The
execution of the continue (q) operation makes the calli ng process return from
the monitor call and, additionally, if there are processes waiting in the queue
q, one of them immediately will resume the execution of the monitor proce-
dure that previously delayed it.

The structure of a Concurrent Pascal program that uses the above monitor to
represent cooperation between a producer and a consumer is given in Figure
58.

const n = 20;
type fifostorage = . . . as above . . .
type producer =
process (storage: fifostorage);
var element: integer;
begin cycle

. . .
storage.append (element);
. . .

end
end;
type consumer = process (storage: fifostorage);
var datum: integer;
begin cycle

. . .
storage.remove (datum);
. . .

end
end;
var meproducer: producer;

youconsumer: consumer;
buffer: fifostorage;

begin
init buffer, meproducer (buffer), youconsumer (buffer)

end

FIGURE 58. Overall structure of a Concurrent Pascal program with two processes (a producer and a
consumer) and one monitor (a buffer)

257 Structuring the computation Chap.4

Processes are described in the example as nonterminating, cyclic activities
(cycle...end). Two particular instances (meproducer and youconsumer) are declared
as bound to an instance of the resource type fifostorage and subsequently acti-
vated as concurrent processes by the init statement.

4.8.2.3 Rendezvous

The examples given so far used shared memory for interprocess communica-
tion. A globally accessible buffer was used by producer and consumer pro-
cesses, and suitable synchronization promitives were introduced to allow
them to proceed safely. In the example using semaphores, synchronization
and communication features were separate. Semaphores are used for synchro-
nization; shared variables are used for communication. In the monitor exam-
ple, the two issues were more intertwined, and the resulting construct is
higher level. One can view the monitor construct as defined by two logical
components: an abstract object which is used for communication among pro-
cesses in mutual exclusion, and a signal mechanism that supports synchroni-
zation (e.g., the ability to delay and resume processes, based on some logical
condition). Note that while the first component is intrinsically based on a
shared memory computation paradigm, the second is not, and might be used
also in a decentralized scheme for concurrent computation.

In this section we ill sustrate the rendezvous concept introduced by the Ada
programming language. The construct can be viewed as a high-level mecha-
nism that combines synchronization and communication, where communica-
tion is based on the message passing conceptual paradigm. The construct, per
se, can be naturally used to write software for distributed architectures,
although its possible interaction with other features in Ada can make this
quite difficult. Hereafter we concentrate on the basic properties of rendez-
vous; additional features and the interaction with other facili ties provided by
the language (such as scope rules and exception handling), will be ignored for
the sake of simplicity.

The Ada task object in Figure 59 describes a process that handles the opera-
tions append and remove on a buffer.

258 Structuring the computation Chap.4

The declaration of task Buffer_Handler specifies Append and Remove as entries.
An entry can be viewed as a port, through which a task can send a message to
another task, which can then accept it. The task can indicate its willingness to
accept a message if it is an owner of the corresponding entry (i.e., the entry is
declared in it). It does so by executing the accept statement. At this point, the
sender and the receiver tasks can be viewed as meeting together (in French,
they perform a rendezvous).

If the sender calls the entry (i.e., sends the message) before the receiver issues
an accept, the sender is suspended until the rendezvous occurs. Similarly, a
suspension of the receiver occurs if an accept statement is executed before the
corresponding entry is called (i.e., before the message is sent). Note that a
task can accept messages from more than one task; consequently, each entry
potentially has a queue of tasks which sent messages to it.

task Buffer_Handler is --task declaration
entry Append (Item: in Integer);
entry Remove (Item: out Integer);

end;
task body Buffer_Handler is --task implementation

N: constant Integer := 20;
Contents: arr ay (1. .N) of Integer;
In_Index, Out_Index: Integer range 1. .N := 1;
Tot: Integer range 0. .N := 0;

begin loop
select

when Tot < N =>
accept Append (Item: in Integer) do

Contents (In_Index) := Item;
end;

In_index := (In_Index mod N)+1;
Tot := Tot+ 1

or
when Tot > 0 =>

accept Remove (Item: out Integer) do
Item := Contents (Out_Index);

end;
Out_Index := (Out_Index mod N) + 1;
Tot := Tot - 1;

end select;
end loop;
end Buffer_Handler;

FIGURE 59.An Ada task that manages a buffer

259 Structuring the computation Chap.4

The accept statement is similar to a routine. After a repetition of the header of
the entry, the do. . .end part (accept body) specifies the statements to be exe-
cuted at the rendezvous. Once a match between an entry call and the corre-
sponding accept occurs, the sender is suspended until the accept body is
executed by the called task. The accept body is the only place at which the
parameters of the entry are accessible. Possible out parameters (as in the case
of REMOVE) are passed back to the sender at the end of the rendezvous, that
is, when the execution of the accept body is completed. Thereafter, the two
tasks that met in the rendezvous can proceed in parallel.

The bodies of tasks PRODUCER and CONSUMER, which interact with
BUFFER_HANDLER in the producer-consumer example, are sketched in Figure
60.

In the example of Figure 59, accept statements are enclosed within a select

statement. The select statement specifies several alternatives, separated by or,

that can be chosen in a nondeterministic fashion. The Ada selection is speci-
fied by an accept statement, possibly prefixed (as in our example) by a when

condition. Execution of the select statement proceeds as follows1.

1. The conditions of the when parts of all alternatives are evaluated. Alternatives with a true
condition, or without a when part, are considered open; otherwise, they are considered
closed. In the example, both alternatives are open if 0 < TOT < N.

2. An open alternative can be selected if a rendezvous is possible (i.e. an entry call already
has been issued by another task). After the alternative is selected, the corresponding
accept body is executed.

3. If there are open alternatives but none can be selected immediately, the task waits until a
rendezvous is possible.

1. This is a simplified view of Ada. We are ignoring several features that would complicate our presentation.

PRODUCER

loop
produce a new value V;
Buffer_Handler . Append (V);
exit when V denotes the end of

 the stream;
end loop;

CONSUMER

loop
Buffer_Handler . Remove (V);
consume V;
exit when V denotes the end of

the stream;
end loop

FIGURE 60.Sketch of the producer and consumer tasks in Ada

260 Structuring the computation Chap.4

4. If there are no open alternatives, an error condition is signaled by the language-defined
exception PROGRAM_ERROR.

4.8.2.4 Summing up

Semaphores, monitors, and rendezvous are all primitives for modeling con-
current systems. As we pointed out, semaphores are rather low-level mecha-
nisms: programs are difficult to read and write, and few checks on their
correct use can be done automatically. Monitors, on the other hand, are a
higher-level structuring mechanism. Using monitors, a typical system struc-
turing proceeds by identifying (1) shared resources as abstract objects with
suitable access primitives (passive entities), and (2) processes (active entities)
that cooperate through the use of resources. Resources are encapsulated
within monitors. Mutual exclusion on the access to a shared resource is guar-
anteed automatically by the monitor implementation, but synchronization
must be enforced by explicitly suspending and signaling processes via delay
and continue statements. The distinction between active and passive entities
(processes and monitors, respectively) disappears in a scheme based on ren-
dezvous. Shared resources to be used cooperatively are represented by tasks,
that is, by active components representing resource managers. A request to
use a resource is represented by an entry call , i.e., by sending a message
which must be accepted by the corresponding resource manager.

A system structured via monitors and processes can be re-structured via tasks
and rendezvous, and vice versa; the choice between the two schemes is
largely dependent on personal taste. As we mentioned, the latter scheme mir-
rors more directly the behavior of a concurrent system in a distributed archi-
tecture, where remote resources are actually managed by processes that
behave as guardians of the resource. However, it can be somewhat awkward
in case processes need to communicate via shared objects. In fact, early expe-
rience with the Ada programming language, which initially provided only
rendezvous, showed that the need for additional tasks to manage shared data
often led to poor performance. Therefore, Ada 95 introduced a kind of moni-
tor construct–protected types–in addition to the rendezvous.

The use of an Ada protected type to implement our running example of a
buffer type (Fifo_Storage) is shown in Figure 61.

261 Structuring the computation Chap.4

Similar to the monitor, operations defined for a protected type are executed
by the underlying abstract machine in mutual exclusion. There are two kinds
of possible operations: routines (i.e., procedures and functions) and entries.
Entries (shown in the above example) have an associated barrier condition
which is used for synchronization. Routines have no associated barriers. The
difference with the monitor is that no explicit signals are issued. Rather, when
an entry is called its barrier is evaluated; if the barrier is false then the calling
process is suspended and queued. At the end of the execution of an entry (or a
routine) body, all barriers which have queued tasks are re-evaluated, thus pos-
sibly allowing a suspended task whose barrier became true to be resumed.
The absence of explicit signals to be exchanged for synchronization purposes
makes the construct simpler to use and the corresponding abstraction easier to
understand than in the case of monitors.

Ada is perhaps the best example of a programming language which provides
a coherent set of well integrated features supporting concurrent programming.

protected type Fifo_Storage is
entry Append (Item: in Integer);
entry Remove (Item: out Integer);

pr ivate
N: constant Integer := 20;
Contents: arr ay (1. .N) of Integer;
In_Index, Out_Index: Integer range 1. .N := 1;
Tot: Integer range 0. .N := 0;

protected body Fifo_Storage is
entry Append (Item: in Integer) when Tot < N is
begin

Contents (In_Index) := Item;
In_Index := (In_Index mod N) + 1;
Tot := Tot + 1

end Append;

entry Remove (Item: out Integer) when Tot > 0 is
begin

Item := Contents (Out_Index);
Out_Index : = (Out_Index mod N) + 1;
Tot := Tot - 1;

end Remove;
end Fifo_Storage;

FIGURE 61.A protected Ada type implementing a buffer

262 Structuring the computation Chap.4

Most other languages do not. Such languages often provide support for con-
current programming either via calls to low-level operating system primitives
or via libraries added to language implementations.

*** Linda is a library for C???***

*** To support distributed systems programming, there are libraries support-
ing remote procedure calls. In such a case*******

*** task library of C++***

*** sidebar on data concurrency???***

4.8.3 Implementation models

In a concurrent system, processes either are suspended (waiting on some syn-
chronization condition) or are potentially active, that is, there are no logical
obstacles to their execution. In general, only a subset of potentially active
processes can be running, unless there are as many processors as there are
potentially active processes. In the common case of a uniprocessor, only one
of such processes can be running at a time. It is thus customary to say that
processes can be in one of the following states (see also Figure 62).

• - Waiting

• - Ready (i.e., potentially active, but presently not runnning)

• - Running
The state of a process changes from running to waiting if there is some logical
condition that prevents the process from continuing its execution. That is, the
proces is suspended by the execution of some synchronization statement (e.g.,
the buffer is full for the producer process). The state can later change from
waiting to running if some other process performs a suitable synchronization
statement (e.g., a consumer process signals that the buffer is not full any
more).

In concurrent programming, the programmer has no direct control over the
speed of execution of the processes. In particular, the user is not responsible
for changing the state of a process from ready to running (operation of selec-
tion in Figure 62), which is done by the underlying implementation. Figure 62
shows that a process can leave the running state and enter the ready state as a
consequence of the action of preemption.

263 Structuring the computation Chap.4

Preemption is an action performed by the underlying implementation; it
forces a process to abandon its running state even if, from a logical point of
view, it could safely continue to be executed. A process can be preempted
either after it performs a synchronizing statement that makes another sus-
pended process enter the ready state (e.g., a V on a semaphore) or when some
other condition occurs, such as the expiration of a specified amount of time
(time slice).

After the preemption of one process, one of the ready processes can enter the
running state. This kind of implementation allows the programmer to view
the system as a set of activities that proceed in parallel, even if they are all
executed by the same processor. Only one process at a time can be executed
by the processor, but each process runs only for a limited amount of time,
after which control is given to another process. It is possible to have nonpre-
emptive implementation of concurrency. In this case, execution switches to
another process only when the currently executing process deliberately sus-
pends itself or requires the use of an unavailable re-source.

The portion of run-time support of a concurrent language responsible for the
implementation of the state transitions shown in Figure 62, is called the ker-
nel. To illustrate the basic features of a kernel, consider the case of a single
processor shared by a set of processes. For the sake of simplicity, we will
ignore the problems of synchronizing processes with input/output devices and
concentrate our attention on the interactions among internal processes. More
complete discussions of these issues are traditionally (and more properly)
addressed in textbooks on operating systems. Here we provide only a glimpse
of the basic problems that are relevant to understanding concurrency features

FIGURE 62.State diagram for a process

Process

creation

Selection

Preemption

Process

termination

Synchronization
statement executed
by the process

Synchronization
statement executed
by some other process

Ready Running

Waiting

264 Structuring the computation Chap.4

of programming languages.

The information about a process needed by the kernel is represented in a pro-
cess descriptor, one for each process. The descriptor for a process is used to
store all the information needed to restore the process from a waiting or
blocked state to the running state. This information (called process status)
includes the process priority (if priorities are used) and all information
required to instruct the processor about the identity and point of execution of
the process–notably, the contents of the machine registers (program counter,
index registers, accumulator, and so on). Saving the status of the process
when the process becomes suspended and restoring the status when the pro-
cess becomes running is one of the kernel's jobs.

The kernel can be viewed as an abstract data type; it hides some private data
structures and provides procedures that provide the only ways to use these
data structures. All of the kernel’s operations are assumed to be executed in a
noninterruptible way; i.e., all interrupts are disabled while they are being exe-
cuted. The kernel's private data structures are organized as queues of process
descriptors. The descriptors of ready processes are kept by the kernel in
READY_QUEUE. There is also one CONDITION_QUEUE for each condition that
might suspend a process, that is, there is one queue for each semaphore and
one for each object declared to be of type queue in a monitor (and for each
entry in a protected Ada type). Each such queue is used to store the descrip-
tors of all processes suspended on the semaphore or delayed in the queue. A
variable RUNNING denotes the descriptor of the running process. A typical
snapshot of the kernel's data structures is shown in Figure 5.4. The queues
used by the kernel can be considered as instances of an abstract data type
whose operations are defined by the following signatures:

enqueue: Queue x Descriptor -> Queue -- inserts a descriptor into the queue
dequeue: Queue -> Queue x Descriptor -- extracts a descriptor from the queue
empty: Queue -> Boolean -- true if the queue is empty; false otherwise

In what follows, we discuss the basic operations performed by the abstract
machine to execute concurrency constructs. The notation we use is a self-
explaining pseudo-code based on C++. Whenever necessary, additional com-
ments are added to the pseudo-code.

Time slicing is implemented by a clock interrupt. Such an interrupt activates
the following kernel operation Suspend-and-Select, which suspends the most
recently running process into READY_QUEUE and transfers a ready process

265 Structuring the computation Chap.4

into the running state.

Operation Suspend-and-Select

RUNNING = process_status;
-- save status of running process into RUNNING

READY_QUEUE . enqueue (RUNNING);
-- enqueue RUNNING into READY_QUEUE

RUNNING = READY_QUEUE . dequeue ();
-- move a descriptor from READY_QUEUE into RUNNING

process_status = RUNNING;
-- activate the new process)

4.8.3.1 Semaphores

If semaphores are provided by the language, primitives P and V can be imple-
mented as calls to kernel procedures. A suspension on a condition c caused by
a P operation is implemented by the following private operation of the kernel

Operation Suspend-on-Condition (c)

RUNNING = process_status;
CONDITION_QUEUE (c) . enqueue (RUNNING);
RUNNING = READY QUEUE . dequeue ();
process_status = RUNNING;

Awakening a process waiting on condition c, caused by a V operation, is
implemented by the following private operation of the kernel.

Operation Awaken

FIGURE 63. Data structures of the kernel

RUNNING

READY_QUEUE

CONDITION_QUEUE_1

CONDITION_QUEUE_2

266 Structuring the computation Chap.4

RUNNING = process_status;
READY_QUEUE . enqueue (RUNNING);
READY_QUEUE . enqueue (CONDITION_QUEUE (c) . dequeue ());

-- move a descriptor from CONDITION_QUEUE (c) into READY_QUEUE
RUNNING = READY_QUEUE . dequeue ();
process_status = RUNNING;

Note that this implementation guarantees indivisibility of primitives P and V,
since we assumed that kernel operations are noninterruptible.

4.8.3.2 Monitors and signals

In the case of monitors and Ada’s protected types, a simple way to implement
the required mutual exclusion consists of disabling interrupts when a monitor
procedure is called and enabling them on return from the call . We assume that
interrupts are enabled and disabled by a single machine instruction, and that a
special machine register determines whether interrupts are enabled or dis-
abled. This register is part of the process status and must be saved in the pro-
cess descriptor when the process is suspended. For the sake of simplicity, we
also assume that monitor procedures do not contain calls to other monitor
procedures. When a process calls a monitor procedure, the value of the return
point from the call i s saved in an entry of the process descriptor. Operations
delay and continue can be implemented by kernel procedures. In particular, delay

is implemented by operation Suspend-on-Condition, and continue (c), where c is a
condition queue, is implemented by the following operation.

Operation Continue (c)

RUNNING = process_status (with interrupts enabled and program counter set to
the return point from the monitor call);

READY_QUEUE . enqueue (RUNNING);
if CONDITION_QUEUE (c) . empty then

RUNNING = READY QUEUE . dequeue ();
else {

RUNNING = CONDITION_QUEUE (c). dequeue ();
process_status = RUNNING

}
Note that we did not state the policies for the management of queues in this
abstract implementation. Queues might be handled according to a first-in-
first-out policy, or one may even use sophisticated strategies which take into
account waiting times and priorities. The part of the kernel responsible for
choosing a policy is called the scheduler. In our scheme, the scheduler is a
part of the implementation of the abstract data type that defines queues.

267 Structuring the computation Chap.4

4.8.3.3 Rendezvous

In this section, we discuss some implementation issues of Ada's rendezvous
mechanism. There is one queue of ready tasks (READY_QUEUE). Each entry
has a descriptor that contains the following fields.

• A boolean value O describing whether the entry is open (O = true indicates that the task
owning the entry is ready to accept a call to this entry).

• A reference W to a queue of descriptors of tasks whose calls to the entry are pending
(waiting queue).

• A reference T to the descriptor of the task owning the entry.
• A reference I to the first instruction of the accept body (to simpli fy matters, we assume

that no two accept statements for the same entry can appear in a select statement). This
reference is significant only if the task owning the entry is ready to accept a call to the
entry (that is, O = true). For simplicity, we can assume that the value of this field is a
constant, statically associated with the entry.

As usual, we assume that the implementation of the synchronization state-
ments is done by kernel operations that are noninterruptible, that is, interrupts
are disabled and enabled by the kernel before and after executing such state-
ments. The problem of passing parameters across tasks is ignored for simplic-
ity.

Let e be an entry that is called by a task, and let DESCR (e) be e’ s descriptor.
The implementation of a call to entry e can be done by the kernel as follows.

RUNNING = process_status;
(DESCR (e) . W) . enqueue (RUNNING); -- the running process is saved
if DESCR (e).O { -- the entry is open

for all open entries oe of the task
oe.O = false; -- close the entries

RUNNING = DESCR (e) . T; -- the task owning the entry becomes running
RUNNING . pc = DESCR (e) . I;

-- pc is the field containing the value of the program counter
 -- which is set to the value stored in field I of the entry’s descriptor
else

RUNNING = READY_QUEUE . dequeue ();
}

When the end of the body of an accept statement is reached, the following ker-
nel actions complete the rendezvous.

RUNNING = process_status;
READY_QUEUE . enqueue (Descr (e) . W);

-- move descriptor of caller referenced by field W of the entry's descriptor
-- into READY_QUEUE

READY_QUEUE . enqueue (RUNNING);

268 Structuring the computation Chap.4

RUNNING = READY_QUEUE . dequeue ();
process_status = RUNNING;

The actions to be executed as a consequence of an accept statement for entry
e (not embedded in a select statement) are

if (DESCR (e) . W) . empty () {
DESCR (e) . O = true;
DESCR (e) . T = process_status;
RUNNING = READY_QUEUE . dequeue ()
process_status = RUNNING;

} -- if the waiting queue is not empty, then simply continue
-- executing the accept body

To execute a select statement, a list of the open entries involved in the selec-
tion is first constructed. If this li st is empty, then the exception
PROGRAM_ERROR is raised. Otherwise, the following kernel actions are
required.

if for all e in the list (DESCR (e) . W) . empty () = true {
 for all e in the list {

DESCR (e) . O = true;
DESCR (e) . T = process_status;

} ;
RUNNING = READY_QUEUE . dequeue ()
process_status = RUNNING;

else
choose an e with(DESCR (e) . W) . empty () = false
proceed execution from instruction DESCR (e) . I

}

4.9 Bibliographic note

Statement-level control structures were the subject of active research in the
late 60’s and early 70’s. E.W. Dijkstra was first to stress the need for disci-
pline in programming, and the influence of unconstrained jumps (goto state-
ments) on the production of obscure, unstructured programs (Dijkstra 1968a).
Much of the subsequent research on "structured programming" was aimed at
uncovering suitable control structures that could promote the writing of well -
organized, readable programs. For a comprehensive retrospective view of this
work, the reader may refer to (Knuth 1974).

Research on exception handling began in the early 70’s (Goodenough 1975).
The main directions of investigations were design methods and language con-
structs to deal with exceptions. For a comprehensive survey of the field, the

269 Structuring the computation Chap.4

reader may refer to (Cristian ***). The discussion reported in the chapter on
exception handling of (Stroustrup 1994) is an excellent account of the
tradeoffs that must be considered by a language designer in the definition of
certain programming language features. For a detailed understanding of the
different choices made by different programming languages, the reader
should refer to the specific bibliographic sources (see the Glossary).

Backtracking and and-or graphs are presented in most textbooks on computer
algorithms, such as (Horowitz and Sahni 1978). They are also often discussed
in the context of artificial intelli gence methodologies (***). Event-driven
control structures in the context of database applications are surveyed in (Fra-
ternali and Tanca ***).

An extensive study of coroutines is reported by (Marlin 1980). This includes
a survey of languages, a semantic description of the concept, and a discussion
of programming language methodologies.

Concurrency in programming languages is often studied either as part of an
operating systems course or as a separate course on concurrent programming.
(Andrews 1991) and (Ben Ari 1990) provide an in-depth coverage of concur-
rent and distributed programing. Historically, the concept of semaphore was
introduced in (Dijkstra 1968b). Monitors were introduced by (Brinch Hansen
1973) and (Hoare 1974). (Hoare 1978) is a classical in the literature on mes-
sage passing,. It strongly influenced the rendezvous concept of Ada.

4.10 Exercises

1. Study the case statement of Pascal and compare it to the C++ switch statement and the
Ada case statement.

2. What is the minimum possible number of iterations of the body of a Pascal while loop?
How about a repeat loop?

3. It can be shown that, in principle, any program can be written using just these control
structures:

• grouping statements into a block;
• if. . .then. . .else. . .
• while. . .do. . .

– Show how other control structures (such as the case statement or a repeat loop) can be
represented using the above minimal set;

– Discuss why in practice a richer set of control structures is provided by a programming
language.

270 Structuring the computation Chap.4

4. Show how pointers to procedures (or functions) can be used in Ada to pass procedures (or
functions) as parameters.

5. Ada, as originally defined, did not allow procedures or functions to be passed as
parameters to a procedure (or function). Can this drawback be overcome by the use of
generics? How? What are the differences with respect to passing a routine as a parameter?

6. Explain why aliasing makes the effect of implementing parameter passing by reference
and by value result different. Give an example.

7. Check on the Ada manual how the language specifies what happens when the effects of
passing parameters by reference and by value-result are different.

8. What are the strings matched by the following SNOBOL4 pattern?
OPERATOR = '+', '-'
EXPRESSION = *EXPRESSION OPERATOR *EXPRESSION | IDENTIFIER

9. Ada provides features to transfer specific information on the point where an exception is
raised to the corresponding handler. Check on the language manual how this can be
accomplished and show how these features can be used during debugging.

10. Compare the feature provided by Ada to disable exception (see the language manual) with
the disabling mechanism provided by PL/I.

11. How can the exception handling faciliti es of C++ be used to achieve the same effect as
that described by the Eiffel fragment of Section 5.4.3?

solution

int i
while i < n
try {

execute method i
}
catch fail {

i++;
if i = n then throw

}
12. Suppose you have a program unit U that calls a function fun, which may raise exceptions

and propagates them back to U. There are five kinds of exceptions that can be propagated:
V, X, Y, Z, and W. An exception of kind V allows U to do some fixing and then re-invoke
fun. An exception of kind X allows U to do some clean-up of the local state and then
proceed normally. An exception of kind Y allows U to simply propagate the same
exception. An exception of kind Z allows U to perform some action, and then turn the
received exception into another exception which is raised. Finally, an exception of kind
W forces U to terminate the entire program.
Provide an implementation of this scheme in C++, Ada, and Eiffel.

13. Write a short assessment of exception handling in ML, according to the style of the
assessment we did in Section 5.4.4.

14. Examine the manuals of a few languages of your choice to find out what happens if an
exception is raised while an exception is being handled.

15. Discuss how memory is managed for coroutines, assuming a block structured language
where coroutines can be declared locally inside (co)routines. Thus, the creation of a set of
coroutines can be viewed as the creation of a new execution stack, one for each coroutine.

271 Structuring the computation Chap.4

16. In the producer-consumer example implemented with semaphores in Section 4.8.3.1,
suppose that V (mutex) is written incorrectly as P (mutex) in process Producer. How does
the system behave?

17. When semaphores are used to implement mutual exclusion, it is possible to associate a
semaphore SR with each resource R. Each access to R can then be written as

P (SR);
access R;
V (SR)

• What should the initial value of SR be?
18. Some computers provide an indivisible machine-instruction test and set (TS) that can be

used for synchronization purposes. Let X and Y be two boolean variables. The execution
of the instruction TS (X, Y) copies the value of Y into X and sets Y to false. A set of
concurrent processes that must execute some instructions in mutual exclusion can use a
global boolean variable PERMIT, initialized to true, and a local boolean variable X in the
following way:

repeat TS (X, PERMIT)
until X;
instructions to be executed in mutual exclusion;
PERMIT:= true

• In this case, processes do not suspend themselves; they are always executing (this is called
busy waiting). Compare this solution to one based on semaphores in which P and V are
implemented by the kernel.

• Describe how to implement P and V on semaphores by using the test and set primitive in
a busy wait scheme.

19. Use protected types in Ada to implement semaphores.
20. Define an Ada protected type to implement a shared protected variable that can be read

and written in mutual exclusion.
21. How can you define task types in Ada? What are the main differences between protected

types and task types?
22. We implemented mutual exclusion of monitor procedures by disabling interrupts. An

alternative solution uses a semaphore for each monitor and performs a P on the semaphore
before entering a monitor procedure, and a corresponding V upon exit. Detail this
implementation and compare the two solutions.

23. Show how an Ada task can be used to implement a semaphore.
24. Show how an Ada protected type can be used to implement semaphores.
25. Design an Ada package that implements the abstract data type queue that is used in the

abstract implementation of concurrency in Section 5.8.3
26. Design a C++ class that implements the abstract data type queue that is used in the abstract

implementation of concurrency in Section 5.8.3

272 Structuring the computation Chap.4

1

273

1
C H A P T E R 5

Structur ing the program5

The basic mechanisms described in previous chapters for structuring data
(Chapter 3) and computation (Chapter 4) may be used for programming in the
small. In Chapter 4, we also have seen the use of control structures for struc-
turing large programs. This chapter deals strictly with issues of programming
in the large. We describe the basic concepts for structuring large programs
(encapsulation, interfaces, information hiding) and the mechanisms provided
by languages to support it (packaging, separate compilation). We also con-
sider the concept of genericity in building software component libraries. We
do not go deeply into object-oriented programming, which is the subject of
the next chapter.

The production of large programs—those consisting of more than several
thousand lines—presents challenging problems that do not arise when devel-
oping smaller programs. The same methods and techniques that work well
with small programs just don’ t “scale up.” To stress the differences between
small and large systems production, we refer to “programming in the small”
and “programming in the large.”

Two fundamental principles—abstraction and modularity—underlie all
approaches to programming in the large. Abstraction allows us to understand
and analyze the problem by concentrating on its important aspects. Modular-
ity allows us to design and build the program from smaller pieces called mod-
ules. During problem analysis, we discover and invent abstractions that allow

274 Structuring the program Chap.5

us to understand the problem. During program design and implementation,
we try to discover a modular structure for the program. In general, if modules
that implement the program correspond closely to abstractions discovered
during problem analysis, the program will be easier to understand and man-
age. The principles of modularity and abstraction help us apply the well -
known problem solving strategy known as “divide and conquer.”

The concept of a “ large program” is diff icult to define precisely. We certainly
do not want to equate the size of a program (e.g., the number of source state-
ments) with its complexity. Largeness relates more to the “size” and com-
plexity of the problem being solved than to the final size of a program in
terms of the number of source lines. Often, however, the size of a program is
a good indication of the complexity of the problem being solved. Consider the
task of building an airline reservation system. The system is expected to keep
a database of flight information. Reservation agents working at remote sites
may access the database at arbitrary times and in any order. They may inquire
about flight information, such as time and price; make or cancel a reservation
on a particular flight; update existing information, such as the local telephone
number for a passenger. Certain authorized personnel can access the database
to do special operations, such as adding or canceling a flight, or changing the
type of the airplane assigned to a flight. Others may access the system to
obtain statistical data about a particular flight or all flights.

A problem of this magnitude imposes severe restrictions on the solution strat-
egy and the following key requirements:

• The system has to function correctly. A seemingly small error, such as assignment to
the wrong pointer, may lead to losing a reservation list or interchanging two different
lists and be extremely costly. To guarantee correctness of the system virtually any cost
can be tolerated.

• The system is “ long-lived.” The cost associated with producing such a system is so high
that it is not practical to replace it with a totally new system. It is expected that the cost
will be recouped only over a long period of time.

• During its li fetime, the system undergoes considerable modification. For our example,
because of completely unforeseen new government regulations, changes might be
required in price structure, a new type of airplane might be added, and so on. Other
changes might be considered because experience with the system has uncovered new
requirements. We might find it desirable to have the system find the best route auto-
matically by trying different connections.

• Because of the magnitude of the problem, many people—tens or hundreds— are

 275

involved in the development of the system.

The study of these problems and their solutions is outside the scope of this
book: they are studied in software engineering. This chapter deals with
requirements that these issues place on the programming language. Thus, this
chapter is about program organization issues. Section 5.1 reviews software
design methods. Design methods provide guidelines for applying divide and
conquer in software design. In Section 5.2 we discuss the concepts of encap-
sulation, interface, separate compilation, and module libraries. These con-
cepts provide the bases for the application of modularity in programming
languages. Case studies of different languages are provided in Section 5.3.

5.1 Software design methods

To combat the complexities of programming in the large, we need a system-
atic design method that guides us in composing a large program out of
smaller units—which we call modules. A good design is composed of mod-
ules that interact with one another in well -defined and controlled ways. Con-
sequently, each module can be designed, understood, and validated
independently of the other modules. Once we have achieved such a design,
we need programming language facilit ies that help us in implementing these
independent modules, their relationships, and their interactions.

The goal of software design is to find an appropriate modular decomposition
of the desired system. Indeed, even though the boundaries between program-
ming in the large and programming in the small cannot be stated rigorously,
we may say that programming in the large addresses the problem of modular
system decomposition, and programming in the small refers to the production
of individual modules. A good modular decomposition is one that is based on
modules that are as independent from each other as possible. There are many
methods for achieving such modularity. A well-known approach is informa-
tion hiding which uses the distribution of “secrets” as the basis for modular
decomposition. Each module hides a particular design decision as its secret.
The idea is that if design decisions have to be changed, only the module that
“knows” the secret design decision needs to be modified and the other mod-
ules remain unaffected.

In Chapter 1 we discussed the importance of software design. If a design is
composed of highly independent modules, it supports the requirements of
large programs:

276 Structuring the program Chap.5

• Independent modules form the basis of work assignment to individual team members.
The more independent the modules are, the more independently the team members can
proceed in their work.

• The correctness of the entire system may be based on the correctness of the individual
modules. The more independent the modules are, the more easily the correctness of the
individual modules may be established.

• Defects in the system may be repaired and, in general, the system may be enhanced
more easily because modifications may be isolated to individual modules.

5.2 Concepts in suppor t of modular ity

To summarize the discussion of the last section, the key to software design is
modularization. A good module represents a useful abstraction; it interacts
with other modules in well-defined and regular ways; it may be understood,
designed, implemented, compiled, and enhanced with access to only the spec-
ification (not the implementation secrets) of other modules. Programming
languages provide facil ities for building programs in terms of constituent
modules. In this chapter, we are interested in programming language concepts
and facilit ies that help the programmer in dividing a program into subparts—
modules—the relationships among those modules and the extent to which
program decompositions can mirror the decomposition of the design.

We have already seen some units of program decomposition in Chapters 3
and 4. Procedures and functions are an effective way of breaking a program
into two modules: one which provides a service and another which uses the
service. We may say that the procedure is a server or service provider and the
caller is a client. Even at this level we can see some of the differences
between different types of modularization units. For example, if we provide a
service as a function, then the client has to use the service in an expression.
On the other hand, if we provide the service in a procedure, then the client
may not use it in an expression and is forced to use a more assignment-ori-
ented or imperative style.

Procedures and functions are units for structuring small programs, perhaps
limited to a single file. Sometimes, we may want to organize a set of related
functions and procedures together as a unit. For example, we saw in Chapter
3 how the class construct of C++ lets us group together a data structure and
related operations. Ada and Modula-2 provide other constructs for this pur-
pose. Before we delve into specific language facilities, we will first look at
some of the underlying concepts of modularity. These concepts help motivate

 277

the need for the language facilities and help us compare the different lan-
guage approaches.

5.2.1 Encapsulation

A program unit provides a service that may be used by other parts of the pro-
gram, called the clients of the service. The unit is said to encapsulate the ser-
vice. The purpose of encapsulation is to group together the program
components that combine to provide a service and to make only the relevant
aspects visible to clients. Information hiding is a design method that empha-
sizes the importance of concealing information as the basis for modulariza-
tion. Encapsulation mechanisms are linguistic constructs that support the
implementation of information hiding modules. Through encapsulation, a
module is clearly described by two parts: the specification and the implemen-
tation. The specification describes how the services provided by the module
can be accessed by clients. The implementation describes the module’s inter-
nal secrets that provide the specified services.

For example, assume that a program unit implements a dictionary data struc-
ture that other units may use to store and retrieve <name, “ id”> pairs. This
dictionary unit makes available to its clients operations for: inserting a pair,
such as <“Mehdi” , 46>, retrieving elements by supplying the string compo-
nent of a pair, and deleting elements by supplying the string component of a
pair. The unit uses other helper routines and data structures to implement its
service. The purpose of encapsulation is to ensure that the internal structure of
the dictionary unit is hidden from the clients. By making visible to clients
only those parts of the dictionary unit that they need to know, we achieve two
important properties.

• The client is simplified: clients do not need to know how the unit works in order to be able
to use it; and

• The service implementation is independent of clients and may be modified without
affecting the clients.

Different languages provide different encapsulation facilities. For example, in
C, a file is the unit of encapsulation. Typically, the entities declared at the
head of a file are visible to the functions in that file and are also made avail -
able to functions in other files if those functions choose to declare them. The
declaration:

extern int max;
states that the variable max to be used here, is defined—and storage for it allo-

278 Structuring the program Chap.5

cated—elsewhere. Variables declared in a C function are local and known
only to that function. Variables declared outside of functions are assumed to
be available to other units, if they declare them using the extern specifier. But a
unit may decide to hide such variables from other units by declaring them as
static.

We have already seen the class construct of C++ in Chapter 3 which makes
only a subset of the defined entities—those declared as public—available to
clients. All other class information is hidden. Figure 64 is a C++ class that
declares the dictionary service mentioned above.

This program declares five publicly available functions. As we know from
Chapter 4, the first two functions, dict() and ~dict(), may be used to create
and clean up a dictionary object, respectively. The other three functions may
be used to access the dictionary object. The private part of the class defines
the representation of a node of a dictionary and the root of the dictionary. This
part of the declaration is not visible to the users of the class. The module
encapsulates the dictionary service, both providing access and hiding unnec-
essary details.

As we have seen also in Chapter 3, the built-in types of a language are exam-
ples of encapsulated types. They hide the representation of the instances of
those types and allow only legal operations to be performed on those
instances.

class dict {
public:

dict(); //to initialize a dictionary
~dict(); //to remove a dictionary
void insert (char* c, int i);
int lookup(char* c);
remove (char* c);

private:
struct node {

node* next;
char* name;
int id} ;

node* root;
} ;

FIGURE 64.Interface of a dictionary module in C++

 279

5.2.2 Inter face and implementation

A module encapsulates a set of entities and provides access to some of those
entities. The available entities are said to be exported by the module. Each of
the exported entities is available through an interface. The collection of the
interfaces of the exported entities form the module interface. Clients request
the services provided by a module using the module’s interface, which
describes the module’s specification. The interface specifies the syntax of ser-
vice requests. Some languages also support or require the specification of the
interface’s semantic requirements. The idea is that the interface is all that the
client needs to know about the provider’s unit. The implementation of the unit
is hidden from the client. The separation of the interface from the implemen-
tation contributes to the independence of the client and the server from one
another.

A service provider exports a set of entities to its clients. A client module
imports those entities to be able to use the services of the provider module.
The exported entities comprise the service provided by the module. Some lan-
guages have implicit and others explicit mechanisms for import and export of
entities. Languages also differ with respect to the kinds of entities they allow
to be exported. For example, some languages allow a type to be exported and
others do not.

The simplest interface, one that we have already seen in Chapter 4, is a proce-
dure or function interface. A function declaration such as:

int max (int& x, int& y)
specifies to the clients that the function max may be called by passing to it two
integers; the function wil l return an integer result. We introduced the term sig-

nature to refer to these requirements on input and output for procedures and
functions. Procedure signatures form the basis of type-checking across proce-
dures. The name of the function, max, is intended to convey something about
the semantics of the function, namely that the integer it will return is the max-
imum of the two integer input parameters. Ideally, the interface would specify
the semantics and the requirements on parameters (for example that they must
be positive integers). Most programming languages do not support such facil -
ities, however, and they are left as the task of the designer to be documented
in the design documents. An exception is the Eiffel language. In Chapter 3,
we saw the use of preconditions and postconditions to specify such semantic
requirements for procedures, functions, and classes.

280 Structuring the program Chap.5

In C++, where the unit of encapsulation is a class, the interface to the class
consists of the interfaces of all the member functions of the class that are
available to clients as well as any other entities, such as types and variables,
that are made public by the unit. The public entities defined in Figure 64 con-
stitute the interface of the dictionary unit.

Ada treats the separation of interface and implementation quite strictly. In
Ada, the unit of encapsulation is a package. A package encapsulates a set of
entities such as procedures, functions, variables, and types. The package
interface consists of the interfaces provided by each of those entities. The Ada
package supports encapsulation by requiring the interface of a package
(called package specification) to be declared separately from the implemen-
tation of the package (called package body). Figure 65 shows the Ada pack-
age specification for our dictionary unit. The implementation of the
dictionary package is shown in Figure 66. The package body contains all the
implementation details that are hidden from the clients. This separation helps
achieve both of the goals stated for encapsulation in Section 5.2.1. The pack-
age body, as can be seen in the figure, defines both the implementation of the
entities defined in the package interface and the implementation of other enti-
ties internal to the module. These entities are completely hidden from the cli -
ents of the package. The package specification and the package body may
appear in different files and need not even be compiled together. To write and
compile a client module, only the service’s package specification is neces-
sary.

There are significant differences between the packages of Ada and classes of
C++. Even from this simple example we can see a difference between the
models supported by C++ and Ada. In C++, the client can declare several
instances of the dictionary class. In Ada, on the other hand, a module may be
declared once only and the client obtains access to only a single dictionary.

package Dictionary is
procedure insert (C:String; I: Integer);
function lookup(C:String): Integer;
procedure remove (C: String);

end Dictionary;

FIGURE 65.Package specification in Ada

 281

5.2.3 Separate and independent compilation

The idea of modularity is to enable the construction of large programs out of
smaller parts that are developed independently. At the implementation level,
independent development of modules implies that they may be compiled and
tested individually, independently of the rest of the program. This is referred
to as independent compilation. The term separate compilation is used to refer
to the abilit y to compile units individually but subject to certain ordering con-
straints. For example, C supports independent compilation and Ada supports
separate compilation. In Ada, as we will see later, some units may not be
compiled until other units have been compiled. The ordering is imposed to
allow checking of interunit references. With independent compilation, nor-
mally there is no static checking of entities imported by a module.

To il lustrate this point, consider the program sketch in Figure 67, written in a
hypothetical programming language. Separate compilation means that unit B,

package body Dictionary is
type node;
type node_ptr is access node;
type node is

record
name: String;
id: Integer;
next: node_ptr;

end record;
root: node_ptr;
procedure insert (C:String; I: Integer) is
begin

--imlementation...
end insert;
function lookup(C:String): Integer is
begin

--imlementation...
end lookup;
procedure remove (C: String) is
begin

--imlementation...
end remove;

begin
root := null ;

end Dictionary;

FIGURE 66.Package body in Ada

282 Structuring the program Chap.5

which imports routine X from unit A, must be compiled after A. This allows
any call to X issued by B to be checked statically against X’s definition in A. If
the language allows module interfaces to be compiled separately from their
bodies, only A’ s interface must be compiled before B; its body can be com-
piled at any time after its corresponding interface has been compiled.

Independent or separate compilation is a necessity in the development of
large programs because it allows different programmers to work concurrently
on different parts of the program. It is also impractical to recompile thousands
of modules when only a few modules have changed. Language concepts and
features are available to allow implementations to determine the fewest num-
ber of units that must be recompiled. In general, programming languages
define:

• the unit of compilation: what may be compiled independently?
• the order of compilation: are compilation units required to be compiled in any particular

order?
• amount of checking between separately-compiled modules: are inter-unit interactions

checked for validity?
The issue of separate compilation is at the border of the language definition
and its implementation. Clearly, if the language requires inter-unit checking
to be performed, this implies a programming environment that is able to
check module implementations against the interfaces of compilation units
from which they import services, for example a type-checking linker. Inter-
face-checking of separately compiled modules is analogous to static type-
checking for programming in the small: both are aimed at the development of
safe and reliable programs.

5.2.4 L ibrar ies of modules

We have seen that C++ class and Ada’s package make it possible to group
related entities into a single unit. But large programs consist of hundreds or
even thousands of such units. To control the complexity of dealing with the

Unit A
expor t routine X (int, int);
. . .

end A

Unit B
. . .
call X (. . .);
. . .

end B

FIGURE 67.Sketch of a program composed of two units

 283

large number of entities exported by all these units, it is essential to be able to
organize these units into related groups. For example, it is difficult to ensure
that all the thousands of units have unique names! In general, we can always
find groupings of units that are related rather closely.

A common example of a grouping of related services is a library of modules
such as a library of matrix manipulation routines. A library collects together a
number of related and commonly used services. Clients typically need to
make use of different libraries in the same program and since libraries are
written by different people, the names in different libraries may conflict. For
example, a library for manipulating lists and a library for manipulating dictio-
naries may both export procedures named insert. Mechanisms are needed for
clients to conveniently distinguish between such identically-named services.
We have seen that the dot notation helps with this problem at the module
level. But consider trying to use two different releases of the same library at
the same time. How can you use some of the entities from one release and
some from the other? Both C++ and Ada have recent additions to the lan-
guage to deal with these issues. We will describe these facil ities when we dis-
cuss specific languages: namespaces of C++ on page 295 and child libraries
of Ada on page302.

5.3 Language features for programming in the large

We have so far discussed the concepts of programming in the large with iso-
lated examples from programming languages. In this section we look at some
interesting ways that existing programming languages support—or do not
support—the programming in the large concepts. All programming languages
provide features for decomposing programs into smaller and largely autono-
mous units. We refer to such units as physical modules; we will use the term
logical module to denote a module identified at the design stage. A logical
module represents an abstraction identified at the design stage by the
designer. A logical module may be implemented by one or more physical
modules. The closer the relationship between the physical modules and logi-
cal modules is, the better the physical program organization reflects the logi-
cal design structure.

We will discuss the relevant aspects of each language based on the following
points:

284 Structuring the program Chap.5

• Module encapsulation: What is the unit of modularity and encapsulation supported by the
language, and how well does it support different programming paradigms?

• Separation of interface from implementation: What is the relationship among modules
that form a program? What entities may be exported and imported by a module?

• Program organization and module groupings: How independently can physical modules
be implemented and compiled? What are the visibilit y and access control mechanisms
supported by the language?

We will discuss Pascal, C, C++, Ada, and ML. Pascal and C are viewed here
as a representative of the class of traditional, minimalist, procedural lan-
guages. Our conclusions about them hold, with minor changes, for other
members of the class such as FORTRAN. C++ is a representative of class-
based languages. Ada is a representative of module-based languages,
although the 1995 version of the language has enhanced its object-orientation
support. ML is reviewed as a representative of functional languages. A few
comments on other languages will be given in Section 5.3.6.

In general, our discussion here is not about programming paradigms. Object-
oriented and functional programming support will be covered in, respec-
tively, Chapters 6 and 7.

5.3.1 Pascal

In this section we provide an assessment of Pascal’s features for program-
ming in the large. Since many dialects and extensions of Pascal exist, here we
consider the original version of the language. Most of the inconveniences dis-
cussed here have been eliminated by the enhancements provided by modern
implementations.

The only features provided by Pascal for decomposing a program into mod-
ules are procedures and functions, which can be used to implement proce-
dural abstractions. The language thus only supports procedural programming.
Some later versions of the language have modified the original version of
Pascal extensively by adding object-oriented programming features.

A Pascal program has the following structure.

program program_name (files);
declarations of constants, types, variables, procedures and functions;
begin

statements (no declarations)
end.

A program consists of declarations and operations. The operations are either

 285

the built -in ones provided by the language or those declared as functions and
procedures. A procedure or function itself may contain the declaration of con-
stants, types, variables, and other procedures and functions. The organization
of a Pascal program is thus a tree structure of modules (see static nesting tree
in Section 2.6.4 on page 104). The tree structure represents the textual nesting
of lower-level modules. Nesting is used to control the scope of names
declared within modules, according to the static binding rule presented in
Section 2.6.4.

To assess the structure of Pascal programs, consider the following example.
Suppose that the top-down modular design of a module A identifies two mod-
ules B and C providing subsidiary procedural abstractions. Similarly, module
B invokes two private procedural abstractions provided by modules D and E.
Module C invokes a private procedural abstraction provided by F. Figure 68
shows a nesting structure for a program that satisfies the design constraints.

A basic problem with the solution of Figure 68 is that the structure does not
enforce the restrictions on procedure invocations found at the design stage.
Actually, the structure allows for the possibil ity of several other invocations.
For example E can invoke D, B, and A; C can invoke B and A, and so on. On
the other hand, the structure of Figure 68 imposes some restrictions that might
become undesirable. For example, if we discover that module F needs the
procedural abstraction provided by module E, the current structure is no
longer adequate. Figure 69 shows a rearrangement of the program structure
that is compatible with this new requirement. The problem with this new
organization is that the structure no longer displays the hierarchical decompo-
sition of abstractions. Module E appears to be a subsidiary abstraction used
by A, although the only reason for its placement at that level in the tree is that
both modules B and F need to refer to it. Similar problems occur for vari-
ables, constants and types. The tree structure provides indiscriminate access
to variables declared in enclosing modules. In addition, if any two modules M
and N need to share a variable, this variable must be declared in a module that
statically encloses both M and N and thus the variable becomes accessible to

286 Structuring the program Chap.5

any other modules enclosed by this enclosing module.

Further problems are caused by the textual layout of Pascal programs. The
entire program is a single monoli thic text. If the program is large, module
boundaries are not immediately visible, even if the programmer uses careful
conventions for indentation. A module heading can appear well before its
body, because of intervening inner module declarations. Consequently, pro-
grams can be diff icult to read and modify.

The problems with Pascal discussed in this section stem from block structure,
and therefore hold for other ALGOL-like languages. Block structure is ade-

quate for programming in the small because it supports stepwise refinement
quite naturally. It is not so valuable for structuring large programs. The pro-
gram structure resulting from nesting may interfere with the logical structure
found during design. This can impair the writabilit y, readabil ity, and modifi-

FIGURE 68.Static nesting tree of a hypothetical Pascal program

A

ED

B

F

C

FIGURE 69.A rearrangement of the program structure of Figure 68.

A

B

F

C

D

E

 287

abil ity of programs.

Another important question to address is how Pascal modules can be devel-
oped independently, and how long-lived and reusable they are. These goals
are achieved by applying information hiding at the design stage to obtain a
clean definition of module interfaces. In addition, it is desirable to support the
separate implementation of modules. It should be possible to compile and cer-
tify modules separately. Separately compiled and tested modules should be
kept in a library, ready for later reuse.

The original Pascal Report does not address these issues, although most Pas-
cal implementation provided their own solutions. Thus, a number of impor-
tant questions are left unanswered by the original Report, such as

• What program entities can a separate compilation unit export?
• How is a unit interface specified?
• What amount of type checking across unit interfaces is prescribed to occur?

Different implementations have indeed adopted different solutions to these
points. As a result, Pascal programs developed on different platforms may be
incompatible. For example, some implementations allow outer-level proce-
dures and functions to be compiled independently. Independently compiled
unitsare assembled via a standard linker, which resolves the bindings between
the entities imported by each module and the corresponding entities exported
by other modules. No intermodule checkes are performed, however, to verify
that, say, a call to an external procedure is inconsistent with the correspond-
ing procedure declaration. Errors of this kind might remain uncaught, unfor-
tunately. There are modern implementations of Pascal, such as Turbo Pascal,
however, which provide safer separate-compilation facilities based on the
notion of a module that encapsulates a set of constants, procedures and types.

5.3.2 C

C provides functions to decompose a program into procedural abstractions. In
addition, it relies on a minimum of language features and a number of con-
ventions to support programming in the large. These conventions are well
recognized by C programmers and are even reflected in tools that have been
developed to support the language. Indeed, a major portion of the program-
ming in the large support is provided by the file-inclusion commands of the C
preprocessor. Thus, even though the compiler does not provide any explicit
support or checking for inter-module interaction, the combination of conven-

288 Structuring the program Chap.5

tions and the preprocessor has proven in practice to be an adequate and popu-
lar way to support programming in the large.

The C unit of physical modularity is a file. A logical module is implemented
in C by two physical modules (files) which we may roughly call the module’s
interface and its implementation. The interface, called a “header” or an
“ include” file, declares all symbols exported by the module and thus available
to the clients of the module. The header file contains the information neces-
sary to satisfy the type system when the client modules are compiled. The
implementation file of the module contains the private part of the module and
implements the exported services. A client module needing to use the func-
tionality of another module “ includes” the header file of the provider module.
A header file may declare constants, type definitions, variables, and func-
tions. Only the prototype of the function—its signature—is given by the dec-
laration; the function definition appears in the implementation file. Functions
may not be nested. Any names defined in a file are known throughout that file
and may also be known outside of that file.

The header files are used to resolve inter-module references at compile-time.
At link-time, all implementation files are searched to resolve inter-module
(i.e. inter-file) references. The header file is usually named with a .h exten-
sion and the implementation file is named with a .c extension. These conven-
tions have largely overcome the lack of any explicit support for program
organization.

Figure 70 shows the header and implementation files for a module providing
a stack data structure. language provides no encapsulation facili ties. For
example, the main program in Figure 70 has complete access to the internal
structure of the stacks s1 and s2. In fact, this property is used by the main pro-
gram to initialize the stacks s1 and s2 to set their stack pointers (top) to 0.
There are ways to implement this program to reduce this interference between
client and server but all depend on the care taken by the programmer. There is
no control over what is exported: by default, all entities in a file are exported.
Files may be compiled separately and inter-file references are resolved at link
time with no type-checking. A file may be compiled as long as all the files it
includes are available.

 289

The general structure of a C file is shown in Figure 72. All files have similar
structure except that one of the files (only) must contain a function named
main, which is called to start the program. Because functions are not allowed
to be nested in C, the nesting problems of Pascal do not occur.

/* file stack.h * /
/*declarations exported to clients* /
typedef struct stack {

int elments[100]; /* stack of 100 ints * /
int top; /*number of elements* /

} ;
extern void push(stack, int);
extern int pop(stack);
/* end of f ile stack.h * /
/* *** *----------------------end of file *** * /

/* file stack.c * /
/* implementation of stack operations*/
#include''stack.h''
void push(stack s, int i) {

s.elements[s.top++] = i;
} ;
int pop (stack s) {

return --s.top;
} ;
/* *** *----------------------end of file *** * /

/* file main.c * /
/*A client of stack* /
#include ''stack.h''
void main(){

stack s1, s2; /*declare two stacks * /
s1.top = 0; s2.top = 0; /* initialize them * /
int i;
push (s1, 5); /* push something on first stack * /
push (s2, 6); /* push something on second stack* /
...
i = pop(s1); /* pop first stack * /
...

}

FIGURE 70.Separate files implementing and using a stack in C

290 Structuring the program Chap.5

Any names defined in the outer level of a file are implicitly known globally.
These include the names of all the functions defined in the file and any other
entities defined outside of those functions. There are two ways to control such
indiscriminate dispersion of names.

• A module wanting to use an entity that is defined externally must declare such entities as
being externally defined.

• A module wanting to limit the scope of one of its defined entities to be local to itself only
may declare such an entity to be static.

The following two lines import the integer variable maximum_length and hides
the integer variable local_size from other modules.

extern int maximum_length;
static int local_size;

There are no explicit import/export faciliti es. All control over module inde-
pendence relies on convention and implementer competence.

5.3.3 C++

C++ is based on C and it shares C’s reliance on conventions and unit of phys-
ical modularity as the file. As C, C++ provides functions as a decomposition
construct to implement abstract operations. Nevertheless, C++’s most impor-
tant enhancements to C are in the area of programming in the large. In partic-
ular, the class construct of C++ provides a unit of logical modularity that
supports the implementation of information hiding modules and abstract data
types. Combined with templates, classes may be used to implement generic
abstract data types. The class provides encapsulation and control over inter-
faces. In this chapter, we review the use of classes as modules. We will exam-
ine the use of classes to support object-oriented programming in Chapter 6.

#include ...various files...
global declarations
function definitions
void main (parameters)
{
...one main function needed
...in a program
}

FIGURE 72.Structure of a C module

 291

5.3.3.1 Encapsulation in C++

The unit of logical modularity in C++ is the class. A class serves several pur-
poses including:

• A class defines a new (user-defined) data type.
• A class defines an encapsulated unit.

Entities defined by a class are either public—exported to clients—or pri-
vate—hidden from clients. There are also protected variables which will be
discussed in the next chapter.

Since a class defines a user-defined type, to use the services offered by a
class, the client must create an instance of the class, called an object, and use
that object. C++ supports the style of programming in which programmers
write applications by extending the types of the language with user-defined
types. Class derivation is a mechanism that supports the definition of new
types based on existing types. We will examine this in more detail i n the next
chapter.

Classes may be nested. But as we saw in the case of Pascal, nesting may be
used only for programming in the small and is of limited utili ty for program-
ming in the large.

Both classes and functions may be generic, supporting a generic program-
ming style. We will discuss generic units in Section 5.4.

5.3.3.2 Program organization

Classes define the abstractions from which the program is to be composed.
The main program or a client creates instances of the classes and calls on
them to perform the desired task. We saw the definition of a C++ template
module implementing a generic abstract data type stack in Chapter 3. Figure
73 shows a class implementing a stack of integers1. The implementation sep-
arates the interface and the implementation in different files.

1. The same problem can of course be solved by instantiating the generic class.

292 Structuring the program Chap.5

Some points to observe about this program are:

In the main program, stacks are declared in the same way that variables of
language-defined types are declared. The operations exported by stack, push
and pop, are called in the main program by using the dot notation and access-
ing the desired operation of the appropriate stack objects (s1 or s2). The defi-
nitions of the operations push and pop may appear in the class body or outside
of it. Finally, the compiler will try to expand the code of the member func-
tions in-line, if possible, to avoid the overhead of a procedure call.

/* file stack.H * /
/*declarations exported to clients* /
class stack {
public:

stack();
void push(int);
int push pop();

private:
int elments[100]; /* stack represented as array * /
int top = 0; /*number of elements* /

} ;
// the implementation follows and may be in a separate file
void stack::push(int i) {

elements[top++] = i;
} ;
int stack::pop (int i) {

return elements[--top];
} ;
/*end of stack.H* /

/*main.c * /
/*A client of stack* /
#include “stack.h”
main(){

stack s1, s2; /*declare two stacks * /
int i;
s1.push (5); /* push something on first stack * /
s2.push (6); /* push something on second stack* /
...
i = s1.pop(); /* pop first stack */

... ...
}

FIGURE 73.Stack class in C++

 293

C++ supports the development of independent modules (but does not enforce
it):

1. A class’s interface and implementation may be separated and even compiled separately
from each other. The implementation must include the interface definition and therefore
must be compiled after the interface file exists.

2. Client modules may be compiled with access to only the interface modules of the service
providers and not their implementation modules.

3. Any names defined in a class are local to the class unless explicitly declared to be public.
Even so, client modules must use the class name to gain access to the names internal to
the class.

5.3.3.3 Grouping of units

C++ has several mechanisms for relating classes to each other. First, classes
may be nested. As we have said before, this is a programming in the small
feature. Two other mechanisms, “ friend” functions and namespaces, are dis-
cussed next.

Fr iend functions. A class in C++ defines a user-defined type. As a result, the
operations it defines as public are operations on objects of that type. Some
operations do not naturally belong to one object or another. For example, if
we define a class for complex numbers, it may have a data part that stores the
real and imaginary parts of the number, along with exported operations that
let clients create and manipulate objects of type complex. But what about an
addition operation that takes two complex objects to add together? Which of
the two complex objects is the operation a member of? As another example,
consider defining a function that multiplies a vector with a matrix. Should this
function be a member of the vector class or the matrix class? To be able to
implement such functions eff iciently, they need to have access to the private
parts of the objects they manipulate but they do not really belong to a particu-
lar object. Module-based languages such as Ada and Modula-2 allow these
related entities to be packaged together in a single module. A class-based lan-
guage such as C++ must adopt a different solution. In C++, a class can grant
access to its private parts by declaring certain functions as its “ friend” . Friend
functions have the same rights as member functions of the class but are other-
wise normal global functions.

Figure 74 shows the definition of a complex number class. The class defines
the type complex which is internally composed of two doubles, representing
the real and imaginary parts of a complex number. These are hidden from cli -
ents. The class exports a method of constructing a complex number out of two

294 Structuring the program Chap.5

doubles. Thus, the following declaration creates two complex numbers:

complex x(1.0, 2.0), y(2.5, 3.5);
The other declarations state that the operator functions to be defined later (+, -
, * , and /) are friends of the class complex and thus may access the private
parts of the class. They are not member functions of the class and they are not
exported by the class. They are simply given preferential treatment by the
class. Of course, friend functions, even though not exported, are visible to cli -

ents because they are global functions.

Defining these operators as friend functions allows the clients to naturally use
these functions as binary operations such as:

complex c = x + y;
If the operation + was made a member of the class, the notation for clients
would be quite awkward. For example, we might have had to write something
like:

c.add(x)
in order to add the complex x to complex c.

The requirement for friend functions is a direct consequence of C++’s use of
classes as user-defined types. In a language like Ada where the package is
used not to define types but to group related entities, we would naturally
group together type definitions for complex and its related functions in the
same package. The functions automatically gain access to the private parts of
the package because they are part of the package. In both cases, any changes
to the representation of the data may require changes to the functions,

class complex {
public:

complex(double r, double i){ re = r; im = i;}

friend complex operator+ (complex, complex);
friend complex operator- (complex, complex);
friend complex operator* (complex, complex);
friend complex operator/ (complex, complex);

private:
double re, im;

} ;

FIGURE 74.Illustration of the use of fr iend declarations in C++

 295

whether they are part of a package or they are friend functions.

Namespaces. In C and in C++, the unit of global naming is a file. Any names
defined at the outer level of a file are known globally by default. For example,
the names of all classes defined in a library are known to any client that
includes that file. What if two libraries provide two classes with the same
name? How can a client use both of those classes? How can a library provider
add a new service to its library and be sure that the new name of the service
does not conflict with any existing uses of the clients? Since names are cre-
ated by independent people, a single global name space is a serious problem
in the development of large programs. The solution of C++ is to partition the
global name space into a smaller groups; each group is called a namespace.
The names defined in a namespace are independent from those in any other
namespace and may be referenced by supplying the name of the namespace.
This mechanisms enables library providers to provide their libraries in their
own namespaces with a guarantee of independence from other library provid-
ers. Of course, it is necessary for the names of the namespaces themselves to
be unique.

For example, consider the XYZ Corp. that provides a library of classes for
manipulating turbine engines. It might provide its library in a namespace
XYZCorp:

namespace XYZCorp {
typedef turbodiesel ...;
void start (turbodiesel);
//...other definitions

}
A client wanting to use the turbodiesel definition has several options. One is
to directly name the definition. The :: operator is used to qualify the
namespace in which to look for the desired object.

XYZCorp::turbodiesel t;
Another option is to first create a synonym for the name so that the
namespace name does not need to be repeated:

using XYZCorp::turbodiesel; //creates a synonym turbodiesel
//...
turbodiesel t;
XYZCorp::start (t);

The final option is for a client that wants to import all the definitions from a

296 Structuring the program Chap.5

namespace. The namespace may be opened by importing it:

using namespace XYZCorp; //this “opens” the namespace completely
turbodiesel t;
start (t);

The namespace mechanism is intended to help library providers become inde-
pendent of other library providers, enable them to update their libraries with-
out danger of interfering with client code, and even provide new releases of
libraries that co-exist with older releases (each release lives in a different
namespace).

The :: operator is used generally to deal with scope resolution. For example,
::x refers to x in the global environment. X::x refers to x in the scope X which
may be a namespace or a class whose name, X, known in the current referenc-
ing environment.

5.3.4 Ada

Ada was designed specifically to support programming in the large. It has
elaborate facili ties for the support of modules, encapsulation, and interfaces.
Rather than relying on convention as in C and C++, Ada makes an explicit
distinction between specification and implementation of a module. A file may
be compiled if the specifications of the modules it uses are available. Thus,
Ada naturally supports a software development process in which module
specifications are developed first and implementation of those modules may
proceed independently. Ada also requires the existence of a compile-time
library in which module specifications are compiled. A module may be com-
piled if all the module specifications it needs are already in the library. This
library supports the checking of inter-module references at compile time
(Section 3.4.3 on page177).

5.3.4.1 Encapsulation in Ada

The package is Ada’s unit of modularity. An Ada module encapsulates a
group of entities and thus supports module-based programming. We have
already seen that the language’s explicit distinction between module specifi-
cation and module body forces the programmer to separate what is expected
by the module from what is hidden within the module. Additionally, Ada sup-
ports concurrent modules or tasks.

In addition to the conceptual modularity at the package level, Ada supports
the separate compilation of procedures and functions as well as packages. We

 297

will see an example of this in the next section.

All units in Ada may also be generic. We will discuss generic units in Section
.

5.3.4.2 Program organization

An Ada program is a linear collection of modules that can be either subpro-
grams or packages. These modules are called units. One particular unit that
implements a subprogram is the main program in the usual sense. Module
declarations may be nested. Consequently, a unit can be organized as a tree
structure of modules. Any abuse of nesting within a unit causes the same
problems discussed for Pascal. These problems can be mitigated by the use of
the subunit facilit y offered by the language. This facili ty permits the body of a
module embedded in the declarative part of a unit (or subunit) to be written
separately from the enclosing unit (or subunit). Instead of the entire module,
only a stub need appear in the declarative part of the enclosing unit. The fol-
lowing example il lustrates the concept of the subunit.

procedure X (...) is --unit specification
W: INTEGER;
package Y is --inner unit specification

A: INTEGER;
function B (C: INTEGER) return INTEGER;

end Y;
package body Y is separate; --this is a stub

begin -- uses of package Y and variable W
...
...
...

end X;
------------------------------------next file--------------

separate (X)
package body Y is

procedure Z (...) is separate; --this is a stub
function B (C: INTEGER) return INTEGER is
begin --use procedure Z

...

...

...
end B;

end Y;
------------------------------------next file--------------

separate (X.Y)

298 Structuring the program Chap.5

procedure Z (...) is
begin

...
end Z;

The prefix separate (X) specifies package body Y as a subunit of unit X. Simi-
larly, separate (X.Y) specifies procedure Z as a subunit of package Y nested
within X. The subunit facil ity not only can improve the readabil ity of pro-
grams, but supports a useful technique in top-down programming. When
writing a program at a certain level of abstraction, we may want to leave some
details to be decided at a lower level. Suppose you realize that a certain proce-
dure is required to accomplish a given task. Although calls to that procedure
can be immediately useful when you want to test the execution flow, the body
of the procedure can be written at a later time. For now, all you need is a stub.
The subunit facilit y, however, does not overcome all the problems caused by
the tree nesting structure. The textually separate subunit body is still consid-
ered to be logically located at the point at which the corresponding stub
appears in the enclosing (sub)unit. It is exactly this point that determines the
entities visible to the subunit. In the example, both subunits Y and Z can
access variable W declared in unit X.

The interface of an Ada unit consists of the with statement, which lists the
names of units from which entities are imported, and the unit specification
(enclosed within a is... end pair), which lists the entities exported by the unit.
Each logical module discovered at the design stage can be implemented as a
unit. If the top-down design was done carefully, logical modules should be
relatively simple. Consequently, the nesting within units should be shallow or
even nonexistent. Ada does not forbid an abuse of nesting within units. Actu-
ally, the entire program could be designed as a single unit with a deeply
nested tree structure. It is up to the designer and programmer to achieve a
more desirable program structure.

The last program structuring issue is how the interfaces (i.e., import/export
relationships) among units are specified in Ada. A unit exports all the entities
specified in its specification part. It can import entities from other units if and
only if the names of such units are listed in a suitable statement (with state-
ment) that prefixes the unit. For example, the following unit l ists unit X (a
subprogram) in its with statement. Consequently, it is legal to use X within
T’s body.

 299

with X;
package T is

C: INTEGER;
procedure D (...);

end T;
package body T is

...

...

...
end T;

Similarly, the following procedure U can legally call procedure T.D and
access variable T.C. On the other hand, unit X is not visible by U.

with T;
procedure U (...) is

...
end U;

5.3.4.3 Interface and implementation

We have already seen in Section that Ada strictly separates the specification
and body of a package. In the previous section, we have seen how the use and
with clauses are used to import services from packages. These facilities are
used also to support separate compilation. Recall that separate compilation, as
opposed to independent compilation, places a partial ordering on compilation
units.

The set of units and subunits comprising a program can be compiled in one or
more separate compilations. Each compilation translates one or more units
and/or subunits. The order of compilation must satisfy the following con-
straints.

• A unit can be compiled only if all units mentioned in its with statement have been
compiled previously.

• A subunit can be compiled only if the enclosing unit has been compiled previously.
In addition, unit specifications can be compiled separately from their bodies.
A unit body must be compiled after its specification. The specification of a
unit U mentioned in the with statement of a unit W must be compiled before
W. On the other hand, U’s body may be compiled either before or after W.
These constraints ensure that a unit is submitted for compilation only after the
compilation of unit specifications from which it can import entities. The com-
piler saves in a library file the descriptors of all entities exported by units.

300 Structuring the program Chap.5

When a unit is submitted for compilation, the compiler uses the library file to
perform the same amount of type checking on the unit whether the program is
compiled in parts or as a whole.

Ada’s choice of a package as an encapsulation mechanism, together with its
reliance on separate compilation, and the separation of specification and body
creates an interesting issue when a package wants to export a type. This issue
leads to the private type feature of Ada.

The pr ivate type. In Figure 65, we declared a dictionary module that exports
procedures and functions only. When the client declares its intention to use
the dictionary package, the dictionary object is allocated. The representation
of the object is not known to the client. From the package body, we can see
that the entries in the dictionary are actually records that contain three differ-
ent fields. What if we want to export to the client a type such as
dictionary_entry? This would enable the client to declare variables of type
dictionary_entry. We would like to export the type but not its representation.
From the language design point of view there is a conflict here. The Ada lan-
guage specifies that a client may be compiled with the knowledge only of the
specification of the provider module. But if the provider module is exporting
a type and not its representation, the size of the type cannot be determined
from the specification. Thus, when the compiler is compiling the client, it
cannot determine how much memory to allocate for variables of the exported
type. Ada’s solution to this problem is the pr ivate type. The specification
must contain the representation of the type but as a private type.

If a package unit exports an encapsulated private data type, the type’s repre-
sentation is hidden to the programmer but known to the compiler, thanks to
the private clause appearing in the package specification. Consequently, the
compiler can generate code to allocate variables for such types declared in
other units submitted for compilation prior to the package body (but after its
specification). When a unit is modified, it may be necessary to recompile sev-
eral units. The change may potentially affect its subunits as well as all the
units that name it in their with statements. In principle, all potentially affected
units must be recompiled.

The separate compilation facil ity of Ada supports an incremental rather than a
parallel development of programs, because units must be developed accord-
ing to a partial ordering. This is not an arbitrary restriction, but a conscious

 301

design decision in support of methodical program development. A unit can be
submitted for compilation only after the interfaces of all used units are frozen.
Consequently, the programmer is forced to postpone the design of a unit body
until these interfaces have been designed. One of the goals of separate compi-
lation is to support production of reusable software. Certified modules can be
kept in a library and later combined to form different programs. The Ada
solution is deficient on this point for package units exporting encapsulated
(private) data types. The visible part (the specification) of such packages must
include the type’s operations and a private clause that specifies the type’s
internal representation. This representation is not usable outside the package
body; it is there only for supporting separate compilation. Logically, this
information belongs in the package body, together with the procedure bodies
implementing the type’s operations. Besides being aesthetically unpleasant,
this feature has some unfortunate consequences:

• It violates the principle of top-down design. The representation must be determined at the
same time as the specification of the data type, and both appear in the same textual unit.

• It limits the power of the language to support libraries of reusable modules, unless special
care is taken in the implementation. For example, a module using FIFO queues is
compiled and validated with respect to a FIFO queue package providing a specific
representation for FIFO queues (e.g., arrays). The module must be recompiled if one
wants to reuse it in a different program in which FIFO queues are implemented by a
different data structure, even though the interfaces for manipulating FIFO queues are the
same in both cases.

5.3.4.4 Grouping of units

Ada has many features for supporting programming in the large. Two clauses,
use and with, are used to import services from other packages. Child library
units are used to group packages together in hierarchical organizations. These
facilities are defined to enable safe separate compilation.

The with and use clauses. The with clause is used by a client to import from a
provider module. For example, if we want to write a module to manipulate
telephone numbers and we want to use the dictionary module specified in
Figure 65, we prefix the telephone module with a with clause:

with dictionary;
package phone_list is

...
--references to dictionary.insert(), etc.
...

302 Structuring the program Chap.5

end phone_list;
Now, inside the phone_list package, we may refer to the exported entities of
the dictionary package. These references have to be prefixed by the name of
the package from which they are imported. For example, dictionary.insert(...).
To gain direct visibil ity, and avoid the need to use the dotted name, Ada pro-
vides the use clause:

with dictionary; use dictionary;
package phone_list is

...
--references to insert(), etc.
...

end phone_list;

Child librar ies. The Ada package groups together a set of related entities. Cli -
ents may import either selective services from a package or all the services
provided by the package by using the use clause. The package is inadequate
as a structural mechanism for grouping a collection of library modules. Here
are some examples of problems that could occur:

• Suppose a client uses two different libraries, encapsulated in packages A and B. Since the
client expects to make extensive use of both libraries, it uses the use clause to import all
the library services. But if libraries A and B export entities with the same name, the client
would encounter name clashes at compile time. Ada provides a renaming facility to get
around this problem.

• More serious is the case where there are no name clashes. The client compiles and works
properly. But suppose that a new version of library B is released with new functionality.
It happens that one of the new functions introduced in B has a name identical to a name
provide by A. The next time that the client code is compiled, compilation errors will show
up due to name clashes. These errors would be particularly confusing because the
previously working client code appears to not work even though it may not have been
changed.

• In the previous case, after the release of the new version of the library B, the client code
has to be recompiled even though it does not make use of the new functionality of the
library B. The recompilation is necessary only to satisfy Ada’s rules on the order of
compilation.

Ada 95 has addressed these problems by introducing the notion of child
libraries which allow packages to be hierarchically organized. The idea is that
if new functionality is added to an existing library package, the new function-
ali ty may itself be organized as new package that is a child of the original
library. The child package can be implemented using the facilities of the par-
ent package. But the clients of the original li brary are not affected by the
introduction of a child package. The child package makes it possible to add

303 Structuring the program Chap.5

functionality to a package without disturbing the existing clients of the pack-
age.

In general, a library developer may provide a number of packages organized
as a tree. Each package other than the root package has a parent package. An
existing library may be extended by adding a child library unit to one of its
existing nodes. The parent library unit, nor any clients of the parent need to be
recompiled. For example, if the library Root exists, we may add Root.Child
without disturbing Root or clients of Root. The Root.Child may be compiled
separately. It has visibility to Root and to Root’s siblings.

package Root is
--specification of Root library
--...

end Root;

package Root.Child is

--specification of a child library unit
--...

end Root.Child;

package body Root.Child is

--implementation of Root.Child
--...

end Root.Child;

Each of the above segments may be compiled separately. The clients of Root
need not be recompiled if they do not use Root.Child.

5.3.5 ML

Modularity is not only the province of imperative languages. The notion of
module is important in any language that is to be used for programming in the
large. For example, ML is a functional programming language with extensive
support for modularity and abstraction. In Chapter 7, we will study the basics
of functional programming and ML. In Chapter 7, we will see ML’s support
for defining new types and abstract data types, which also help in program-
ming in the large. In this section we give a brief overview of ML’s support for
modules.

5.3.5.1 Encapsulation in ML

A module is a separately compilable unit. A unit may contain structures, sig-
natures, and functors. Structures are the main building blocks; signatures are

304 Structuring the program Chap.5

used to define interfaces for structures; functors are used to build a new struc-
ture out of an existing structure. We will discuss these more in Chapter 7.
Here, we only examine the structure construct as a packaging unit.

The ML structure is somewhat like the Ada package, used to group together a
set of entities. For example, our dictionary example package of Figure 66
may be written in ML as given in Figure 75. Recall the syntax and case anal-

ysis style of programming from Chapter 5. We will describe the details of the
functions in Chapter 7. Here, we are only interested in what is exported by the
structure, that is, module.

Such a structure definition corresponds to the package body in that it gives
the implementation for the entities being defined. It also has the property that
all the entities are exported. This structure exports an exception, NotFound, a
variable root, and two functions insert and lookup. To use the structure, a client
uses the dot notation:

val D = Dictionary.create; (*create an empty dictionary *)
val newD = Dictionary.insert (“Mehdi” , 46, D); (* insert a pair*)
...
D.lookup(“Mehdi” , D); (*produces value 46*)

structure Dictionary =
struct

exception NotFound;

val root = nil ; (*create an empty dictionary*)

 (* insert (c, i, D) inserts pair <c,i> in dictionary D*)
fun insert (c:string, i:int, nil) = [(c,i)]
| insert (c, i, (cc, ii)::cs) =

if c=cc then (c,i)::cs
else (cc, ii)::insert(c,i,cs);

 (* lookup (c, D) finds the value i such that pair <c,i> is in dictionary D *)
fun lookup(c:string, nil) = raise NotFound
| lookup (c, (cc,ii: int)::cs) =

if c = cc then ii
else lookup(c,cs);

end;

FIGURE 75. Dictionary module in ML (types string and int are not necessary but used for
explanation here)

305 Structuring the program Chap.5

5.3.5.2 Interface and implementation

The signature of a structure definition consists of the signatures and types of
all the entities defined in the structure. ML also provides a construct to define
a signature independently of any structure. A signature may be viewed as a
specification for a module. For example, Figure 76 gives the signature of a
module that exports an exception called NotFound and a function called
lookup. A signature may be used as a specification for a structure. For exam-
ple, we may use the signature of Figure 76 to restrict the exported entities of
the structure of Figure 75. The system will do type checking to ensure that the
structure provides at least what the signature requires.

We can use the structure and signature we have to create a new module with a
restricted interface and use it accordingly:

structure LookupDict: DictLookupSig = Dictionary;
val L = LookupDict.create; (* not allowed, must be done by someone else using a different
interface *)
lookupDict.lookup(“Mehdi” , L);
lookupDict.insert(“Carlo” , 50, L); --error, insert not available

We can see that the abil ity to define signatures means that we can provide dif-
ferent interfaces to the same implementation, something not possible in Ada
or C++. We can also provide different implementations to meet the same
interface.

ML also supports the concept of generic modules or structures. The signature
facility may be combined with generic structures to instantiate a structure for
particular types. For example, the dictionaries that we have defined so far,
both in Ada and in ML have been specific to <string, integer> pairs. In ML,
we can remove the occurrences of the terms string and int from Figure 75 and
have a generic dictionary. We wil l see this in Section 5.4.3.

signature DictLookupSig = sig
exception NotFound;

val lookup : string * (string * int) list -> int
end

FIGURE 76. A signature defintion for specialized dictionary

306 Structuring the program Chap.5

5.3.6 Abstract data types, classes, and modules

We have discussed an abstract data type as a program modularization con-
cept. Languages that provide a class construct, such as C++, support the
implementation of abstract data types directly. For example, Figure 73 shows
a class that implements an abstract data type stack and a client that declares
instances of the stack and uses them. The name of the class is used as the type
name to instantiate the objects necessary. Operations are performed directly
on the instantiated objects, e.g. s1.push(...).

Module-based languages such as Ada or Modula-2, however, do not support
objects directly and are operation-oriented. We use a module to implements
an abstract data type by packaging the type and its operations together. But
the client creates instances of the abstract data type and passes them to opera-
tions as necessary, rather than call ing the operations associated with the
object. That is, rather than calli ng s1.push(...) the client calls push(s1, ...). In
object-based languages, the object is an implicit first parameter automatically
passed to the operation.

In a module-based language, the need for a construct such as friend functions
does not appear: we simply put all the related functions and types in the same
module and they gain visibility to each other. In an object-based language, the
requirement to package a single type and its operations together makes it dif-
ficult to deal with operations that do not belong clearly to a single type. We
generally have to make such operations global. Java resolves this dichotomy
by supporting both modules and classes. Classes defined together in the same
module have visibility to one another’s internal structure.

A final comparison of Ada and C++ styles concerns the export of types. In
both languages, a client may instantiate a variable of a type defined by
another module (or class). Given a declaration of the form s: T in a client, an
important question for the compiler is how much storage to allocate for the
instance of s. Even though logically this information is part of the implemen-
tation of the module that implements the type, not part of its specification, the
compiler needs the information at the time it compiles the client. This is the
reason, as we have seen, that Ada requires the private clause in the specifica-
tion part of a package. The information in the private part is there only for the
compiler. C++ also requires the same information in the private part of a class
definition.

307 Structuring the program Chap.5

Requiring the data representation in the specification of a module means that
if the representation changes, the clients will have to be recompiled. This is a
serious cost in large system development. To address this problem, Modula-2
introduced the notion of opaque export which allows types to be exported
without the details of their representation. Variables of such types are con-
strained to be accessible via pointers; therefore there is no need to have the
equivalent of Ada’s private clause in the interface. In fact, the amount of stor-
age to be allocated in client modules for such data objects is known to be the
size of a pointer. The restriction that abstract data types be accessible via
pointers means that every access incurs the cost of a pointer dereference but
ensures intermodule decoupling. Changing the data structure for an abstract
data type does not affect client modules either from a logical or from an
implementation viewpoint. The client modules do not need to be recompiled.
In CLU and Eiffel, all objects are accessed through pointers and therefore
there is no need to have the representation of a type in its specification.

5.4 Generic units

In this chapter, we have considered the issue of modularity as a support for
developing large programs. One important approach to developing large pro-
grams is to build them from existing modules. Traditional software libraries
offer examples of how such existing modules may be packaged and used. One
of the criteria for evaluating the suitability of a language for programming in
the large is whether it provides language mechanisms that enable the con-
struction of independent components, the packaging together of related com-
ponents, the use and combination of multiple libraries by clients, etc. We
have seen the namespaces of C++ and the libraries and child libraries of Ada
95 as language mechanisms explicitly developed for the support of such
packaging of related and independent software components. In this section,
we concentrate on genericity as a mechanism for building individual modules
that are general and thus usable in many contexts by many clients.

5.4.1 Gener ic data structures

Let us first consider the development of libraries of standard data structures,
for example, stacks and queues. What should be the types of elements stored
in these structures? Early typed languages such as Pascal and C require the
designer to define one structure for each data type to be supported. This is an
unsatisfactory solution for two reasons: one is that the solution only works for
only the types the library designer knows about and not for any types to be

308 Structuring the program Chap.5

defined by the user of the library; the second is that the solution forces the
library designer towards code duplication. C++ templates and Ada generics
allow us to avoid such code duplication and define a template data structure
that is independent of the type of the element to be stored in the structure. For
example, we can define a generic pair data structure in C++:

template <class T1, class T2>
class pair {

public:
T1 first;
T2 second;
pair (T1 x, T2 y) : first(x), second(y) { }

} ;
The template parameters T1 and T2 stand for any type. We may “ instantiate”
a particular pair by supplying concrete types for T1 and T2. For example, we
may create a pair of integers or a string, integer pair or a pair of employees:

pair<int, int> intint(2, 1456);
pair<string, int> stringint(“Mehdi” , 46);
pair<employee_t, employee_t> (jack, jill); /*pair of user-defined type employee_t* /

We may refer to pair as a parameterized or generic type. The template of C++
allows us to define such a parameterized type which may later be used to cre-
ate concrete types such as pair<int, int>. C++’s template facil ity is particularly
general because it uses classes as parameters and classes represent types uni-
formly: we may instantiate a template with either user-defined or primitive
types. Eiffel supports a similar scheme for generic classes, with which, for
example, we can define a class stack [T] and then instantiate an intstack from
stack[integer]. In Chapter 3 we saw examples of generic stacks both in C++ and
Eiffel.

5.4.2 Gener ic algor ithms

Templates may also be used to define generic algorithms. For example, in
Chapter 2, we saw the following generic function swap which interchanges the
values of its two parameters:

template <class T>
void swap(T& a, T& b)
{

T temp = a;
a = b;
b = temp;

}

309 Structuring the program Chap.5

This function may be used for any two parameters of the same type that sup-
port the “=” operation. Therefore, we can use it to swap integers, reals, and
even user-defined types such as pairs. This is quite a useful facilit y because it
gives us the possibil ity to write higher-level generic functions such as sort if
they only use generic functions. The ability to write such generic functions is
helped in C++ by the fact that generic functions do not have to be instantiated
to be used.

To use a template data structure, C++ requires explicit instantiation of the
structure, as we saw, for example, in pair<int,int>. For functions, on the other
hand, explicit instantiation is not necessary. The compiler will i nfer the
instance required and generate it automatically. For example, the following
program fragment is valid:

int i, j;
char x, y;
pair<int,string> p1, p2;
...
swap(i, j); //swap integers
swap(x, y); //swap strings
swap(p1, p2); //swap pairs

the compiler will generate three different swap functions, for integers, strings
and pairs of (int, string). To generate an appropriate function, the compiler
checks at generation time that the parameters meet the expected requirements.
Examination of the body of swap shows that the parameters passed must sup-
port assignment, that is, to be able to be passed and to be able to be assigned.
(Exercise 22 asks you to explain why pairs meet this requirement.)

The implicit parameter requirements in C++ are made explicit in Ada generic
functions. The same swap function is defined in Ada as:

generic
type T is pr ivate;

procedure swap (x, y: T) is
begin

temp: T = x;
x = y;
y = temp;

end swap;

The generic is explicitly stated to be based on a type T which is pr ivate. The
private indication means that the type supports assignment and equality. In

310 Structuring the program Chap.5

general, if other operations are required of the type, they have to be stated.
For example, a generic max function wil l require its operands to support an
order operations such as “>” :

generic
type T is pr ivate;
with function “<“ (x, y: T) return BOOLEAN is <>;

function max (x, y: T) return BOOLEAN is
begin

if x<y
then return x;
else return y;

end if;
end max;

To use the function, we have to first instantiate an instance of it:

function int_max is new max (INTEGER);
The type parameters passed at instantiation time are checked to ensure that
they support the required operations. After instantiation, we have a new func-
tion that we may call:

m := int_max (3, 6);
The Ada view is that different functions are generated and used while the
C++ view is that there is just one function max which is generic. It is the com-
piler’s job to generate as many instances as it needs to satisfy all the calls to
the function. The C++ approach is more flexible and is more supportive of
generic programming because generic functions are not treated any differ-
ently from nongeneric functions: you simply call them. Ada treats generic
functions as a special type of function that you must instantiate before you
can call .

We will examine ML’s generic functions (called polymorphic) in Chapter 7.

In summary, generic routines allow us to parameterize algorithms and
achieve a higher level of generality by capturing an algorithm in a type-inde-
pendent way.

5.4.3 Gener ic modules

Collections of data and algorithms may also be packaged together and collec-
tively made to depend on some generic type parameter. Both C++ classes and
Ada packages may be defined as generic in the types they use. We saw a

311 Structuring the program Chap.5

generic stack class in Chapter 3.

The ML support for generic modules is particularly interesting because of the
separation of structures and signatures. Recall the ML dictionary module in
Section 5.3.5. The signature definition of Figure 75 can be defined in a
generic way by not making any mention of specific types such as int and
string. We have defined such a generic structure in Figure 77. The signature
of this module is independent of specific types. Can we apply the signature of
Figure 76 to this structure? That signature definition indeed matches this
structure because the structure is more general than the signature requires. By
applying the signature, we are restricting the view of the structure. Applying a
signature to a polymorphic structure is similar to package instantiation in
Ada.

5.4.4 Higher levels of gener icity

We have seen that we may define a generic algorithm that works on any type
of object passed to it. For example, the max algorithm may be applied to any
ordered type. This facility allows us to write one algorithm for n different data
types rather than n different algorithms. It leads to great savings for writers of
libraries. But consider a higher level of generality. Suppose we want to write
an algorithm that works on different types of data structures, not just different
data types. For example, we may want to write one algorithm to do a linear

structure Dictionary =
struct

exception NotFound;

val root = nil ; (*create an empty dictionary*)

 (* insert (c, i, D) inserts pair <c,i> in dictionary D*)
fun insert (c, i, nil) = [(c,i)]
| insert (c, i, (cc, ii)::cs) =

if c=cc then (c,i)::cs
else (cc, ii)::insert(c,i,cs);

 (* lookup (c, D) finds the value i such that pair <c,i> is in dictionary D *)
fun lookup(c, nil) = raise NotFound
| lookup (c, (cc,ii: int)::cs) =

if c = cc then ii
else lookup(c,cs);

end

FIGURE 77. A polymorphic dictionary module in ML

312 Structuring the program Chap.5

search in any “ linear” data structure. Of course, we have to capture the notion
of linearity somehow but intuitively, we want to be able to find an element in
a collection regardless of whether the collection is implemented as an array, a
list. The goal of the generic programming paradigm is to develop exactly
these kinds of units. In Chapter 3, we saw one kind of iterator for stepping
through a collection. Here we wil l examine a different kind of iterator.

A high level of genericity is usually associated with functional languages and
we will see it in the context of ML in Chapter 7. There are no particular lan-
guage facili ties in Ada or C++ for this kind of programming. However, the
flexibility of C++ templates, combined with overloading of operators sup-
ports a high degree of generic programming. For example, consider the fol-
lowing function find:

template<class Iter, class T>
Iter find (Iter f, Iter l, T x)
{

while (* f != last && * f != x)
++f;

return f;
}

We might think of this function as accepting two pointers into a sequence of
elements. It sequences through the elements by using the ++ on the first
pointer until either the value x is found or the sequence is exhausted. So, the
following code fragment looks through the first half of an integer array:

int a[100];
int x;
int * r;
...
r= find(x, &a[0], &a[50]);
if (r == &a[5])

// not found
...

Here, we have used an integer pointer as the template parameter. However,
the function is quite abstract: nothing in its description constrains us to use it
with pointers and arrays! It is based on an abstract object which we have
called Iter (for iterator). We can think of an iterator as a generalization of a
C++ pointer. It must support the operations: * , to return a value, ++ to step to
the next position, == and != for comparison with another Iter. Certainly point-
ers meet these requirements. But we might imagine writing a list object that
also provides an Iter type object which supports ++, * , ==, and != operations

313 Structuring the program Chap.5

with the same semantics as those of pointers into arrays. More importantly,
any time a library writer provides a new linear structure, he can also provide it
with such iterators. In this way, any generic operations will be immediately
usable with the library’s new data structures. What we are doing is to treat
operations such as !=, * , and ++ as generic operations and writing a higher
level operation find in terms of them. This style of generic programming is
possible in C++ and likely will be the way standard libraries are provided.
The advantages of such an approach for programming in the large is the
reduction of the amount of code that needs to be written because one generic
unit may be customized automatically depending on the context of its use. It
is a form of modularity in which we modularize based on common properties
and specific properties. Object-oriented programming is another approach to
achieving this same kind of modularity. That will be the subject of the next
chapter.

5.5 Summary

Appropriate abstractions and proper modularization help us confront the
inherent complexities of large programs. Even with appropriate modulariza-
tion, however, writing all the modules from scratch is a tedious and time-con-
suming task. Rather than inventing new abstractions and implementing new
modules for each new program, we can improve software productivity by
using previously developed abstractions and modules. In this chapter, we
have studied linguistic mechanisms that help in the building of modules and
libraries of modules that may be used by others. But where do such useful
modules come from and how can we build them? Different programming par-
adigms provide different answers to these questions. In the next chapter, we
see how the object-oriented paradigm answers these questions.

5.6 Bibliographic notes

The problems of programming in the large and techniques for addressing
them are covered in software engineering textbooks such as (Ghezzi 91). An
informal but insightful and entertaining account of problems arising in the
production of large software systems may be found in (Brooks 1995). The
distinction between programming in the small and programming in the large
was pointed out in (DeRemer and Kron 1976). The methodology of stepwise
refinement is described in (Dijkstra 1972). Information hiding was introduced
in (Parnas 1972a), (Parnas 1972b). Lauer and Satterthwaite (1979) describe

314 Structuring the program Chap.5

the Mesa system and, in particular, how it supports the design of large sys-
tems. Separate compilation faciliti es for Pascal are described in (Jensen and
Wirth 1975), (Kieburtz et al. 1978), (LeBlanc and Fisher 1979), and (Celen-
tano et al. 1980); for SIMULA 67 in (Birtwistle et al. 1976) and (Schwartz
1978c). (Jazayeri 95) discusses the construction of use of generic components
in C++. CLOS was one of the first language implementations to combine
generic functions and object-oriented programming. Barnes95 is an excellent
reference for Ada 95.

5.7 Exercises

1. Discuss the effect of global variables on the writability and readability of large programs.
2. Study and present the main features of FORTRAN’s separate compilation.
3. Why is the ALGOL-like program structure inadequate for programming in the large?
4. Complete the implementation of the package body in Figure 66 on page 281.
5. Design the interface of an Ada module that provides a symbol table for a translator (e.g.,

an assembler), and show how a separately compiled procedure can access the symbol
table. The data structure representing the symbol table should be hidden from the
procedure, and all accesses to the symbol table should be routed through abstract
operations provided by the symbol table module. Can you compile the procedure before
implementing a representation for the symbol table? Why? What is wrong if you cannot?

6. Do the same as Exercise 4 but in C++. Do you run into the same problems?
7. Suppose two Ada units U1 and U2 must use the same procedure P. Can P be embedded

in a single subunit? Can P be embedded in a single unit? In the latter case, what are the
constraints on the order of compilation?

8. In this exercise, we compare nested packages and child libraries. In particular, answer the
following questions:
Can nested packages be compiled separately? Can child libraries be compiled separately?
Can a package have both a child package and a nested package with the same name? Why
not?
What can you conclude about the utili ty of nested packages?

9. Describe the tools that an ideal program-development system should provide to support
independent development of modules, system structuring from independently developed
modules, and complete intermodule type checking.

10. Storage classes of C: automatic, extern, static (???)
11. Achieving visibilit y in C units: If a variables is declared in a function, which units have

access to it? If a variable is declared outside of functions, which units have access to it?
If a variable is declared as extern, where is it defined? If a variable is defined as static,
which units have access to it?

12. We have seen in Chapter 2 that the scope rules of the language provide for the control of
names and their visibilit y. Discuss the relationship between name scopes in block
structured languages and the child libraries of Ada and the namespaces of C++.

13. In this chapter, we have discussed the need for a unit to give access to its private parts only
to some units but not export it to all other units. Ada and C++ have two different ways of

315 Structuring the program Chap.5

satisfying this requirement. What is the solution provided by each language? Compare the
two facil ities.

14. (Perhaps for ch 3) C++ has a default assignment operation defined for classes. If the user
does not define the assignment operation for a new class, the language uses a member-
wise copy by default. Is this a good decision? Is memberwise copy desirable in most
situations (hint: consider a stack copy)?

15. Solve the problem of Figure 73 by instantiating the generic class defined in Figure 34 on
page 155.

16.
i) Write a C++ and an Eiffel program for a generic abstract data type defining a first-in
first-out queue which can contain an unbounded number of items. The operations pro-
vided by queues have the following signatures:

enqueue: fifo (T) x T -> fifo (T) --adds an element to the queue
dequeue: fifo (T) -> fifo (T) x T --extracts an element from the queue
length: fifo (T) -> int --computes the length of the queue

ii) Show how instances can be created.
iii) Next, provide fixed-length queues, such that an exception is raised if one tries to en-
queue an element in a full queue.
iv) Show examples in which you generate instance objects that are unbounded queues
and fixed-length queues, and ill ustrate the kinds of polymorphism that can arise with
these two types.

Besides providing the program which solves this problem, write also a short description
of the rationale of your implementation.

17. Assume that I buy a software library from a vendor. The library contains the specification
of an abstract object stack. I write a program in which I create an instance of type stack.

i) Assume the stack object is written in Ada and the vendor decides to change the im-
plementation of its push operation. Do I need to recompile my program? Assume the
vendor decides to change the representation of the stack. Do I need to recompile my pro-
gram? Explain your answers.
ii) Explain the same two problems if the language used is C++.
iii) Explain the same two problems if the language used is Eiffel.

18. Consider a generic function swap (x, y) which interchanges the values of its two
arguments. Write a bubble sort in C++ that uses swap to interchange the elements. How
would your solution be different if you try the same approach in Ada?

19. Without generics, if we have m data types, n algorithms, and p data types, we need to write
on the order of m*n*p library components to support all possible algorithms on all
possible data structures for all possible data types. Explain how the use of generics
reduces the number of library components that need to be written. Assuming that we
could write all the components without generics, what other deficiency remains?

20. Ada defines two kinds of types: private type and limited private type. What is the
difference between these two? Is there a similar concept in C++? If not, why not? Does
their absence imply a lack of functionali ty in C++?

21. What is the difference between overloaded functions and generic functions in C++?
22. We did not define an assignment operator for the template type pair in Section 5.4.1. Yet,

in Section 5.4.2 we used swap with pairs. Swap requires the assignment operator for its
operands. Is the assignment operator defined for pairs (Hint: check the C++ rule for class
definitions).

316 Structuring the program Chap.5

23. Compare the implementation of Ada generics versus C++ templates. Does the source of
a C++ template function need to be available to be able to compile the client code? Is this
necessary for an Ada generic function? If there are two different calls to swap(x,y), will
a C++ compiler generate two instances of swap? What about Ada?

24. Suppose we want to write a generic sort routine to sort elements of type T. We will want
to use our swap routine from section 5.4.2 on page 308. A fragment of the C++ might look
like this:

template<class T>
sort (...)
{
...swap (x, y);
...
}

If we were to write sort in Ada, we would have to instantiate swap first. What type
should we use to instantiate swap? Explain the problem. Check the Ada definition to find
a solution to this problem.

25. Consider the following generic signature in ML:

signature DictLookupSig = sig
exception NotFound;

val lookup : ‘ t * (‘ ‘ t * ’ ‘’ t) li st -> int
end

Does the signature match the structure of Figure 75? Does it match the structure of Fig-
ure 76?

26. In Section 5.4.4, we saw a generic function called find. We said that this function may be
applied to a list data structure if the list provides an appropriate iterator. Write a class list
which provides such an iterator. That is, class list provides a type called iterator. (* *give
more details**)

1

317

1
C H A P T E R 6

Object-or iented
languages 6

In the last chapter, we discussed the problems of programming in the large
and the solutions offered by different programming languages. Modularity
and abstraction are the two most important principles for building large pro-
grams. In the “pure” object-oriented style of programming, the unit of modu-
larity is an abstract data type. We have seen that classes may be used to define
abstract data types. Another important principle of object-oriented program-
ming is that you may define new classes of objects by extending or refining
existing classes.

Some programming languages have been designed expressly to support this
style of programming. These languages, namely Smalltalk and Eiffel, are
called object-oriented programming languages. Other languages, such as C++
and Ada 95, while not exclusively object-oriented, support the paradigm
through features that enable the programming of extensible abstractions. All
object-oriented languages trace their roots to the language Simula 67 which
introduced the concept of class and subclass in 1967. In this chapter we exam-
ine the essential programming language features for the support of object-ori-
ented programming and look at some representative object-oriented
programming languages.

The starting point for object-oriented programming is abstract data types
which we have already examined in Chapters 3 and 5. We have seen, for
example, that the class construct of C++ directly supports the definition of

318 Object-oriented languages Chap.6

abstract data types. We may design classes Chair and Table if our application
deals with such entities and then create as many instances of the specific
Chairs and Tables that we need. Next comes the notion of inheritance. For
example, rather than designing a class DiningTable and another class Desk, we
might first design a class Table which captures the properties of different kinds
of tables and then “derive” DiningTable and Desk as new classes that “ inherit”
properties of Table and add their own unique attributes. This is a linguistic
issue but also requires a supporting design style. For our example, instead of
considering the problem domain to consists of chairs and tables and desks, we
might decide that the problem domain deals with furniture; some particular
kinds of furniture are tables and chairs; particular kinds of tables are desks
and dining tables; particular kinds of chairs are lounge chairs and sofas. Some
concepts such as furniture are abstract and only exist as descriptions. Any
particular piece of furniture is actually an instance of a more concrete class
such as the chair class. By factoring the common properties of individual con-
crete objects at the abstract level, we only need to describe them once rather
than many times. The individual kinds of objects such as chairs only need to
be described by describing their specific features that make them unique as
pieces of furniture. We say that a chair inherits the properties of furniture and
may extend or modify these properties as necessary.

Object-oriented programming is an attractive methodology because it prom-
ises the ability to package a whole set of related concepts tied together
through their inheritance relationships. It aims to enable the production of
libraries of related components that are

• easy to understand by users because of the relationships among the components
• easy to extend by the use of inheritance

Many languages have been or are being extended to support object-oriented
programming. The goal of this chapter is to examine the concepts underlying
object-oriented programming and the implementation of these concepts in
several programming languages. In Section 6.1, we introduce the basic con-
cepts of object-oriented programming. In Section 6.2 we examine the rela-
tionship between inheritance and the type system of the language. In Section
6.3 we review the support of object orientation in C++, Eiffel, and Ada 95,
and Smalltalk. Object-orientation has affected not only the implementation
phase of the software process but most other phases as well . In Section 6.4 we
briefly review this impact on design and analysis phases of the software pro-
cess.

 319

6.1 Concepts of object-or iented programming

There are several definitions of what object-oriented programming is. Many
people refer to an object-oriented program as any program that deals with
entities that may be informally called “objects.” In contrast to traditional pro-
cedural languages in which the programs consist of procedures and data
structures, objects are entities that encapsulate data and related operations.
For example, given a stack data structure s, in a procedural language we
would call a push operation to add an element as in:

push (s, x);
Dealing with objects, as we have seen in C++, we tell the stack object to push
an element onto itself, as in:

s.push(x);
We have seen that in C++ and Eiffel we can use classes to define and create
objects. We call a programming language that supports the definition and use
of objects object-based. Object-oriented programming languages support
additional features. In particular, object-oriented programming languages are
characterized by their support of four facili ties:

• abstract data type definitions,
• inheritance,
• inclusion polymorphism, and
• dynamic binding of function calls.

We have already discussed abstract data types extensively. They are used in
object-oriented programming to define the properties of classes of objects.
Inheritance is a mechanism that allows us to define one abstract data type by
deriving it from an existing abstract data type. The newly defined type “ inher-
its” the properties of the parent type. Inclusion polymorphism allows a vari-
able to refer to an object of a class or an object of any of its derived classes.
Dynamic binding supports the use of polymorphic functions; the identity of a
function applied to a polymorphic variable is resolved dynamically based on
the type of the object referred to by the variable.

The pure terminology of object-oriented languages refers to objects that are
instances of classes. An object contains a number of instance variables and
supports a number of methods. A message is sent to an object to request the
invocation of one of its methods. For example, s.push(5) is interpreted as send-
ing the message push(5) to object s. The message is a request to s to invoke its

320 Object-oriented languages Chap.6

method push with the parameter 5. The syntax of Smalltalk reflects this inter-
pretation directly. In Smalltalk, the same statement would be written as: s push

5. In a dynamically-typed language such as Smalltalk, the object that receives
a message first checks to see that it can perform the method requested. If not,
it reports an error. Other languages, such as Eiffel and C++, allow polymor-
phism but restrict it to enable static type checking. Thus, such languages com-
bine polymorphism with strong typing.

Having previewed the concepts of object-oriented programming in general, in
Section 6.1.1 through 6.1.4 we provide a more detailed look at these concepts,
using C++ as the example language. Following C++ terminology, we wil l call
methods member functions and messages simply function calls. In Section
6.3, we will review more specific concepts of C++ as well as other languages.

6.1.1 Classes of objects

The first requirement for object-oriented programming is to be able to define
abstract data types. We have already seen that this can be done using the class
construct. As an example, recall the following definition of a stack class from
Section 5.3.3.2:

class stack{
public:

void push(int) { elements[top++] = i;} ;
int pop() { return elements[--top];} ;

private:
int elements[100];
int top=0;

} ;
This class is a particular implementation of a fixed-size stack abstraction. We
may use objects of this class in many different applications. As observed in
Chapters 3 and 5, the class construct enables us to encapsulate the representa-
tion used for the data structure and export useful operations to be used by cli -
ents.

A client may create as many objects of the stack class as desired:

stack s1, s2;
s1.push(3);
s1.push(4);
s2.push(3);
if (s1.pop() == s2.pop) { ...}

Clients may create objects of this class just as they may create variables of

 321

language-defined types. In fact, classes are user-defined types. They share
most properties of language-defined types, including storage properties. For
example, the above fragment creates stacks s1 and s2 as automatic variables.
We may also create stacks in the free store:

stack* sp = new stack;
To access member functions (e.g., pop) the following notations denote equiva-
lent expressions:

(*sp).pop();
and (more commonly used)

sp -> pop();
While useful, the class facil ity only addresses the question of how to encapsu-
late useful abstractions. What we have seen so far does not address the need
to create new abstractions based on existing ones. Inheritance is the mecha-
nism used for this purpose.

6.1.2 Inheritance

In the last section, we defined a stack class. Now suppose that we are writing
an application in which we need a stack but we also need to know how many
elements have already been pushed on the stack. What should we do? Write a
new counting_stack class? Take the code of the above class and modify it? Use
the same stack and keep track of the number of push operations externally in
the client? All of these solutions are deficient in a programming in the large
context. The first does not take advantage of work already done. The second
creates two similar code modules that need to be maintained independently.
Therefore, if a defect is found in the code or an optimization to the code is
discovered, the changes must be applied to both copies of the code. The third
alternative improperly separates the concerns of the client and the server and
complicates the client code. The basic issue is that we already have a stack
abstraction and the new abstraction we want should be a simple extension of
it.

Inheritance is a linguistic mechanism that allows us to do just that by defining
a new class which “ inherits” the properties of a parent class. We may then add
new properties to the child class or redefine inherited properties. The termi-
nology in C++ is to derive a class from a base class. In this case, we want to
derive a counting_stack from stack as shown below:

322 Object-oriented languages Chap.6

class counting_stack: public stack {
public:

int size(); //return number of elements on the stack
} ;

This new class simply inherits all the functions of the class stack1. All public
member functions of stack become public member functions of counting_stack
(that’s what the public before stack specifies). We have also specified that there
will be a new public function size() which is intended to return the number of
elements stored in the stack. The class stack is called a base class or the parent
class of counting_stack. The class counting_stack is said to be derived from its
base class. The terms subclass and superclass are also used to refer to derived
and base classes respectively.

Even this simple example demonstrates that inheritance is a fundamental con-
cept for supporting programming in the large in that it enables us to develop
modules based on existing ones without any modifications to the existing
modules. This is the property that makes object-oriented programming an
attractive paradigm for software engineering.

6.1.3 Polymorphism

The next feature of object-oriented programming languages is the support of
polymorphism. All classes derived from the same base class may be viewed
informally as specialized versions of that base class. Object-oriented lan-
guages provide polymorphic variables that may refer to objects of different
classes. Object-oriented languages that adopt a strong type system limit the
polymorphism of such variables: usually, a variable of class T is allowed to
refer to objects of type T or any classes derived from T.

In the case of our example stack and counting_stack in the previous section, this
means that a variable of type stack may also refer to an object of type
counting_stack. In purely object-oriented languages such as Eiffel and Small -
talk, all objects are referred to through references and references may be
polymorphic. In C++, only pointer, reference variables, and by reference
parameters may be polymorphic. That is, a stack pointer may also point to a
counting_stack object. Similarly, a formal by reference parameter expecting an
actual parameter of type stack can refer to an actual parameter of type
counting_stack. As an example, if we have two pointer variables declared:

1. Actually, in C++ this cannot be done so simply. A way to implement size () is to return the value of top,
but this is hidden to the subclass. As we will see in Section 6.3.1.4, this can be done, but class stack needs to be
slightly changed. Other languages, like Eiffel, would require no change to be made in the parent class.

 323

stack* sp = new stack;
counting_stack* csp = new counting_stack;
...
sp = csp; //okay
...
csp = sp; //statically not sure if okay--disallowed

The assignment sp = csp; allows a pointer to a class to point to an object of a
subclass. That is, the type of the object that is currently pointed at by sp can be
of any of its derived types such as counting_stack. The assignment csp = sp; is not
allowed in C++ because C++ has a strong type system. If this assignment
were allowed, then a later call to csp->size() would be statically valid but may
lead to a runtime error because the object pointed at by sp may not support the
member function size(). A language with a weak type system, such as Small -
talk, would allow such an assignment and defer error checking to runtime.
We will return to the typing issues raised by inheritance in Section 6.2.

According to the concepts developed in Chapter 3, a pointer to a class stack is
a polymorphic variable which can also be assigned an object of class
counting_stack. Assignments among objects of such types may be checked stat-
ically. The assignment of a counting_stack object to a variable of type stack is
considered to be legal because a counting_stack object fulfills all the require-
ments of a stack object, whereas an assignment in the other direction should
not be allowed, because a stack object does not have a size() component. In
C++, if we do not use pointers, then the situation is different:

stack s;
counting_stack cs;
...
s = cs; //okay, object is coerced to a stack (no more size operation available)
cs = s; //not allowed because a later cs.size() would look syntactically okay but not work
at runtime

The assignment s = cs; is legal and is an example of ad hoc polymorphism. In
fact, what happens is that the values stored in object cs are copied into the cor-
responding elements of s. This kind of coercion, of course, loses some of the
values stored in cs, just as coercion from float to int loses some information.

6.1.4 Dynamic binding of calls to member functions

A derived class may not only add to the functionality of its base class, it may
also add new private data and redefine or override some of the operations
provided in the base class. For example, in counting_stack we may decide to
provide a new implementation of the push function because we may want to

324 Object-oriented languages Chap.6

keep track of the number of times push has been called. Now, if sp is a refer-
ence to a stack variable and csp is a reference to a counting_stack variable, we
expect that csp->push() will call the push of a counting_stack object but what
about sp->push()? Since sp is a polymorphic variable, it may be pointing at a
counting_stack object or a stack object. This raises an issue of proper binding of
operations. Consider the following example:

stack* sp = new stack;
counting_stack* csp = new counting_stack;
...
sp.push(); // stack::push
csp.push(); // counting_stack::push
...
sp = csp; //assignment is okay
...
sp.push(); //which push?

Which is the push operation invoked in the last statement, stack::push or
counting_stack::push? Because the assignment sp = csp is allowed, at run-time sp
may be pointing to a stack object or to a counting_stack object. Should the choice
of which routine to call be made statically, in which case stack::push() will be
called, or dynamically, in which case counting_stack::push() will be called. So-
called purely object-oriented languages, such as Smalltalk and Eiffel, bind the
choice dynamically based on the type of the object. In fact, as stated, dynamic
binding (often called dynamic dispatching in object-oriented terminology) is
one of the tenets for object-oriented programming languages. C++, however,
not being a purely object-oriented language, provides features for both static
and dynamic binding. Section 6.3.1 presents the C++-specific features.

Dynamic binding combined with inheritance is a powerful notion. For exam-
ple, we may define a class polygon and derive various specialized versions of
polygons such as square and rectangle. Suppose that polygon defines a function
perimeter to compute the perimeter of a general polygon. Some of the derived
classes may define their own special perimeter functions because they are pre-
sumably more eff icient. We may maintain a list of various types of polygons.
Every time we select an element p from the list, the use of dynamic binding
ensures that a call p.perimeter for a variable p of type polygon will call the
“right” perimeter function based on the type of the object currently assigned to
p. Clearly, dynamic binding is more flexible than static binding. In languages
that do not support dynamic binding, we may have to use case statements (as
in Pascal) or use function pointers (as in C) to achieve the same result but
with code that is more verbose and harder to maintain. For example, in Pascal

 325

we might implement polygon as a variant record and explicitly call the right
perimeter function based on the tag of the variant record. In C, each object
could contain a pointer to its perimeter function and the call would have to be
made indirectly through this pointer. Both of these solutions are not only
more verbose but also less secure and maintainable than the solution using
inheritance and dynamic binding.

As we have seen in Chapter 3, dynamic binding of the function call may cre-
ate possibilit ies of type violations. Indeed, in dynamically typed languages
such as Smalltalk, this type of error may easily occur. A call to member func-
tion f of an object v may fail at runtime because the object bound to v belongs
to a class that does not provide function f, or if it does, because the types of
the actual parameters (or the result type) are incompatible with those of the
formal parameters. Several languages, such as Eiffel and C++, as we shall see
later, combine polymorphism and dynamic binding with static type checking.

6.2 Inher itance and the type system

In the previous section, we have described the basic components of object-
oriented programming languages. The interaction between inheritance and
type consistency rules of the language raises a number of interesting issues. In
this section, we consider some of these issues.

6.2.1 Subclasses versus subtypes

In Chapter 3, we saw the concept of subtype with which we defined a new
type as a subrange of an existing type. For example, we defined week_day as a
subrange of day. Subtyping introduces a relationship among objects of the
subtype and objects of the the parent type such that objects of a subtype may
also be viewed as objects of the parent type. For example, a week_day is also a
day. This relationship is referred to as the is-a relationship: week_day is-a day.
The subtype relationship is generalizable to user-defind types such as those
defined by classes. For example, a counting_stack is-a stack but not vice versa.

But not all subclasses create subtypes. If a derived class only adds member
variables and functions or redefines existing functions in a compatible way,
then the derived class defines a subtype. If it hides some of the parent’s mem-
ber variables and functions or modifies them in an incompatible way, then it
does not create a subtype. Therefore, whether a derived class defines a sub-
type depends on the definition of the derived class and is not guaranteed by

326 Object-oriented languages Chap.6

the language.

What does it mean for a function f in a derived class to override a function f in
a base class in a compatible way? Informally, it means that an occurrence of
base::f(x) may be replaced by derived::f(x) without risking any type errors. For
example, if the signature of the function derived::f is identical to the signature
of base::f, no type errors wil l be introduced as a result of the replacement. We
will examine this issue more deeply in the next subsection.

6.2.2 Strong typing and polymorphism

In Chapter 2 we defined a strong type system as one which guarantees type
safety. Strong type systems have the advantage of enabling type errors to be
caught at compile-time. Statically typed languages provide a strong type sys-
tem. In this section we discuss how object oriented languages can rely on
dynamic dispatch as a fundamental principle and yet adopt a strong type sys-
tem.

Let us assume that we have a base class base and a derived class derived and
two objects derived from them:

class base { ...} ;
class derived: public base { ...} ;
...
base* b;
derived* d;

We have seen that we may assign d to b but not b to d. The question is under
what circumstances can we guarantee that an assignment

b = d;
will not lead to a type violation at runtime? We may ask this question in terms
of substitutability: can an object of type derived be substituted for an object of
class base in every context? Or in general, can an object of a derived type be
substituted for an object of its parent type in every context, and is such a kind
of polymorphism compatible with strong typing? If substitutabili ty is
ensured, the derived type can be viewed as a subtype of the parent type. To
answer this question we need to examine the contexts under which objects are
used. By imposing some restrictions on the use of inheritance, the language
can ensure substitutabili ty. Below we examine several sufficient (but not nec-
essarily necessary) restrictions.

 327

6.2.2.1 Type extension

If the derived class is only allowed to extend the type of the parent class, then
substitutability is guaranteed. That is, if derived does not modify any member
functions of base and does not hide any of them, then it is guaranteed that any
call b.f(...) will be valid whether b is holding a base object or a derived object.
The compiler may do type-checking of any uses of base variables solely
based on the knowledge that they are of type base. Therefore static type check-
ing can guarantee the lack of runtime violations. Type extension is one of the
mechanisms adopted in Ada 95.

6.2.2.2 Overriding of member functions

Restricting derived classes to only extend the parent type is a severe limita-
tion on an object-oriented language. In fact, it rules out dynamic dispatch
completely. Many languages allow a derived class to redefine an inherited
member function. For example, as in our previous example, we may derive a
square class from a polygon class. The square class may redefine the general
perimeter function from the base class by a more efficient version of a perime-

ter function. In C++, the base class must specify the function perimeter as a vir-
tual function, giving derived classes the opportunity to override its definition.
That is,

class polygon {
public:

polygon (...) { ...} //constructor
virtual float perimeter () { ...} ;
...

} ;
class square: public polygon {

public:
...
float perimeter() { ...} ; //overrides the definition of perimeter in polygon

} ;
The typing question is: under what conditions can we guarantee that a use of a
square object may substitute the use of a polygon object in all contexts? That is,
under what conditions can we guarantee that a call p->perimeter() will always
be valid whether *p is a polygon or a square object? C++ requires that the signa-
ture of the overriding function must be exactly the same as the signature of
the overridden function. This rule ensures that the compiler can do the type
checking based only on the static type of p and the signature of the function
polygon::permiter. If at runtime p happens to hold a square object or any other
derived type object, a function other than polygon::perimeter will be called but

328 Object-oriented languages Chap.6

that function will have exactly the same parameter requirements and no runt-
ime type violations will occur.

Can we relax the C++ requirement and still ensure type safety? Again, we can
analyze the semantic requirements of the relationship between an overridden
function and the function it overrides in terms of substitutabilit y. In general,
we must be able to do the type checking based on the parent class, knowing
that a derived member function may be substituted for the overridden func-
tion. Clearly, we must require exactly the same number of parameters in the
overriding function and the overridden function. The question is how should
the signatures of the two functions be related?

Consider the following program fragment (we will use the syntax of C++ but
we will t ake some liberty with its semantics):

//not C++
class base {
public:

void virtual fnc (s1) (...) //s1 is the type of formal parameter
...} ;
class derived: public base {
public:

void fnc (s2) (...) //C++ requires that s1 is identical to s2
...} ;
...
base* b;
derived* d;
s1 v1;
s2 v2;
...
if (...) b = d;
...
b->fnc(v1); // okay if b is base but what if it is derived?

To ensure substitutability, the call b->fnc(v1) must work at runtime whether b
holds a base object or a derived object. That is, the parameter v1 must be accept-
able to both base::fnc() and to derived::fnc(). This, in turn, means that derived::fnc()
must be able to accept v1, which is of type s1. In other words, type s1 must be
a derived type that can be substituted for type s2. That is, either class s1 sim-
ply extends class s2 (Section 6.2.2.1), or class s1 redefines member functions
of s2, but redefinitions satisfy the constraints we are discussing in this section.
Informally, this rule means that the overriding function must not impose any
more requirements on the input parameters than the overridden function does.

 329

Now let us consider a member function with a result parameter.

//not C++
class base {
public:

t1 virtual fnc (s1) (...); //s1 is the type of formal paramter;
// t1 is the type of result parameter

...
} ;
class derived: public base {
public:

t2 fnc (s2) (...); //C++ requires that s1 is identical to s2 and t1 is identical to t2
...
} ;
...
base* b;
derived* d;
s1 v1;
s2 v2;
t0 v0;
...
if (...) b = d;
...
v0 = b->fnc(v1); // okay if b is base but what if it is derived?

Again, substitutabili ty means that if b holds a derived object, the call fnc() will
work at runtime and a proper result wil l be returned to be assigned to v0 with-
out any type violations. That means that the result type of the overriding func-
tion (t2) must be substitutable to the result type of the overridden function (t1),
which must be substitutable to the type of v0, if the last assignement of the
fragment is considered to be legal by the compiler. In other words, t2 must be
a subtype of t1 which must be a subtype of t0. Combining the rules on input
parameters and result parameter together, we can state intuitively that an
overriding function must be able to accept the parameters of the overridden
function and return at least what the overridden function returns: it may
accept less but it may return more.

Stated more precisely:

• The input parameters of the overriding function must be supertypes of the corresponding
parameters of the overridden function;

• The result parameters of the overriding function must be subtypes of, the result
parameters of the overridden function.

These two type checking rules are known respectively as the contravariance
rule on input parameters and the covariance rule on result parameters. We
have stated them here as syntactic rules that ensure type safety. However, the

330 Object-oriented languages Chap.6

contravariance rule on input arguments seems rather counter-intuitive. It says
that even though we may define a more specialized function in a derived
class, the input parameters of the specialized function may not impose any
more specific requirements.

Few programming languages enforce these rules completely. Emerald is one
language that does. C++, Java, Object Pascal, and Modula-3 follow neither:
they requires the exact identity of the two functions. Eiffel and Ada require
covariance of both result and input arguments. The assertions of Eiffel, as
seen in Chapter 3, may be used to check the contravariance requirements at
runtime.

The example in Figure 78 shows the counterintuitive nature of the contravari-
ance requirement on input parameters and the basic difficulty of equating
subtyping as an abstract concept and inheritance as a language construct that
implements it. We have defined a class point characterized by x and y coordi-
nates and a member function equal that can compare itself for equali ty with
another point. We then derive a colorPoint which inherits x and y from class
point, adds another instance variable color, and redefines the equal member
function. The member function must be redefined because the colorPoint

equality test must compare two colorPoints. For this reason, the input parame-
ter to colorPoint::equal must be of type colorPoint. But if we allow such a redefi-
nition, colorPoint may not be considered a subtype of point. This redefinition,
although intuitively necessary, goes against our rule of contravariance of
input arguments which requires the parameter to colorPoint::equal() to be a
supertype of the input parameter of point::equal(). We can see the problem by

class point{
public:

x: float;
y: float;
bool equal (point p) //bool is defined as a boolean type

{ return (x == p.x && y == p.y);}
} ;
class colorPoint: public point{

public:
color: float;
bool equal (colorPoint p) //bool is defined as a boolean type

{ return (x == p.x && y == p.y && color == p.colorPoint);}
} ;

FIGURE 78.Classes point and colorPoint

 331

considering a call p1.equal(p2). This call works if p1 and p2 are both points. But
the call will fail if we substitute a colorPoint for p1 because the equali ty test will
attempt to access the nonexistent color variable of p2.

In conclusion, if inheritance is constrained by requiring that either (a) the
derived class only provides extensions, or (b) redefinitions are also allowed,
but contravariance and covariance are required for input and output parame-
ters, respectively, then substitutability is ensured and derived classes can be
considered to define subtypes of their parent class. The resulting type system
would be polymorphic (inclusion polymorphism) and yet it would be strong.
The price to pay for this conceptual integrity of the language, however, is that
the restrictions imposed on inheritance are severe, and even counterintuitive.

6.2.3 Inheritance hierarchies

Hierarchical organization is an effective method of controlli ng complexity.
The inheritance relationship imposes a hierarchy and provides a mechanism
for the development of a hierarchically organized families of classes. In this
section we discuss several issues raised by inheritance hierarchies.

6.2.3.1 Single and multiple inheritance

In Simula 67, Ada, and Smalltalk, a new class definition is restricted to have
only one base class: a class has at most one parent class. These languages
have a single-inheritance model.

C++ and Eiffel have extended the notion of inheritance to allow a child to be
derived from more than one base class. This is called multiple inheritance.
For example, if we have a class displayable and a class polygon, we might inherit
from both to define a displayable rectangle:

class rectangle: public displayable, public polygon {
...
}

The introduction of multiple inheritance into a language raises several issues.
For example, there may be name clashes between parents. For example, a dis-

playable class and a bank_account class may both provide a member function
draw() and inheriting from both to build a displayable bank_account may cause
problems. In this case, which draw() function is exported by the derived class?
The derived class needs a way to both access and to export the desired mem-
bers. Another issue is what if several of the parents are themselves derived

332 Object-oriented languages Chap.6

from the same base class. The members of the parent will be repeated multi -
ple times in the child class. This may or may not be desirable. Some lan-
guages provide features to resolve such name conflicts. For example, Eiffel
has a construct to undefine an inherited feature; it also has a construct to
rename an inherited feature.

The successful use of multiple inheritance requires not only well-designed
inheritance hierarchies but also orthogonally designed classes that may be
combined without clashing. In practice, the use of multiple inheritance
requires much care. Whether its benefits outweigh its complexity is an open
question. Java, which adopts many features of C++, uses only single inherit-
ance but introduce separate interfaces and supports the idea of inheriting from
multiple interfaces.

6.2.3.2 Implementation and interface inheritance

One of the promises of object-oriented programming is that new software
components may be constructed from existing software components. This
would be a significant contribution to programming in the large issues. To
what extent does inheritance support a methodology for such incremental
building of components?

In the last chapter, we discussed the importance of encapsulation in achieving
independent modules whose internals may be modified without affecting
their interfaces and thus their clients, who use the resources specified in the
interface. Inheritance complicates the issue of encapsulation because the
derived classes of a class are a different type of client for the class. On the one
hand, they may want to extend the facilit ies of a parent class and may be able
to do so solely by using the public interfaces of the parent class; on the other
hand, the facilities they provide to their clients may often be implemented
more efficiently if they access the internal representations of their parent
classes. C++ introduces protected members (see Section 6.3.1.4) and friend
classes exactly for these special clients of a base class. Eiffel, on the other
hand, allows derived classes to access all features defined in the parent class.

There is a trade-off . If the derived class uses the internal details of the parent
class—it inherits the implementation of the parent—it will be affected any
time the implementation of the parent class is modified. This means that, at
the very least, it wil l have to be recompiled but most likely it will also have to
be modified, leading to famili ar maintenance problems. This is not a major

 333

problem if the base class and the derived class are part of the same package
produced and maintained by the same organization. It is a serious problem,
however, if the base class is supplied by a library and a different organization
creates the derived class.

From a software engineering view, interface inheritance is the right method-
ology but to rely only on interface inheritance requires both a well-designed
base class and efficient language implementations. A well -designed inherit-
ance hierarchy is a requirement for the successful use of object-oriented pro-
gramming in any case. Any hierarchy implies that the nodes closer to the root
of the hierarchy affect a larger number of the leaf nodes of the hierarchy. If a
node close to the root needs to be modified, all of its children are affected. As
a result, even though inheritance supports the incremental creation of soft-
ware components, it also creates a tightly-dependent set of components. Mod-
ifications of base classes may have far reaching impact.

6.3 Object-or iented programming suppor t in programming
languages

The way different languages support object-oriented programming is related
to the philosophy of the language and more specifically to the language’s
object and encapsulation models. In C++, the class construct defines a user-
defined type. Object-oriented features have been added to the language to
allow programmers who want to use object-oriented programming to do so.
In Eiffel, the class construct defines an abstract data type. The language has
been designed to support the object-oriented programming style exclusively.
In Ada 95, the package is simply an encapsulation mechanism for packaging
a set of related entities. It is neither necessarily a type, nor an abstract data
type. It may be used to support those notions, however. Ada 95 has some
object-orientation features but the language remains a module-oriented lan-
guage. In this section, we examine these languages a lit tle more closely from
an object-oriented view.

6.3.1 C++

C++ supports object-oriented programming by providing classes for abstract
data types, derived classes for inheritance, and virtual functions for dynamic
binding. This support is provided with static type checking.

As we have seen, a C++ class defines a user-defined type. Indeed the pro-

334 Object-oriented languages Chap.6

grammer can create first-class types because the language allows the defini-
tion of initialization, assignment, and equali ty test for the type being defined.
As a result, objects of user-defined types may behave quite li ke objects of lan-
guage-defined types: they may be created on the stack or in free store, passed
as parameters, and returned by functions as results.

The language supports both inheritance and multiple inheritance for defining
new classes.

6.3.1.1 Classes

We have already seen the use of C++ classes as a definition mechanism for
abstract data types. C++ provides the programmer with control over the cre-
ation, initialization, and cleanup of objects of such abstract data types. In par-
ticular, one or more constructors may be defined for a class. Such
constructors are invoked automatically to initialize objects of the class at cre-
ation time. A constructor has the same name as the class. By analogy to a con-
structor, a destructor is invoked automatically when the object is destroyed—
either explicily through a call to delete or implicitl y when the object goes out
of scope. The abil ity to control what happens when an object is destroyed is
criti cal for complex data types that may have allocated substructures in the
heap. For example, simply deleting a pointer to the head of a list may leave
the entire li st inaccessible in the free store. A destructor gives the progammer
the possibilit y to clean up after the object properly based on the requirements
of the object. The name of a destructor is the same as the class name preceded
by ~ (i.e. the complement of the constructor).

We have seen in Chapter 3 that garbage collection is an important issue in
programming languages that support dynamic object allocation. Constructors
and destructors may be used by the programmer to design object-specific
storage allocation and garbage collection policies. For example, the destruc-
tor included in a class might link the released object in a free list. The con-
structor included in the same class, would first try to extract an object from
the free list and, if the free list is empty, would allocate a new object from
scratch. This policy would be similar to a garbage collection service that col-
lects and recycles different kinds of garbage (paper, plastic, etc.) separately.

For a derived class, its constructor is invoked after that of its base class. This
order guarantees that the derived class constructor may rely on the availabil -
ity of its inherited variables. The destruction of a derived class proceeds in the

 335

opposite direction: first the constructor of the derived class is invoked fol-
lowed by that of its parent.

Besides construction and destruction, programmer control is important over
two other operations for user-defined types: assignment and equality compar-
ison. These two operations are related semantically. In general, we expect that
after assigning an object a to object b, the two objects are equal. C++ by
default uses member-wise copy and member-wise comparison for assignment
and comparison of class objects. This is often inadequate if the structure of
the object involves heap-allocated components. In these cases, the program-
mer may define class-specific assignment and equality operations. There are
no special C++ features for this: as any other operators, the programmer may
overload = and ==.

Most languages treat these operations in a special way. For examle, we have
seen that Ada lets the programmer designate a type as pr ivate to indicat that
the language-defined assignement and equali ty apply to the type; limited pr i-
vate means that they do not.

6.3.1.2 Virtual functions and dynamic binding

By default, a function call is bound to a function definition statically. If the
programmer wants a function to be selected dynamically, the function must
be declared as virtual in the base class and then redefined in any derived
classes. For example, suppose we define a class student that supports some
operations including a print() operation. We expect to derive different types of
students from this class, such as college_student and graduate_student. First we
define the student class and define a default print() function:

class student{
public:
...
virtual void print(){ ...} ;
} ;

The virtual qualifier on print() says that classes derived from student may rede-
fine the function print(). If they do, then the appropriate print() function will be
selected dynamically. For example:

class college_student: public student{
void print() {
. . . // specific print for college_student

336 Object-oriented languages Chap.6

}
} ;

defines a derived class that inherits all it s operations from student but supplies
a new definition for print(). Now, the following code sequence shows the
effect of dynamic binding:

student* s;
college_student* cs;
...
s->print(); //calls student::print()
s = cs; // okay
s->print(); //calls college_student::print()

Remember that in C++, the binding is normally static. The virtual function
and pointers are used to effect dynamic binding.

To ensure the type safety of virtual functions, first the virtual function must
be defined the first time it is declared, that is, in the base class. This means
that the function will be available in any derived classes even if the derived
class does not define it. Second, any redefinition of a virtual function may not
change the signature of the function. That means that no matter which func-
tion is invoked, it is guaranteed to have the same signature. We have dis-
cussed this second rule in Section 6.2.2.2.

6.3.1.3 Use of virtual functions for specification

Virtual functions may be used to define abstract classes. For example, we
may specify that a shape must have three functions named draw, move, and
hide, without providing an implementation for these functions. A virtual func-
tion that does not have an implementation is called a pure virtual function. To
write a pure virtual function, its body is written as = 0;. If one of the functions
of a class are pure virtual, the class is called abstract. We may not create
objects of an abstract class. In the example, objects of type shape cannot be
created because such a class does not have an implementation. The pure vir-
tual designation for a function says that a derived class based on shape must
define such functions concretely. Figure 79 shows the outline of the class

 337

shape and a class rectangle derived from it.

We may view abstract classes as a specification for a set of derived classes.
The abstract class specifies the interface and the derived classes must provide
the implementation.

6.3.1.4 Protected members

Let us go back to the example of counting_stack in Section 6.1.2. We want
counting_stack to provide an additional function called size(). How are we
going to implement size()? The simplest way to do it is to return the value of
top. That is, define size() as:

counting_stack::size(){ return top;} ; //not quite right!
But there is a problem here. The variable top was declared to be private in
stack. This means that it is only known within stack, and not even within
classes derived from stack. We do not want to make top public because that
would make it available to all clients also. For this reason, C++ has a third
class of visibility for class entities: protected entities are visible within the
class and any derived subclasses. So, if we declare top to be a protected vari-
able of stack, rather than a private variable, then the above implementation of
size() will work properly. We show in Figure 80 the code for both stack and

class shape{
public:

void draw() = 0; // this and the others are pure virtual function
void move() = 0;
void hide() = 0;
point center;

} ;

class rectangle: public shape{
float length, width; //specific data for rectangle

public:
void draw() { ...} ; //implementation for the derived pure virtual function
void move() { ...} ;
void hide() { ...} ;

} ;

FIGURE 79.A C++ abstract class using pure virtual functions

338 Object-oriented languages Chap.6

counting_stack.

Thus the general form of a C++ class is shown here:

class C {
private:

// accessible to members and friends only
protected:

// accessible to members and friends and
// to members and friends of derived classes only

public:
// accessible to the general public

} ;
In summary, then, the C++ language provides three levels of protection. Enti-
ties defined in a class may be private (default case), in which case they are only
accessible inside the class itself; they may be defined as protected, in which
case they are accessible inside the class and inside any classes derived from
it; or they may be defined as public, in which case they are accessible gener-
ally. The public entities define the services provided by the class and consti-
tute its interface. The private entities deal with the internal details of the class
such as the representation of data structures. The protected entities are not of
interest to users of the class but they are of interest to any classes that are
derived from this class and need to provide services based on the services
already provided by this class.

Using the terminology of Section 6.2.3.2, we can say that protected members

class stack{
public:

stack(); { top = 0;} //constructor
void push(int) { s[top++] = i;} ;
int pop() { return s[--top];} ;

protected:
int s[100];
int top;

} ;

class counting_stack : public stack {
public:

int size(){ return top;} ; //return number of elements on the stack
} ;

FIGURE 80.Example of class inheritance (derivation) in C++

 339

support the use of implementation inheritance whereas public members sup-
port the use of interface inheritance.

6.3.1.5 Overloading, polymorphism, and genericity

In Chapter 3 we discussed several kinds of polymorphism. Now we have seen
that all the forms exist in C++. First, we have seen the use of ad-hoc polymor-
phism in the support of overloading of operators and functions, in which case
the binding of the operator or function is done at compile-time based on the
types of the arguments. If a derived class redefines a virtual function f of a
base class b, the base class defines a polymorphic type and the function call
b.f() is a call to a polymorphic function resolved dynamically on the basis of
the type of the object referred to by b. Since the object must belong to a sub-
class of the class to which b is declared to point, this is a case of inclusion
polymorphism. If the function is not declared to be virtual in the base class,
then the two functions in the base and derived classes are treated as simply
overloading the same function name: the proper function to call is selected at
compile-time. Finally, we have seen that C++ also supports generic functions.
If a function f(a,b) is generic, the types of a and b are used at compile time to
instantiate a function that matches the types of the parameters a and b. There
is no dynamic dispatch in this case.

6.3.2 Ada 95

The original version of the Ada language, introduced in 1983, was an object-
based language. The package construct may be used to create objects that
encapsulate both data, possibly private, and related operations. This enabled
object-based programming. Since the introduction of Ada, however, the con-
cepts of object-oriented programming have become better understood. As a
result, a number of features were added to Ada 95 to support object-oriented
programming techniques. In particular, tagged types support derivation of a
new type from an existing type, and a technique called “classwide program-
ming” combined with tagged types supports dynamic dispatch. Another fea-
ture of Ada 95 is the abil ity to define abstract types which in turn enable the
association of multiple implementations with the same interface. Such flexi-
bility is usually associated with object-oriented programming. We discuss
these features below.

6.3.2.1 Tagged types

In Chapter 3, we have seen how new types may be derived based on existing

340 Object-oriented languages Chap.6

types. We have also seen how subtypes of discrete types may be defined that
inherit the operations of the parent type but restrict the range of values of the
type. In Chapter 5, we have seen that we can use a package to group together
a type and its associated operations, thus creating a user-defined type. With
Ada 95, a type declaration may be designated as tagged, in which case it is
possible to derive new types from it by extending it. This facili ty allows us to
define a hierarchy of related types. For example, Figure 81 defines a tagged
type named Planar_Object as having certain set of basic properties such as X
and Y coordinates of its center and three functions: one to compute its Distance
from the origin, another to Move it to a new position, and another to Draw it as
a predefined icon on the screen. We might then derive other objects such as
points and circles which each extend the basic object in their own ways.

We wil l assume that the body (implementation) of the package Planar_Objects
is given elsewhere. With this definition we may declare objects of type
Planar_Object and apply Distance, Move and Draw operations to them. Next we
can define new types Point, Rectangle, and Circle that inherit the properties of
the type Planar_Object. For a Point, the X and Y coordinates are enough, thus the
data representation of Planar_Object does not need to be extended. But for a Cir-

cle, we will add a Radius field and for a Rectangle, we will add the sizes of the
two edges. Finally, it is necessary to redefine Draw for all of them. These
shapes are defined in the package in Figure 82.

package Planar_Objects is
type Planar_Object is tagged
record

X: Float := 0.0; --default initial value of the center’s x coordinate
Y: Float := 0.0; --default initial value of the center’s y coordinate

end record;
function Distance (O: Planar_Object) return Float;
procedure Move (O: inout Planar_Object; X1, X2: Float);
procedure Draw (O: Planar_Object);

end Planar_Objects;

FIGURE 81.An Ada 95 package that defines a tagged type Planar_Object

341 Object-oriented languages Chap.6

First, note that we may only extend a type, not remove any properties. There-
fore, the new types are guaranteed to have all the fields of the parent type. As
a result, the derived types can easily be coerced to the parent type by simply
ignoring the additional fields. Thus, the following statements are valid:

O1: Planar_Object; -- basic object at origin
O2: Planar_Object (1.0, 1.0); -- on the diagonal
C: Circle := (3.0, 4.5, 6.7);
...
O1 := Planar_Object(C); -- coercion by ignoring the third field of C

What if we want to do the assignment in the opposite direction? As opposed
to C++, this can be done but since the object on the right hand side does not
have all the necessary fields, they must be provided by the programmer
explicitly. For example:

C := (O2 with 4.7);
In our example, the three newly defined types inherit the operations Distance

and Move from Planar_Objects. When they need to redefine (that is, override) an
operation such as Draw, the rule on redefinition is similar to Eiffel, that is, the
parameters of the overriding operations must be subtypes of (more specific
than) the parameters of the overridden operations.

Thus, the tagged types of Ada 95 support the development of a tree of types

with Planar_Objects; use Planar_Objects;
package Special_Planar_Shapes is

type Point is new Planar_Object with null record; --indicates no additions
procedure Draw (P: Point);
type Circle is new Planar_Object with

record
Radius: float;

end record;
procedure Draw (C: Circle);
type Rectangle is new Planar_Object with
record

A, B: Float;
end record;
procedure Draw (T: Rectangle);

end Special_Planar_Shapes;

FIGURE 82.Extending tagged types in Ada 95

342 Object-oriented languages Chap.6

through the use of inheritance, overriding, and extension. Type coercion is
supported from a derived to any ancestor type. One of the major goals of Ada
in adopting the type extension model of inheritance has been to ensure that
extension of a type does not force the recompilation of either the type being
extended, or the clients of that type.

6.3.2.2 Dynamic dispatch through classwide programming

The tagged types of Ada 95 are also used to support dynamic binding of func-
tion calls. The tag is an implicit field of an object and is used at runtime to
identify the object’s type. For example, suppose that we want to write a pro-
cedure Process_Shapes that will process a collection of objects that may be
Points, Rectangles, or Circles. We need to declare this procedure as accepting a
polymorphic type that includes all these types. The 'Class attribute of Ada 95
constructs exactly such a class. That is, the expression T'Class applied to a
tagged type T is the union of the type T and all the types derived from T. It is
called a class-wide type. In our example, we can write our procedure as:

procedure Process_Shapes (O: Planar_Object'Class) is
...
begin

...

... Draw (O) ...; --dispatch to appropriate Area procedure

...
end Process_Shapes;

Since it is often useful to access objects through pointers, it is also possible to
declare polymorphic pointers such as:

type Planar_Object_Ptr is access all Planar_Object'Class;

6.3.2.3 Abstract types and routines

As in C++ and Eiffel, Ada 95 supports the notion of top-down design by
allowing tagged types and routines (called subprograms in Ada) to be
declared abstractly as a specification to be implemented by derived types. For
example, we might have declared our Planar_Object type before as an abstract
type as in Figure 83.

343 Object-oriented languages Chap.6

This package will not have a body. It is only a specification. By applying der-
ivation to the type Planar_Object, we can build more concrete types. As before,
we may derive a tree of related types. Once concrete entities (records and sub-
programs) have been defined for all the abstract entities, we have defined
objects that may be instantiated.

6.3.3 Eiffel

Eiffel was designed as a strongly-typed object-oriented programming lan-
guage. It provides classes for defining abstract data types, inheritance and
dynamic binding. Classes may be generic based on a type parameter.

6.3.3.1 Classes and object creation

An Eiffel class is an abstract data type. As we have seen in Chapter 3, it pro-
vides a set of features. As opposed to C++, all Eiffel objects are accessed
through a reference. They may not be allocated on the stack. Again in contrast
to C++, object creation is an explicit, separate step from object declaration. In
one statement, a reference is declared and in a following statement, the object
is created. As in:

b: BOOK; --declaration of a reference to BOOK objects
!!b; --allocating and initializing an object that b points to

The language provides a predefined way of creating and initializing objects,
based on their internally defined data structure. It is also possible to provide
user-defined “creator” routines for a class which correspond to constructors
of C++.

6.3.3.2 Inheritance and redefinition

A new class may be defined by inheriting from another class. An inheriting
class may redefine one or more inherited features. We saw that C++ requires
the redefined function to have exactly the same signature as the function it is

package Planar_Objects is
type Planar_Object is abstract tagged null record;
function Distance (O: Planar_Object'Class) return Float is abstract;
procedure Move (O: inout Planar_Object'Class; X, Y: Float) is abstract;
procedure Draw (O: Planar_Object'Class) is abstract;

end Objects;

FIGURE 83.An abstract type definition in Ada 95

344 Object-oriented languages Chap.6

redefining. Eiffel has a different rule: the signature of the redefining feature
must conform to the signature of the redefined feature. This means that for
redefined routines, the parameters of the redefining routine must be assign-
ment compatible with the parameters of the redefined routine.

Consider the following Eiffel code sequence:

class A
feature

fnc (t1: T1): T0 is
do
...
end -- fnc

end --class A

class B
inherit

A redefine fnc
end
feature
fnc (s1: S1): S0 is

do
...
end -- fnc

end --class B
...
a: A;
b: B;
...
a := b;
...
... a.fnc (x)...

The signature of fnc in B must conform to the signature of fnc of A. This
means that S0 and S1 must be assignment compatible with T0 and T1 respec-
tively. Referring to the discussion of Section 6.2.2.2, the Eiffel rule follows
the covariance rule on both input and output arguments. The Eiffel require
and ensure clauses which are used to specify pre- and post-conditions for
routines and classes may be used as a design tool to impose a stronger disci-
pline on redefinitions. In particular, restating the rules of Section 6.2.2.2, the
fnc of B must require no more than the fnc of A and must ensure at least as
much as the fnc of A.

Eiffel has a different view of inheritance from what we have described in Sec-
tion 6.1.2. In particular, Eiffel views a subclass (derived class using C++ ter-

345 Object-oriented languages Chap.6

minology) as either extending its parent class or specializing it. For example,
a subclass may undefine a feature of the parent class. In such a case, the child
class may no longer be viewed as satisfying the is-a relationship with its par-
ent.

The deferred clause of Eiffel may be used as the virtual specifier of C++ to
implement abstract classes.

Eiffel supports multiple inheritance. To resolve the name conflicts that may
occur due to inheriting from more than one base class, the undefine construct
may be used to hide some features and rename may be used to rename others.

6.3.4 Small talk

Smalltalk was the first purely object-oriented language, developed for a spe-
cial purpose machine, and devoted to the devopelopment of applications in a
highly interactive single-user personal workstation environment. It is a highly
dynamic language, with each object carrying its type at runtime. The type of
of a variable is determined by the type of the object it refers to at runtime.
Even the syntax of Small talk reflects its object orientation.

All objects are derived from the predefined class object. A subclass inherits
the instance variables and methods of its parent class (called its superclass)
and may add instance varaiables and methods or redefine existing methods. A
call to an object is bound dynamically by first searching for the method in the
subclass for the method. If not found, the search continues in the superclass
and so on up the chain until either the method is found or the superclass
object is reached and no method is found. An error is reported in this case.

A class defines both instance variables and methods, and class variables and
methods. There is a single instance of the class variables and methods avail -
able to all objects of the class. In contrast, a copy of each instance variable
and method is created for each instance of an object of the class.

6.4 Object-or iented analysis and design

In this chapter we have described programming language support for object-
oriented programming. The object-oriented approach to software develop-
ment has grown to encompass not just programming but most other phases of
software development. Object-oriented analysis tries to analyze the applica-

346 Object-oriented languages Chap.6

tion domain in terms of objects, their associated operations, and relationships
among objects. Object-oriented design tries to design a system that consists of
objects. Such designs are implemented more easily in object-oriented lan-
guages. Indeed, the use of object-oriented languages is only effective if the
design is object-oriented. It is at the design stage that component objects and
their relationships are identified. Constructs such as abstract classes that we
have seen in Ada, Eiffel, and C++ may be used to document object-oriented
designs that can then be implemented in programming languages.

The substitutability and proper inheritance properties that we have discussed
for programming languages are treated in terms of is-a relationship at the
analysis and design stages. In our example, a counting_stack is-a stack and there-
fore may be substituted anywhere a stack is needed (for example passed to a
procedure that expects a stack). But stack is not a counting_stack and therefore a
stack may not be substituted for a counting_stack. A good design rule is to use
inheritance to derive a new class when derived_class is-a base_class. The C++
rule on assignments among derived and base classes may also be defined
using the is-a relationship. The assignment a = b is allowed if b is-a a. While
this rule is intuitive and simple to state, it is not always easy to determine
whether two objects are related with the is-a relation. For example, we have
seen that colorPoint is not necessarily a point (Section 6.2.2.2). Usually, the
relationship that holds is “ is-a-kind-of.” It often takes great care to create is-a
relationships.

6.5 Summary

Object-oriented programming is an effective style of programming for many
situations. In recent years, however, it has been advertised rather as a panacea
to all software development problems. It is important to realize that the design
of large software systems is an inherently difficult activity. Programming lan-
guage features may help in implementing good designs but they do not
remove the deficiencies of a bad design. More importantly, designs are not
necessarily bad or good. For example, consider developing tree abstractions
for use in a system. Suppose we need both general trees and binary trees.
Should the two classes be related by an inheritance relationship? If so, which
one should be the base class? Depending on how the rest of the design fits
together, one or the other class as a base class would be the better choice.

In practice, the initial development of the design is not the major problem.
The designer is often able to build an inheritance hierarchy that fits the prob-

347 Object-oriented languages Chap.6

lem at hand. The problems occur later when the software is extended to meet
new requirements. The difficulties arise when new classes needed to be
defined introducing new is-a relationships that are not compatible with previ-
ous such relationships. If the inheritance tree needs to be modified signifi-
cantly, then the impact on the rest of the software can be significant.

6.6 Bibliographic notes

Simula 67 was the first object-oriented language. It introduced the notions of
class and inheritance. All other object-oriented languages have their ancestry
in Simula 67 and later to Smalltalk. Smalltalk was the first popular object-ori-
ented language. It is a dynamically typed language and was initially devel-
oped on special hardware but current implementations of the language are
available on many computers including personal computers. CLOS (Common
LISP Object System) was an early attempt to introduce objects into an exist-
ing language. C++ added object-orientation support to an existing imperative
language (Stroustrup). The book by Stroustrup (Design and Evolution) gives
a fascinating account of how C++ grew from C with classes to a full language
on its own. It also explains the differences between an object-oriented lan-
guage and a language that supports object-oriented programming. Meyer is a
comprehensive treatment of object-oriented programming using the Eiffel
language. The language itself is described fully in Meyer.

References to languages: Dylan, Beta, Self, Emerald, Oberon, Modula, Java.

Snyder (Encapsulation and inheritance) pointed out the differences between
implementation and interface inheritance.

Wegner paper is the source for the classification of languages into object-
based and object-oriented.

Bruce et al. is the source of the example in Section 6.2.2.2. The type structure
of strongly typed object oriented languages has sparked a large amount of
type-theoretic research in recent years. A number of papers have been written
to clarify the rules of covariance and contravariance (Liskov, Castagna,
Bruce). Cardelli and Wegner was the first of these papers. Barnes 95 is the
source for our treatment of Ada 95. Wirth (Wirth 93) descirbes the idea of
type extension.

348 Object-oriented languages Chap.6

The use of SIMULA 67’s prefix mechanism (its inheritance) in top-down
design is illustrated by several examples in (Birtwistle et al. 1976). A number
of approaches to object-oriented analysis and design are described in
(Fowler).

6.7 EXERCISES

1. Implement a C++ class employee that supports a virtual method print() which prints the
name and age of an employee object. Next derive a class manager which supplies its own
print() method which, in addition to the employee information, prints the group number for
which the manager is responsible (this is an additional field of manager). Also derive
another class from employee called part_time. The part_time class also supplies its own
print() which prints how many hours a week the employee works.

– Can you use the print of employee in manager?
– Explain how you would implement the same program in Pascal.
– Compare the object-oriented and the procedual solution in terms of maintainabilit y.

What changes are necessary in the two solutions if we need to add a new type of
employee?

– In the C++ solution, how would you implement a part_time_manager? Does your
solution allow you to implement this new class using multiple inheritance?

2. Consider the following C++ program fragment:

class point {
public:
 float x;
 float y;
 point (float xval, float yval): x(xval), y(yval) {} ;
 virtual int equal (point& p)
 { cout << "calli ng equal of point.\n";
 return x == p.x && y == p.y;
 } ;
} ;

class colorPoint: public point{
public:
 int color;
 colorPoint (float xval, float yval, int cval): point(xval, yval), color(cval){} ;
 int equal (colorPoint& cp)
 { cout << "calli ng equal of colorPoint.\n";
 return x == cp.x && y == cp.y /*&& color == cp.color* /;
 } ;
 int equal (point& cp)
 { cout << "calli ng equal of colorPoint with point.\n";
 return x == cp.x && y == cp.y;} ;
} ;

349 Object-oriented languages Chap.6

...
point p1 (2.0, 6.0);
colorPoint cp1 (2.0, 6.0, 3);
...
p1 = cp1;
– Which function will be called with the calls p1.equal (p1), p1.equal(cp1) and according

to what rule (polymorphism or overloading)?
– If we create a point* pp and assign cp1 to it, which functions will be called with the

calls p1.equal (p1), p1.equal(cp1) and according to what rule (polymorphism or
overloading)?

– Explain the differences between the answers to the first and second question.
3. In Section 6.1.4 we suggested that a language that does not support dynamic binding may

use case statements or function pointers to achieve the same result. Explain how this can
be done and discuss the drawbacks of such solutions.

4. In Exercise 2, what is the type of p1 after the assignment p1 = cp1? What is the type of pp
after the assignment pp = cp1? Explain the differences between the object held by p1 and
the object pointed to by pp. What about the computational model of the C++ makes this
difference necessary? Propose a change to the language that would remove this
difference. What is the cost of your proposal?

5. Let us define a relation s<.t to mean that s is a subtype of t. We want to define a subtype
relation for function signatures. First we represent a signature as t1 -> t2 indicating a
function that takes an argument of type t1 and produces a result of type t2. How would
you state the covariance and contravariant requirements using the subtype relation. That
is, complete the equivalence relation below: s1 -> s2 <. t1 -> t2 iff s1 ? t1 && s2 ? t2. How
would you describe the Eiffel rule?

6. In C++, it is possible for a derived class to hide the public members of its base class from
its clients. Give an argument to show that this is not a good design practice. (hint:
substitutabilit y)

7. (Multimethods) Assume the following class definitions:
class shape{

public:
virtual void move();
...

} ;
class circle: public shape{

public
move () { ...}
...

} ;
class square: public shape{

public
move () { ...}
...

} ;
The dynamic binding associated with virtual functions makes it possible to call

s.move()

350 Object-oriented languages Chap.6

for a shape s, which may be a circle or a square at runtime, and the appropriate move
function will be called depending on the runtime type of s. As we have seen, this is one
of the essential features of object-oriented programming languages. Now, suppose that we
also want to define a sort of conversion function that will reshape one shapes into another,
for example a square into a circle or a circle into a square. In particular, we want to define
a virtual function in shape:

virtual shape reshape(shape&);
And in square we want to define:

rectangle shape reshape(circle&);
And in circle we want to define:

circle reshape(rectangle&);
What is the difference between reshape and move? Can a call s.reshape(s) be statically
checked for consistency? Can the identity of the function that needs to be called be
determined at compile-time? If not, what is necessary to be able to call the right function
at runtime? Does the usual virtual function table mechanism be used?

8. Sometimes inheritance is used improperly. For example, consider defining an automobile
class. We have an existing class window. Since automobiles have windows, we have two
options: we can derive automobile from window, assuring that the automobile will have
a window or we can define the class automobile and use window as a member of the class.
Why is the second solution better? Explain the proper use of inheritance in terms of the
is-a relation.

9. When a class b is derived from a class a, class b may add new properties, or it may
redefine properties defined in a. How do addition of properties affect the subtyping
relation between parent and child? How do redefinitions affect the relationship?

10. In Chapter 3, we defined two classes POINT and NON_AXIAL_POINT. Is
NON_AXIAL_POINT a subtype of POINT?

11. Some languages support the concept of multiple inheritance, that is a new class may be
derived based on more than one parent classes. For example, we may define class
displayable_rectangle inheriting from both polygon and displayable classes. This can be
done in C++:

class displayable_rectangle: public polygon, public displayable { ...}
Multiple inheritance is supported in both C++ and Eiffel. It is conceptually appealing but
it does exacerbate the maintenance problems associated with tightly-related inheritance
hierarchies.

12. From an implementation point of view, multiple inheritance introduces two issues:
• If an operation is defined in more than one of the base classes, which one is inherited by

the derived class?
• What does an object of a derived class look to an operation of the base class. For example,

a displayable_rectangle passed to a polygon operation should appear as a polygon object
and passed to an operation of displayable should look like a displayable object.
Find out and explain how C++ and Eiffel handle the first issue. Devise an implementation
to solve the second issue.

13. Section 6.3.2.2 introduced the class-wide types of Ada 95. Consider the following code:

Poly: Object’Class;
Mono: Circle;
...

351 Object-oriented languages Chap.6

Poly := Mono;
...
Mono := Poly;

Which of the two assignment statements are statically type-safe? Which one may raise a
runtime exception? Based on what you know from this chapter, is Ada able to detect such
an exception?
Assume the classes point and colorPoint of Section 6.2.2.2. Given the procedure below:

void problem(point p)
{

colorPoint n = new colorPoint(...);
if p.equal(n) { ...}
}

can we call the procedure with a colorPoint parameter? with a point parameter? Wil l the
class definitions pass type checking in Eiffel? Will they pass type checking in C++? Wil l
a call to procedure problem cause a runtime error in C++? Will in cause a runtime error
in Eiffel? Can we modify the class definitions to avoid a runtime error?

352 Object-oriented languages Chap.6

1

353

1
C H A P T E R 7

Functional programming
languages 7

So far in this book we have been concerned primarily with languages which
may be described as statement-oriented or imperative. These languages are
affected strongly by the architecture of conventional computers. Functional
programming languages take as their basis not the underlying computing
engine, but rather the theory of mathematical functions. Rather than efficient
execution, these languages are motivated by the questions: what is the proper
unit of program decomposition and how can a language best support program
composition from independent components.

We have seen that procedural languages use procedures as the unit of pro-
gram decomposition. Procedures generally use side effects on global data
structures to communicate with other procedures. Abstract data types attempt
to modularize a program by packaging data structures and operations together
in order to limit the scope of side-effects. Functional programs reduce the
impact of side-effects further, or even eliminate them entirely, by relying on
mathematical functions, which operate on values and produce values and
have no side-effects.

We start in the next section by describing the main elements of imperative
programming. These elements help illustrate the main differences with func-
tional programming. To contrast these differences further, we wil l then com-
pare mathematical functions with programming langauge functions. In
Section 7.3.2 we present Lambda calculus as a model for function definition,

354 Functional programming languages Chap.7

evaluation and composition. We then look at ML and LISP as examples of
functional programming languages. Early functional languages, starting from
LISP, were dynamically typed and scoped. Scheme is a dialect of |LISP that
introduces static scoping into the language. Later functional languages, such
as ML, not only include static scoping but also static typing. Many functional
languages, include both Scheme and ML, have also added a module construct
to address programming in the large.

7.1 Character istics of imperative languages

Imperative languages are characterized by three concepts: variables, assign-
ment, and sequencing. The state of an imperative program is maintained in
program variables. These variables are associated with memory locations and
hold values and have addresses. We may access the value of a variable either
through its name (directly) or through its address (indirectly). The value of a
variable is modified using an assignment statement. The assignment state-
ment introduces an order-dependency into the program: the value of a vari-
able is different before and after an assignment statement. Therefore, the
meaning (effect) of a program depends on the order in which the statements
are written and executed. While this is natural if we think of a program being
executed by a computer with a program counter, it is quite unnatural if we
think of mathematical functions. In mathematics, variables are bound to val-
ues and once bound, they do not change value. Therefore, the value of a func-
tion does not depend on the order of execution. Indeed, a mathematical
function defines a mapping from a value domain to a value range. It can be
viewed as a set of ordered pairs which relate each element in the domain
uniquely with a corresponding element in the range. Imperative programming
language functions, on the other hand, are described as algorithms which
specify how to compute the range value from a domain value with a pre-
scribed series of steps.

One final characteristic of imperative languages is that repetition—loops—
are used extensively to compute desired values. Loops are used to scan
through a sequence of memory locations such as arrays, or to accumulate a
value in a given variable. In contrast, in mathematical functions, values are
computed using function application. Recursion is used in place of iteration.
Function composition is used to build more powerful functions.

Because of their characteristics, imperative languages have been given labels

 355

such as state-based and assignment-oriented. In contrast, functional languages
have been called value-based and applicative.

7.2 Mathematical and programming functions

A function is a rule for mapping (or associating) members of one set (the do-
main set) to those of another (the range set). For example, the function
“square” might map elements of the set of integer numbers to the set of inte-
ger numbers. A function definition specifies the domain, the range, and the
mapping rule for the function. For example, the function definition

square(x) ≡ x*x, x is an integer number
defines the function named “square” as the mapping from integer numbers to
integer numbers. We use the symbol “≡” for “ is equivalent to.” In this defini-
tion, x is a parameter. It stands for any member of the domain set.

Once a function has been defined, it can be applied to a particular element of
the domain set: the application yields (or results in, or returns) the associated
element in the range set. At application time, a particular element of the
domain set is specified. This element, called the argument, replaces the
parameter in the definition. The replacement is purely textual. If the defini-
tion contains any applications, they are applied in the same way until we are
left with an expression that can be evaluated to yield the result of the original
application. The application

square (2)
results in the value 4 according to the definition of the function square.

The parameter x is a mathematical variable, which is not the same as a pro-
gramming variable. In the function definition, x stands for any member of the
domain set. In the application, it is given a specific value—one value. Its
value never changes thereafter. This is in contrast to a programming variable
which takes on different values during the course of program execution.

New functions may be created by combining other functions. The most com-
mon form of combining functions in mathematics is function composition. If
a function F is defined as the composition of two functions G and H, written
as

F ≡ G o H,

356 Functional programming languages Chap.7

applying F is defined to be equivalent to applying H and then applying G to
the result.

In conventional programming languages, a function is defined proceduraly:
the rule for mapping a value of the domain set to the range set is stated in
terms of a number of steps that need to be “executed” in certain order speci-
fied by the control structure. Mathematical functions, on the other hand, are
defined applicatively—the mapping rule is defined in terms of combinations
or applications of other functions.

Many mathematical functions are defined recursively, that is, the definition of
the function contains an application of the function itself. For example, the
standard mathematical definition of factorial is:

n! ≡ if n = 0 then 1 else n * (n - 1)!
As another example, we may formulate a (recursive) function to determine if
a number is a prime:

prime (n) ≡ if n = 2 then true else p (n, n div 2)
where function p is defined as:

p (n, i) ≡ if (n mod i) = 0 then false
else if i = 2 then true

else p (n, i - 1)
Notice how the recursive call to p(n, i-1) takes the place of the next iteration of
a loop in an imperative program. Recursion is a powerful problem-solving
technique. It is a used heavily when programming with functions.

7.3 Pr inciples of functional programming

A functional programming language has three primary components:

1. A set of data objects. Traditionally, functional programming languages have provided a
single high level data structuring mechanisms such as a list or an array.

2. A set of built-in functions. Typically, there are a number of functions for manipulating the
basic data objects. For example, LISP and ML provide a number of functions for building
and accessing lists.

3. A set of functional forms (also called high-order functions) for building new functions. A
common example is function composition. Another common example is function
reduction. Reduce applies a binary function across successive elements of a sequence. For
example, reducing + over an array yields the sum of the elements of the array and reducing
* over the elements of an array yields the product of the elements of the array. In APL, /

 357

is the reduction functional form (called operator in APL) and it takes one operation as
argument. The plus reduction can be accomplished by /+ and the multiplication reduction
by /* . The use of functional forms is what distinguishes a functional program. Functional
forms support the combination of functions without the use of control structures such
asses iteration conditional statements.

The execution of functional programs is based on two fundamental mecha-
nisms: binding and application. Binding is used to associate values with
names. Both data and functions may be used as values. Function application
is used to compute new values.

In this section we will first review these basic elements of functional pro-
grams using the syntax of ML. We will then introduce Lambda calculus, a
simple calculus that can be used to model the behavior of functions by defin-
ing the semantics of binding and application precisely.

7.3.1 Values, bindings, and functions

As we said, functional programs deal primarily with values, rather than vari-
ables. Indeed, variables denote values. For example 3, and “a” are two con-
stant values. A and B are two variables that may be bound to some values. In
ML we may bind values to variables using the binding operator =. For exam-
ple

val A = 3;
val B = "a";

The ML system maintains an environment that contains all the bindings that
the program creates. A new binding for a variable may hide a previous bind-
ing but does not replace it. Function calls also create new bindings because
the value of the actual parameter is bound to the name of the formal parame-
ter.

Values need not be just simple data values as in traditional languages. We
may also define values that are functions and bind such values to names:

val sq = fn(x:int) => x*x ;
sq 3;

will first bind the variable sq to a function value and then apply it to 3 and
print 9. We may define functions also in the more traditional way:

fun square (n:int) = n * n;
We may also keep a function anonymous and just apply it without binding it
to a name:

358 Functional programming languages Chap.7

(fn(x:int) = x*x) 2;
We may of course use functions in expressions:

2 * sq (A);
will print the value of the expression 2A2.

The role of iteration in imperative languages is played by recursion in func-

tional languages. For example, Figure 84 shows the function factorial written
in C++ using iteration and ML using recursion.

We saw in Chapter 4 that functions in ML may also be written using patterns
and case analysis. The factorial program in the figure may be written as com-
posed of two cases, when the argument is 0 and when it is not:

fun fact(n) =
fact(0) = 1

| n* fact(n-1);
In addition to function definition, functional languages provide functional
forms to build new functions from existing functions. We have already men-
tioned mathematical function composition operator o as such a higher order
function. It allows us to compose two functions F and G and produce a new
function FoG. Functional programming languages provide both built -in higher
order functions and allow the programmer to define new ones. Most lan-
guages provide function composition and reduction as buil t-in functional
forms.

7.3.2 Lambda calculus: a model of computation by functions

In the previous section, we have seen the essential elements of programming
with functions: binding, function definition, and function application. As
opposed to an imperative language in which the semantics of a program may
be understood by following the sequence of steps specified by the program,

int fact(int n)
{ int i=1;

assert (n>0);
 { for (int j=n; j>1; ++j)

i= i*n;
return i;

}

fun fact(n) =
if n = 0 then 1
else n*fact(n-1);

FIGURE 84.Definition of factorial in C++ and ML

 359

the semantics of a functional program may be understood in terms of the
computation implied by function applications. Lambda calculus is a surpris-
ingly simple calculus that models the computational aspects of functions.
Studying lambda calculus helps us understand the elements of functional pro-
gramming and the underlying semantics of functional programming lan-
guages independently of the syntactic details of a particular programming
language.

Lambda expressions represent values in the lambda calculus. There are only
three kinds of expressions:

1. An expression may be a single identifier such as x.
2. An expression may be a function definition. Such and expression has the form x.e which

stands for the expression e with x designated as a bound variable. The expression e
represents the body of the function and x the paramter. The expression e may contain any
of the three forms of lambda expressions. Our famili ar square function may be written as

x.x*x.
3. An expression may be a function application. A function application has the form e1 e2

which stands for expression e1 applied to expression e2. For example, our square function
may be applied to the value 2 in this way: (x.x*x) 2. Informally, the result of an
application can be derived by replacing the parameter and evaluating the resulting
expression.

(x.x*x) 2=
2*2 =
4

In a function definition, the parameters following the " " and before the "."
are called bound variables. When the lambda expression is applied, the occur-
rences of these variables in the expression following the “.” are replaced by
the arguments. Variables in the definition that are not bound are called free
variables. Bound variables are like local variables, and free variables are like
nonlocal variables that will be bound at an outer level.

Lambda calculus capture the behavior of functions with a set of rules for
rewriting lambda expressions. The rewriting of an expression models a step in
the computation of a function. To apply a function to an argument, we rewrite
the function definition, replacing occurrences of the bound variable by the
argument to which the function is being applied.

Thus, to define the semantics of function application, we first define the con-
cept of substitution. Substitution is used to replace all occurrences of an iden-
tifier with an expression. This is useful to bind parameters to arguments and
to avoid name conflicts that arise if the same name appears in both the expres-

λ

λ

λ

λ

λ

 360

sion being applied and the argument expression to which it is being applied.
We will use the notation [e/x]y to stand for “substitute e for x in y.” We will
refer to variables as xi. Two variables xi and xj are the same if i=j. They are
not the same if i=/=j. We can define substitution precisely with the following
three rules, based on the form of the expression y:

1. If the expression is a single variable:
[e/xi]xj= e, if i = j

= xj, if i=/= j

2. If the expression is a function application, we first do the substitution both in the function
definition and in the argument, and then we apply the resulting function to the resulting
argument expression:

[e1/x](e2 e3)= ([e1/x]e2)([e1/x]e3)

In doing the substitutions before the function application, we have to be careful not to
create any bindings that did not exist before or invalidate any previous bindings. This
means that we may not rename a variable and make it bound if it were free before or
make it free if it were bound before. The next rule takes care of these situations.

3. If the expression is a function definition, we must do the substitution carefully:

[e1/xi](xj.e2)= xj.e2, if i=j

= xj.[e1/xi]e2, if i=/=j and xj is not free in e1 (otherwise, it would become
newly bound)

= xk.[e1/xi]([xk/xj]e2), otherwise, where k=/=i, k=/=j, and xk is not free
in either e1 or e2

The last rule serves to rename all occurrences of a variable by another name
to avoid name clashes.

Using the substitution rules above, we can define the semantics of functional
computations in terms of rewrite rules. That is, we define the result of a func-
tion application in terms of rewriting the definition of the function, replacing
the bound variables of the function with corresponding arguments. The fol-
lowing three rewrite rules define the concept of function evaluation:

1. Renaming: xi.e <=> xj.[xj/xi]e, where xj is not free in e. The renaming
rules says that we can replace all occurrences of a bound variable with
another name without affecting the meaning of the expression. In other
words, a function is abstracted over the bound variables.

2. Application: (x.e1)e2 <=> [e2/x]e1. This rule says function application
means replacing the bound variable with the argument of the application.

λ λ
λ

λ

λ λ

λ

 361

3. x.(e x) <=> e, if x is not free in e.

The last rule says that free variables are the only way for an environment to
change the effect of a function. That is, a function is a self-contained entity
with the parameters being its only interface.

These rules may be used in the forward direction to “ reduce” a lambda
expression. In fact, any lambda expression may be reduced using these three
rules until no further reduction is possible. An expression that may no longer
be reduced is said to be in normal form.

For example, the following shows the application of the three rules to reach a
normal form for the original expression.

(x.(y.x+y) z) (y.y*y) =
(x.x+z)) (y.y*y) =
(y.y*y)+z

The simple semantics that we have described here capture the semantics of
binding, function definition and function application, which are the primitive
elements of functional programming languages. The clear semantics of func-
tional languages is due to the fact that the semantics of function definition and
application can be defined with these three simple rules.

One of the interesting aspects of lambda calculus is that we can define the
semantics of functions using only one-argument functions. To deal with func-
tions of more than one argument, a list of arguments is passed to the function
f which applies to the first argument and produces as result a function that is
then applied to the second argument, and so on. This technique is called cur-
rying and a function that works this way is called a curried function.

For example, consider a function to sum its two arguments. We could write it
as x,y.x+y. This is a function that requires two arguments. But we could also
write it as x. y.x+y. This new function is written as the composition of two
functions, each requiring one parameter. Let us apply it to arguments 2 3:

(x. y.x+y) 2 3 =
((x. y.x+y) 2) 3 =
(y.2+y) 3 =
2+3 =
5

λ

λ λ λ
λ λ
λ

λ
λ λ

λ λ
λ λ

λ

 362

This is a common technique in functional programming to deal with a vari-
able number of arguments. Each argument is handled in sequence through
one function application. Each function application replaces one of the bound
variables, resulting in a “partially evaluated” function that may be applied
again to the next argument. Symbolically, (f x y z) is considered to be (((f(x)) y)

z). Indeed, in ML, the function application f(x,y,z) may also be written in the
curried form f x y z.

7.4 Representative functional languages

In this section, we examine pure LISP, APL, and ML. LISP was the first
functional programming language. The LISP family of languages is large and
popular. LISP is a highly dynamic language, adopting dynamic scoping and
dynamic typing, and promoting the use of dynamic data structures. Indeed
garbage collection was invented to deal with LISP’s heavy demands on
dynamic memory allocation. One of the most popular descendants of LISP is
Scheme, which adopts static scope rules.

APL in an expression-oriented language. Because of the value-orientation of
expressions, it has many functional features. As opposed to LISP’s lists, the
APL data structuring mechanism is the multidimensional array.

ML is one of the recent members of the family of functional programming
languages that attempt to introduce a strong type system into functional pro-
gramming. We will examine ML in more detail because of its interesting type
structure. In the next section, we look at C++ to see how the facili ties of a
conventional programming language may be used to implement functional
programming techniques.

Most functional programming languages are interactive: they are supported
by an interactive programming system. The system supports the immediate
execution of user commands. This is in line with the value-orientation of
these languages. That is, the user types in a command and the system immedi-
ately responds with the resulting value of the command.

7.4.1 ML

ML starts with a functional programming foundation but adds a number of
features found to be useful in the more conventional languages. In particular,
it adopts polymorphism to support the writing of generic components; it

 363

adopts strong typing to promote more reliable programs; it uses type infer-
ence to free the programmer from having to make type declarations; it adds a
module facili ty to support programming in the large. The most notable contri-
bution of ML has been in the area of type systems. The combination of poly-
morphism and strong typing is achieved by a “ type inference” mechanism
used by the ML interpreter to infer the static type of each value from its con-
text.

7.4.1.1 Bindings, values, and types

We have seen that establishing a binding between a name and a value is an
essential concept in functional programming. We have seen examples of how
ML establishes bindings in Section 7.3.1. Every value in ML has an associ-
ated type. For example, the value 3 has type int and the value fn(x:int) =>x*x has
type int->int which is the signature of the functional value being defined.

We may also establish new scoping levels and establish local bindings within
these scoping levels. These bindings are established using let expressions:

let x = 5
in 2*x*x;

evaluates to 50. The name x is bound only in the expression in the let expres-
sion. There is another similar construct for defining bindings local to a series
of other declarations:

local
 x = 5

in
val sq = x*x
val cube = x*x*x

end;
Such constructs may be nested, allowing nested scoping levels. ML is stati-
cally scoped. Therefore, each occurrence of a name may be bound statically
to its declaration.

7.4.1.2 Functions in ML

In ML, we can define a function without giving it a name just as a lambda
expression. For example, as we have seen:

fn(x, y):int => x*y
is a value that is a function that multiplies its two arguments. It is the same as

 364

the lambda expression x,y.x*y. We may pass this value to another function
as argument, or assign it to a name:

val intmultiply = fn(x, y):int => x*y;
The type of this function is fn:int* int->int.

We have seen that functions are often defined by considering the cases of the
input arguments. For example, we can find the length of a li st by considering
the case when the list is empty and when it is not:

fun length(nil) = 0
| length([_::x]) = 1+length(x);

The two cases are separated by a vertical bar. In the second case, the under-
score indicates that we do not care about the value of the head of the list. The
only important thing is that there exists a head, whose value we will discard.

We may also use functions as values of arguments. For example, we may
define a higher-order function compose for function composition:

fun compose (f, g)(x) = f(g(x));
The type of compose is (’a->’b * ’c->’a)->(’c->’a). ML provides some built -in
functional forms as well. The classic one is map which takes two arguments,
a function and a list. It applies the function to each element of the list and
forms the results of the applications into a list. For example, the result of:

val x= map (length,[[], [1,2,3],[3]);
is [0,3,1].

For example, the reduce function takes a function F of two arguments and a
nonempty list [a1,a2,...,an] as arguments and produces as result the value F(a1,

F(...F(an-1,F(an))). The basis case F(x) applied to a singleton list is defined to be
the singleton element. So, the result of

val x = reduce(+, [1,2,3,4]);
is 10. Some systems provide the function reduce as a built -in function. If it is
not available, we can easily define it for nonempty lists:

fun reduce(F, [x]) = x
| reduce(F,[x::xs]) = F(x,reduce(F,xs));

Another class of such high order functions is fil ters that apply a predicate
function to elements of a list and return only those elements that satisfy the

λ

 365

predicate. We can easily write such functions in ML.

A useful functional programming technique is to partially evaluate a function
by binding some of its arguments. The result is still a function that may be
applied to the remaining arguments. A function some of whose arguments
have been bound is called a closure. As an example, consider a function Trans-

lateWord that takes two arguments: a dictionary to use for translation and the
word to translate. The function looks up the word in the dictionary and returns
the translation found in the dictionary. We might define closures of this func-
tion by binding the dictionary argument to different language dictionaries and
producing special translator functions such as ItalianEnglish, ItalianGerman, and
EnglishGerman. These new functions are single-argument functions because the
dictionary argument has already been bound.

Curried functions may also be used in ML. For example, we can define the
function to multiply two integers in curried form:

fun times (x:int) (y:int) = x*y;
The signature of this function is fn: int-> (int->int). We can build a new function,
say multby5, by binding one of the arguments of times:

fun multby5(x) = times(5)(x);

7.4.1.3 List structure and operations

The list is the major data structuring mechanism of ML; it is used to build a
finite sequence of values of the same type. Square brackets are used to build
lists: [2, 3, 4], ["a", "b", "c"], [true, false]. The empty list is shown as [] or nil . A list
has a recursive structure: it is either nil or it consists of an element followed
by another list. The first element of a nonempty list is known as its head and
the rest is known as its tail.

There are many built-in list operators. The two operators hd and tl return the
head and tail of a li st, respectively. So: hd([1,2,3]) is 1 and tl([1,2,3]) is [2,3]. Of
course, hd and tl are polymorphic. The construction operator :: takes a value
and a list of the same type of values and returns a new list: 1::[2,3] returns
[1,2,3]. We can combine two lists by concatenation: [1,2]@[3] is [1,2,3].

Let us look at some functions that work with li sts. First, recall from Chapter 4
the function to reverse a list:

 366

fun reverse(L) = reverse([]) = []
| reverse(x::xs) = reverse(xs) @ [x]

Let us write a function to sort a list of integers using insertion sort:

fun sort(L) = sort([]) = []
| sort(x::xs) = insert (x,xs)

fun insert(x, L) = insert (x,[]) = [x]
| insert (x:int, y::ys) =

if x < y then x::y::ys
else y::insert(x,ys);

The recursive structure of li sts makes them suitable for manipulation by
recursive functions. For this reason, functional languages usually use lists or
other recursive structures as a basic data structuring mechanism in the lan-
guage.

7.4.1.4 Type system

Unlike LISP and APL, ML adopts a strong type system. Indeed, it has an
innovative and interesting type system. It starts with a conventional set of
built-in primitive types: bool, int, real, and string. Strings are finite sequences
of characters. There is a special type called unit which has a single value
denoted as (). It can be used to indicate the type of a function that takes no
arguments.

There are several built -in type constructors: lists, records, tuples, and func-
tions. A list is used to build a finite sequence of values of a single type. The
type of a li st of T values is written as T list. For example, [1,2,3] is an int list and
["a","b","cdef"] is a string list. An empty list is written as nil or []. The type of an
empty list is ’ t list. ’ t is a type variable which stands for any type. The empty
list is a polymorphic object because it is not specifically an empty int list or an
empty bool l ist. The expression ’ t list is an example of a polymorphic type
expression (called polytype in ML).

Tuples are used to build Cartesian products of values of different types. For
example, (5, 6) is of type int* int and (true, "fact", 67) is of type bool*string*int. We
can of course use lists as elements of tuples: (true, []) is of type bool* (t’ li st).

Records are similar to Pascal records: they are constructed from named fields.
For example, { name="Darius", id=56789} is of type { name: string, id: int} . Tuples
are special cases of records in which fields are labeled by integers starting
with 1. The equality operation is defined for records based on comparing cor-
responding fields, that is, the fields with the same names.

 367

As we have seen before, a function has a—possibly polymorphic—signature,
which is the type of the function. For example, the built -in predicate null

which determines whether its argument is the empty list is of type ’ t li st -> bool.
Null is a polymorphic function.

In addition to the built -in type constructors, the programmer may define new
type constructors, that is, define new types. There are three ways to do this:
type abbreviation, datatype definition, and abstract data type definition. The
simplest way to define a new type is to bind a type name to a type expression.
This is simply an abbreviation mechanism to be able to use a name rather than
the type expression. Some examples are:

type intpair = int * int;
type ’a pair = ’a * ’a;
type boolpair = bool pair;

In the second line, we have defined a new polymorphic type called pair which
is based on a type ’a. The type pair forms a Cartesian product of two values of
type ’a. We have used this type in the third line to define a new monomorphic
type.

The second way to define a new type is to specify how to construct values of
the new type. For example, similar to Pascal enumeration types, we can
define the new type color as:

datatype color = red | white | blue;
This definition defines a new type color and three value constructors for it.
These value constructors are simple because they do not take any parameters.
In general, we may have more complex value constructors. In any case, the
name color has now been defined as a new type. We may use the new con-
structors to build new values. For example, [red, blue] is of type color list.

Value constructors may take parameters. We might define a new type money
as:

datatype money = nomoney | coin of int | note of int;
based on three value constructors: nomoney, coin, and note. The first constructor
takes no arguments while the latter two are monadic constructors. Some val-
ues of type money are: nomoney, coin(5), note(7).

 368

We can also define recursive type constructors. For example, we might define
a binary tree as:

datatype ’ t Btree = null | Node of ’ t * ’ t Btree * ’ t Btree;
We have defined a Btree of a particular type ’ t as being either null or consisting
of a node which has three components. One component is simply a value of
type ’ t. The other two components are each a ’ t Btree themselves.

To show the power of value constructors in defining new types, next we
define a stack in terms of the operation push that can be used to construct it.

datatype ’a stack = empty | push of ’ t * ’ t stack;
This definition says that the following are example values of a stack data
type:

empty
push(2, empty)
push(2,(push(3,push(4,empty))))

Notice how we have used push as a constructor rather than an operation
defined on stacks. Given this definition of ’ t stack, we can define functions
such as pop, and top on the new data type stack. For example, we might define
pop and top as shown here:

fun pop (empty) = raise error
| pop(push(x,xs)) = x;
fun top (empty) = raise error
| top (push(x, xs)) = x;

This stack does not hide its representation from its clients. If we want to do
that, we must use data abstraction, which is the third way to define a new type
in ML An abstype defines a new type and hides its concrete representation. For

 369

example, Figure 85 shows a stack abstract data type. This type defines the

operations create, push, pop, top, and length for the abstract type stack. From the
outside, the representation of stack, which is a li st, is not accessible. The stack
is only accessible through its exported operations, which are the functions
specified after the with expression.

We can now use the operations of this type. For example push(7, create) will
produce an int stack and push("how",(push ("now", create)) will produce a string stack

of two elements.

We can see that ML has a rich and consistent type system. Every value has a
single type but the type may be polymorphic (called polytype in ML). The use
of type variables supports the creation of polymorphic types. These types may
then be used to write polymorphic functions.

7.4.1.5 Type inference

Earlier functional languages used dynamic typing. As we saw in Chapter 3,
this means that variables are not required to be declared: a variable simply
takes on the type of the value that is assigned to it. Both LISP and APL are
based on such dynamic type systems. ML tries to achieve the advantages of a
strongly-typed language without burdening the user with the requirement for
type declarations. A name always has to be declared before it is used but its
type is not required in the declaration. The ML system (compiler or inter-
preter) infers the types of variables based on their use. Because the language
is strongly-typed, each value produced by the program has to be assigned a
particular type. If the system cannot infer the proper type for a value, an error
message is produced at compile-time. The programmer must specify the type

abstype ’a stack = stack of ’ a list
with val create = [];

fun push(x, stack xs) = stack (x::xs);
fun pop (stack nil) = raise poperror
| pop (stack [e]) = []
| pop (stack [x::xs]) = stack [xs];
fun top(stack nil) = raise toperror
| top(stack [x::xs]) = x;
fun lenght(stack []) = 0
| length (stack [x::xs]) = length (stack [xs]) + 1;

end;

FIGURE 85. An abstract data type stack in ML

 370

in such situations. For example, an expression x>y does not contain enough
information to infer whether x an y are integers or reals. If a function of x and
y contains such an expression and no other indication of the types of x and y,
then the program must declare the type of either x or y. Only one type declara-
tion is necessary because the other one is constrained to have the same type.
This was the reason that in the definition of the function square in Section
7.3.1, we had to declare the type of the argument as being int, while in the def-
inition of the factorial function we did not have to declare the type of the argu-
ment. The ML system uses the expression “ if x = 0” in the definition of factorial
to infer the type of x to be int.

ML combines type inference with extensive support for polymorphism. Con-
sider a simple polymorphic identity function which returns its argument as its
result. This function does not care what the type of its argument is. If we were
to write such a function in C or Pascal, we would have to write a function for
each type that we expect to use. In ML, we only need one function:

fun id(x) = x;
We could write a similar function in C++ using templates, where the type of
the parameter is a template parameter (Exercise10). This function may be
applied to a value of any type and it will return the same value. Of course, we
may apply id to a function also, for example to itself: id (id) returns id.

The signature of this function is id: ’a -> ’a, that is, it maps from a domain of
some type to a range of the same type. From its signature, we can see clearly
that the function is polymorphic. Such a function can be type-checked stati-
cally even though we do not know what type wil l be passed at the time the
function is applied. Each application of a function uses the type of the argu-
ment to produce a value of the appropriate type as result. For example id(3)

returns an integer and id(id) returns a value of type ’a->’a.

Some buil t-in functions such as list handling functions are naturally polymor-
phic. For example, hd has signature hd: t’ li st->’ t. Rather than requiring the pro-
grammer to declare the types of variables, the ML system uses such
information to do its static type checking.

As we have seen, some operators used in function definitions limit the ability
of the system to do type inferencing. For example, the function max defined
as:

 371

fun max (x:int, y) = if x > y then x else y;
requires the declaration of the x because the system cannot tell whether, for
example, the signature of max should be (int* int)->bool or (real* real)->bool. The
signature (’ t* ’ t)->bool is not correct either because not any type is acceptable.
Only types that support the > operator are acceptable. We can use the signa-
ture facility of ML to specify such type requirements and if we do so, the sys-
tem can make use of them.

One particularly important class of types is the equali ty type, denoted by "a.
These are types that support the equality and inequality operators = and <>. If
we define a function eq:

fun eq(x, y) = x=y;
the type of the function is: eq: "a* "a-> bool. That is, eq is a polymorphic function
that requires two equality types and returns a boolean. Of course, a type
expression including a type variable "t has stricter requirements than one hav-
ing only ’ t variables.

7.4.1.6 Modules

We have already seen an example of an ML module in Chapter 5. ML mod-
ules are separately compilable units. There are three major building blocks:

1. A structure is the encapsulation unit. A structure contains a collection of definitions of
types, datatypes, functions, and exceptions.

2. A signature is a type for a structure. A signature is a collection of type information about
some of the elements of a structure: those we wish to export. We may associate more than
one signature with a structure.

3. A functor is an operation that combines one or more structures to form a new structure.
As an example of a module, Figure 86 shows the stack definition of Figure 85
encapsulated in a structure. The figure defines a polymorphic stack imple-

 372

mented as a list.

We can use signatures to specialize a structure. For example, we can make a
stack of strings out of the stack of Figure 86. Not only that, we can also
restrict the operations that are exported using the signature mechanism. Fig-
ure 87 is a signature for Figure 86 which specifies a stack of strings which
supports create, push, pop, top but not length. A signature may be viewed as a
specification for a module. Several specifications may be associated with the
same module and the same signature may be used with different modules. We

can use the signature we have just defined to create a new structure:

structure SS:stringStack = Stack;
The new structure SS is built from Stack and has the signature stringStack. Struc-
ture elements are accessed either using dot notation (e.g. SS.push("now",SS.cre-

ate)) or by "opening" the structure and gaining access to all the elements:

open SS;

structure Stack = struct
exception Empty;

val create = [] ;
fun push(x, stack xs) = stack (x::xs);
fun pop (stack nil) = raise Empty;
| pop (stack [e]) = []
| pop (stack [x::xs]) = stack [xs];
fun top(stack nil) = raise Empty;
| top(stack [x::xs]) = x;
fun lenght(stack []) = 0
| length (stack [x::xs]) = length (stack [xs]) + 1;

end;

FIGURE 86. A stack module in ML

signature stringStack = sig
exception Empty;
val create = string list;
val push: string * string list -> string list;
val pop: srting list -> sring list;
val top: string list -> string;

end;

FIGURE 87. A signature for string stack module that hides length

 373

push("now", create);

7.4.2 LISP

The original LISP introduced by John McCarthy in 1960, known as pure
LISP, is a completely functional language. It introduced many new program-
ming language concepts, including the uniform treatment of programs as
data, conditional expressions, garbage collection, and interactive program
execution. LISP used both dynamic typing and dynamic scoping. Later ver-
sions of LISP, including Scheme, have decided in favor of static scoping.
Common Lisp is an attempt to merge the many different dialects of LISP into
a single language. In this section, we take a brief look at the LISP family of
languages.

7.4.2.1 Data objects

LISP was invented for artificial intelligence applications. It is referred to as a
language for symbolic processing. It deals with symbols. Values are repre-
sented by symbolic expressions (called S-expressions). An expression is
either an atom or a list. An atom is a string of characters (letters, digits, and
others). The following are atoms:

A
AUSTRIA
68000

A list is a sequence of atoms or li sts, separated by space and bracketed by
parentheses. The following are lists:

(FOOD VEGETABLES DRINKS)
((MEAT CHICKEN) (BROCCOLI POTATOES TOMATOES) WATER)
(UNC TRW SYNAPSE RIDGE HP TUV)

The empty list “ ()” , also called NIL. The truth value false is represented as ()
and true as T. The list is the only mechanism for structuring and encoding
information in pure LISP. Other dialects have introduced most standard data
structuring mechanisms such as arrays and records.

A symbol (as atom) is either a number or a name. A number represents a
value directly. A name represents a value bound to the name.

There are different ways to bind a value to a name: SET binds a value globally
and LET binds it locally. (SET X (A B C)) binds A to the list value (A B C).

 374

SET shows an example of a function application. A function application is
written as a list: the first element of the list is the function name and the rest
of the elements are parameters to the function. Thus, functions and data have
the same representation. Representing the function application in this way
implies the use of prefix notation, as opposed to infix of other languages:
LISP uses (PLUS A B) instead of A+B.

7.4.2.2 Functions

There are very few primitive functions provided in pure LISP. Existing LISP
systems provide many functions in libraries. It is not unusual Such libraries
may contain as many as 1000 functions.

QUOTE is the identity function. It returns its (single) argument as its value.
This function is needed because a name represents a value stored in a loca-
tion. To refer to the value, we use the name itself; to refer to the name, we use
the identity function. Many versions of LISP use 'A instead of the verbose
QUOTE A. We will follow this scheme.

The QUOTE function allows its argument to be treated as a constant. Thus, 'A
in LISP is analogous to "A" in conventional languages.

Examples

(QUOTE A) = 'A = A
(QUOTE (A B C)) = '(A B C) = (A B C)

There are several useful functions for li st manipulations: CAR and CDR are
selection operations, and CONS is a structuring operation. CAR returns the first
element of a li st (like hd in ML); CDR returns a list containing all elements of
a list except the first (li ke tl in ML); CONS adds an element as the first element
of a li st (like :: in ML). For example

(CAR '(A B C)) = A
The argument needs to be “quoted,” because the rule in LISP is that a func-
tion is applied to the value of its arguments. In our case the evaluation of the
argument yields the list (A B C), which is operated on by CAR. If QUOTE were
missing, an attempt would be made to evaluate (A B C), which would result in
using A as a function operating on arguments B and C. If A is not a previously
defined function, this would result in an error.

 375

Other examples:

(CDR '(A B C)) = (B C)
(CDR '(A)) = () = NIL
(CONS 'A '(B C)) = (A B C)
(CONS '(A B C) '(A B C)) = ((A B C) A B C)

A few predicates are also available. A true value is denoted by the atom T and
a false value by NIL.

ATOM tests its argument to see if it is an atom. NULL , as in ML, returns true if
its argument is NIL. EQ compares its two arguments, which must be atoms, for
equality.

Examples:

(ATOM ('A)) = T
(ATOM ('(A))) = NIL
(EQ ('A) ('A)) = T
(EQ ('A) ('B)) = NIL

The function COND serves the purpose of if-then-else expressions. It takes as
arguments a number of (predicate, expression) pairs. The expression in the
first pair (in left to right order) whose predicate is true is the value of COND.

Example:

(COND ((ATOM '(A))) 'B) (T 'A) = A
The first condition is false because (A) is not an atom. The second condition is
identically true. The COND function, known as the McCarthy conditional, is
the major building block for user-defined functions.

Function definition is based on lambda expressions. The function

x,y.x+y
is written in LISP as

(LAMBDA (X Y) (PLUS X Y))
Function application also follows lambda expressions.

((LAMBDA (X Y) (PLUS X Y)) 2 3)
binds X and Y to 2 and 3, respectively, and applies PLUS yielding 5.

The binding of a name to a function is done by the function DEFINE, which

λ

 376

makes the function name known globally. Another function, LABEL, is used if
we want to define the function to be known only locally.

(DEFINE (ADD (LAMBDA (X Y) (PLUS X Y))))
Now, the atom ADD can be used in place of the function above, that is, the
atom ADD has a value that is a function.

The abil ity to name a function is especially useful in defining recursive func-
tions. For example, we can define a function REVERSE to reverse the elements
of a li st:

(DEFINE (REVERSE (LAMBDA (L)
(REV NIL L))))

(DEFINE (REV (LAMBDA (OUT IN)
(COND ((NULL IN) OUT)
(T (REV (CONS (CAR IN) OUT) (CDR IN))))))

The REVERSE function calls a subsidiary function REV that works by picking
the first element of a list and calli ng REV on the rest of the list.

The use of DEFINE is one of two ways in pure LISP that an atom can be bound
to a value. The other is through function application, at which time the param-
eters are bound to the arguments. The conventional assignment is not present.

The variables in pure LISP are more like the variables in mathematics than
those in other languages. In particular, variables may not be modified: they
can be bound to a value and they retain that value throughout a given scope
(i.e., function application); and at any moment, there is only at most one
access path to each variable.

7.4.2.3 Functional forms

Function composition was the only technique for combining functions pro-
vided by original LISP. For example, the “ to_the_fourth” function of Section
7.2 can be defined in LISP as

(LAMBDA(X) (SQUARE (SQUARE X)))
(We assume SQUARE has been defined.) All current LISP systems, however,
offer a functional form, called MAPCAR, which supports the application of a
function to every element of a list. For example

(MAPCAR TOTHEFOURTH L)
raises every element of the list L to the fourth power.

 377

Rather than provide many functional forms, the choice in LISP has been to
supply a large number of primitive functions in the library.

7.4.2.4 LISP semantics

One of the most remarkable points about LISP is the simplicity and elegance
of its semantics. In less than one page, McCarthy was able to describe the
entire semantics of LISP by giving an interpreter for LISP written in LISP
itself. The interpreter is called eval.

7.4.3 APL

APL was designed by Kenneth Iverson at Harvard University during the late
1950s and early 1960s. Even though APL relies heavily on the assignment
operation, its expressions are highly applicative. We will only look at these
features here to see the use of functional features in a statement-oriented lan-
guage.

7.4.3.1 Objects

The objects supported by APL are scalars, which can be numeric or character,
and arrays of any dimension. An array is written as sequence of space-sepa-
rated elements of the array. Numeric 0 and 1 may be interpreted as boolean
values. APL provides a rich set of functions and a few higher-order functions
for defining new functions.

The assignment operation (←) is used to bind values to variables. On assign-
ment, the variable takes on the type of the value being assigned to it. For
example, in the following, the variable X takes on an integer, a character, and
an array, in successive statements:

X ← 123;
X ← 'b';
X ← 5 6 7 8 9;

The assignment is an operation that produces a value. Therefore, as in C, it
may be used in expressions:

X ← (Y ← 5 6 7 8 9) × (Z ← 9 9 7 6 5);
W← Y - Z;

will set the value of Y to 5 6 7 8 9, Z to 9 9 7 6 5, and W to -4 -3 0 2 4.

 378

7.4.3.2 Functions

In contrast to pure LISP, APL provides a large number of primitive functions
(called operations in APL terminology). An operation is either monadic (tak-
ing one parameter) or dyadic (taking two parameters).

All operations that are applicable to scalars also distribute over arrays. Thus,
A x B results in multiplying A and B. If A and B are both scalars, then the result
is a scalar. If they are both arrays and of the same size, it is element-by-ele-
ment multiplication. If one is a scalar and the other an array, the result is the
multiplication of every element of the array by the scalar. Anything else is
undefined.

The usual arithmetic operations, +, -, ×, ÷, | (residue), and the usual boolean
and relational operation,� ∧, ∨, ~, <, ≤, =, >, ≥, ≠, are provided. APL uses a
number of arithmetic symbols and requires a special keyboard.

There are a number of useful operations for manipulating arrays. The opera-
tion “ ι” is a “generator” (or constructor, using ML terminology) and can be
used to produce a vector of integers. For example, ι5 produces

1 2 3 4 5
The operation “ ;” concatenates two arrays. So i4; i5 results in

1 2 3 4 1 2 3 4 5
The operation “ρ” uses its left operands as dimensions to form an array from
the data given as its right operands. For example:

and

The compress operation “ /” takes two arguments of the same dimensions and

2 2 ρ 1 2 3 4
1 2

3 4
≡

 379

selects elements of its right-hand argument, depending on whether the corre-
sponding left-hand argument is a (boolean) 1 or 0. For example

1 0 0 1 / ι4 ≡ 1 4
The left argument may consist of boolean expressions. For example

A<B B<C C<D / X
will pick certain values from X, depending on the comparisons on the left. X
must be a three-element vector in this case.

There are many other primitive operations in APL. They can be regarded as
mathematical functions because they operate on operands and produce val-
ues. User-defined functions are similar to the primitive functions in that they
also are either monadic or dyadic (niladic functions correspond to subrou-
tines). They are used in infix notation and thus can be used in expressions, in
the same way as built-in functions can.

7.4.3.3 Functional Forms

As we have seen, functional forms give the programmer the abil ity to con-
struct new functions. APL provides three functional forms (operator in the
APL terminology) that may be used uniformly to combine the many built -in
functions of APL. The functional forms are particularly useful for mathemati-
cal manipulations. They functional forms are:

a. The reduction operator “ /” (same symbol as compress). For example, the sum of the
elements of the vector A is given by +/A. Contrasting this with adding the elements of
a vector in an imperative language shows that the iteration and step-by-step computa-
tion are handled by the functional form. If the right operand of “ /” is a matrix, the re-
duction operation applies to successive rows, that is, if A is the matrix
1 2
3 4
then +/A is
3
7

2 3 ρ 1 2 3 4 5 6
1 2 3

4 5 6
≡

 380

which is represented as 3 7. In general, a reduction applied to an n-dimensional array
results in an (n -1) dimensional array.
b. The inner product operator “ .” takes two primitive binary operations as arguments
and produces a binary operation as result. The operands of the resulting operation must
be arrays that “conform” in size. For example, if they are matrices, the number of rows
of the left operand must be the same as the number of columns of the right operand; the
result will be a matrix with as many rows as the left operand and as many columns as
the right operand. If f and g are two primitive binary functions, the effect of A f.g B is
to apply g, element by element, to the corresponding rows of A and columns of B (i.e.,
first row of A with first column of B, and so on). This is followed by an f reduction (/f)
on the resulting vector.
As an example of the power of inner product in building operations, matrix multiplica-
tion can be accomplished by: +.x. This time, the functional form accomplishes the
equivalent of two nested loops necessary in a procedural way to do the same job.
c. The third functional form of APL is the outer product “ ο” , which takes one primitive
operation as operand and results in a binary. The operation o.f applied to arrays A and
B (i.e., A ο.f B) has the effect of applying f between each element of A and every ele-
ment of B. For example, if A has the value (1 2 3) and B has the value (5 6 7 8), the
result of A ο.x B is the matrix

5 6 7 8
10 12 14 16
15 18 21 24

The effect can be seen as forming a matrix with the rows labeled with elements of A and
columns labeled with elements of B. The entries of the matrix are the result of applying
the operation to the row and column labels. So the above matrix was derived from

x 5 6 7 8
1 5 6 7 8
2 10 12 14 16
3 15 18 21 24

The outer product finds many applications in data processing when producing tables of
interest rates, taxes, and so on. It has other uses as well . As an example, to find which
elements of A occur in B, Aο.= B provides a map of boolean values, with a 1 in the po-
sition where an element of A equals an element of B.

The many operations of APL and its functional forms support an expression-
oriented style of programming that reduces the reliance of loops and compu-
tation of intermediate values. Instead of loops, the functional forms are used
to build powerful operations that hide the internal details of the functions,
which may in fact be accomplished using loops.

7.4.3.4 An APL Program

As an example of the power of functional programming, in this section we
will look at how we may derive an APL program to compute prime numbers
in the range 1 to N. Despite the limited exposure to APL provided in this sec-
tion, we have seen enough to construct the desired program.

The style of programming emphasizes exploiting arrays and expressions

 381

rather than scalars, assignments, and iteration. Because of the array orienta-
tion of APL, we plan to produce a vector of prime numbers. We can start with
a vector of numbers in the range 1 to N and compress it, using the compress
operator, to remove the nonprimes. In other words, our task is to find the vec-
tor of boolean expressions in the following APL program:

vector of boolean expressions / ιN
We can start with the definition of a prime number: a number that is divisible
only by 1 and itself. So, for each number in the range of interest, 1 to N, we
can (a) divide it by all the numbers in the range and (b) select those which are
divisible only by two numbers.

Step (a) can be done with the residue operation and an outer product:

(ιN)ο.|(ιN)
The result of this operation will be a vector of remainders. We are interested
in whether the remainder is equal to 0:

0 = (ιN)ο.|(ιN)
Now we have a boolean two-dimensional matrix indicating whether the num-
bers were divisible (1) or not (0).

In step (b), we want to see how many times the number was divisible, that is,
the number of 1's in each row:

+/[2] 0 = (ιN) ο.| (ιN)
But we are only interested in those rows that have exactly two 1's.

2 = (+/[2] 0 = (ιN) ο.| (ιN))
The result is a boolean vector indicating whether the index is a prime (1) or
not (0). This is the desired vector of boolean expressions. To get the actual
prime numbers, we apply compression:

(2 = (+/[2] 0 = (ιN) ο.| (ιN))) / ιN
The essence of this solution is that it builds successively more complex
expressions from simpler ones. We may compose parts easily because the
parts do not interfere with one another. Lack of interference is due to the lack
of side-effects in the expressions that we have built This is indeed the promise
of functional programming: functions are appropriate building blocks for pro-
gram composition.

 382

7.5 Functional programming in C++

In this chapter, we have studied the style of functional programming as sup-
ported by languages designed to support this style of programming. It is inter-
esting to ask to what degree traditional programming languages can support
functional programming techniques. It turns out that the combination of
classes, operator overloading, and templates in C++ provides a surprisingly
powerful and flexible support for programming with functions. In this sec-
tion, we explore these issues.

7.5.1 Functions as objects

A C++ class encapsulates an object with a set of operations. We may even
overload existing operators to support the newly defined object. One of the
operator we can overload is the application operator, i.e. parentheses. This
can be done by a function definition of the form: operator()(parameters...){ ...} . We
can use this facility to define an object that may be applied, that is, an object
that behaves like a function. The class Translate whose outline is shown in Fig-
ure 88 is such an object. We call such objects function or functional object.
They are defined as objects but they behave as functions.

We may declare and use the object Translate in this way:

Translate Translator(); //construct a Translate object
cout << Translate(EnglishGermanDict, “university”);

which would presumably print “universitaet” , if the dictionary is correct.

The ability to define such objects means that we have already achieved the
major element of functional programming: we can construct values of type
function in such a way that we can assign them to variables, pass them as

...definitions of types word and dictionary
class Translate {
private: ...;
public:

word operator()(dictionary& dict, word w)
{

// look up word w in dictionary dict
// and return result

}
}

FIGURE 88.Outline of a function object in C++

 383

arguments, and return them as result.

7.5.2 Functional forms

Another major element of functional programming is the abilit y to define
functions by composing other functions. The use of such high-order functions
is severely limited in conventional languages and they are indeed one of the
distinguishing characteristics of functional languages.

It turns out, however, that with the use of templates in C++, we can simulate
high-order functions to a high degree. First, we can use function objects as
closures and bind some of their parameters. For example, we can modify the
class definition of Figure 88 to add a constructor that accepts the dictionary to
be used in lookup. By constructing a translator object this way, we bind the
dictionary and produce a function object that works only with that dictionary.
The new class definition and its use are shown in Figure 89. A closure is a
function with some of its free variables bound. In this example, the function
application operator () uses d as a bound variable. We use a constructor to
bind this free variable. We can bind it to different values in different instanti-
ations of the object. The difference between partial instantiation in this way in
C++ and the general use of closures in functional languages is that here we
can only bind a particular set of variables that are the parameters in the con-

 384

structor of the object.

The 1995 ANSI proposal for the C++ standard library contains a number of
function objects and associated templates to support a functional style of pro-
gramming. For example, it includes a predicate function object greater which
takes two arguments and returns a boolean value indicating whether the first
argument is greater than the second. We can use such function objects, for
example, as a parameter to a sort routine to control the sorting order. We con-
struct the function object in this way: greater<int>() or less<int>().

The library also includes a higher-order function find_if, which searches a
sequence for the first element that satisfies a given predicate. This find_if
takes three arguments, the first two indicate the beginning and end of the
sequence and the third is the predicate to be used. Find_if uses the iterators
that we discussed in Chapter 5. Therefore, it is generic and can search arrays,
lists, and any other linear sequence that provides a pointer-like iterator object.
Here, we will use arrays for simplicity. To search the first 10 elements of
array a for an element that is greater than 0, we may use something like the
following statement:

...definitions of types word and dictionary
class Translate {
private:

dictionary D; //local dictionary
public:

Translate(dictionary& d)
{ D = d;}

word operator()(word w)
{

// look up word w in dictionary D
// and return result

}
}
...
//construct a German to English translator
Translate GermanToEnglish (GermanEnglishDictionary);
//construct a German to English translator
Translate EnglishToItalian (EnglishItalianDictionary);
...
cout << EnglishToItalian (GermanToEnglish(“universitaet”));
...

FIGURE 89.Outline of a partially instantiated function object in C++

 385

int* p= find_if (a, a+10, "...positive..."); //not right* ** ***

What function can we use to check for positiveness? We need to check that
something is greater than 0. Given template function objects such as greater,
we can build new functions by binding some of their parameters. The library
provides binder templates for this purpose. There is a binder for binding the
first argument of a template function object and a binder for binding the sec-
ond argument. For example, we might build a predicate function positive
from the function object greater by binding its second argument to 0 in the
following way:

bind2nd<int>(greater<int>, 0)
The library also provides the usual high-order functions such as reduce, accu-
mulate, and so on for sequences. The combination of the high level of
genericity for sequences and the template function objects to a great degree
enable the adoption of a functional style of programming in C++.

7.5.3 Type inference

The template facility of C++ provides a surprising amount of type inference.
For example, consider the polymorphic max function given in Figure 90.
First, the type of the arguments is simply stated to be of some class T. The

C++ compiler accepts such a definition as a polymorphic function parameter-
ized by type T. We have seen that the ML type inferencing scheme rejects
such a function because it cannot infer the type of the operator > used in the
function definition. It forces the programmer to state whether T is int or float.
C++, on the other hand, postpones the type inferencing to template instantia-
tion time. Only when max is applied, for example in an expression ...max(a, b),
does C++ do the required type checking. This scheme allows C++ to accept
such highly generic functions and still do static type checking. At function
definition time, C++ notes the fact that the function is parametric based on
type T which requires an operation > and assignment (to be able to be passed
and returned as arguments). At instantiation time, it checks that the actual

template <class T>
T max (T x, T y)

{ if (x>y) return x;
else return y;

}

FIGURE 90.A C++ generic max function

 386

parameters satisfy the type requirements.

We have already contrasted the C++ polymorphic functions with those of ML
in terms of type inference. It is also instructive to compare them with those of
Ada. In the definition of a polymorphic function based on a type parameter T,
neither C++, nor ML require the programmer to state the requirements on
type T explicitly: they infer them from the text of the function definition. For
example, both discover that type must support the > operation. ML rejects the
function definition because of this requirement and C++ accepts it. In Ada, in
contrast, the specification of the function must state explicitly that they type T
must support the operation >. This is intended to allow the function specifica-
tion to be compiled without the body of the function. Both ML and Ada
accord special treatment to the assignment and equali ty operators: Ada refers
to types that support these two operations as pr ivate and ML infers a type
that uses the equality operator as not just any type but an equality type. Each
language tries with its decisions to balance the inter-related requirements of
strong typing, abilit y to describe highly generic functions, writabili ty and
readabil ity.

7.6 Summary

In this chapter, we have examined the concepts and style of functional pro-
gramming and some of the programming languages that support them. The
key idea in functional programming is to treat functions as values. Functional
programming has some of the elegance and other advantages of mathematical
functions and therefore, it is easier to prove properties about functional pro-
grams than about iterative programs. On the other hand, because of its reli -
ance on mathematics rather than computer architecture as a basis, it is more
difficult to achieve efficient execution in functional programs.

Modern functional languages have adopted a number of features such as
strong typing and modularity that have been found useful in conventional lan-
guages. In turn, conventional languages such as C++ and Ada have adopted
some functional programming ideas that make it easier to treat functions as
objects.

7.7 Bibliographic notes

Even though work on functional programming dates back to the 1930s, inter-

 387

est in functional programming was sparked by the Turing award lecture of
John Backus[Backus 76]. In this paper, the inventor of FORTRAN argued
that imperative programming simply could not support programming large
systems and the mathematically-based functional programming had a much
better chance. He introduced a family of functional programming languages
called FP as a candidate language. References to Miranda, Hope, Scheme,
...Haskell i s an attempt to standardize the functional programming syntax.
The paper by Hudack is an excellent treatise on functional programming lan-
guages. The document by Bob Harper, available on the net, is an excellent
introduction to ML and is the source of several examples in this chapter.

7.8 Exercises

1. Reduce the lambda expression [y/x]((y.x)(x.x)x).
2. Reduce the lambda expression (x.(x x))(x.(x x)). What is peculiar about this

expression?
3. What is the type of this ML function:

fun f(x, y) = if hd(x) = hd(y)
 then f(tl(x), tl(y))
 else false;

4. Write an ML function to merge two lists.
5. Write an ML function to do a sortmerge on a list.
6. Explain why the ML function bigger gives a type error:

fun bigger(x, y) = if x> y then x else y;
7. Write a function in ML to compute the distance between two points, represented by (x, y)

coordinates. Next, based on this function, define a new function to compute the distance
of its single argument from the origin.

8. Define the two functions of Exercise 7 in C++.
9. In C++, we can use a function template to write a function bigger similar to the one in

Exercise 6. Why does this program not cause a type error at compile-time?
template<class N>
int bigger(N x, N y)
 { if (x>y) return x; return y;}
Use Exercises 6 and 7 to compare the type inference support in C++ and ML in terms of
flexibili ty, generality, and power.

10. Write the identify function of Section 7.4.1.5 in C++ (using templates).
11. Define a signature for the Stack of Figure 86 which exports only create and push. Is it

useful to have a signature that does not export create?
12. In this chapter, we have seen the use of partially instantiated functions in both C++ and

functional programming languages. In Chapter 4, we saw the use of default values for
function parameters. In what sense is the use of such default values similar to constructing
a closure and in what ways is it different?

λ λ
λ λ

388 Functional programming languages Chap.7

1

389

1
C H A P T E R 8

Logic and rule-based
languages 8

This chapter presents a nonconventional class of languages: logic and rule-
based languages. Such languages are different from procedural and functional
languages not only in their conceptual foundations, but also in the program-
ming style (or paradigm) they support. Programmers are more involved in
describing the problem in a declarative fashion, then in defining details of
algorithms to provide a solution. Thus, programs are more similar to specifi-
cations than to implementations in any conventional programming language.
It is not surprising, as a consequence, that such languages are more demand-
ing of computational resources than conventional languages.

8.1 The" what" versus " how" dilemma: specification versus
implementation

A software development process can be viewed abstractly as a sequence of
phases through which system descriptions progressively become more and
more detailed. Starting from a software requirements specification, which
emphasizes what the the system is supposed to do, the description is progres-
sively refined into a procedural and executable description, which describes
how the problem actually is solved mechanically. Intermediate steps are often
standardized within software development organizations, and suitable nota-
tions are used to describe their outcomes (software artifacts). Typically, a
design phase is specified to occur after requirements specification and before
implementation, and suitable software design notations are provided to docu-

390 Logic and rule-based languages Chap.8

ment the resulting software architecture. Thus the "what" stated in the
requirements is transformed into the "how" stated in the design document,
i.e., the design specification can be viewed as an abstract implementation of
the requirements specification. In turn, this can be viewed as the specification
for the subsequent implementation step, which takes the design specification
and turns it into a running program.

In their evolution, programming languages have become increasingly higher
level. For example, a language like Ada, Eiffel, and C++ can be used in the
design stage as a design specification language to describe the modular struc-
ture of the software and module interfaces in a precise and unambiguous way,
even though the internals of the module (i.e., private data structures and algo-
rithms) are yet to be defined. Such languages, in fact, allow the module spec-
ification (its interface) to be given and even compiled separately from the
module implementation. The specification describes "what" the module does
by describing the resources that it makes visible externally to other modules;
the implementation describes "how" the internally declared data strucures and
algorithms accomplish the specified tasks.

All of the stated steps of the process that lead from the initial requirements
specification down to an implementation can be guided by suitable systematic
methods. They cannot be done automatically, however: they require engi-
neering skill s and creativity by the programmer, whose responsibility is to
map–translate–requirements into executable (usually, procedural) descrip-
tions. This mapping process is time-consuming, expensive, and error-prone
activities.

An obvious attempt to solve the above problem is to investigate the possibil -
ity of making specifications directly executable, thus avoiding the translation
step from the specification into the implementation. Logic programming tries
to do exactly that. In its simplest (and ideal) terms, we can describe logic pro-
gramming in the following way: A programmer simply declares the proper-
ties that describe the problem to be solved. The problem description is used
by the system to solve the problem (infer a solution). To denote its distinctive
capabilities, the run-time machine that can execute a logic language is often
called an inference engine.

In logic programming, problem descriptions are given in a logical formalism,
based on first-order predicate calculus. The theories that can be used to

 391

describe and analyze logic languages formally are thus naturally rooted into
mathematical logic. Our presentation, however, will avoid delving into deep
mathematical concepts, and will mostly remain at the same level in which
more conventional languages were studied.

The above informal introduction and motivations point out why logic pro-
gramming is often said to support a declarative programming paradigm. As
we wil l show, however, existing logic languages, such as PROLOG, match
this description only partially. To make the efficiency of the program execu-
tion acceptable, a number of compromises are made which dilute the purity of
the declarative approach. Eff iciency issues affect the way programs are writ-
ten; that is, the programmer is concerned with more than just the specification
of what the program is supposed to do. In addition, nondeclarative language
features are also provided, which may be viewed as directions provided by
the programmer to the inference engine. These features in general reduce the
clarity of program descriptions.

8.1.1 A first example

In order to distinguish between specification and implementation, and to
introduce logic programming, let us specify the effect of searching for an ele-
ment x in a list L of elements. We introduce a predicate is_in (x, L) which is true
whenever x is in the list L. The predicate is described using a self-explaining
hypothetical logic language, where operator "•" denotes the concatenation of
two lists and operator [] transforms an element into a list containing it and
"iff" is the conventional abbreviation for "if and only if.".

for all elements x and lists L: is_in (x, L) iff
L = [x]

or
L = L1 • L2 and

(is_in (x, L1) or is_in (x, L2))
The above specification describes a binary search in a declarative fashion.
The element is in the list if the list consists exactly of that element. Otherwise,
we can consider the list as decomposed into a left sublist and a right sublist,
whose concatenation yields the original l ist. The element is in the list, if it is
in either sublist.

Let us now proceed to an implementation of the above specification. Besides
other details, an implementation of the above specification must decide

392 Logic and rule-based languages Chap.8

• how to spli t a list into a right and a left sublist. An obvious choice is to split it into two
sublists of either the same length, or such that they differ by at most one;

• how to store the elements in the list. An obvious choice is to keep the list sorted, so that
one can decide whether to search the left or the right sublist and avoid searching both;

• how to speed up the search. Instead of waiting until a singleton list is obtained via repeated
splitt ing, the algorithm can check the element that separates the two sublists. If the
separator equals the desired element, the search can stop. Otherwise, it proceeds to check
either in the right or in the left sublist generated by the splitting, depending on the value
of the separator.

A possible C++ implementation of the specification is shown in Figure 91.By
looking carefully at both the logic specification and the C++ implementation,
one can appreciate the differences between the two in terms of ease of writ-
ing, understandability, and self-confidence in the correctness of the descrip-
tion with respect to the initial problem.

Instead of transforming the specification into an implementation, one might
wonder whether the specification can be directly executed, or used as a start-
ing point for a straightforward derivation process yielding an implementation.
To do so, we can read the above declarative specification procedurally as fol-
lows:

Given an element x and a list L, in order to prove that x is in L, proceed as follows
(1) prove that L is [x];
(2) otherwise split L into L1 • L2 and prove one of the following:

(2.1) x is in L1, or
(2.2) x is in L2

A blind mechanical executor which follows the procedure can be quite ineffi-
cient, especially if compared to the C++ program. This is not surprising.
Direct execution is less efficient than execution of an implementation in a tra-
ditional procedural language, but this is the obvious price we pay for the sav-
ings in programming effort.

 393

8.1.2 Another example

Suppose we wish to provide a logical specification of sorting a list of integers
in ascending order. Our goal is thus to describe a predicate sort (X, Y) which is
true if the nonempty list Y is the sorted image of list X. The description of
such a predicate can be provided top-down by introducing two lower-level
predicates permutation (X, Y), which is true if li st Y is a permutation of li st X,
and is_sorted (Y), which is true if list Y is sorted. We can in fact write

for all i nteger lists X, Y: sort (X, Y) iff
permutation (X, Y) and sorted (Y)

In order to describe predicate sorted, let us assume that our logic notation pro-
vides the notion of an indexable sequence of integers (we use subscripts in the
range 1. .length (X) for this purpose):

sorted (Y) iff f orall j such that 1 ð j < length (Y), Y j ð Y j+1

int binary_search (const int val, size, const int array[]) {
// return the index of the desired value val, if it is there
// otherwise return -1
if size ð 0 {

return (-1);
}
int high = size; // the portion of array to search is
int low = 0; // low. .high-1
for (; ;) {

int mid = (high + low) / 2;
if (mid = low) {

// search is finished
return (test != array [low]) ? -1 : mid;

}
if (test < array [mid]) {

high = mid;
}
else if (test > array [mid]) {

low = mid;
else {

return mid;
}

}
}

FIGURE 91. A C++ implementation of binary search

394 Logic and rule-based languages Chap.8

In order to describe predicate permutation (X, Y), we assume that the following
built-in predicates are available for lists (of integers):

• is_empty (X), which is true if li st X is empty;
• has_head (X, Y), which is true if the integer Y is the first element in the (nonempty) list X;
• has_tail (X, Y), which is true if Y is the list obtained by deleting the first element of the

(nonempty) list X;
• delete (X, Y, Z) , which is true if list Z is the result of deleting an occurrence of

element X from list Y
Predicate permutation (X, Y) can thus be specified as follows:

permutation (X, Y) iff
is_empty (X) and is_empty (Y)

or else
has_head (Y, Y1) and has_tail (Y, Y2) and delete (Y1, X, X2) and permutation (X2,

Y2)
(The logical connective or else has the following intuitive meaning: A or else B

means A or ((not A) and B).)

The declarative specification can be read procedurally as follows, assuming
that two lists X and Y are given:

Given two integer lists X and Y, in order to prove that the sort operation applied to X yields
Y, prove that Y is a permutation of X and prove that Y is sorted.

In order to prove that Y is a permutation of X, proceed as follows
(1) prove that both are empty;
(2) otherwise, eliminate the first element of Y from both X and Y, thus

producing X2 and Y2, and prove that Y2 is a permutation of X2.

In order to prove that Y is sorted, prove that each element is less than the one
that follows it.

The declarative specification can also be read as ad constructive recursive
procedure. Assume that X is a given list and its sorted image Y is to be pro-
vided as a result:

Given an integer list X, construct its permutations and prove that one such permutation Y
exists that is sorted.

In order to construct Y, a permutation of X, proceed as follows
(1) Y is the empty list if X is an empty list;
(2) otherwise, Y is constructed as a list whose head is an element X1

of X and whose tail Y2 is constructed as follows.
(2.1) delete X1 from X, thus obtaining the list X2;
(2.2) Y2 is constructed as a permutation of X2

 395

This example confirms that a direct implementation of the specification,
according to its procedural interpretation, can be quite ineff icient. In fact, one
might need to generate all permutations of a given list, before generating the
one which is sorted. All different permutations can be generated because in
step (2) above there are many ways of deleting an element X1 from X. Any
such way provides a different permutation, and all such different permuta-
tions must be generated, until a sorted one is finally found.

8.2 Pr inciples of logic programming

To understand exactly how logic programs can be formulated and how they
can be executed, we need to define a possible reference syntax, and then base
on it a precise specification of semantics. This would allow some of the con-
cepts we used informally in Section 8.1 (such as "procedural interpretation")
to be stated rigorously. This is the intended purpose of this section. Specifi-
cally, Section 8.2.1 provides the necessay background definitions and proper-
ties that are needed to understand how an interpreter of logic programs works.
The interpreter provides a rigorous definition the program’s "procedural
interpretation". This is analogous to SIMPLESEM for imperative programs.

8.2.1 Preliminar ies: facts, rules, quer ies, and deductions

Although there are many syntactic ways of using logic for problem descrip-
tions, the field of logic programming has converged on PROLOG, which is
based on a simple subset of the language of f irst-order logic. Hereafter we
will gradually introduce the notation used by PROLOG.

The basic syntactic constituent of a PROLOG program is a term. A term is a
constant, a variable, or a compound term. A compound term is written as a
functor symbol followed by one or more arguments, which are themselves
terms. A ground term is a term that does not contain variables. Constants are
written as lower-case letter strings, representing atomic objects, or strings of
digits (representing numbers). Variables are written as strings starting with an
upper-case letter. Functor symbols are written as lower-case letter strings.

alpha --this is a constant
125 --this is a constant
X --this is a variable
abs (-10, 10) --this is a ground compound term; abs is a functor
abs (suc (X), 5) --this is a (nonground) compound term

396 Logic and rule-based languages Chap.8

The constant [] stands for the empty list. Functor "." constructs a list out of an
element and a list; the element becomes the head of the constructed list. For
example, .(alpha, []) is a list containing only one atomic object, alpha. An
equivalent syntactic variation, [alpha, []], is also provided. Another example
would be

.(15, .(toot, .(duck, donald)))
which can also be represented as

[15, [toot, [duck, donald]]]
The notation is further simplified, by allowing the above list to be written as

[15, toot, duck, donald]
and also as

[15 | [toot, duck, donald]]
In general, the notation

[X | Y]
stands for the list whose head element is X and whose tail li st is Y.

A predicate is represented by a compound term. For example

less_than (5, 99)
states the "less than" relationship between objects 5 and 99.

PROLOG programs are written as a sequence of clauses. A clause is
expressed as either a single predicate, called fact, or as a rule (called Horn
clause) of the form

conclusion :- condition
where :- stands for "i f", conclusion is a single predicate, and condition is a con-
junction of predicates, that is, a sequence of predicates separated by a comma,
which stands for the logical and. Facts can be viewed as rules without a condi-
tion part (i.e., the condition is always true). Thus the term "rule" will be used
to indicate both facts and rules, unless a distinction will be explicitly made. A
rule’s conclusion is also called the rule’s head. Clauses are implicitly quanti-
fied universally. A PROLOG rule

conclusion :- condition
containing variable X1, X2, . . ., Xn would be represented in the standard nota-

 397

tion of mathematical logic as

∀X1, X2, . . ., Xn (condition ⊃ conclusion)
where ⊃ is the logical implication operator. In a procedural program, it would
be represented as

if condition then conclusion;
For example, the following program

length ([] , 0). --this is a fact
length ([X | Y], N) :- length (Y, M), N = M + 1. --this is a rule

says that

• the length of the null string is zero,
• for all X, Y, N, M, if M is the length of list Y and N is M + 1, then the length of a nonnull

string with head X and tail Y is one more than the length of Y.
As another example, the sort problem of Section 8.1.2 can be represented in
PROLOG as follows:

sort (X, Y) :- permutation (X, Y), sorted (Y).
sorted ([]). --the empty list is sorted
sorted ([X | []]. - - the sigleton list is sorted
sorted ([X | [Y | Z]]) :- X ð Y and sorted (Z).
permutation ([], []).
permutation (X, [Y1 | Y2]) :- delete (Y1, X, X2), permutation (X2, Y2).
delete (A, [A | B], B).
delete (A, [B | C], [B | D]) :- A ¦ B, delete (A, C, D).

The examples we gave so far show implicitly that PROLOG is an untyped
language. No type declarations are provided for variables. The value that is
dynamically bound to a variable determines the nature of the object, and thus
the legali ty of the operations applied to it. For example, in the case of sort,
operators "less than" and "not equal" must be applicable to the elements of the
list. For example, it might be a list of numbers, or a li st of characters.

Facts and rules are used to express the available knowledge on a particular
domain: they provide a declarative specification. They are used to solve prob-
lems, specified as queries. A query can also be viewed as a goal that must be
proved.

From a logical viewpoint, the answer to a query is YES if the query can be
derived by applying deductions from the set of facts and rules. For example:

398 Logic and rule-based languages Chap.8

?-sort ([3, 2, 7, 1], [1, 2, 3, 7]).
is a query, to which the answer would be YES.

In order to understand how deductions are made from a logic program, we
need to provide some mathematical preliminaries. A substitution is a func-
tion, defined as a (possibly empty) finite set of pairs of the form <Xi, ti>,
where Xi is a variable and ti is a term, Xi ¦ Xj for all i, j with i ¦ j and Xi does not
occur in tj for all i, j. A substitution µ may be extended to apply to terms; i.e.,
it is applied to any of the variables appearing in a term. The result of applying
a substitution µ to term t1, µ (t1), yields a term t2, which is said to be an
instance of t1. A substitution may also be applied to a rule; i.e., it is applied to
all its component terms to produce an instance rule.

For example, the substitution

{ <A, 3>, <B, beta (X, xyz>}
applied to term

func (A, B, C)
yields

func (3, beta (X, xyz), C)
The fundamental rule used in logic to make deductions is called modus pon-
ens. Such rule can be stated as follows, using the syntax of logic program-
ming:

from the rule R:
P :- Q1, Q2, . . ., Qn

and the facts
F1, F2, . . ., Fn

we can deduce D as a logical consequence
if D :- F1, F2, . . ., Fn is an instance of R

If we submit a ground query to a logic program, the answer to the query is
YES if the repeated application of modus ponens proves that the query is a
logical consequence of the program. Otherwise, if such deduction cannot be
generated, the answer is false. For example, the answer to the query sorted ([1,

5, 33]) is YES because the following deduction steps can be performed using
modus ponens:

i1. sorted ([33| [])

 399

i2. from the previous step, our knowledge that 5 ð 33, and from the rule sorted ([X | [Y |
Z]]) :- X ð Y and sorted (Z) we can deduce sorted ([5 | [33 | []]])
i3. from the previous step, our knowledge that 1 ð 5, and from sorted ([X | [Y | Z]]) :- X
ð Y and sorted (Z) we can deduce sorted ([1 | [5 | [33 | []]]]), i.e., sorted ([1, 5, 33]).

PROLOG allows existential queries to be submitted. An existential query is a
query which contains a variable. For example,

?-sort ([5, 1, 33], X)
means "is there an X such that the sort of [5, 1, 33] gives X"? To accommodate
existential queries in the deduction process, another rule, called existentiail
rule, is provided. The rule states that an existential query Q is a consequence
of an instance of it, µ (Q), for any µ. In the above example, the answer would
be YES since

j1. sorted ([1, 5, 3]) can be proved by repeated application of modus ponens, as shown
above
j2. permutation ([5, 1, 33], [1, 5, 33]) can be proved in a similar way
j3. from j1 and j2 we can deduce sort ([5, 1, 33], [1, 5, 33])
j4. from the existential rule, we can conclude that the answer to the query is YES.

Modus ponens and the existential rule are the conceptual tools inherited from
mathematical logic that can be used to support deductive reasoning. But in
order to make logic specifications executable, we need to devise a practical
approach that is amenable to mechanical execution: we need to interpret logic
programs procedurally.

Intuitively, the procedural interpretation of a logic program consists of view-
ing a query as a procedure call. A set of clauses for the same predicate, in
turn, can be viewed as a procedure definition, where each clause represents a
branch of a case selection. The basic computational step in logic program-
ming consists of selecting a call, identifying a procedure corresponding to the
call , selecting the case that matches the call , and generating new queries, if
the matched case is a rule. This is in accordance to the concepts of case anal-
ysis and pattern matching that were introduced in Chapter 4. For example, the
above query ?-sort ([5, 1, 33], X), which is matched by the sort rule, generates
the following queries:

?-permutation ([3, 2, 7, 1], [1, 2, 3, 7]).
and

?-sorted ([1, 2, 3, 7]).
The procedure corresponding to the call described by the first of the above

400 Logic and rule-based languages Chap.8

two queries has two cases:

permutation ([] , []).
permutation (X, [Y1 | Y2]) :- delete (Y1, X, X2), permutation (X2, Y2).

To select the appropriate case, a special kind of pattern matching is performed
between the query and the head of the rule describing each case. Intuitively,
in our example, the query does not match the first case, which is the rule for
empty lists. The match against the other rule’s head binds X to [3, 2, 7, 1], Y1 to
1, Y2 to [2, 3, 7], and generates two further queries

delete (1, [3, 2, 7, 1], X2)
and

permutation (X2, [2, 3, 7])
Interpretation proceeds in much the same manner for each generated query,
until all queries are processed by the interpreter. The intuitive, yet informal,
treatment of the interpretation procedure described so far will be formally
described in the next section.

8.2.2 An abstract interpretation algor ithm

In this section we discuss in detail how logic programs can be procedurally
interpreted by an abstract processor. As we mentioned earlier, the abstract
processor must be able to take a query as a goal to be proven, and match it
against facts and rule heads. The matching process, which generalizes the
concept of procedure call , is a rather elaborate operation, called unification,
which combines pattern matching and binding of variables.

Unification applies to a pair of terms t1 (representing the goal to prove) and t2
(representing the fact or rule’s head with which a match is tried). To define it,
we need a few other background definitions. Term t1 is said to be more gen-
eral than t2 if there is a substitution µ such that t2 = µ (t1), but there is no substi-
tution ¼ such that t1 = ¼ (t2). Otherwise, they are said to be variants, i.e., they
are equal up to a renaming of variables.

Two terms are said to unify if a substitution can be found that makes the two
terms equal. Such a substitution is called a unifier. For example, the substitu-
tion

s1 = { <X, a>, <Y, b>, <Z, b>}
is a unifier for the terms f (X, Y) and f (a, Z). A most general unifier is a unifier

 401

µ such that µ (t1) = µ (t2) is the most general instance of both t1 and t2. It is easy
to prove that all most general unifiers are variants. We will therefore speak of
"the" most general unifier (MGU), assuming that it is unique up to a renaming
of its variables. In the previous example, s1 is not the MGU. In fact the substi-
tution

s2 = { <X, a>, <Y, W>, <Z, W>}
is more general than s1, and it is easy to realize that no unifier can be found
that is more general than s2.

MGUs are computed by the unification algorithm shown in Figure 92. The
algorithm keeps the set of pairs of terms to unify in a working set which is ini-
tialized to contain the pair <t1, t2>.The algorithm is written in a self-explain-
ing notation. If the two terms given to the algorithm do not unify, the
exception unification_fail is raised.

To ensure termination the unification algorithm does not attempt to unify
such pairs as <f (. . .X. . .), X>, in order to enforce termination. This is achieved
by the so-called occur check (see the second and third case in the repeat loop
of the algorithm in Figure 92).

MGU = { } ; --MGU is the empty set
WG = { <t1, t2>} ; --working set initialized
repeat

extract a pair <x1, x2> from WG;
case

• x1 and x2 are two identical constants or variables:
do nothing

• x1 is a variable that does not occur in x2:
substitute x2 for x1 in any pair of WG and in MGU;

• x2 is a variable that does not occur in x1:
substitute x1 for x2 in any pair of WG and in MGU;

• x1 is f (y1, y2, . . ., yn), x2 is f (z1, z2, . . ., zn), and f is a functor and n Š 1:
insert <y1, z1>, <y2, z2>, . . ., <yn, zn> into WG;

otherwise
raise unification_fail;

end case;
until WG = { } --working set is empty

FIGURE 92.Unification algorithm

The algorithm operates on two terms t1 and t2 and returns their MGU.
It raises an exception if the unification fails.

402 Logic and rule-based languages Chap.8

We are finally in a position to provide a precise meaning for "procedural
interpretation" by showing how logic programs can be interpreted (Figure
93). The algorithm assumes that whenever a unification is applied to a goal
and a rule’s head all variables appearing in the rule’s head are automatically
renamed with brand new variable names. Remember that variables with the
same name appearing in different clauses of the logic language are different;
this is obvious since clauses are implicitly universally quantified. The renam-
ing ensures that such variables are indeed treated as different.

The algorithm shown in Figure 93 is nondeterministic, i.e., it describes sev-
eral possible computations for a given input goal. The goal is solved success-
fully if there is a computation that stops with the answer YES. In such a case,
if the goal contains variables, when the interpreter stops, all variables are
bound to a ground term. A computation may raise the exception fail, if the
attempt to solve a goal fails during the process. It is also possible that a com-
putation does not terminate, i.e., the set of goals to be proven never becomes
empty.

In order to il lustrate how the nondeterministic interpretation algorithms oper-
ates, consider the following example of a logic program, which describes a
binary relation (rel) and its closure (clos):

(1) rel (a, b).
(2) rel (a, c).
(3) rel (b, f).
(4) rel (f, g).
(5) clos (X, Y) :- rel (X, Y).
(6) clos (X, Y) :- rel (X, Z), clos (Z, Y).

Predicate rel lists all object pairs that constitute the relation. Pairs belonging to
the closure are specified by the recursive predicate clos.

 403

Suppose that the query

 ?-clos (a, f)
is submitted to the nondeterministic interpreter of Figure 93. Some of the
many possible different computation paths for the query are shown in Figure
94. Computation paths are described by showing how goals are successively
matched against facts or rule heads, and new subgoals are generated after the
match. The goal chosen at each step for the match is shown in bold in the
computation path. Since clauses are numbered in the logic program, clause
numbers are shown in the computation paths to indicate the clause selected by
the unification algorithm.

By examining Figure 94, it is easy to understand that in case (b) the computa-
tion solves the goal; cases (a) and (c) describe computations that fail because
of the wrong choices made to solve nondeterminism; case (d) describes a
nonterminating computation where clause 6 is chosen repeatedly in the unifi-
cation procedure.

Let us try to understand the effect of the different choices that can be made
during the execution of the interpretation algorithm because of nondetermin-

Given a goal G submitted as a query to a logic program P, the algorithm answers
YES, and provides bindings for the variables appearing in G, or it answers NO
SG = { G} ; --initialize the set of goals to solve to G, the submitted query
repeat

begin
extract an element E from SG

and select a (renamed) clause X :- X1, X2, ..., Xn from P (n = 0 for a fact)
such that <E, X> unifies with MGU µ;

insert X1, X2, . . ., Xn into SG;
apply µ to all elements of SG and to G;

exception
when unification_fail => exit;

end;
until SG = empty;
if SG = empty then

the answer is YES and G describes a solution
else

raise fail

FIGURE 93.A nondeterministic interpretation algorithm

404 Logic and rule-based languages Chap.8

ism. First, when a goal is being solved, it may be necessary to choose one out
of several clauses to attempt unification. It may happen that the choice we
make eventually results in a failure, while another choice would have led to
success. For example, in the case of computation (a) the choice of clause 5
instead of 6 for the first match leads to a failure. Second, when several goals
can be selected from SG, there is a choice of which is to be solved first. For
example, when the goals to be solved are rel(a, Z1), clos (Z1, f), computations (c)
and (d) make their selection in a different order. In general, when we have to
choose which of two goals G1 and G2 is to be solved first, it can be shown
that if there is a successful computation choosing G1 first, there is also a suc-
cessful computation choosing G2 first. The choice can only affect the effi-
ciency of searching a solution. From now on, we will assume that whenever a
goal unifies with a rule’s head, the (sub)goals corresponding to the righthand
side of the rule will be solved according to a deterministic policy, from left to
right.

 405

Another way of viewing the behaviors of the nondeterministic interpreter of
Figure 94 is to view them as a tree of computations (called the search tree).
The arcs exiting a node represent all possible clauses with which unification
is performed. Figure 95 shows the search tree for the query clos (a,f).

clos (a, f) clos (a, f)

rel (a, f)

fail

5

rel (a, Z1), clos (Z1, f)

6

rel (a, b), clos (b, f)

1

rel (b, f)

YES

(a)

(b)

5

clos (a, f)

rel (a, Z1), clos (Z1, f)

rel (a, c), clos (c, f)

2

6

rel (c, Z2), clos (Z2, f)
5

rel (c, Z2), rel (Z2, f)

6

fail (c)clos (a, f)

rel (a, Z1), clos (Z1, f)

rel (a, Z1), rel (Z1, Z2), clos (Z2, f)

6

6

rel (a, Z1), rel (Z1, Z2),

6

6

(d)

rel (Z2, Z3), clos (Z3, f)

FIGURE 94.Different computations of the nondeterministic interpreter

. . .
6

406 Logic and rule-based languages Chap.8

To implement the nondeterministic interpreter on a conventional processor, it
is necessary to define a traversal of the search tree according to some policy.
One possibilit y is to search all branches in parallel (breadth-first policy).
Another possibilit y is depth-first search, for example always choosing the
first clause in the list for unification. In such a case, when the computation
fails along one path, it is necessary to backtrack to a previously unexplored
choice, to find an alternative path. A breadth-first searching algorithm is said
to provide a complete proof procedure for logic programs: it guarantees that
if there is a finite proof of the goal, it will be found. In addition, the breadth-
first algorithm is said to provide a sound proof procedure, since any answer
derived by the interpreter is a correct answer to the query (i.e., it is a logical
consequence that can be derived from the program via modus ponens and the
existential rule). Completeness and soundness are indeed the most desired
properties of a proof procedure. Depth-first search is a sound procedure; it is
not complete, however, since the searching engine might enter a nonterminat-
ing computation, which would prevent backtracking to attempt another path

clos (a, f)

rel (a, f)

5 6
rel (a, Z1), clos (Z1, f)

rel (a, b), clos (b, f) rel (a, c), clos (c, f)

 clos (c, f)

rel (c, f) rel (c, Z1), clos (Z1, f)

fail fail

fail

rel (b, f) rel (b, Z1), clos (Z1, f)

YES clos (f, f)

rel (f, f) rel (f, Z1), clos (Z1, f)

fail clos (g, f)

rel (g, f) rel (g, Z1), clos (Z1, f)

fail fail

1 2

5 6

3 3 5 6

5 6

4

5 6

FIGURE 95.Search tree for the query clos (a, f)

 407

which might lead to the solution.

Conventional logic programming languages, such as PROLOG, follow a
depth-first search policy, as we wil l see in the next section. Several experi-
mental languages have tried to improve the search method, by supporting
breadth-first search via parallel execution of the different branches of the
search tree.

As a final point, let us discuss when the answer to a query submitted to a logic
program can be NO. This can only occur if all computations for that query ter-
minate with a failure; i.e., the search tree is finite, and no leaf of the tree is
labelled YES. Similarly, a goal submitted as a query ?-not Q yields YES if Q
cannot be proven from the given facts and rules. This happens if the search
tree is finite, and all computations corresponding to the different branches
fail . In other terms, logic programs are based on the concept of negation as
failure. A common way to describe negation by failure is to say that logic lan-
guage interpreters work under the "closed world assumption". That is, all the
knowledge possessed by the interpreter is explicitly li sted in terms of facts
and rules of the program. For example, the answer to the query

?- rel (g, h)
would be NO, which means that "according to the current knowledge
expressed by the program it cannot be proved that rel (g, h) holds".

8.3 PROLOG

PROLOG is the most popular example of a logic language. Its basic syntactic
features were introduced informally in Section 8.2. As we anticipated, PRO-
LOG solves problems by performing a depth-first traversal of the search tree.
Whenever a goal is to be solved, the list of clauses that constitutes a program
is searched from the top to the bottom. If unification succeeds, the subgoals
corresponding to the terms in the righthand side of the selected rule (if any)
are solved next, in a predined left-to-right order. This particular way of oper-
ating makes the behavior of the interpreter quite sensitive to the way pro-
grams are written. In particular, the ordering of clauses and subgoals can
influence the way the interpreter works, although from a conceptual view-
point clauses are connected by the logical operator "or" and subgoals are con-
nected by "and". These connectives do not exhibit the expected
commutativity property.

408 Logic and rule-based languages Chap.8

As an example, Figure 96 shows all possible permutations of terms for the
closure relation that was discussed in Section 8.2.2. It is easy to verify that
any query involving predicate clos would generate a nonterminating computa-
tion in case (4). Similarly, a query such as ?-clos (g, c) causes a nonterminating
interpretation process in cases (2) and (4), whereas in (1) and (3) the inter-
preter would produce NO.

PROLOG provides several extra-logical features, which cause its departure
from a pure logical language. The first fundamental departure is represented
by the cut primitive, written as "!", which can appear as a predicate in the con-
dition part of rules. The effect of the cut is to prune the search space by for-
bidding certain backtracking actions from occurring. Its motivation, of
course, is to improve eff iciency of the search by reducing the search space. It
is the programmer’s responsibility to ensure that such a reduction does not
affect the result of the search. The cut can be viewed as a goal that never fails
and cannot be resatisfied. That is, if during backtracking one tries to resatisfy
it, the goal that was unified with the lefthand side of the rule fails.

In order to illustrate how the cut works, consider the following rule:

A :- B, C, !, D, E
Suppose that, after a match between the rule’s head and a goal A', subgoals B,
C, and D (with suitably applied substitutions) have been solved successfully.
If subgoal E fails, the PROLOG interpreter backtracks and tries to solve D by
matching it to the next available rule’s head, if any, found in scanning the
program clauses from the top down. If no successful match can be found, the
PROLOG interpreter would normally backtrack further, trying to find a new
solution for C, and then B. Eventually, if all these fail , the match of A' with the
rule would fail and another rule or fact would be tried. The presence of the
cut, however, forbids the backtracking procedure from retrying C, then B, and
then a further alternative for the match with A': the current goal A' would fail

clos (X, Y) :- rel (X, Y).
clos (X, Y) :- rel (X, Z), clos (Z, Y).

clos (X, Y) :- rel (X, Z), clos (Z, Y).
clos (X, Y) :- rel (X, Y).

clos (X, Y) :- rel (X, Y).
clos (X, Y) :- clos (Z, Y), rel (X, Z).

clos (X, Y) :- clos (Z, Y), rel (X, Z).
clos (X, Y) :- rel (X, Y).

(1) (2)

(3) (4)

FIGURE 96.Variations of a PROLOG program

 409

right away. In other terms, the cut, viewed as a predicate, always succeeds,
and commits the PROLOG interpreter to all the choices made since the goal
A' was unified with the head of the rule in which the cut occurs.

Let us consider as examples the simple programs shown in Figure 97 (a). The
program contains the relational predicate ð. Relational predicates (i.e., <, ð, =,
¦, >, Š) are such that when a goal, li ke A ð B, is to be solved, both operands A
and B must be bound to arithmetic expressions that can be evaluated (i.e., if
they contain variables, they must be bound to a value). The goal A ð B suc-
ceeds if the result of evaluating A is less than or equal to the result of evaluat-
ing B. If not, or if A and B cannot be evaluated as arithmetic expressions, the
goal fails. The presence of the cut implies that if the first alternative is chosen
(i.e., X ð Y), the backtracking that may occur due to the failure in the proof of
some later goal will not try to find another solution for max, because there is
no possibil ity for the second alternative to be chosen.

Relational predicates represent another departure of PROLOG from logical
purity. In fact, for example, the evaluation of the following goal

?- 0 < X
which is read as

is there a positive value for X?
does not succeed by binding X to an integer value greater than zero, as the
logical reading of the clause might suggest. It simply fails, since X in the
query is unbound, and the arithmetic expression cannot be evaluated. To
guard against such a situation, the programmer must ensure that variables are
bound if they are expected to participate in expression evaluations.

The fragment of Figure 97 (b) defines an if_then_else predicate. If clause A
describes a goal whose proof succeeds, then goal B is to be proved. If the exe-
cution fails to prove that A holds, then C is to be proved. A possible use is
shown by the following query, where rel and clos have been introduced in Sec-

max (X, Y, Y) :- X ðY, !.
max (X, Y, X) :- X > Y, !.

FIGURE 97. Sample PROLOG fragments using cut

(a)

if_then_else (A, B, C) :- A, !, B.
if_then_else (A, B, C) :- C.

(b)

 410

tion 8.1.2 and assuming that some clause exists in the program for goal g:

?- if_then_else (rel (a, X), retract (rel (a, X)), g (X)).
The example shows another extralogical feature of PROLOG: retract. This fea-
ture removes from the program the first clause that unifies with its argument.
Thus the effect of the query is to remove from the relation rel a pair whose
first element is a, if there is one. If the choice of executing retract is made, it
cannot be undone through backtracking. Instead, if a pair whose first element
is a does not exist, goal g is solved.

The reciprocal effect of retract is provided by the extra-logical primitives assert

and asserta, which allow their argument to be added as a clause at the end of
the program or at the beginning, respectively. Thus retract and assert allow
logic programs to be modified as the program is executed. They can be used,
for example, to add new ground facts to the program, to represent new knowl-
edge that is acquired as the program is running.

Another departure from logic is represented by the assignment operator is,
illustrated by the PROLOG program of Figure 98, which defines the factorial
of a natural number. When the operator is encountered during the evaluation,
it must be possible to evaluate the expression on its lefthand side (i.e., if the
expression contains variables, they must be bound to a value); otherwise the
evaluation fails. If the righthandside variable is also bound to a value, then the
goal succeeds if the variable’s value is equal to the value of the expression.
Otherwise, the evaluation succeeds and the lefthand side variable is bound to
the value of the expression. In the example, when the subgoal

F is N * F1
is encountered in the evaluation, N and F1 must be bound to a value. For
example, suppose that N and F1 are bound to 4 and 6, respectively. If F is also
bound, the value bound to it must be equal to the value evaluated by the
expression (24, in the example). If F is not bound, it becomes bound to the
value of the expression. You should examine the behavior of the PROLOG
interpreter for the following query:

?- fact (3, 6).
In the evaluation process, both previous cases arise.

As the above discussion ill ustrates, PROLOG variables behave differently
from variables of a conventional procedural programming language. As in

 411

functional languages, logic language variables can be bound to values, but
once the binding is established, it cannot be changed.

8.4 Functional programming versus logic programming

The most striking difference between functional and logic programming is
that programs in a pure functional programming language define functions,
whereas in pure logic programming they define relations. In a sense, logic
programming generalizes the approach taken by relational databases and their
languages, like SQL. For example, consider the simple PROLOG program
shown in Figure 99, consisting of a sequence of facts. Indeed, a program of
this kind can be viewed as defining a relational table; in the example, a mini-
database of classical music composers, which lists the composer’s name, year
of birth, and year of death. (See the sidebar on relational database languages
and their relation to logic languages.)

In a function there is a clear distinction between the domain and the range.
Executing a program consists of providing a value in the domain, whose cor-
responding value in the range is then evaluated. In a relation, there is no pre-
defined notion of which is the input domain. In fact, all of these possible
queries can be submitted for the program of Figure 99:

?- composer (mozart, 1756, 2001).
?- composer (mozart, X, Y).
?- composer X, Y, 1901).
?- composer (X, Y, Z).

In the first case, a complete tuple is provided, and a check is performed that
the tuple exists in the database. In the second case, the name of the composer
is provided as the input information, and the birth and death years are evalu-
ated by the program. In the second case, we only provide the year of death,
and ask the program to evaluate the name and year of birth of a composer
whose year of death is given as input value. In the fourth case, we ask the sys-
tem to provide the name, year of birth, and year of death of a composer li sted

fact (0, 1).
fac (N, F) :- N > 0, N1 is N - 1, fact (N1, F1), F is N * F1.

FIGURE 98.Factorial in PROLOG

 412

in the database.

As most functional languages are not purely functional, PROLOG is not a
pure logic language. Consequently, it is not fully relational in the above
sense. In particular, the choice of the input domains of a query is not always
free. This may happen if the program contains relational predicates, assign-
ment predicates, or other extralogical features. For example the factorial pro-
gram of Figure 98 cannot be invoked as follows

?- fact (X, 6).
to find the integer whose factorial is 6. The query would in fact fail, because
the extralogical predicate is fails. Similarly, the following query

?- max (X,99, 99).
for the program fragment of Figure 97 does not yield a value less than or
equal to 99, as the logical reading might suggest. It fails, since one of the
arguments in the invocation of ð is not bound to a value.

sidebar on Relational database languages

A relational database can be viewed as a table of records called tuples. This
form is quite similar to a logic program written as a sequence of ground
terms. For example, the logic program of Figure 99 can be represented in a
relational database as a table (relation) COMPOSER with fields NAME,
BIRTH_YEAR, and DEATH_YEAR. The best known language for relational
databases is SQL. In SQL, retrieval of data from the relational database is
accomplished by the SELECT statement. Here are two sample SQL queries:

composer (monteverdi, 1567, 1643).
composer (bach, 1685, 1750).
composer (vivaldi, 1678, 1741).
composer (mozart, 1756, 1791).
composer (haydn, 1732, 1809).
composer (beethoven, 1770, 1827).
composer (schubert, 1797, 1828).
composer (schumann, 1810, 1856).
composer (brahms, 1833, 1897).
composer (verdi, 1813, 1901).
composer (debussy, 1862, 1918).

FIGURE 99.A PROLOG database

 413

SELECT BIRTH_YEAR
FROM COMPOSER
WHERE NAME = "BEETHOVEN"

This query selects the field BIRTH_YEAR from a tuple in the relation COM-

POSER such that the value of f ield NAME is BEETHOVEN.

The following query selects all tuples representing composers who were born
in the 19th century:

SELECT *
FROM COMPOSER
WHERE BIRTH_YEAR Š 1800 and BIRTH_YEAR ð 1899

It is easy to see that the query language selects information stored in the data-
base by specifying the logical (relational) properties that characterize such
information. Nothing is said about how to access the information through
suitable scanning of the database. It is interesting to note that earlier genera-
tions of database systems were imperative, requiring the user to state how to
find the desired tuples through pointers and other such mechanisms. The cur-
rent declarative approach is more oriented to the end-user who is not neces-
sarily a computer programmer.

Logic and relational databases fit together quite nicely. In fact, extensions
have been proposed to relational databases that add PROLOG-like rules to
relational tables.

sidebar end***

8.5 Rule-based languages

Rule-based languages are common tools for developing expert systems. Intu-
itively, an expert system is a program that behaves like an expert in some
restricted application domain. Such a program is usually structured as a
knowledge base (KB), which comprises the knowledge that is specific to the
application domain, and an inference engine. Given the description of the
current situation (CS), often called the database, expressed as a set of facts,
the inference engine tries to match CS against the knowledge base to find the
rules that can be fired to derive new information to be stored in the database,
or to perform some action.

An important class of expert system languages (called rule-based languages,
or production systems) uses the so-called production rules. Production rules

 414

are syntactically similar to PROLOG rules. Typical forms are:

if condition then action
For example, the MYCIN system for medical consultation allows rules of this
kind to be written:

if
description of symptom 1, and
description of symptom 2, and
. . .
description of symptom n

then
there is suggestive evidence (0.7) that the identity of the bacterium is . . .

The example shows that one can state the "degree of certainty" of the conclu-
sion of a rule. In general, the action part of a production rule can express any
action that can be described in the language, such as updating CS or sending
messages.

Supposing that knowledge is represented using production rules, it is neces-
sary to provide a reasoning procedure (inference engine) that can draw con-
clusions from the knowledge base and from a set of facts that represent the
current situation. For production rules there are two basic ways of reasoning:

– forward chaining, and
– backward chaining.

Different rule-based languages provide either one of these methods or both.

In order to understand forward and backward chaining, let us introduce a sim-
ple example described via production rules. The knowledge base provides a
model of a supervisory system that can be in two different danger states, char-
acterized by levels 0 and 1, indicated by the state of several switches and
lights:

if switch_1_on and switch_2_on
then notify danger_level_0.

if switch_1_on and switch_3_on
then assert problem_1.

if light_red or alarm_on
then assert problem_2.

if problem_1 and problem_2
then notify danger_level_1.

An equivalent representation for the set of production rules is described by
the and-or tree representation of Figure 100, which uses the convention intro-

 415

duced in Section 5.6.

Consider the following initial CS: the alarm is on and switches 1 and 3 are
on. The inference engine should help the supervisory system determine the
danger level. Forward chaining matches CS against KB, starting from leaf
nodes of the and-or tree, and draws conclusions. New facts that are asserted
by the rules are added to CS as the rules are fired. In our case, both problems
1 and 2 are asserted, and danger_level_1 is subsequently notified, since both
problems 1 and 2 have been discovered.

Suppose now that the purpose of the reasoning procedure was to understand if
we are in level 1 of danger. Forward chaining worked fine in the example,
since the deduction succeeded. But in general, for a large KB, the same facts
might be used to make lots of deductions that have nothing to do with the goal
we wish to check. Thus, if we are interested in a specific possible conclusion,
forward chaining can waste processing time. In such a case, backward chain-
ing can be more convenient. Backward chaining consists of starting from the
hypothesized conclusion we would like to prove (i.e., a root node of the and-
or tree) and only executing the rules that are relevant to establishing it. In the
example, the inference engine would try to identify if problems 1 and 2 are
true, since these would cause danger_level_1. On the other hand, there is no
need to check if danger_level_0 is true, since it does not affect danger_level_1.To
signal problem 1, switches 1 and 3 must be on. To signal problem 2, either the
alarm is on or the light is red. Since these are ensured by the facts in CS, we
can infer both problems 1 and 2, and therefore the truth of danger_level_1.

Different expert system languages based on production rules are commer-
cially available, such as OPS5 and KEE. It is also possible to implement pro-

l ight_red alarm_on switch_3_on switch_1_on switch_2_on

 problem_2 problem_1 danger_level_0

 danger_level_1
or

and

FIGURE 100.An and-or tree representation of production rules

 416

duction rules and different reasoning methods in other languages; e.g., in a
procedural language like C++ or in a functional language like LISP. An
implementation in PROLOG can be rather straightforward.

The main difference between logic and rule-based languages is that logic lan-
guages are firmly based on the formal foundations of mathematical logic,
while rule-based languages are not. Although they have a similar external
appearance, being based on rules of the form "if condition then action", in
most cases rule-based languages allow any kind of state-changing actions to
be specified to occur in the action part.

8.6 Bibliographic notes

The reader interested in the theory of logic, upon which logic programming is
founded, can refer to (Mendelson 1964). (Manna and Waldinger 1985)
present logics as a foundation for computer science. (Kowalski 1979) pio-
neered the use of logic in computer programming. (Lloyd 1984) provides the
foundations for logic programming languages. PROLOG and the art and style
of writing logic programs are discussed at length by (Sterling and Shapiro
1986).

(Bratko 1990) discusses the use of PROLOG in artificial intelligence applica-
tions. For example, it shows how PROLOG can be used to write a rule-based
expert system along with different searching schemes (forward and backward
chaining). Commercially available rule-based systems include KEE (***) and
OPS5 (***).

Relational databses and the SQL query language are presented in most text-
books on databases, such as (Ullman ***). (Ceri et al. **) is an example of
extension to relational databses to incorporate features from logic program-
ming.

8.7 Exercises

1. Comment the following statement: "In logic programming, a program used to generate a
result can be used to check that an input value is indeed a result." Discuss how existing
programming languages approximate this general statement.

2. Find the most general unifier for
f (X, g (a, Z, W), a, h (X, b, W))

and

 417

f (h (a, Z), g (a, h (Z, b), X), Z, h (d, b, a))
3. Given the PROLOG sort program of Section 8.1.2, show the search tree for the query

?-sort ([3, 5, 1], [1, 3, 5]).
4. Show the different computations of the PROLOG interpreter for the fragments of Figure

9.6, given the folowing facts:
rel (a, b).
rel (a, c).
rel (b, f).
rel (f, g).

5. Predicate even (n) is true for all even numbers. Write a PROLOG program implementing
predicate even.

6. Write a PROLOG program which checks if a list contains another as a sublist. The
program returns YES for queries of the following kind:

?-sublist ([1, 5, 2, 7, 3, 10], [5, 2, 7]).

What is the intended meaning of the following queries?
?-sublist ([1, 5, 2, 7, 3, 10], X).
?-sublist (X, [5, 2, 7]).
?-sublist (X, Y).
Does the behavior of the PROLOG interpreter correspond to the expected meaning if these
queries are submitted for evaluation?

7. Consider the program of Figure 98. Discuss what happens if the following query is
submitted:

fact (-5, X)
• If the program does not behave as expected, provide a new version that eliminates the

problem.
8. Consider the following PROLOG program.

belongs_to (A, [A | B]) :- !.
belongs_to (A, [C | B]) :- belongs_to (A, B).

• what does this program do?
• can the cut be eliminated from the first clause without affecting the set of solutions

computed by the program?
9. Consider the fragment of the previous exercise. Suppose you eliminate the cut from the

first clause and, in addition, you interchange the two clauses. Describe the behavior of the
PROLOG interpreter when the following goal is submitted:

?-belongs_to (a, [a, b, c])
10. The special goal fail is yet another extralogical feature provided by PROLOG. Study it

and discuss its use.
11. It has been argued that the cut can be viewed as the logical counterpart of the goto

statement of imperative programming languages. Provide a concise argument to support
the statement.

12. Write a PROLOG program which defines the predicate fib (I, X), where I is a positive
integer and X is the I-th Fibonacci number. Remember that the first two Fibonacci
numbers are 0 and 1, and any other Fibonacci number is the sum of the two Fibonacci
numbers that precede it.

13. Take the list of courses offered by the Computer Science Department and the
recommended prerequisites. Write a PROLOG application that can answer questions on

 418

the curricula; in particular, it should able to check whether a certain course sequence
conforms to the recommendations.

14. Write a PROLOG program which recognizes whether an input string is a correct
expresion with respect to the EBNF grammar il lustrated in Chapter 2. You may assume,
for simplicity, that expressions only contain identifiers (i.e., numbers cannot appear), and
identifiers can only be single-letter names.

15. Suppose you are given a description of a map in terms of the relation from_to. from_to (a,
b) means that one can directly reach point b from point a. Assume that from any point X
one cannot return to the same point by applying the closure of relation from_to (i.e., the
map contains no cycles). A special point, called exit, represents the exit from the map.
Write a PROLOG program to check if, given a starting point, one can reach exit.

16. Referring to the previous exercise, write a PROLOG predicate to check if the assumption
that the map contains no cycles hold; i.e., from any point X one cannot return to the same
point by applying the closure of relation from_to.

17. Consider the fragment of Figure 97. Suppose that the second rule is changed in the
following way:

max (X, Y, Y).
• Is the new fragment equivalent to the previous? Consider, in particular, the case of the

following queries:
?- max (2, 5, A).
?- max (5, 2, B).
?- max (2, 5, 3).
?- max (2, 5, 5).
?- max (2, 5, 2).

18. Consider the PROLOG sort program discussed in Section 8.1.2. Discuss if (and how) the
goal specified by the following query can be solved:

sort (X, [1, 3, 5, 99]).
19. Consider a problem of the kind shown in Figure 100. Write a PROLOG implementation

that does both forward and backward chaining, as ill ustrated in Section 8.5.

