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| ntroduction

C HAPTER 1

This bodk is concerned with programming langueges. Programming lan-
guages, hawever, do nd exist in a vacuum: they are toadls for writing soft-
ware. A comprehensive study of programming languages must take this role
into account. We begin, therefore, with a discusson d the software develop-
ment processand the role of programming languages in this process Sedions
1.1.through 1.5 povide aperspedive from which to view programming lan-
guages and their intended uses. From this perspective, we will weigh the mer-
its of many of the language concepts discus=d in the rest of the book.

Programming languages have been an active field of computer science for at
least four decades. The languages that exist today are roated in such historical
developments, either because they evolved from previous versions, or
because they derived inspiration from their predecessors. Such developments
are likely to continue in the future. To appreciate this fragment of the history
of science, we provide an owerview of the main achievements in program-
ming languagesin Section 1.6.

Finally, Section 1.7 provides an owerview of the ancepts of programming

languages that will be studied throughou this book. This section explains
how the various concepts presented in the remaining chapters fit together.

15



16 Introduction Chap.1

1.1 Software development process

From the inception d an ideafor a software system, urtil it is implemented
and celivered to a customer, and even after that, the software undergoes grad-
ua development and evolution. The software is said to have alife cycle com-
posed of several phases. Each of these phases results in the development of
either a part of the system or something associated with the system, such as a
fragment of specification, a test plan o a users manual. In the traditional
waterfall model of the software life cycle, the development process is a
sequential combination d phases, each having well-identified starting and
ending pants, with clearly identifiable deliverables to the next phase. Each
step may identify deficiencies in the previous one, which then must be
repeated.

A sample software development processbased onthe waterfal model may be
comprised o the following phases:

Requirement analysis and specification. The purpose of this phase is to identify and
document the exad requirements for the system.These requirements are developed
jointly by users and software developers. The successof a system is measured by haw
well the software mirrors these stated requirements, how well the requirements mirror
the users perceved reals, and how well the users percaved nedds refled the red
needs. The result of this phase is a requirements document stating what the system
should do, along with users' manuals, feasibility and cost studies, performancerequire-
ments, and so on. The requirements document does nat spedfy how the systemisgoing
to med its requirements.

Software design and specification. Starting with the requirements document, software
designers design the software system. The result of this phase is a system design spec
ification document identifyingall of the modules comprising the system and their inter-
faces. Separating requirements analysis from design is an instance of a fundamental
“what/how” dichotomy that we encounter quite often in computer science. The general
principle involves making a dea distinction between what the problem is and how to
solve the problem. In this case, the requirements phase dtempts to spedfy what the
problemis. There ae usually many waysthat the requirements can be met. The purpose
of thedesign phaseisto spedfy aparticular software achitedurethat will med the stat-
ed requirements. The design method followed in this dep can have agred impad on
the quality of the resulting applicaion; in particular, its understandability and modifi-
ability. It can also affed the choice of the programming language to be used in system
implementation.

Implementation (coding). The systemisimplemented to med the design spedfied in the
previous phase. The design spedficaion, in this case, states the “what” ; the goal of the
implementation step is to choose how, among the many possible ways, the system shall
be coded to mee the design spedfication. The result is a fully implemented and docu-
mented system.

Verification and validation. This phase assessesthe quality of the implemented system,
which is then delivered to the user. Note that this phase should not be concentrated at
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the end o the implementation step, but should occur in every phase of software devel-
opment to ched that intermediate deliverables of the process stisfy their objedives.
For example, one should chedk that the design spedfication document is consistent with
therequirementswhich, in turn, should match the user's needs. These dhedksare acom-
pli shed by answering the foll owing two questions:
“ Are we buil ding the product right?”
“Are we building the right product?”
Two spedfic kinds of assessment performed duringimplementation are module testing
and integration testing. Module testing is done by ead programmer on the module he
or sheisworking on to ensure that it medsitsinterfacespedficaions. Integration test-
ingis done on a partial aggregation of modules; it is basicaly aimed at uncovering in-
termodule inconsi stencies.
Maintenance. Following delivery of the system, changes to the system may become
necessary either becaise of deteded malfunctions, or adesire to add new capabili ties or
to improve old ores, or changes that occurred in operational environment (e.g., the op-
erating system of the target macdine). These thanges are referred to as maintenance
Theimportanceof thisphase can be seenin thefad that maintenance ostsaretypicaly
at least aslarge asthose of all the other steps combined.

Programming languages are used orly in some phases of the development

process. They are obviously used in the implementation phase, when algo-
rithms and data structures are defined and coded for the modu es that form the
entire application. Moreover, modern higher-level languages are also used in
the design phese, to describe precisely the decomposition d the entire gpli-
cdion into modues, and the relationships among modues, before any
detail ed implementation takes place We will next examine the role of the
programming language in the software development process by ill ustrating
the relationship between the programming languege and aher software
development todls in Section 1.2and the relationship between the program-
ming language and design methodsin Section 1.3.

1.2 Languages and softwar e development environments

The work in any of the phases of software development may be suppated by
computer-aided toadls. The phase currently supported best isthe ading prese,
with such todls as text editors, compilers, linkers, and libraries. These todls
have evolved gradualy, as the need for automation has been recognzed.
Nowadays, ore an namally use an interactive alitor to create aprogram and
the file system to store it for future use. When needed, several previously cre-
ated and (possbly) compiled programs may be linked to produce an execut-
able program. A debugger is commonly used to locate faultsin aprogram and
eliminate them. These computer-aided program development tools have
increased programming productivity by reducing the chances of errors.
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Y et, as we have seen, software development invalves much more than pro-
gramming. In order to increase the productivity of software development,
computer suppat is needed for all of its phases. By a software devel opment
environment we mean an integrated set of tods and techniquesthat aidsin the
development of software. The environment is used in all phases of software
development: requirements, design, implementation, \erification and valida-
tion, and maintenance.

An idealized scenario for the use of such an environment would be the fol-
lowing. A team of application and computer specialists interacting with the
environment devel ops the system requirements. The environment keeps track
of the requirements as they are being developed and updated, and guards
against incompletenessor inconsistency. It aso provides fadlities to validate
requirements against the austomer’s expedations, for example by providing
ways to simulate or animate them. The environment ensures the currency of
the documentation as changes are being made to the requirements. Following
the completion of the requirements, system designers, interacting with the
environment, develop an initial system design and gadualy refine it, that is,
they specify the needed modues and the modue interfaces. Test data may
also be produced at this gage. The implementers then undertake to implement
the system based onthe design. The environment provides suppat for these
phases by automating some development steps, by suggesting reuse of exist-
ing design and implementation componrents taken from alibrary, by recording
the relationships amongall of the artifacts, so that one aan tracethe effect of a
change in—say—the requirements document to changes in the design dacument
andinthe mde. Thetoadlsprovided bythe software devel opment environment
to suppat implementation are the most familiar. They include programming
language procesors, such as editors, compilers, smulators, interpreters, link-
ers, debuggers, and ahers. For this ideal scenario to work, all of the tods
must be compatible and integrated with toadls used in the other phases. For
example, the programming language must be compatible with the design
methods suppated bythe environment at the design stage and with the design
notations used to document designs. As other examples, the editor used to
enter programs might be sensitive to the syntax of the language, so that syntax
errors can be caight before they are even entered rather than later at compile
time. A facility for test data generation might also be available for programs
written in the language.

The abowve scenario is an idedl; it is only approximated by existing commer-
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cial support tods, knowvn under the umbrellaterm of CASE (Computer Aided
Software Engineaing), bu the trend is definitely gaing into the direction o
better suppat and more complete coverage of the process

1.3 Languages and softwar e design methods

As mentioned earlier, the relationship between software design methods and
programming languages is an important one. Some languages provide better
support for some design methods than athers. Older languages, such as FOR-
TRAN, were not designed to suppat spedfic design methods. For example,
the esence of suitable high-level control structures in early FORTRAN
makes it difficult to systematically design algorithms in a top-down fashion.
Conversdly, Pascal was designed with the eplicit goal of suppating top-
down program development and structured programming. In bah languages,
the lad of constructs to define modues other than routines, makes it difficult
to decompose asoftware system into abstract data types.

To uncerstand the relationship between a programming language and a
design method, it is important to redize that programming languages may
enforce a certain programing style, often called a programming paradigm.
For example, as we will see, Smalltalk and Eiffel are object-oriented lan-
guages. They enforce the devel opment of programs based onobject classes as
the unit of moduarization. Similarly, FORTRAN and Pascal, as originally
defined, are procedural languages. They enforce the development of pro-
grams based onroutines as the unit of moduarization. Languages enforcing a
spedfic programming paradigm can be cdl ed paradigm-oriented. In general,
there need na be a one-to-one relationship between paradigms and program-
ming languages. Some languages, in fact, are paradigm-neutral and suppat
different paradigms. For example, C++ suppats the development of proce-
dural and ohect-oriented programs. The most prominent programming lan-
guage paradigms are presented in the sidebar on page 20.

Design methods, in turn, gude software designers in a system’s decomposi-
tioninto logicd componrents which, eventually, must be aded in alanguage.
Different design methods have been propacsed to guide software designers.
For example, a procedural design method gudes designersin decomposing a
system into modules that redi ze abstract operations that may be activated by
other procedural modues. An olject-oriented method gudesin decomposing
a system into classes of objeds. If the design method and the language para-
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digm are the same, or the language is paradigm-neutral, then the design
abstractions can be directly mapped into program comporents. Otherwise, if
the two clash, the programming effort increases. As an example, an olject-
oriented design methodfollowed by implementation in FORTRAN increases
the programming effort.

In general, we can state that the design method and the paradigm supparted
by the language shoud be the same. If thisis the case, there is a continuum
between design and implementation. Most modern hightlevel programming
languages, in fact, can even be used as design ndations. For example, a lan-
guage like Ada or Eiffel can be used to dacument a system’s decomposition
into modues even at the stage where the implementation cetail s internal to
the modue are still to be defined.

Sidebar start 1
Here we review the most prominent programming language paradigms, with
speaa emphasis on the unit of moduarization promoted by the paradigm.
Our discusgon isintended to provide a roadmap that anticipates sme main
conceptsthat are studied extensively in the rest of the book.

Procedural programming. This is the @mnventional programming style,
where programs are decompased into computation steps that per-
form complex operations. Procedures and functions (collectively
called routines) are used as moduarization unts to define such
computation steps.

Functional programming. Thefunctional style of programmingisroaoted in
the theory of mathematical functions. It emphasizes the use of ex-
pressions and functions. The functions are the primary bulding
blocks of the program; they may be passd fredy as parameters
and may be constructed and returned as result parameters of other
functions.

Abstract data type programming. Abstract-data type (ADT) programming
recognzes abstract data types as the unit of program moduarity.
CLU was the first language designed specificaly to suppat this
style of programming.

Module-based programming. Rather than emphasizing abstract-data types,
modue-based programming emphasizes modu arization untsthat
are groupngs of entities such as variables, procedures, functions,
types, etc. A program is composed of aset of such modues. Mod-
ules can be used to define precisely which services are exported to
the outside world bythe module. In principle, any kind d service
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can be provided by amodue, na just the adility to generate and
use astract data. Modua-2 and Ada suppat this style of pro-
gramming.

Object-oriented programming. The object-oriented programming styleem-
phasizes the definition d classes of objects. Instances of classes
are aeded by the program as needed duing program exeaution.
This dyle is based onthe definition d hierarchies of classes and
run-timeselection d unitsto execute. Smalltalk and Eiffel arerep-
resentative languages of this class. C++ and Ada 95 also suppat
the paradigm.

Generic programming. This gyle enphasize the definition d generic mod-
ulesthat may beinstantiated, either at compil e-time or runtime, to
crede the entities—data structures, functions, and procedures—
needed to form the program. This approach to programming en-
courages the development of high-level, generic, abstractions as
units of moduarity. The generic programming paradigm does not
existinisolation. It can exist jointly with olject-oriented program-
ing, as in Eiffel, with functional programming, asin ML. It also
existsin languages that provide more than ore paradigm, like Ada
and C++.

Declarative programming. This gyle enphasizes the declarative descrip-
tion d a problem, rather than the decomposition d the problem
into an algorithmic implementation. As such, programs are close
to aspecification. L ogic languages, like PROL OG, and rule-based
languages, like OP S5 and KEE, are representative of this classof

langueges.
sidebar end

1.4 Languages and computer architedure

Design methods influence programming langueges in the sense of establi sh-
ing requirements for the language to meet in order to better suppat software
development. Computer architedure has exerted influence from the oppcite
diredion in the sense of restraining language designs to what can be imple-
mented efficiently on current machines. Accordingly, languages have been
constrained by the ideas of Von Neumann, kecause most current computers
are similar to the original Von Neumann architecture (Figure 1).
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1/10 Memory CPU
’ ’ fetch instr.
exeaute
store result
———————| -« \

FIGURE 1. A Von Neumann computer architedur

The Von Neumann architecture, sketched in Figure 1, is based onthe idea of
a memory that contains data and instructions, a CPU, and an 1/O unit. The
CPU is resporsible for taking instructions out of memory, ore at a time.
Madhine instructions are very low-level. They require the datato be taken ou
of memory, manipulated via arithmetic or logic operations in the CPU, and
the results copied back to some memory cells. Thus, as an instruction is exe-
cuted, the state of the machine changes.

Conventional programming languages can be viewed as abstradions of an
underlying Von Neumann architedure. For this reason, they are called Von
Neumann languages. An abstraction of a phenomenon is a model which
ignares irrelevant details and highlights the relevant aspeds. Conventional
programming languages keep their computation model from the underlying
Von Neumann architecture, bu abstract away from the detail s of the indivua
steps of exeaution. Such amodel consists of a sequential step-by-step execu-
tion d instructions which change the state of a computation by modifying a
repository of values. Sequential step-by-step execution d language instruc-
tions reflects the sequential fetch and execution d machine instructions per-
formed by hardware. Also, the variables of conventional programming
langueges, which can be modified by assignment statements, refled the
behavior of the memory cells of the computer architecure. Conventional lan-
guages based on the Von Neumann computation model are often called
imperative languages. Other common terms are state-based languages, o
statement-based languages, or simply Von Neumann languages.

The historical developments of imperative languages have gore through
increasingly higher levels of abstractions. In the ealy times of computing,
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asembly languages were invented to provide primitive forms of abstradion,
such as the aility to name operations and memory locaions symbadlicdly.
Thus, instead of writing a bit string to dencte the increment the contents of a
memory cell by org, it is possible to write something like

INC DATUM
Many kinds of abstractions were later invented by language designers, such

as procedures and functions, data types, exception handlers, classes, concur-
rency features, etc. As suggested by Figure 2, language developers tried to
make the level of programminglanguages higher, to make languages easier to
use by humans, bu still based the @mncepts of the language on those of the
underlying Von Neumann architecture.

Programmer’s
Needs

requirements

Programming
Language

constraints

T higher level

FIGURE 2. Requirements and constraints on a language

VonNeumann
Architecture

Some programming languages, namely, functional and logic languages, have
abandored the Von Neumann computation model. Both paradigms are based
on mathematicd foundations rather than onthe techndogy d the underlying
hardware: the theory of recursive functions and mathematical logic, respec-
tively. The cnceptual integrity of these langueges, however, is in conflict
with the goal of an efficient implementation. This is nat unexpected, since
concerns of the underlying architecture did na permeate the design d such
languages in the first place. To improve efficiency, some imperative features
have been introduced in most existing urconventional languages.
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Thisbookconsiders the prevalent languages of the last decades and the isaues
that have influenced their design. The primary emphasis of chapters 2 through
6 isonimperative languages. We @ver the important issuesin functional pro-
gramming languages in Chapter 7 and logic languages in Chapter 8. Further
comments and clarifications on language paradigms are provided in the side-
bar on page 24.

Sidebar start2
The paradigms discussd in the previous sdebar can be dassfied as in the
hierarchy of Figure 3, according to the concepts discussed in Section 1.4.

Imperative, functional, and logic paradigms refled the different underlying
computation model of the language. The next level paradigms reflect the dif-
ferent organizational principles for program structuring suppated by the lan-
guage. As such, level 2 paradigms can apply—a least in principle-to any
computation model. For example, ML provides a functional computation
model and abstract data type programming. CLOS is a functional language
that suppats the object-oriented style. The languages suppating concurrent
programming, which will be studied in Chapter 4, can till be dassfied under
the imperative paradigm, even thoughthe Von Neumann macdine we saw in
Figure 1 is purely sequential. In fact, the underlying abstract machine for the
concurrent languages that will be studied in this bookcan be viewed as a a set
of cooperating Von Neumann machine. Other kinds of parallel languages
exist suppating paralelism at a much finer granularity, which do not fall
under the classficaion shown in Figure 3.
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Paradigms

/

Imperative Functional Logic
Procedural C c
ADT Generic
Module  Object-Oriented
based

FIGURE 3. Hierarchy of paradigms

1.5 Programming language qualities

How can we define the qualities that a programming language shoud exhibit?
In order to uncerstand that, we shoud keep in mind that a programming lan-
guage isatod for the development of software. Thus, ultimately, the quality
of the language must be related to the quality of the software.

Software must bereliable. Users shoud be aleto rely onthe software, i.e.,
the dhance of failures due to faults in the program shoud be low.
As far as possible, the system shoud be fault-tolerant; i.e., it
shoud continueto provide suppat to the user even in the presence
of infrequent or undesirable events such as hardware or software
failures. The reliability requirement has gained importance as
software has been called uponto accomplishincreasingly compli -
cated and dften criticd tasks.

Software must be maintainable. Again, as ftware wsts haverisen andin-
creasingly complex software systems have been developed, eco-
nomic considerations have reduced the posgbility of throwing
away existing software and developing similar applications from
scratch. Existing software must be modified to meet new require-
ments. Also, becauseitisalmost imposshbleto get thereal require-
ments right in the first place, for such complex systems one can
only hopeto gradually evolve a system into the desired ore.

Software must execute efficiently. Efficiency has always been agoal of any
software system. This goal affeds both the programming lan-
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guage (features that can be efficiently implemented on pesent-
day architectures) and the choice of agorithms to be used. Al-
thoughthe cost of hardware @ntinuesto drop as its performance
continues to increase (in terms of both speed and space), the need
for efficient execution remains because mmputers are being ap-
plied in increasingly more demanding appli cations.
These three requirements—reliability, maintainability, and efficiency—can be
achieved by adopting suitable methods during software development, appro-
priate tods in the software development environment, and by certain charac-
teristics of the programming language. We will now discuss language issues
that diredly suppat these goals.

1.5.1Languages and reliability

The reliability gaal is promoted by several programming language qualiti es.
A nonexhaustive list is provided hereafter. Most of them, urfortunately, are
based onsubjedive evaluation, and are difficult to state in a precise-let alone,
guantitative-way. In addition, they are not independent concepts: in some
cases they are overlapping, in athers they are conflicting.

Writability. It refersto the possibili ty of expressngaprogram in away that
isnatural for the problem. The programmer shoud na be distract-
ed by details and tricks of the language from the more important
activity of problem solving. Even thoughit is a subjective criteri-
on, we can agree that higher-level languages are more writable
than lower-level languages (e.g.,assembly or machinelanguages).
For example, an assembly language programmer is often distract-
ed by the aldressng mechanisms needed to accesscertain data,
such as the pasitioning o index registers, and so on.The easier it
is to concentrate on the problem-solving activity, the lesserror-
prone is program writing and the higher is prodictivity.

Readability. It should be passhble to foll ow the logic of the program and to
discover the presence of errors by examining the program. Read-
ability is also a subjedive criterion that depends a grea dea on
matters of taste and style. The provision of specific constructs to
define new operations (via routines) and rew data types, which
keep the definition d such concepts sparate from the rest of the
program that may use them, greatly enhance readabil ity.

Smplicity. A smplelanguageis essy to master and all ows algorithmsto be
expressd easily, in away that makes the programmer self-confi-
dent. Simplicity can obviously conflict with power of the lan-
guage. For example, Pascd is smpler, bu less powerful than
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C++.

Safety. The language shoud nad provide features that make it posgble to
write harmful programs. For example, a language that does not
provide goto statements nor pointer variables eliminates two well -
known sources of danger in a program. Such feaures may cause
subtle arors that are difficult to track duing program develop-
ment, and may manifest themselves unexpectedly in the delivered
software. Again, features that decrease the dangers may aso re-
duce power and flexibility.

Robustness. The language suppats robustness whenever it provides the
abili ty to deal with uncesired events (arithmetic overflows, invalid
inpu, andso on). That is, such events can betrapped andasuitable
resporse can be programmed to respondto their occurrence In
this way, the behavior of the system becomes predictable evenin
anomalous stuations.

1.5.2L anguages and maintainabili ty

Programming languages shoud alow programs to be easily modifiable.
Readability and simplicity are obviously important in this context too. Two
main features that languages can provide to support modification are fador-
ing and locality.

Factoring. This meansthat the language shoud allow programmersto fac-
tor related features into ore single point. As avery simple exam-
ple, if an identical operation is repeated in severa points of the
program, it shoud be possble to factor it in aroutine and replace
it by aroutine call. In dang so, the program becomes more read-
able (espedally if we give ameaningful name to subprograms)
and more easily modifiable (a change to the fragment is localized
to the routin€'s body). As anather example, several programming
languages all ow constants to be given symbalic names. Choasing
an appropriate name for a constant promotes readability of the
program (e.g.,we may use pi instead of 3.14). Moreover, afuture
need to change the value would necesstate a dange only in the
definition d the cnstant, rather than in every use of the mnstant.

Locality. This means that the dfect of alanguage fedure is restricted to a
small, locd portion d the entire program. Otherwisg, if it extends
to most of the program, the task of making the change can be ex-
ceedingly complex. For example, in abstrad data type program-
ming, the change to a data structure defined inside a classis
guaranteal na affect the rest of the program aslongas the opera-
tions that manipulate the data structure ae invoked in the same
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way. Fadoring and locdity are strondy related concepts. In fact,
factoring promotes locality, in that changes may apply only to the
factored pation. Consider for example the case in which we wish
to change the number of digits used to represent pi in arder to im-
prove acuracy of ageometricd computation.

1.5.3Languages and efficiency

The need for efficiency has guided language design from the beginning.
Many languages have had efficiency as a main design gal, either implicitly
or explicitly. For example, FORTRAN originaly was designed for a specific
machine (the IBM 704). Many of FORTRAN's restrictions, such as the num-
ber of array dimensions or the form of expressons used as array indices, were
based drectly onwhat could be implemented efficiently onthe IBM 704.

The issue of efficiency has changed considerably, however. Efficiency is no
longer measured only by the exeaution speed and space. The dfort required
to produce aprogram or system initially and the dfort required in mainte-
nance an also be viewed as comporents of the dficiency measure. In ather
words, in some cases one may be more concerned with productivity of the
software development processthan the performance of the resulting products.
Moreover, productivity concerns can span over severa developments than
just one. That is, ore might be interested in developing software cmporents
that might be reusable in future similar applications. Or one might be inter-
ested in developing portable software (i.e., software that can be moved to dif-
ferent machines) to make it quickly available to dfferent users, even if an ad
hoc optimized version for each machine would be faster.

Efficiency is often a combined quality of both the language and itsimplemen-
tation. The language alversely affects efficiency if it disallows certain opti-
mizations to be applied by the compiler. The implementation adversely
affeds efficiency if it does not take all oppatunities into accourt in order to
save space and improve speed. For example, we will see that in general a
statement like

x = fun (y) + z + fun(y);
in C canna be optimized as

x=2*fun(y) + z;
which would cause just one cdl to function fun.
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As different example, the language can affect efficiency by allowing muilti-
threaded concurrent computations. An implementation adversely affeds effi-
ciency if—say—it does not reuse memory space after it is released by the pro-
gram. Finaly, a language that allows visibility of the underlying size of
memory or access to—say—the way floating-point numbers are stored would
impede portability, and thus saving in the effort of moving software to dffer-
ent platforms.

1.6 A brief historical perspedive

This sedion examines briefly the developments in language design by fol-
lowing the evolution d ideas and concepts from a historical perspective.

The software devel opment processoriginally consisted orly of the implemen-
tation phese. In the early days of computing, the computer was used mainly in
scientific goplicaions. An application was programmed by one person. The
problem to be solved (e.g., adifferential equation) was well-understood. Asa
result, there was not much need for requirements analysis or design specifica-
tion a even maintenance A programming languege, therefore, ony needed
to suppat one programmer, who was programming what would be by today's
standards an extremely simple application. The desire to apply the computer
in more and more gplicationsled to itsbeing wsed in increasingly less under-
stood and more sophisticated environments. This, in turn, led to the need for
“teams’ of programmers and more disciplined approaches. The requirements
and design pheses, which upto then esentially were performed in ore pro-
grammer's head, nav required a team, with the results being communicated to
other people. Because so much effort and money was being spent on the
development of systems, dld systems could na simply be thrown away when
anew system was needed. Econamic considerations forced people to enhance
an existing system to med the newly recognized needs. Also, program main-
tenance now became an important issue.

System reliability is another issue that has gained importance gradualy,
because of two major fadors. One fador is that systems are being developed
for userswith little or no computer background these users are nat as tol erant
of system fail ures as the system developers. The secondfactor isthat systems
are now being applied in critical areas such as chemical or nuclear plants and
patient monitoring, where system failures can be disastrous. In order to
ensure reliability, verification and validation became vital.
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The shortcomings of programming languages have led to a grea number of
language design efforts. This book examines these influences on language
design and assesses the extent to which the resultant languages med their
goals. Sections 1.6.1through 1.6.6 dscribe the historical evolution d pro-
gramming languages. Table1 gves a genealogy d selected programming
languages discussed in this book. The yea we asciate with each language
shoud be taken as largely indicaive: depending onthe availability of the rel-
evant information, it may mean either the yea(s) of the language design, d
itsinitial implementation, a of itsfirst available pulished description.

Table 1. Genealogy d seleded programming languages

. Predecessor  Intended

Language Y ear Originator L anguage Purpose Reference

FORTRAN 1954-57  J. Backus Numeric Glossary
computing

ALGOL 60 1958-60 Committee  FORTRAN Numeric Naur 1963
computing

COBOL 1959-60 Committee Business Glossary
data pro-
cessing

APL 1956-60 K. lverson Array pro-  lverson 1962
cessing

LISP 1956-62 J. McCarthy Symbolic Glossary
computing

SNOBOLA4 1962-66 R. Griswold String po-  Griswold et al.
cessing 1971

PL/I 1963-64 Committee  FORTRAN Generad ANSI 1976

ALGOL 60 purpose
COBOL
SIMULA 67 1967 O.-J.Dahl ALGOL 60 Simulation  Birtwistle et al.
1973

ALGOL 68 1963-68 Committee  ALGOL 60 Generad vanWijngaaden

purpose etal. 1976
Lindsay and van

der Meulen 1977
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Table 1. Genealogy d seleded programming languages

Language

Pascd

PROLOG

SETL

Concurrent
Pascd

Scheme

CLU

Euclid

Gypsy

Modula-2

Y ear

1971

1972

1974

1974

1974

1975

1975

1974-77

1977

1977

1977

Originator

N. Wirth

A. Colmer-
auer

D. Ritchie

Committee

J. Schwartz

P. Brinch
Hansen

Stede and
Sussman
(MIT)

B. Liskov

Committee

D. Good

N. Wirth

Predecessor
Language

ALGOL 60

ALGOL 68

SIMULA 67

Pascd

LISP

SIMULA 67

Pascd

Pascd

Pascd

Intended
Purpose

Educa
tional

and

gen. pur-
pose
Artificid
intelligence
Systems
program-
ming

Systems
program-
ming

Very high
level lang.

Concurrent
program-
ming
Education
using func-
tional pro-
gramming

ADT
program-
ming
Verifiable
programs

Verifiable
programs

Systems
program-
ming

Reference

Glossary

Glossary

Glossary

Geschke d al.
1977

Schwartz & al.
1986

Brinch Hansen
1977

Abelson and Sus-
sman 1985

Liskov et al. 1981

Lampson et al.
1977

Ambler et al.
1977

Glossary
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Table 1. Genealogy d seleded programming languages

Language

Ada

Smalltalk

C++

KEE

ML

Miranda

Linda

Oberon

Eiffel

Modula-3

TCL/TK

Y ear

1979

1971-80

1984

1984

1984

1986

1986

1987

1988

1989

1988

1995

Originator

J. Ichbiah

A. Kay

B. Strous-
trup
Intellicorp
R. Milner

D.A.Turner

D. Gelernter

N. Wirth

B. Meyer

Committee
(Olivetti
and DEC)

J. K. Oust-
erhout

SUN Micro-
systems

Predecessor
Language

Pascd
SIMULA 67

SIMULA 67
LISP

C
SIMULA 67
LISP

LISP

LISP

Modula-2

SIMULA 67

Mesa
Modula-2

OS shell lan-
guages

C++

Intended
Purpose

General
purpose
Embedded
systems

Persond
computing

General
purpose

Expert sys-
tems

Symbolic
computing

Symbolic
computing

Parall el/
distributed
program-
ming

Systems
program-
ming

General
purpose

Systems
program-
ming

Rapid
develop-
ment, GUIs

Network
computing

Reference

Glossary

Glossary

Glossary

Kunz & al 1984

Ullman 1995

Turner 1986

Ahuja @ al 1986

Reiser and Wirth
1992

Meyer 1992

Cardelli et al.
1989

Ousterhout 1994

Glossary
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1.6.1Early high-level languages. FORTRAN, ALGOL 60, and COBOL

The first attempts towards definition o high-level languages date back to the
195Gs. Language design was viewed as a challenging compromise between
the users needs for expressveness and the machine's limited power. How-
ever, hardware was very expensive and execution efficiency concerns were
the dominant design constraint.

The most important products of this historical phase were FORTRAN,
ALGOL 60, and COBOL. FORTRAN and ALGOL 60 were defined as todls
for solving numericd scientific problems, that is, problems invalving com-
plex computations on relatively few and simple data. COBOL was defined as
a tod for solving business data-processng problems, that is, problems
involving smple computations on large anounts of data (e.g., a payroll appli-
cdion).

These languages are among the major achievements in the whale history of
computer science, because they were ale to prove that the idea of a higher-
level language was technically sound and economically viable. Besides that,
each o these languages has brough up a number of important concepts. For
example, FORTRAN introduced moduarity via separately developed and
compiled subprograms and pcssible sharing d data anongmoduesviaaglo-
bal (COMMON) environment. ALGOL 60 introduced the nation o block
structure and reaursive procedures. COBOL introduced files and data descrip-
tions, and a very preliminary nation d programming in quasi-natural lan-
guage.

An even more @wnvincing proof of the validity of these languages is that,
apart from ALGOL 60 which dd na survive but spawned into heir lan-
guages, they are still among the most widely used languages in practice. To
be sure, there are other reasons for thislong-term success, such as:

« the users' reluctance to move to newer languages, becaise of the need for compatibility
with existing applications or just the fea of change.

* the fad that these languages have been evolving. For example, the present FORTRAN
standard (FORTRAN 90) remains compatible with the previous gandards (FORTRAN
77 and FORTRAN 66), but modernizes them and overcomes svera of their major
deficiencies.

1.6.2Early schisms: LISP, APL, and SNOBOL 4
As early as in the 1960 there were attempts to define programming lan-
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guages whase computation model could be based onsome well -characterized
mathematicd principles, rather than onfor efficiency of implementation.

LISPisone such example. The language definition was based uponthe theory
of reaursive functions and lambda cdculus, and gave foundition to a new
classof languages called functional (or applicdive) languages. Pure LISP is
free from the Von Neumann concepts of modifiable variables, assgnment
statements, goto statements, and so on.LISP programs are exadly like gen-
eral LISP data structures, and thus the LISP interpreter can be spedfied in
LISPin afairly simple manner.

APL is anather language that suppats a functional programming style. Its
very rich set of operators, especialy onarrays, relieves the programmer from
using lower-level iterative, e ement-by-element array manipulations.

SNOBOLA4 is alanguage providing string manipulation facilities and pattern
matching. The programming style it suppatsis highly declarative.

LISP, APL, and SNOBOL4 are heary consumers of machine resources (time
and space). All of them require highly dynamic resource management that is
difficult to doefficiently onconventional machines. Y et these languages have
bewmme very successul in specialized application areas. Also, they have been
adoped by groups of very devoted users. For example, LISP has become the
most used language for artificial intelligence research and applications. APL
has been widely used for rapid prototyping and scientific applicaionsinvolv-
ing heavy usage of matrix operations. SNOBOL4 has been used succesdully
for text manipulations.

Animportant contribution d LISPand SNOBOL 4 was the enphasis on sym-
balic computation. As we mentioned, in the ealy stages of computing com-
puters were mainly used to solve numerical problems, such as g/stems of
equations. Thisiswhy FORTRAN, ALGOL 60,and APL are mostly oriented
towards numerical problem-solving. At present, however, only a small frac-
tion d application developments are in the aea of numeric computation.
Major emphasisis on symbalic information processng, such as database que-
ries and reporting, text processng, financial planning,andso on.COBOL can
be seen as an initial step in this direction, kecause the language is more ori-
ented towards moving and formatting cbta than manipulating data through
complex numeric computation. It isonly with LISP and SNOBOL 4 that sym-
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balic computation kecame the central concern of the language.

1.6.3Putting them all together: PL/I

PL/I was designed in the mid 196& with an ambitious goal: to integrate the
most fruitful and original concepts of previous languages into a truly general
purpose, unversal programming language. Besides taking concepts from
FORTRAN (such as sparate modues), ALGOL 60 (block structure and
recursive procedures), COBOL (data description facilities), and LISP
(dynamic data structures), PL/I introduced lessconsolidated feaures, such as
exception handling and some primitive multitasking faciliti es.

PL/I was probably too early. It incorporates different features, but does not
really integrate them in auniform manner. Also, newer features needed more
research and experimentation before being incorporated in the language. Asa
result, the language is extremely large and complex. So, as time went by, it

gradually disappeared.

1.6.4Thenext leap forward: ALGOL 68,SIMULA 67, Pascal, and BASIC

Other languages designed in the late 196G brought up severa interesting
concepts that influenced later language designs. We refer to ALGOL 68,
SIMULA 67, and Pascal.

ALGOL 68 was designed as a successor to ALGOL 60. It is based onthe
principle of orthogonality: language features can be compased in afree, un-
form, and noninterfering manner with predictable effects. ALGOL 68 is a
good case study to see how different language @ncepts can interact to pro-
vide computational power. Ancther important concept brought up by the
ALGOL 68 effort is the need for formal language specification. The ALGOL
68 Report is probably the first complete example of aformal spedficationfor
aprogramming language. The “purity” of ALGOL 68, the intricacies that can
result from an orthogoral combination o language features, and the dsence
of compromises with such mundane aspects as a user-friendly syntactic nota-
tion were resporsible for the early decline of ALGOL 68. The language has
been used in unversities and research ingtitutions, especially in Europe, bu
had ony afew industrial applications.

SIMULA 67 was aso a successor of ALGOL 60, designed to solve discrete
simulation problems. In addition to ad hac constructs for simulation and
coroutines that provide a primitive form of parallel execution, the language
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introduced the concept of class a moduarization mechanism that can group
together a set of related routines and a data structure. Classes can be orga-
nized as hierarchies of increasing spedali zation. The class concept has influ-
enced most languages designed after SIMULA 67, such as C++, CLU,
Modula-2, Ada, Smalltalk, and Eiffel.

Pascd has been the most successful among these languages. Primarily con-
caved as a vehicle for teaching structured programming, there was a rapid
expansion d interest in Pascal with the advent of low-cost personal comput-
ers. The main appea of the language is smplicity and suppat to dsciplined
programming. The language has a'so undergonre extensive changes and mod-
ernization, so that many Pascal dialects exist nowadays. In particular, the lan-
guage has been extended with moduarization and ohject-oriented features to
support development of large programs and reuse of comporents.

BASIC is ancther language that was designed in the mid 196G and hes
spawned into many, widely used, daleds. The language has a simple alge-
braic syntax like FORTRAN and limited control and data structures. This
simplicity, and the ease and efficiency of BASIC implementations, have
made the language extremely popuar. The language itself does not introduce
any new linguistic concepts, bu was amongthe first available tods support-
ing a highly interadive, interpretive programming style. Recent improve-
ment, like Visua BASIC, provide very high-level facilities for the rapid
development of window-based interactive gplication.

1.6.5C and the experimentsinthe70's

In the 197GCs, it became clear that the needs for suppating reliable and main-
tainable software impased strong requirements on programming languages.
This gave impetus to new research, experimentation, and language evaua-
tions.

Among the most important language @ncepts investigated in this period
were: abstrad data types and visibility control to modues, strongtyping and
static program checking, relationship between language @nstructs and formal
proaofs of correctness, generic modues, exception handling, concurrency, and
interprocess communication and synchronization. We will discuss most of
these anceptsin depth in the rest of thistext. Amongthe most influential lan-
guage experiments were CLU, Mesa, Concurrent Pascal, Euclid, and Gypsy.
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Other languages designed in the 1970, which survived after their experimen-
tal stage and naw are used extensively, are C and Modua-2. In particular, C
became very succesdul, partly dueto theincreasing avail ability of computers
running the UNIX operating system, whose development motivated the initi al
design d thelanguage. C isnow amongthe most widely used languages, bah
because of its power and kecause of the avail ability of efficient implementa
tionsonawide variety of machines.

On the non-conventional side, the family of functional anguages continued to
flourish, prodwcing several LISP dialects. Among them, Scheme has been
widely adopted for instructional purposes in introductory programming
courses, as an alternative to conventional languages.

A magjor contributionin the field of nonconventional languages was provided
in the early 70s by PROLOG. PROLOG was the starting pant of a new lan-
guage family: logic programming languages. The language had limited suc-
cessat that time, bu later in the early 80' s gained much popudarity when the
so-called Fifth Generation Computer Projed was launched by the Japanese
government, and logic programming was chosen as the basis for the new gen-
eration d machines. PROLOG extensions were designed and implemented,
such as PARLOG and Concurrent PROLOG), under the asumption that new
generations of parale machines would be designed to implement exeaution
of logc programs efficiently. Although the revolution predicted by the
projed did na happen, PROLOG (and aher logic languages) foundtheir role
in niche software development environments.

1.6.6The80's. ML, Ada, C++ and object orientation

Developments in functional programming continued in the 80s, prodwcing
such languages as Miranda and ML. The important conceptual contribution o
ML was to show that programming languages can be made very powerful
computationally, and yet they can preserve the aility to prove the @sence of
certain types of errors withou exeauting programs.

New results were also achieved in the family of conventional languages. The
desire to unfy the programming languages used in embedded computer
applicaions and the need for more reliable and maintainable software led the
U.S. Department of Defense in 1978to set down the requirements for a pro-
gramming language to be used as a common language throughou the D.O.D.
Because no existing language met the requirements, the D.O.D. sponsored the
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design d a new language. The result of this processis the Ada programming
languege, which can be viewed as the synthesis of state-of-the-art concepts of
conventional programming languages. Ada has now evolved into the airrent
version, Ada 95, which incorporates sveral amendments and improvements
over the original version, in particular to suppat object-oriented program-
ming.

The origins of object-oriented programming can be traced back to Smula67.
The gproach, hovever, became popuar because of the successof Smalltalk
in the late 70's and, in particular, of C++. C++ succeeded in implanting
object-oriented features into a succesgul and widely available languege like
C. This alowed a large popdation d programmers to incrementaly shift
from a @nventional programming paradigm into an expected better one.
Eiffel isanother objed-oriented language, which aims at suppating pogram-
ming with uncerlying dsciplined software engineering principles.

Recent advances in the Pascd and Modua-2 tradition are Modua-3 and
Oberon.

1.6.7The present

For decades the search for the ided programming language has been like the
guest for the Holy Grail of computer scientists. It is now universally accepted
that this approad tries to answer the wrong guestion. As we mentioned ear-
lier, programmers might be interested in dfferent qualities, and dfferent lan-
guages (and dfferent implementations) may indeed provide different
answers. So we now realize that the choice of the right language depends on
the appli cation. We need to learn how to live with a variety of languages, and
need to be aleto move from language to language when needed, as the gopli-
caions change.

In the world of information systems applications that was the traditional
domain of COBOL, there is an increasing nunber of application generators,
which can generate code directly from screen forms that specify the data that
should be searched in adatabase, or the reports that must be produced. In cer-
tain limited application damains, norexpert programmers and end wsers can
use such toadls to develop nortrivial, pradical applications, withou resorting
to aprofessonal programmer. Programming toals of this kind are often called
fourth generation languages. Other useful todls for this classof applicéions
are persona productivity tools (such as greadsheets). Production-rule based
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expert systems are dso used in narrowly focused applicaion damains to
solve problems gated in adeclarative style.

Highly interactive gplications can be rapidly developed with the ad o
visual languages, such asVisua BASIC or Visua C++. Scripting languages,
such as TCL/TK, which specify activation petterns for existing tod frag-
ments, are an increasingly popuar suppat for rapid appli cation devel opment,
which can be useful to develop prototypes.

Specific todls, languages, and environments also exist for developing expert
systems, i.e., systems providing problem solving suppat in specific goplica-
tion damains, based onan explicit representation d knowledge that charac-
terizes the domains. Examples are expert system shell s, and languages such
asKEE

Finally, C++ seems to gain increasing acceptance as a general-purpase pro-
gramming todl, bah because it suppats object-oriented programming and
because it does nat force abandoring more cnventional approaches, as more
strict approaches would. However, we do nd expect the programming lan-
guage field to reach a stable stage where one language will eventually take
over. An important direction for new developments has started already in the
area of network-centric computing. Java, aderivative of C++ suppating code
mobhility onthe Internet, has sgned the starting pant of a new generation o
programming languages.

1.7 A bird’ seyeview of programming language concepts

This chapter provides abird’' s eye view of the main concepts of programming
languages which will be the subjeds of an in-depth investigation in all the
remaining chapters. Its purpose is to show how all the various concepts that
will be presented fit together in a @wherent picture. Using a simple C/C++
program as an example, we look at the kinds of faciliti es that a programming
language must suppat and the diff erent ways that languages go abou provid-
ing these facilities.

1.7.1A ssimple program

Figure 4 shows a part of a C/C++ program that manipulates a list of phone
numbers. As programmers, ou inclination onencountering a program is to
try to urcover what the program does and haw it does it. Our purpose in this
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book, havever, is to learn abou the concepts and structure of programming
langueges. We ae interested in the kinds of things one an dowith program-
ming languages, rather than the spedfics of a given program. What are the
inherent capabilities and shortcomings of different programming languages?
What makes one language fundamentally different from another and what
makes one language simil ar to anather, despite apparent differences? We will
use the simple program in Figure 4 to start our exploration d the structure of
programming languages. Therefore, in looking a the program, we want to
look at not what it does, but what kinds of linguistic facilities were used to
write the program.

#include <iostream.h>
#include “phone.h”

extern phone_list pb;
void insert();
number lookup ();

main()
int request;

cout << *“Enter 1 to insert, 2 to lookup: \n”;
cin >> request;
if (request ==1)
insert();
elseif (request == 2)
cout << lookup();
else
{cout << “invalid request.\n";
exit (2);

}

FIGURE 4. A phone-list program

We have divided the program into three parts, separated from each ather by
single blank lines. Thefirst section consists of two “#include” statements; the
seond part consists of three “declaration” statements; and, finally, the third
part is the adual code of a function caled main that suppcsedly “does the
work”. We can say that the first part is used to organize the structure of the
program, in this case in terms of the various fil es that constitute the program.
The second part defines the environment in which the program will work by
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dedaring some entities that will be used by the program in this file. These
dedarations may import entiti es defined in other files. For example, the line

extern phone _list pb;

indicates that the variable pb of type phone list is being used in this program
but has been created elsewhere. The third part deals with the actual computa-
tion. Thisis the part we most often associate with a program. It contains the
program’s data and algorithms. Some of the data and processng in this part
may use the entities defined in the environment established in the seoond fart.
For example, in Figure 4 the routines insert and lookup are used in the main
program. Ancther example is the output statement:

cout << “Enter 1 to insert, 2 to lookup: \n”;
which uses cout, the standard ouput device defined in the standard inpu-out-
put library iostream.h included in the first line of the program.

Even in this dhort, smple program, we see that a programming language pro-
vides many different kinds of fadlities. Let us look more closely at some of
the major facilities and the issues invalved in designing such language facili -
ties.

1.7.2Syntax and semantics

Any programming language specifies a set of rules for the form of valid pro-
grams in that language. For example, in the program of Figure 4, we see that
many lines are terminated by a semicolon. We seethat there ae some special
charaders used, such as{ and }. We see that every if is followed by a paren-
thesized expression. The syntax rules of the languege state how to form
expressions, statements, and programs that look right. The semantic rules of
the language tell us how to build meaningful expressions, statements, and
programs. For example, they might tell us that before using the variable
request in the if-statement, we must declare that variable. They also tell usthat,
the dedaration d a variable such as request causes gorage to be reserved for
the variable. On the other hand, the presence of the extern in the declaration o
the variable pb indicates that the storage is reserved by some other modue
and nd thisonre.

Characters are the ultimate syntactic building bocks. Every program is
formed by dadng characters together in some well-defined arder. The syn-
tactic rules for forming pograms are rather straightforward. The semantic
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building Hocks and rules, onthe other hand, are more intricae. Indeed, most
of the deep dff erences among the various programming languages gem from
their diff erent semantic underpinnings.

1.7.3Semantic e ements

In this sdion, we will look at some of the basic semantic concepts in pro-
gramming languages. The idea is to examine these notions not from a pro-
grammer’ s point of view but from the language designer’s point of view. We
want to see what choices may be avail able to alanguage designer and haw the
designer’ s decisions aff ect the programmer.

Variables
A variable is the most pervasive concept in traditional programming lan-

guages. A variable corresponds to aregion d memory which is used to hdd
values that are manipulated by the program. We refer to a variable by its
name. The syntadic rules gecify how variables may be named, for example,
that they may consist of alphabetic characters. But there ae many semantic
isaues asociated with variables. A declaration introduces a variable by gv-
ing it a name and stating some of its smantic properties. Amongthe impor-
tant semantic properties are:

» scope: what part of the program has access to the variable?For example, in the example
program, the scope of the variable request extends to the end of the function cdled main.
That is, the variable may be referred to in any part of the program from the dedaration of
the variable to the end of the function main. By contrast, the scope of the variable pb, is
the entirefile. That is, if there were other functions besides main, they could also refer to
the variable pb. Usually, thelocation o the variable dedaration determinesthe start of the
scope of the variable.

* type: what kinds of values may be stored in the variable and what operations may be
performed on the variable? The variable request is dedared to be of type int and the
variable pbis dedared of type phone_list. Usually, there ae anumber of fundamental
types defined by the language and there ae some fadlities for the user to define new
types. Languages differ both in terms of the fundamental types and in the fadliti es for
type definition. The fundamental types of traditional |anguages are dictated by the types
that are supported by the hardware. Typically, as in C++, the fundamental types are
integer, red, charader. Pascd aso has boolean types. There is a large body of work on
data types that deds both with the theoreticd underpinnings as well as pradicd
implicaions. We will study many of theseisauesin detail in Chapter 3.

* lifetime: when is the variable aeaed and when is it discarded? As we said, a variable
represents some region of memory which is cgpable of holding a value. The question is
when is a memory areareserved, or allocated, for the variable? Some possibiliti es are:
when the program starts, when the dedaration is encountered at exeautiontime, when the
unit in which thededaration occursisentered, or there could be astatement that explicitly
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requests the dlocation of storage for the variable. Indeed, C++ has al of these kinds of
variables. automatic variables are dlocaed when the unit in which they are dedared is
entered and dedl ocated when the unit terminates; static variables live throughout the
exeaution d the program; some variables may be aeaed and destroyed explicitly by the
programmer using the operators new and delete.

These isues will be discussed in detail in Chapter 2.

Values and references o ] ] _
Having defined some basic isaues concerning variables, let us ponder a sim-

ple question: what is the value associated with a variable? Well, there ae &
least two answers to this question. Consider an assgnment statement of the
form:

X=Yy,
The vgl ue referred to by the namey is of adifferent kind from that referred to
by the name x. We have defined a variable as a region d memory. On the
right hand side of this assignment statement, we neeal the contents of that
memory and onthe left hand side we need the aldress of, or a reference to,
that region. To enable us to refer to bah o these kinds of values, we define
two naions: an |-value is avalue that refers to amemory locaion, and, there-
fore, may be used onthe left hand side of an assgnment statement; an r-value
isavalue that refers to the contents of a memory location, that is, avalue that
may be used on the right-hand side of an assgnment statement. Referring to
the assignment statement above, we nead an r-value for y and an |-value for x.

In most languages, the @nversions from |-values to r-values are implicit.
Some languages, such as C++, also have explicit operators to dothe wnwver-
sions when necessary. For example, the & operator in C++ is the aldress-of
operator, which oltains the |-value of its operand. Therefore,

X=&y;

stores the addressof y into x. The & is necessary because the default rule is
that on the right-hand side, the r-value is used.

Some @ntexts require a particular type of value. For example, the left-hand
side of an assignment statement requires an |-value. Therefore:

3 =vy; llerror, left-hand side requires |-value
is an error because literalsin C++ do nd have |-values. Instead,

y=3



islegal sincetheliteral 3isan r-value.

Expressions ) .
Expresgons are syntactic constructs that allow the programmer to combine

values and orerations to compute new values. The language specifies g/ntac-
tic as well as semantic rules for buil ding expressons. Depending onthe lan-
guage, an expresson may be anstrained to produce a value of only one type
or of different types at diff erent times. In the program of Figure 4, we see sev-
eral expressions of different types. For example, request == 1, iS an expresson
of type bodean; “invalid request.\n” is an expresson d type string.

For example, in C or C++, an assgnment statement produces a value and
therefore is also an expresson and may be used as a constituent of another
expression. Consider:

a=b=c+d,
which assigns (first) to b the value of the expresson c+d and then assgns the
same value to a. The language Pascd does not al ow an assgnment statement
to be used as part of an expresson.

As can be seen from this example, the order in which operations are per-
formed in an expression may influence the value of the expresson. Some lan-
guages ecify the order strictly, for example right-to-left, and ahers leave it
to the implementer to decide the order. Leaving such isaues to the implemen-
tation requires the programmer to be more careful because a program that
produces the correct result may nat necessarily do so when compiled with a
different compiler.

The magjor semantic issue surroundng expressons is the allowable kinds of
expressions. Specifically, does the language suppat expressons that produce
only r-values or can expressons also result in I-values (or even functions)?
More on expressions will be said in Chapter 4 for conventional languages.
Chapter 7 will deal with functional languages, which can also be called
expression-oriented, since expressons play a central role in such languages.

1.7.4Program organization

Programs that implement software systems and appli caions consist of thou
sands, hundeds of thousands, or even millions of lines of code. These lines
together implement a particular system design that consists of many inter-
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related comporents, or modules. A programming language can provide mech-
anismsto help the programmer in managing this complexity. To some degree,
the structure of the design may be reflected in the structure of the program. As
we mentioned, this is graightforward whenever the design method and the
programming language paradigm match.

As an example, aprogram in C/C++ consists of anumber of files. By conven-
tion, a programmer may implement each design modue in ore file. Even
more, some files may contain modules that are more generally available,
referred to as libraries. In the example of Figure 4, the program includes afile
cdled iostream.h, which provides the declarations to use the standard inpu-
output library provided by C/C++. The language does nat have any particular
facilities for suppating inpu-output. Instead, a wlledion d routines make
up alibrary that suppat inpu-output operations. Programs that want to use
inpu/output include iostream.h. The other file included by the program is
cdled phoreh. This file is presumably more spedfic to this application and
contains information, such as type definitions, that are shared by different
modues of the program.

Being able to break a program into a number ofindependent parts has many
advantages. First, if the parts are independent, they may be implemented and
validated by different people. Program debuggng and maintenance is also
simplified because changes may be isolated to independent modues. Second,
it is more pradical to store the program in severa files rather than ore big
file. The ability to compile separate parts of the program isimportant in writ-
ing large applications.

In C/C++, theinclusion d files imposes an ordering rel ationships among the
modues of a program. The main program includes some files which may in
turn include other files and so on.Obviously, the included files must be writ-
ten before the files that include them. This relationship impaoses a hierarchy
amongthe fil es that constitute the program. There are fil es that need no dher
files. These are at the lowest level of the hierarchy—level 0. At the next level
are files that only include files from level 0. This file inclusion facility sup-
port the direct implementation d hierarchical designs.

Finaly, if C++ is chosen, the language provides suppat baoth to procedural
and ohect-oriented programming. The program structure can therefore match
a design method kased on bah decompaosition into abstract operations and



46

hierarchies of abstrad data types.

Similar considerations hold for Ada. Whereas the @rrespondence between
design modues and program files in C/C++ is rather loose and by conven-
tion,in Adathis correspondence is emphasized. Each modue has a specifica-
tion and an implementation. Once the specification d a modue is written,
other modues that use this modue may be written and compiled. This
approach reduces the dependence among pogrammers in that more work
may be dore in parallel. Ada also suppats the concept of a library where
modu e specifications are stored. The language requires that interfaces across
independently compiled modues must be cheded to ensure that the called
and the calling modues agree On the other hand, the FORTRAN language
also supports independently developed (procedural) modues but does not
require type checking aaoss such modues.

The program organization facilities provided by a programming language are
dependent on the goals of the language. If the language isintended for writing
small programs, for example for the writing d mathematical algorithmsto be
run ona cdculator, such facilities are nat crucial. If, onthe other hand, the
language is to be used to develop very large programs, these faalities are
indispensable. Most modern languages today suppat at least the notion d a
modue for breaking up a large program into several independent parts.
Where the languages differ is in the way the different modues have accessto
eah aher’sinternal entities and inthe types of entities that may be imported
from other modues. They also dffer in the treatment of moddes, e.g.,
whether they can be instantiated, whether they can be separately compiled,
etc. These ae the specific topics addressed in Chapter 5.

1.7.5Program data and algorithms

Programming languages provide fadli ties for implementing algorithms. The
algorithms operate on some data to produce some results. This is where pro-
gramming languages differ the most from each aher. The mgjority of pro-
gramming languages, including C++, are imperative. Aswe can seein Figure
4, the main program consists of some variable declarations and some state-
ments that operate on these variables. There ae dso inpu-output statements.
The execution of statements modifies the values gored in the memory of the
underlying machine; i.e., it modifies the state of the computation We wil | deal
with these in the next section. For now let uslook at theissuesrelating to data
and computation.
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Data
There are many issues aurroundng the ideaof data. Look at the simple vari-

able request declared in ou example program. It has atype, which in this case
isint. It tells us what kinds of values it may hadd. Where can such a variable
dedaration accur in a program? Only at the beginning d a program or any-
where? When is the variable created? Does it have an initia vaue? Is it
known to ather procedures or modues of the program? How can variables be
exported to ather modues?

Given some dementary data items such as variables, are there mechanismsto
combine them? For example, C++ provides arrays and records for building
aggregate data structures. What are the kinds of componrents that a data struc-
ture may contain? Can a function ke an element of a record? In Pascal the
answer isnoandin C++ the answer isyes.

Sophisticated mechanisms for data definition all ow the programmer to modu
larize the data in the program similarly to the way that the algorithms are
moduarized. For example, in ou program in Figure 4, we use afile phone.h to
store the basic definitions concerning phae data that are used by all other
modues. Objed-oriented programming languages draw much of their power
from the mechanismsto define and refine complex data items. Chapters 4 and
7 are devoted to these topic.

Computation ) . .
We have aready seen expressons as a medhanism for computing values.

Expressons are usualy made up of elementary values and have a simple
structure. Control structures are used to structure more compli cated computa-
tions. For example, mechanisms such as various kinds of loops provide for
repeated executions of a sequence of statements. Routine cdls alow for the
execution d a computation defined elsewhere in the program. Combining
expressions, statements, control structures and routine cdlsin C++ and aher
conventional langueges all ows the programmer to write dgorithms using an
imperative computation paradigm.

Chapter 4 describes the programming language medanisms used for struc-
turing computations.

1.7.6External environment
Programs are seldom self-contained implementations of algorithms. The data
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they need and the results they expect to compute are normally transferred to
and from the program to the external environment. In the example of Figure
4, the user is asked to type in arequest. In ather cases, a program might need
to aacessan external database; a devicedriver program might need to acquire
the value of aparticular signal.

How do programs communicate with the external environment? Some lan-
guages define specific constructs for inpu/output. Other languages, such as
C/C++, do nat provide such faciliti es. Instead, they rely onlibraries external
to the language to provide such facili ties. For example, iostream.h is the header
file that all ows the inpu/output library to become accessble by the program
in Figure 4 al owsthe program to interact with the user. The same happensfor
aacessng an externa database.

The alvantage of language-supported facilities for communication with the
external environment is that the programmer has a complete model of the
environment and the compiler can do consistency checking. Suppating the
facilitiesin alibrary makes the language simpler and all ows more flexibility.
For example, different libraries may be added as new devices, such as graphi-
cd ones, become avail able.

1.8 Bibliographic notes

Software development processes, environments and methods are covered in
software engineering textbooks, such as (Ghezz et al. 199J).

For a historicd perspective on programming language developments, see
(Wexelblat 1981). The Turing ledures by Backus (Backus 1978, Hoare
(Hoare 1981), and Wirth (Wirth 1985 provide stimulating reflections on po-
gramming languages and their evolution. In particular, (Backus 1978 takes a
strong paition in favor of functional languages as oppased to the Von Neu-
mann conventional approad.

1.9 Exercises

1. Write ashort paper on the sts of programming. Discuss both the wsts involved in
developing and maintaining programs, and the asts involved in running programs.
Discuss the role of the programming language in both.

2. List the main feaures of your favorite programming language that can help make
programs easily maintainable. Also discuss features that hinder maintainability.
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3. Can you find reasons why the optimization mentioned in Sedion 1.5.3 cannot be done in
genera for C?

4, 3Provide asuccinct charaderizaion o imperative vs. nonconventional (functional and
logic languages).

5. Take one or two languages you have used and discuss the types of expressions you can
write in the language.

6. Take one or two languages you have used and discuss the fadlities provided for program
organi zation.

7. Take one or two languages you have used and describe how the language supports
interadion with the external environment.
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Introduction Chap.1



Syntax and semantics

C HAPTER 2

A programming language is a formal natation for describing algorithms for
execution by computer. Like dl formal notations, a programming language
has two major components. syntax and semantics. Syntax rules describe the
form of any legal program. It isa set of formal rules that specify the compasi-
tion d programs from letters, digits, and aher charaders. For example, the
syntax rules may speafy that each open parenthesis must match a dosed
parenthesis in arithmetic expressons, and that any two statements must be
separated by a semicolon. The semantic rules gecify “the meaning” of any
syntacticdly valid program written in the language. Such meaning can be
expressed by mapping each language wnstruct into a domain whaose seman-
tics is known. For example, one way of describing the semantics of a lan-
guage isby gvingadescription d eadch language wnstruct in English. Such a
description, d course, suffers from the informality, ambiguity, and wordiness
of natural language, bu it can gve a reasonably intuitive view of the lan-
guage. In order to provide complete formal description d language seman-
tics, syntactically valid programs are mapped orto mathematicd domains.
We will provide apreliminary introductionto formal semanticsin asidebar in
this chapter. A full treatment of formal semantics, however, is out of the
scope of this text. Rather, we will provide arigorous, yet informal, descrip-
tion d semantics by spedfying the behavior of an abstract processor that exe-
cutes programs written in the language. This kind d semantic
charaderizaion d alanguageis cdled operational semantics. It could be pre-
sented using a rigorous and formal natation. Instead, we will follow a more
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traditional and informal approach, because it is more easily and intuitively
understood bycomputer programmers and provides a high-level view of the
problems foundin implementing the language.

This chapter devoted syntax and operational semantics of programming lan-
guages. It is organized as follows: In Sedion 2.1, we discusshow the syntax
and semantics of a language can be defined. In Section 2.2we discusslan-
guage implementation and introduce the fundamental semantic concept of
binding. In Sedion 2.3and Sedion 2.4we discusstwo important concepts of
programming languages—variables and routines-and their binding properties.
In Section 2.5we define an abstract semantic processor that can be used to
spedfy operational semantics. In Sedion 2.6we discusshow the abstract pro-
cessor implements the main run-time features of programming languages.

2.1 Language definition

When youread a program, how do youknow if it is well formed? How do
you knov what it means? How does a compiler know how to trandate the
program? Any programming language must be defined in enough dtail to
enable these kinds of issuesto be resolved. More specificdly, alanguage def-
inition shoud enable a person a a computer program to determine (1)
whether a purported program isin fact valid, and (2) if the program is valid,
what its meaning a effect is. In general, two aspects of alanguage-program-
ming a natural language-must be defined: syntax and semantics.

2.1.1Syntax

Syntax is described by a set of rules that define the form of a language: they
define how sentences may be formed as squences of basic constituents
cdled words. Using these rules we can tell whether a sentenceislegal or naot.
The syntax does nat tell us anything about the @ntent (or meaning) of the
sentence-the semantic rules tell usthat. As an example, C keywords (such as
while, do, if, ese,...), identifiers, numbers, operators, ... are words of the lan-
guage. The C syntax tells us how to combine such words to construct well -
formed statements and programs.

Words are not elementary. They are constructed ou of characters belongng
to an aphabet. Thus the syntax of alanguage is defined by two sets of rules:
lexicd rules and syntactic rules. Lexical rules specify the set of charaders
that constitute the dphabet of the language and the way such characters can
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be combined to form valid words.

For example, Pascd considerslowercase and uppercase charadersto be iden-
tical, bu C and Ada consider them to be distinct. Thus, according to the lexi-
cd rules, “Memory” and “memory” refer to the same variable in Pascal, bu
to dstinct variablesin C and Ada. Thelexicd rulesalso tell usthat <> (or }) is
avalid operator in Pascd but not in C, where the same operator is represented
by !=. Adadiffers from both, since “not equal” is represented as /=; delimiter
<> (cdled “box’) stands for an undefined range of an array index.

The distinction ketween syntactic and lexical rules is mewhat arbitrary.
They bath contribute to the “ external” appearance of the language. Often, we
will use the terms “syntax” and “syntactic rules’ in a wider sense that
includes lexicd comporents as well.

How does one define the syntax of a language? Because there ae an infinite
number of legal andillegal programsin any useful language, we dearly can-
nat enumerate them all. We need away to define an infinite set using afinite
description. FORTRAN was defined by simply stating some rules in Engli sh.
ALGOL 60 was defined with a context-free grammar developed by John
Backus. This method has become known as BNF or Badkus Naur form (Peter
Naur was the editor of the ALGOL 60 report.) BNF provides a compad and
clear definition for the syntax of programming langueges. We ill ustrate an
extended verson d BNF (EBNF) in the sidebar on page 53, along with the
definition d a simple language. Syntax diagrams provide ancther way of
defining syntax of programming languages. They are conceptuall y equivalent
to BNF, bu their pictorial notation is smewhat more intuitive. Syntax dia-
grams are dso described in the sidebar.

Sidebar-start-1
EBNF is a meta-language. A meta-language is a language that is used to
describe other languages. We describe EBNF first, and then we show how it
can be used to describe the syntax of asimple programming languege (Figure
5(a)). Thesymbds::=, <, >, * +, (, ), and |are symbds of the metalanguage:
they are metasymbols. A languege is described in EBNF through a set of
rules. For example, <program> ::= { <statement>* } is arule. The symbal
"::=" stands for “is defined as’. The symbad “*” stands for “an arbitrary
sequence of the previous element”. Thus, the rule states that a <program> is
defined as an arbitrary sequence of <statement> within brackets“{” and“}”.
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The entiti es inside the metalanguage bracets “<”, and “>" are called norter-
minals, an entity such as the “}” abowe is called a terminal. Terminals are
what we have previously called words of the language being defined, whereas
norterminals are lingustic entities that are defined by other EBNF rules. In
order to dstingush between metasymbals and terminals, Figure 5 uses the
convention that terminals are written in bdd. To complete our description o
EBNF, the metasymbol “+” denates one or more repetitions of the previous
element (i.e., a least one dement must be present, as oppased to “*”). The
metasymba “|” denotes a choice. For example, a <statement> is described in
Figure 5(a) as either an <assgnment>, a <condtional>, or a<loop>.

(a) Syntax rules

<program>:.={ <statement>* }

<statement>::=<assignment> | <conditional> | <loop>

<assignment>::=<identifier> = <expr> ;

<conditional>::=if <expr> { <statement> +} |

if <expr> { <statement> +} else { <statement> +}

<loop>::=whil e <expr> { <statement> +}

<expr> ::=<identifier> | <number> | ( <expr>) | <expr> <operator> <expr>
(b) Lexical rules

<operator>:=+|-|*|/[=]||]<|>]|=]|=
<identifier>::= <letter> <ld>*

<ld>::= <letter> | <digit>

<number>::= <digit>+
<letter>::=a|b|c]|...|z

FIGURE 5. EBNF definition of a simple programming language
(a) syntax rules, (b) lexical rules

The lexical rules, which describe how identifiers, numbers, and operators
look like in our simple language are also described in EBNF, and shown in
Figure 5(b). To do so, <operator>, <identifier>, and <number>, which are
words of the language being defined, are detail ed in terms of elementary sym-
bals of the alphabet.

Figure 6 shows the syntax diagrams for the simple programming languege
whose EBNF has been discussed above. Nonterminals are represented by cir-
clesandterminals by boxes. The norterminal symbal is defined with atransi-
tion dagram having ore entry and ore it edge. A string of wordsisavalid
program if it can be generated by traversing the syntax diagram from the
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entry to the it edge. In thistraversal, if aterminal (box) isencourtered, that
word must be in the string being recognzed; if a norterminal (circle) is
encourtered, then that nornterminal must be recognized bytraversing the tran-
sition dagram for that norterminal. When a branch in the path is encoun
tered, any ore edge may be traversed. Syntax diagrams are similar enoughto
EBNF to al ow youto uncderstand the rules.

program

ot

statement

assgnment

statement
> condtiond

loop

assignment , I~ :
———p identifier 4>@—>expron —

conditional

—> 0 Statement o >

|- expression W

expresson : :
—-eXpression—p= operator —>expresson~f>

gt identifier

- NuUMber
4>@— expressorn] —»@J

FIGURE 6. Syntax diagrams for the language described in Figure 5.
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sidebar-end
In conclusion, the syntadic description d alanguage has two primary uses:

(@) It helps the programmer know how to write asyntadically correct pro-
gram. For example, if oneisunsure dou the syntax of if statements, alook at
the EBNF or syntax diagrams can quickly settle any doulis.

(b) 1t can be used to determine whether a program is g/ntacticaly correct.
This is exactly what a compiler does. The compiler writer uses the grammar
to write asyntadic analyzer (also called parser) that is capable of recognzing
al valid programs. This processis now largely automated. In fad, there ae
programs (“compil er generators’) that can use the grammar of the language
as inpu and produce the analyzer as output. LEX and YACC are two well -
known UNIX tods that generate lexical and syntax analyzers, respectively,
starting from a description d the lexical and syntactic rules of the language.
Several versions of these todls exist.

2.1.1.1 Abstract syntax, concrete syntax and pragmatics

Some language constructsin diff erent programming languages have the same
conceptua structure but differ in their appeaance at the lexical level. For
example, the C fragment

while (x I=y) {

1
and the Pascal fragment

whilex <>y do

begin

end
can bah be described by simple lexical changes in the EBNF rules of Figure
5. They differ from the simple programming language of Figure 5 orly in the
way statements are bracketed (begin ...end vs. { ... }), the “not equal” operator
(<> vs. I=), and the fad that the loopexpressonin C must be enclosed within
parentheses. When two constructs differ only at the lexical level, we say that
they follow the same abstract syntax, bu differ at the concrete syntax level.
That is, they have the same astract structure and dffer only in lower-level
detail s.
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Although, conceptually, concrete syntax may be irrelevant, pragmaticadly it
may affect usability of the language and readability of programs. For exam-
ple, symbad | is obviously more readable than !=. As ancther example, the
simple language of Figure 5 requires the body d while statements and the
branches of condtionals to be bradketed by { and }. Other languages, such as
C or Pascal, allow brackets to be omitted in the case of single statements. For
example, one may write:

while(x!'=y)dox =y +1,
Pragmaticdly, however, thismay be error prone. If one more statement needs
to inserted in the loop bodyone shoud na forget to add kracketsto groupthe
statements constituting the body. Modua-2 adops a good concrete syntax
solution, by using the “end’ keyword to terminate both loop and condtional
statements. A similar solution is adopted by Ada. The following are Modua
2 examples:

if x =y then if x=ythen whilex =y do
i v i
o
In al three fragments, the “...” part can be dther a singe statement or a

sequence of statements sparated by a semicolon.

2.1.2Semantics

Syntax defines well-formed programs of a language. Semantics defines the
meaning d syntadically corred programs in that language. For example, the
semantics of C help us determine that the declaration

int vector [10];
causes ten integer elements to be reserved for a variable named vector. The
first element of the vector may be referenced by vector [0]; all other elements
may be referenced byanindexi, 0<i<9.

As ancther example, the semantics of C states that the instruction

if (a>b) max = a; else max = b;
means that the expression a> b must be evaluated, and dgpending onits value,
one of the two gven assgnment statements is executed. Note that the syntax
rules tell us how to form this gatement—for example, where to pu a“;”—and
the semantic rulestell us what the effect of the statement is.
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Actualy, nat al syntacticdly corred programs have a meaning. Thus, seman-
tics al'so separates meaningful programs from syntacticdly corred ones. For
example, according to the EBNF of the smple language described in Figure
5, ore could write any expresson as a condtion d if and while statements.
The semantics of the language might require such expressions to deliver a
truth value (TRUE or FAL SE, na—say—an integer value). In many cases, such
rules that further constrain syntadically correct programs can be verified
before a program’ s execution: they constitute static semantics, as oppacsed to
dynamic semantics, which describes the eff ect of executing the different con-
structs of the programming language. In such cases, programs can be exe-
cuted orly if they are crrect both with respect to syntax and to static
semantics. In this ction, we concentrate on the latter; i.e., any reference to
the term “semantics” implicitly refersto “dynamic semantics’.

While syntax diagrams and BNF have become standard todls for syntax
description, no such tod has become widely aaepted and standard for
semantic description. Different formal approaches to semantic definition
exist, but nore is entirely satisfactory. A brief introduction to forma seman-
ticsis provided in the sidebar page 59.

In this chapter, and throughou this book, we take an operational approach to
describing the semantics of programming languages. In this approach, the
behavior of a smple and intuitive éstract processor is used to describe the
effeds of each language construct. We will describe such a machine in the
next subsection. We will then describe the semantics of programming lan-
guage constructs in terms of the operations of this machine.

Our machine is abstrad. This means that it is not a real madine such as the
Apple Maantosh PowerBook Duo 27@ or the HP 9000. It is designed to
show the run-time requirements of programming languages smply, rather
than to execute them efficiently. It can be used asamodel for language imple-
mentation in the sense that one can derive straightforward, simple implemen-
tations by applying the concepts that we discuss here. The resulting
implementation, however, probably would be inefficient. To achieve dfi-
ciency, any red implementation will have to dffer from the model in impor-
tant ways, for example, in how data structures are arranged and accessed and
in the set of machine instructions. The purpose of the model is Smply to state
the effects of the language, given the structure of the abstract macdine. A par-
ticular implementation d the language on a given red madhine isin noway
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obligated to implement the structure of the abstrad processor used to define
the semantics of the language; it is only required to implement the same
effeds, given therestrictions and structure of the implementation machine.

It isimportant to separate the semantic isaues of the language from the imple-
mentation issues (we will come bad to this point later). This can be dore by
keeping in mind which part of the description is a description (or restriction)
of the machine and which is of the language.

*** add sidebar on java byte mde???***

Sidebar-start-2

A metalanguage for formal semantics must be based onwell-understood and
simple mathematical concepts, so that the resulting definitionis rigorous and
unambiguous. The ability to provide formal semantics makes language defi-
nitions independent from the implementation. The description specifies what
the language does, without any reference to how thisis achieved by an imple-
mentation. Furthermore, it allows comparison d different programing lan-
guage feaures to be stated in unquestionable terms. Unfortunately, formality
does not go hand-in-hand with readability. The asolute rigor of formal
semantics can be useful in areference description, bu for most practical uses
arigorous-yet informal—description can suffice

Here we briefly review two ways of formall y specifying semantics: axiomatic
semantics and cenotational semantics. We do nd go deep into the two meth-
ods, bu rather we try to provide a preliminary introduction that shows the
main dfferences between them. We base our description onthe simple lan-
guage described in Figure 5.

Axiomatic semantics views a program as a state machine. Programming lan-
guage @nstructs are described by describing hawv their execution causes a
state change. A state is described by a first-order logic predicate which
defines the property of the values of program variables in that state. Thus the
meaning d each construct is defined by a rule that relates the two states
before and after the execution d that construct.

A predicate P that isrequired to hdd after exeaution d a statement sis called
a postcondition for s. A predicate Q such that the execution d S terminates
and pastcondtion P hdds uponterminationis call ed a precondition for s and
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P. For example, y = 3 isone possble precondtion for statement

X=y+1,

that Ieéds to postcondition x > 0. The predicaey =0 is aso a precondtion for
the same statement and the same paostcondtion. Actually, y > 0 is the weakest
precondtion. A predicaew is called the weakest precondition for a statement
s and a postcondtion P, if any precondtion Q for s and P implies w. Among
al possible precondtionsfor statement S and pastcondtion P, W isthe weak-
est: it speafies the fewest constraints. It is the necessary and sufficient pre-
condtion for a given statement that leads to a certain postcondtion. In the
example, it is easy to prove that any precondtion (e.g., y = 3) implies the
weakest precondtion (y > 0). This can be stated in first-order logic as

=30y=0
Ax>i/omati(>:/ semantics ecifies each statement of a language in terms of a
function asem, call ed the predicate transformer, which yields the weakest pre-
condtion w for any statement s and any pastcondtion P. It also provides
compasition rules that allows the precondtion to be evaluated for a given
program and a given pastcondtion. Let us consider an assignment statement

X = expr;

and a postcondtion P. The weakest preandtion isobtained byreplaang each
occurrence of x in P with expresgon expr. We expressthis weakest precond-
tion with the notation P« - expr. Thust

asem (x = expr;, P) = Px - expr
Simple statements, such as assgnment statements, can be @mbined into
more complex actions. For example, let us consider sequences, such as

S1; S2;
If we know that

asem (SL;, P)=Q
and

asem (S2;, Q) =R
then

asem (S2; S1;, P) =R

1. This characterization of assgnmentsis correct for smple assgnment statements (see Exercise 40).
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The specification d semantics of selection is draightforward. If B is a bod-
ean expressonand L1, L2 are two statement lists, then let if-stat be the follow-
ing statement:

if BthenLlelselL?2
If Pisthe postcondtion that must be established by if-stat, then the weakest

precondtionisgiven by

asem (if-stat, P) = (B 0 asem (L1, P)) and (not B [0 asem (L2, P))
That is, function asem yields the semantics of either branch o the seledion,
depending onthe value of the condtion. For example, given the following
program fragment (x, y, and max are integers)

if x>=y then max :=x elsemax :=y
and the postcondtion

(max =xand x=y) or (max =y andy > X)
the weakest precondtionis easily proven to be true, that is, the statement sat-
isfies the postcondtion withou any constraints on variables.

The specification d semantics of loops is more wmplex. For simplicity, let
us asaume that the program terminates, i.e., al | oops terminate. Let P be the
postcondtion that must be establi shed by

whileB do L
where B is abodean expressonand L is a statement list. The problem is that

we do nd know how many times the body d the loop is iterated. Indeed, if
we know, for example, that the number of iterationsisn, the con- struct would
be equivalent to the sequential compasition

L;L;...;L;
of length n. Thus the semantics of the statement would be straightforward.
Since that is unknown, we relax our requirements. Instead of providing the
weakest precondtion, which gvesthe exad characterization o semantics, we
chocse to provide just a precondtion, i.e., a sufficient precondtion that can
be derived for a given statement and a given pastcondtion. The @nstraint on
the state specified by a (nonweakest) precondtion is dronger than that
strictly necessary to ensure a cetain postcondtionto hdd after execution d a
statement, but norethelessit provides a specification d what the loop daes.
Such a precondtion Q for a while statement and a postcondtion P, must be
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such that

* theloop terminates, and
* at loop exit, P halds.
Predicate Q can be written as Q = T and R, where T implies termination d the

loopand R impliesthe truth of P at loopexit. Let usignare the problem of ter-
mination and let us focus on determining R. This canna be done medani-
cdly, in general, bu requires ingenuity from the programmer. A systematic
method consists of identifying a predicate | that holds both before and after
each loop iteration and such that, when the loop terminates (i.e., when the
bodean expressonB isfalse), | impliesp. | iscalled an invariant predicae for
the loop.Formally, | satisfies the foll owing condtions

(i) landB Oasem (L, 1)

(i) landnaB OP
If we ae able to identify a predicae | that satisfies both (i) and (ii), then we
cantakel asthe desired precondtionR for the loop, kecause P holds uponter-
minationif R=1 hdds before executing the loop.In conclusion, the method d
loop invariants alows us to approximate the evaluation d semantics of a
while statement; the precondtion is one possble valid precondtion, nd nec-
essarily the weakest.

This approximation can be tolerated in practice. In fact, the main use of axi-
omatic semantics is proving ograms correct, i.e., proving that under certain
spedfied constraints on inpu data (stated as an input predicate—the precon
dition for the entire program), the program terminates in a final state satisfy-
ing aspedfied constraint on ouput data (stated as an ouput predicae).

Denotational semantics asociates each language statement with a function
dsem from the state of the program before the execution to the state dter exe-
cution. The state (i.e., the values dored in the memory) is represented by a
function mem from the set of program identifiers ID to values. Thus denota-
tiona semantics differs from axiomatic semantics in the way states are
described (functions vs. predicates). For simplicity, we assume that values
can orly belongto type integer.

Let us dart our analysis from arithmetic expressons and assgnments®. For an
expression expr, mem (expr) is defined as error if mem (v) is undefined for some

1. This characterization of assgnmentsis correct for smple assgnment statements (see Exercise 41).
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variable v occurring in expr. Otherwise mem (expr) is the result of evaluating
expr after replacing each variable v in expr with mem (v).

If x = expr IS an assgnment statement and mem is the function describing the
memory before executing the assgnment

dsem (X := expr, mem) = error
if mem (x) is undefined for some variable x occurring in expr. Otherwise

dsem (x: = expr, mem) = mem'
where mem' (y) = mem (y) for al y ! x, mem' (x) = mem (expr).

As axiomatic semantics, denotational semantics is defined compositionaly.
That is, given the state transformation caused by each individual statement, it
provides the state transformation caused by compoundstatements and, even-
tually, by the entire program.

Let us consider a statement list, like

S1; S2;
If

dsem (S1, mem) = meml
and

dsem (S2, mem1) = mem2
then

dsem (S1; S2;, mem) = mem2
The state error propagates implicitly, i.e. dsem (S, error) = error for any kind o
Statement S.

Let if B then L1 else L2; be a @ndtiona statement, where B is a bodean
expression, L1 and L2 are two statement lists. Semantics can be defined asfol-
lows:

dsem (if B then L1 elseL2, mem) =U
where U = dsem (L1, mem), if the mem (B) = true; otherwise U = dsem (L2, mem).

Finally, let us consider a statement like while Bdo L.



64 Syntax and semantics Chap.2

dsem (while B do L, mem) = mem
if mem (B) =false (i.e., if theloopisnat entered, there is no change of memory);
Otherwise

dsem (while B do L, mem) = dsem (while B do L, dsem (L, mem))
if mem (B) =true (i.e., aloopiterationis performed).

By applying the semantic rules provided abowe, given a smple program
described by the language of Figure 5, it is possble to compute the value of
function mem for the entire program.

sidebar-end

2.2 Language processing

Althoughin theory it is possible to buld special-purpose computers to exe-
cute directly programs written in any particular language, present-day com-
puters diredly execute only avery low-level language, the madine languege.
Madhine languages are designed onthe basis of speed o exeaution, cost of
realization, and flexibility in bulding rew software layers uponthem. On the
other hand, programming languages often are designed on the basis of the
ease and reliability of programming. A basic problem, then, is how a higher-
level language eventually can be executed ona cmputer whaose machine lan-
guage is very different and at amuch lower level.

There ae generally two extreme alternatives for an implementation: interpre-
tation and trangdlation.

2.2.1Interpretation

In this olution, the actionsimplied bythe constructs of the language ae exe-
cuted drectly (see Figure 7). Usually, for each pcssble action there exists a
subprogram—written in machine language—to execute the adion. Thus, inter-
pretation d a program is accomplished by calling subprograms in the gpro-
priate sequence.
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FIGURE 7. Language processng by interpretation (a) and trandation (b)
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data

More precisely, an interpreter is a program that repeatedly executes the fol-

lowing sequence.

Get the next statement;
Determine the adionsto be exeauted;
Perform the adions;

This sequence is very similar to the pattern of actions caried ou by atradi-

tional computer, that is:

8. Fetch the next instruction (i.e., the instruction whose aldress is spedfied by the

instruction pointer).

9. Advancetheinstruction pointer (i.e., set the aldress of theinstructionto befetched next).

10. Deaode the fetched instruction.
11. Exeaute the instruction.



66 Syntax and semantics Chap.2

This similarity shows that interpretation can be viewed as a simulation, ona
haost computer, of a special-purpase machine whose machine language is the
higher level language.

2.2.2Trandation

In this olution, pograms written in a high-level language are trandated into
an equivaent machine-language version before being exeauted. This tranda-
tion is often performed in several steps (see Figure 7). Program modues
might first be separately trandated into rel ocatable madine wde; modues of
relocatable code ae linked together into a single relocatable unit; finaly, the
entire program is loaded into the computer’s memory as executable machine
code. The trandators used in each o these steps have specidized names:
compiler, linker (or linkage editor), and loader, respectively.

In some @ses, the machine on which the trandation is performed (the host
machine) is different from the machine that is to run the translated code (the
target machine). This kind d trandation is called cross-trandation. Cross
trandators off er the only viable solution when the target machine is a special -
purpose processor rather han a general-purpose one that can suppat atranda
tor.

Pure interpretation and pue trandation are two ends of a @ntinuaus gec-
trum. In practice, many languages are implemented by a combination d the
two techniques. A program may be translated into an intermediate code that is
then interpreted. The intermediate mde might be simply a formatted repre-
sentation d the original program, with irrelevant information (e.g., comments
and spaces) removed and the comporents of each statement stored in afixed
format to simplify the subsequent decoding d instructions. In this case, the
solution is basically interpretive. Alternatively, the intermediate ade might
be the (low-level) machine code for a virtual machine that isto be later inter-
preted by software. This lution, which relies more heavily on trandation,
can be adopted for generating patable cde, that is, code that is more eaily
transferable to dfferent madines than machine language ade. For example,
for portability purposes, ore of the best known initial implementations of a
Pascd compiler was written in Pascal and generated an intermediate code,
cdled Pcode. The availability of a portable implementation d the language
contributed to the rapid diffusion of Pascd in many educdiona environ
ments. More recently, with the widespread use of Internet, code portability
became aprimary concern for network applicaion developers. A number of
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language efforts have recently been undertaken with the goal of suppating
code mohility over a network. Language Java is perhaps the best known and
most promising example. Java is first translated to an intermediate de,
cdled Java byteaode, which isinterpreted in the dient machine.

In a purely interpretive solution, executing a statement may require afairly
complicated decoding processto determine the operations to be executed and
their operands. In most cases, this processisidentical each time the statement
is encountered. Consequently, if the statement appears in a frequently-exe-
cuted part of a program (e.g., an inner loop), the speed o execution is
strondy affected by this deading pocess. On the other hand, pue transa
tion generates machine ade for each high-level statement. In so dang, the
tranglator decodes each hightlevel statement only once Frequently-used parts
are then decoded many times in their machine language representation;
because this is dore dficiently by hardware, pure trandation can save pro-
cessng time over pure interpretation. On the other hand, pue interpretation
may save storage. In pue trandation, each high-level language statement
may expand into tens or hundeds of machine instructions. In a purely inter-
pretive solution, high-level statements are left in the original form and the
instructions necessary to execute them are stored in asubprogram of the inter-
preter. The storage savingis evident if the program is large and uses most of
the language's statements. On the other hand, if all of the interpreter's subpro-
grams are kept in main memory during execution, the interpreter may waste
space for small programs that use only afew of the language's datements.

Compilers and interpreters differ in the way they can report on run-time
errors. Typicdly, with compil ation, any reference to the sourcecodeislost in
the generated olject code. If an error is generated at runtime, it may be
impossbleto relateit to the sourcelanguage construct being executed. Thisis
why run-time aror messages are often olscure and aimost meaninglessto the
programmer. On the oppaite, the interpreter processes urce statements,
and can relate arun-time aror to the source statement being exeauted. For
these reasons, certain programming environments contain bah an interpreter
and a compiler for a given programming language. The interpreter is used
while the program is being developed, because of its improved dagnastic
facilities. The compiler is then used to generate efficient code, after the pro-
gram has been fully validated.

Maao processing is a specia kind d translation that may occur as the first
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step in the trandlation d aprogram. A macro is a named source text fragment,
cdled the macro body.Throughmacro processing, macro names in atext are
replaced bythe correspording bodes. In C, ore can write macros, handed by
apreprocesor, which generates ource C code throughmacro expansion. For
example, ore can use amacro to provide a symbadlic name for a constant
value, asin the following fragment.

#define upper_limit 100
§h=a
for (index = 0; index < upper_Imit; index++)

{
}

sum +=a[index];

2.2.3The concept of binding

Programs deal with entities, such as variables, routines, statements, and so on.
Program entities have certain properties called attributes. For example, avari-
able has aname, atype, astorage areawhereitsvalueis dored; a routine has
a name, formal parameters of a certain type, certain parameter-passing con-
ventions, a statement has associated actions. Attributes must be specified
before an entity is elaborated. Specifying the exact nature of an attribute is
known as binding. For each entity, attribute information is contained in a
repository called a descriptor.

Binding is a entral concept in the definition d programming language
semantics. Programming languages differ in the number of entities with
which they can ded, in the number of attributes to be boundto entities, in the
time at which such hindings occur (binding time), and in the stability of the
binding (i.e., whether an established bindingis fixed o modifiable). A bind-
ing that canna be modified is cdled static. A modifiable binding is called
dynamic.

Some dtributes may be boundat language definition time, others at program
tranglation time (or compile time), and athers at program execution time (or
runtime). The followingis a(norexhaustive) list of binding examples:

* Language definition time binding. In most languages (including FORTRAN, Ada, C, and
C++) the type "integer" is bound at language definition time to its well-known
mathematicd counterpart, i.e,, to a set of algebraic operations that produce and
manipulate integers;
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» Language implementation time binding. In most languages (including FORTRAN, Ada,
C, and C++) aset of valuesis bound to the integer type & language implementation time.
That is, the language definition states that type "integer" must be supported and the
language implementation bindsit to amemory representation, which—in turn—determines
the set of valuesthat are mntained in the type.

» Compile time (or trandation time) binding. Pascd provides a predefined definition o
type integer, but all ows the programmer to redefine it. Thus type integer is bound a
representation at language implementation time, but the binding can be modified at
translation time,

» Exeaution time (or run time) binding. In most programming languages variables are
bound to avalue & exeaution time, and the binding can be modified repeaedly during
exeaution.

In the first two examples, the binding is established before runtime and can-

nat be changed thereafter. This kind d binding regime is often call ed static.
The term static denaotes both the binding time (which occurs before the pro-
gram is executed) and the stability (the bindingisfixed). Conversely, a bind-
ing established at runtimeisusually modifiable during exeaution. The fourth
example illustrates this case. This kind d binding regime is often called
dynamic. There are cases, however, where the binding is established at run
time, and canna be danged after being established. An example is a lan-
guage providing (read orly) constant variables that are initialized with an
expressionto be evaluated at runtime.

The @mncepts of binding, hndingtime, and stabili ty help clarify many seman-
tic aspects of programming languages. In the next section we will use these
conceptsto ill ustrate the nation o avariable.

2.3 Variables

Conventional computers are based onthe notion d a main memory consisting
of elementary cells, each of whichisidentified byan address The contents of
a @&l is an encoded representation d a vaue. A value is a mathematical
abstraction; its encoded representationin amemory cdl can be read and (usu-
aly) modified duing exeaution. Modificationimplies replacing ore encoding
with a new encoding. With a few exceptions, programming languages can be
viewed as abstractions, at different levels, of the behavior of such conven-
tional computers. In particular, they introduce the notion of variables as an
abstraction d the notion d memory cells. the variable name as an abstradion
of the address. and the nation o assgnment statements as an abstraction o
the destructive modification d acell.

In most of this and the foll owing chapters we basically will restrict our con-
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Siderations to these cnventional, “assgnment-based” programming lan-
guages. Alternative languages that suppat functional and declarative styles
of programming will be discussed in Chapters 7 and 8.

Formally, avariableisa5-tuple <name, scope, type, |_value, r_value>, where

* nameisastring of charaders used by program statements to denote the variable;
* scopeisthe range of program instructions over which the name is known;

* typeisthe variable’ stype;

* |_valueisthe memory location associated with the variable;

 r_valueisthe encoded value stored in the variable' s location.
These dtributes are described below, in Section 2.3.1through Section 2.3.4,

along with the different pdlicies that can be adoped for attribute binding.
Section 2.3.5discusses the special case of references and unramed variables,
which dverge from the present model.

2.3.1Name and scope

A variable’'sname is usually introduced by a specia statement, call ed declara-
tion and, nomally, the variable's scope extends from that point until some
later closing pant, specified by the language. The scope of a variable is the
range of program instructions over which the name is known. Program
instructions can manipulate avariable throughits name within its sope. We
also say that avariable isvisible under its name within its ope, andinvisible
outside it. Different programming languages adopt different rules for binding
variable names to their scope.
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For example, consider the foll owing example of a C program:

#include <stdio.h>
main ()

intx,y;
scanf ("%d %d", &X, &Y);

[*two dedmal values are read and stored inthe |_values of x and y */
{

/*thisis ablock used to swap x and y*/
int temp;

temp = x;

X=Y;

y = temp;

}
printf ("%d %d", X, y);

The declarationint x, y; makes variables named x andy visible throughou pro-
gram main. The program contains an internal block, which groups a declara-
tion and statements. The dedaration int temp; appearing in the block makes a
variable named temp visible within the inner block, and invisible outside.
Thus, it would be impasshble to insert temp as an argument of operation printf.

In the example, if the inner block dedares a new local variable named x, the
outer variable named x would na be visibleinit. The inner declaration masks
the outer variable. The outer variable, howvever, continues to exist even
thoughit is invisible. It becomes visible again when control exits the inner
block.

Variables can be boundto a scope ather statically or dynamically. Satic
scope binding defines the scope in terms of the lexical structure of a program,
that is, each reference to a variable can be staticaly boundto a particular
(implicit or explicit) variable declaration by examining the program text,
withou exeauting it. Static scope binding rules are aloped by most program-
ming languages, such as C, as we saw in the previous example.

Dynamic scope binding defines the scope of avariable's namein terms of pro-
gram execution. Typically, each variable declaration extends its effect over
all the instructions executed thereafter, urtil a new dedaration for a variable
with the same name is encourtered duing exeaution. APL, LISP (as origi-
nally defined), and SNOBOL4 are examples of languages with dyramic
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scope rules.

As an example, consider the following program fragment written in a C-like
notation.

/* block A */
int x;

/* block B */
int x;

/* block C*/

X=..

If t}he language follows dynamic scoping, an execution d block A followed
by bock ¢ would make variable x in the assgnment in block C to refer to x
dedared in bock A. Instead, an execution d block B followed by block ¢
would make variable x in the asignment in block C refer to x declared in
block B. Thus, name x in bock C refers either to the x declared in A or the one
dedared in B, depending onthe flow of control followed duing execution.

Dynamic scope rules look qute smple and are rather easy to implement, bu
they have disadvantagesin terms of programming dscipline and efficiency of
implementation. Programs are hard to read because the identity of the particu-
lar dedaration to which a given variable is bound @pends on the particular
point of execution, and so canna be determined statically.

2.3.2Type

In this sction we provide apreliminary introduction to types. The subject
will be examined in more depth in Chapters 3 and 6.We define the type of a
variable as a specification d the set of values that can be associated with the
variable, together with the operations that can be legally used to create,
aacess and modify such values. A variable of a given type is said to be an
instance of the type.
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When the language is defined, certain type names are boundto certain classes
of values and sets of operations. For example, type integer and its asociated
operators are bourd to their mathematical counterpart. Values and operations
are boundto a certain machine representation when the language is imple-
mented. The latter binding may also restrict the set of values that can be rep-
resented, based onthe storage capadty of the target macine.

In some langueges, the programmer can define new types by means of type
dedarations. For example, in C one can write

typedef int vedor [10];
This declaration establishes a binding—at transation time-between the type

name vedor and its implementation (i.e., an array of 10integers, each access-
ble via an index in the subrange 0. .9. As a consequence of this binding, type
vedor inherits all the operations of the representation data structure (the
array); thus, it is possible to read and modify each comporent of an olject of
type vedor by indexing within the array.

There are languages that suppat the implementation d user-defined types
(usually cdled abstract data types) by associating the new type with the set of
operations that can be used onits instances; the operations are described as a
set of routines in the dedaration d the new type. The declaration d the new
type has the following general form, expressed in C-like syntax:

typedef new_type name
{

data structure representing oljeds of type new_type name;
routinesto beinvoked for manipulating data objeds of type new_type name;

To provide apreview of concepts and constructs that will be discussed at
length in this text, Figure 8 illustrates an example of an abstract data type (a
stack of characters) implemented as a C++ dass'. The classdefines the hid-
den data structure (a pointer s to the first element of the stack, a pointer top to
the most recently inserted character, and an integer denating the maximum
size) and five routines to be used for manipulating stack oljeds. Routines
stack_of_char and ~stack_of _char are used to construct and destruct objects of
type stack_of_char, respedively. Routine push is used to insert a new element on
top d astadk ohjed. Routine pop is used to extract an element from a stack

1. A note for the reader whois not familiar with C or C++. Expresson *top++ is evaluated as * (top++). The
value of top++ is the value of top beforeit isincremented. Such value is used for dereferencing. Similarly, expres-
sion *--topis evaluated as * (--top). That is, top is decremented, and its new value is used for dereferencing.
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object. Routine length yields the current size of a stack olject.

classstack_of char{
intsize
char* top;
char* s;
public:
stadk_of char (int sz) {
top=s=new char [size=sZ];

}
~stadk_of _char () {delete[] s;}
void pwsh (char ¢) {*top++ =c;}
char pop () {return *--top;}
int length () {returntop- s;}

H

FIGURE 8. User-defined typein C++

Traditional languages, such as FORTRAN, COBOL, Pascal, C, C++, Mod-
ula-2, and Ada bind variables to their type at compile time, and the binding
canna be changed duing execution. This lution is called static typing. In
these languages, the binding ketween a variable and its typeis ecified by a
variable dedaration. For example, in C one can write:

intx,y;
char c;
By dedaring variables to belongto a given type, variables are aitomaticdly

proteded from the gplication d illegal (or norsensical) operations. For
example, in Adathe compiler can detect the gplication d the illegal assgn-
ment I:=not A, if | isdedared to be an integer and A isabodean. Throughthis
check, the compiler watches for violations to static semantics concerning
variables and their types. The aility to perform checks before the program is
executed (static type checking) contributes to early error detection and
enhances program reli abili ty.

In some languages (such as FORTRAN) the first occurrence of a new vari-
able name is also taken as an implicit declaration. The advantage of explicit
dedarations lies in the darity of the programs and improved reliability,
because such things as gelling errors in variable names can be caught at
tranglation time. For example, in FORTRAN the declaration d variable
ALPHA followed by a statement such as ALPA = 7.3 intended to assgnavalue
to it, would na be detected as an error. ALPA would not be considered as an
incorrect occurrence of an uncedared variable (i.e., as amisspelled, ALPHA),
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but as the implicit declaration o anew variable, ALPA.

Note that the issue of impli cit type declarations is nat a semantic one. Seman-
tically, C and FORTRAN are euivalent with respect to the typing d vari-
ables becuse they bah hbind variables to types at trandation time.
FORTRAN has default rules to determine the particular binding bu the time
of binding andits stability are the same in the two languages. The FORTRAN
rule that determines the type of a variable is quite simple. ML pushes the
approach to its extreme, by allowing most types nat to be stated explicitly,
and yet al expressonsto be type chedked statically. Thisis acieved through
atype inference procedure, which will be discussed in Chapter 7.

Asembly languages, LISP, APL, SNOBOL4, and Smalltalk are languages
that establish a (modifiable) runtime binding between variables and their
type. This binding strategy is called dyramic typing. Dynamically typed vari-
ables are dso called polymorphic variables (literaly, from ancient Greek,
“multiple shape”) variables.

In most asseembly languages, variables are dynamicdly typed. This reflects
the behavior of the underlying herdware, where memory cdls and registers
can contain kit strings that are interpreted as values of any type. For example,
the bist string stored in acell may be alded to the bit string stored in aregister
using integer addition. In such a Gase, the bit strings are interpreted as integer
values. In ather languages, the type of avariable depends on the value that is
dynamicaly associated with it. For example, having assigned an integer value
to avariable, such value canna betreated asif it were-say—a string of charac-
ters. That is, the bindingis dill dynamic, but once avalue is boundto a vari-
able, an implicit binding with a type is aso established, and the binding
remainsin place until anew valueisassgned.

As ancther example, in LISP, variables are not explicitly declared; their type
is implicitly determined by the value they currently hdd duing exeaution.
The LISPfunction CAR applied to alist L yields the first element of L, which
may be an atom (say, an integer) or alist of—say—strings, if L isalist of lists.
If the dement returned by CAR is boundto a variable, the type of such vari-
able would be an integer in the former case, a string list in the latter. If such
value is added to an integer value, the operation would be @rrect in the
former case, bu would be illegal in the latter. Moreover, suppcse that the
value of the variableisto be printed. The dfect of the print operation depends
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on the type that is dynamically associated with the variable. It prints an inte-
ger intheformer case; alist of stringsin the latter. Such a print routine, which
is applicable to arguments of more than ore type, is cal ed a polymorphic rou-
tine.

In general, dynamic typing prevents programs from being statically type
checked: sincethe typeisnat known, it isimpossble to check for type viola
tions before exeauting the program. Type violations due to dyramic typing
can ony be dhecked at runtime, through dyramic type checking. In order to
perform dynamic type checking, information abou the dynamic type of vari-
ables must be kept at run time in suitable descriptors. Such descriptors only
neel to exist at trandation time for statically typed languages. Perhaps sur-
prisingy, however, there are languages uppating bah static type decking
and pdymorphic variables and routines. This will be discussed at length in
Chapters 3, 6,and 7.

Programming languages that adopt dynamic typing are often implemented by
interpretation. In general, in fad, there is nat enoughinformation kefore run
time to generate object code that performs storage dlocation, type decking,
and bnding between operation invocaions and their implementation.

2.3.3l_vaue

Thel_value of avariable is the storage area boundto the variable during exe-
cution. The lifetime, or extent, of a variable is the period of time in which
such hinding exists. The storage aeais used to hdd the r_value of the vari-
able. We will use the term data object (or simply, object) to dencte the pair
<|_value, r_vaue>.

The adion that acquires a storage aeafor a variable—and thus establi shes the
binding-is called memory allocation. The lifetime extends from the point of
alocaion to the paoint in which the dlocated storage is reclaimed (memory
deallocation). In some languages, for some kinds of variables, allocation is
performed before run time and storage is only reclamed upon termination
(static allocation). In ather languages, it is performed at run time (dynamic
allocation), either uponexplicit request from the programmer via a credion
statement or automaticdly, when the variable's declaration is encourtered,
and reclaimed duing execution. Section 2.6presents an extensive analysis of
these isaues.
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In most cases, the lifetime of a program variableis afraction d the program's
executiontime. It isalso passble, however, to have persistent objects. A per-
sistent object existsin the environment in which aprogram is exeauted andits
lifetime has no a-priori relation with any gven program's execution time.
Files are an example of persistent objects. Oncethey are created, they can be
used by different program activations, and dfferent activations of the same
program, until they are deleted througha specific command to the operating
system. Similarly, persistent objeds can be stored in a database, and made
visible to a programming language througha specific interface. A discusson
of persistent objects will be taken upin Chapter 10.

2.3.4r_vaue

Ther_value of a variable is the encoded value stored in the location associ-
ated with the variable (i.e., its|_value). The encoded representation is inter-
preted according to the variable's type. For example, a certain sequence of
bits gored at a certain location would be interpreted as an integer number if
the variable s type is int; it would be interpreted as a string if the type is an
array of char.

|_values and r_values are the main concepts related to program exeaution.
Program instructions access variables through their |_value and passibly
modify their r_value. The terms|_value andr_value derive from the conven-
tional form of assgnment statements, such asx =y; in C. The variable gpear-
ing at the left-hand side of the assgnment denates a location (i.e., its|_value
is meant).The variable appearing at the right-hand side of the assgnment
denotes the contents of a location (i.e., its r_value is meant). Whenever no
ambiguity arises, we use the smple term “value” of a variable to denacte its
r_value.

The binding between a variable and the value held in its gorage area is usu-
aly dynamic; the value can be modified by an assgnment operation. An
assgnment such asb = a; causes asr_value to be mpied into the storage area
referred to byb’'s|_value. That is, b’'sr_value dhanges. This, however, istrue
only for conventional imperative languages, like FORTRAN, C, Pascal, Ada,
and C++. Functional andlogic programming langueges trea variables astheir
mathematicd counterpart: they can be boundto avalue by the evaluation pro-
cess bu once the bindingis established it canna be dhanged duing the vari-
ableslifetime.
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Some @mnventional languages, however, allow the binding between avariable
and its value to be frozen orce it is established. The resulting entity is, in
every respect, a user-defined symbalic constant. For example, in C one @n
write

const float pi = 3.1415;
and then use pi in expressons such as

circumference= 2 * pi * radius;
Variable pi is boundto value 3.1416 and its value anna be changed; that is,

the trandator reports an error if there is an assgnment to pi. A similar effect
can be achieved in Pascd.

Pascd and C differ in the time of binding between the const variable and its
value, athough bnding stabili ty is the same for both languages. In Pascd the
value is provided by an expresson that must be evaluated at compile time;
i.e., binding time is compile time. The compiler can legally substitute the
value of the constant for its symbalic name in the program. In C and Adathe
value can be given as an expresson involving aher variables and constants:
consequently, binding can ony be established at run time, when the variable
is created.

A subtle question concerning the binding ketween a (non const) variable and
itsvalue is: What is the r_value bound to the variable immediately after it is
created? Some languages alow the initial value of a variable to be specified
when the variable is declared. For example, in C one can write

inti=0,j=0;
Similarly, in Adaone would write

i,j: INTEGER :=0;

But what if no initialization is provided? There are a number of possble
approaches that might be followed, bu unfortunately most language defini-
tionsfail to spedfy which ore they choose. As aresult, the problem is slved
differently by dfferent implementations of the same language, and thus pro-
gram behavior depends on the implementation. Moving an apparently correct
program to a different platform may produce unforeseen errors or unexpected
results.

One obvious and frequently adopted solution to the problemisto ignaeit. In
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this case, the bit string foundin the area of storage associated with the vari-
able is consdered its initia value. Ancther solution is to provide a system-
defined initialization strategy: for example, integers are initialized to zero,
charaders to blank, and so on. Yet ancther solution consists of viewing an
uninitialized variable as initialized with a special undefined value, and trap-
ping any read accesses to such variables until a meaningful value is assgned
to the variable. This lution, byfar the cleanest, can be enforced in dfferent
ways. Its only drawback could be the cost associated with the run-time checks
neessary to ensure that a meaninglessvalue is never used in the program.

2.3.5References and unnamed variables

Some languages alow unnamed variables that can be aacessed throughthe
r_value of anather variable. Such ar_valueis cdled areference (or a pointer)
to the variable. In turn, the reference can be ther_value of a named variable,
or it can be the r_value of areferenced variable. Thus, in general, an dbject
can be made accessble viaachain o references (called access path) of arbi-
trary length.

If A=<A_name, A_scope, A_type, A_|_value, A_r_value> isanamed variable, object
<A_l_value, A_r_value> is said to be diredly aacessble through rame A_namein
A_scope, With an access path of length O. If B= <--, --, -, B_|_value, B_r_value>,
where -- stands for the “dont care value”, is a variable and B_| value =
A_r_value, olject <B_| vaue, B_r_value> is sid to be accesgble through name
A_name in A_scope indirectly, with an access path of length 1. Smilarly, ore
can define the mncept of an olject indirectly accessible through a named
variable, with an accesspath of lengthii, i>1.

For example, in Pascd we can declare type Pl (pointer to an integer):

type Pl =”integer;
We @n then allocate an unramed integer variable and have it pointed by a
variable pxi of type PI:

new (pxi),
In orde(rpto) accessthe unnamed oljed referenced by pxi, it is necessary to use
the dereferencing operator ~, which can be gplied to a pointer variable to
obtain itsr_value, i.e., the |l _value of the referenced olject. For example, the
value of the unnamed variable can be set to zero by writing:
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pxi™ :=0;
The unnamed variable @n aso be made acessble indirectly through a
“pointer to apointer to an integer”, as ketched below:

type PPl =PI,
var ppxi: PPI;

new (ppxi);

Appxi 1= pxi;
Herether_value of variable ppxi isthel_value of an unramed variable, whose
r_vaueisthel_vaue of variable x.

Other languages, like C, C++, and Ada, allow pointersto refer to named vari-
ables. For example, the following C fragment:

intx =5;

int* px;

pX = &X;
generates an integer objed whose r_value is 5, drectly accessble througha
variable named x and indirectly accessble (with an aacesspath of length 1)
throughpx, declared as a pointer to integer. This is achieved by assgning to
px the value of the addressof x (i.e., &x). Indired accessto x isthen made pos-
sible by dereferencing px. In C (and C++) the dereferencing operator is
denoted by *. For example, the following C instruction

inty =*px;
assgnsto yther_value of the variable pointed at by px(i.e., 5).

Two variables are said to share an oljea if each has an access path to the
object. A shared olject modified via acertain accesspath makes the modifi-
cdion visible throughall possible acesspaths. Sharing d objectsis used to
improve dficiency, bu it can lead to programs that are hard to read, because
the value of avariable @an be modified even when itsname is not used. In the
previous C example, if one writes:

*px =0;

the contents of the locaion panted at by px becomes 0 and, kecause of shar-
ing, the value of x becomes 0 too.

2.4 Routines

Programming languages allow a program to be compaosed of a number of
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units, called routines. The neutral term “routine” is used in this chapter in
order to provide a general treatment that enlightens the important principles
that are cmmon to most programming languages, withou committing to any
spedfic feature offered by individual languages. Routines can be developed
in amore or lessindependent fashion and can sometimes be translated sepa-
rately and combined after trandation. Assembly language subprograms,
FORTRAN subroutines, Pascal and Ada procedures and functions, C func-
tions are well -known examples of routines. In this chapter we will review the
main syntactic and semantic feaures of routines, and in particular the mecha-
nisms that control the flow of execution among routines and the bindings
established when a routine is executed. Other, more general kinds of units,
such as Ada packages, Modua-2 modues, and C++ dasses will be described
elsewhere.

In the eisting programming language world, routines usually come in two
forms:. procedures and functions. Functions return avalue; procedures do nd.
Some languages, e.g., C and C++, only provide functions, but procedures are
easily oltained as functions returning the null value void. Figure 9 shows the
example of aC function dcefinition.

/* sum is afunction which computes the sum
of thefirst n positiveintegers, 1+ 2 + ...+ n;
parameter n is assumed to be positive */
int sum (int n)

inti, s,

s=0;

for (i=1;i<=n;++H)

st=i;
return s;

FIGURE 9. A Cfunction definition

Like variables, routines have aname, scope, type, |_value, and r_value. A
routine nameisintroduced in aprogram by aroutine declaration. Usually the
scope of such name extends from the declaration pant on to some dosing
construct, staticaly or dynamically determined, depending onthe language.
For example, in C afunction declaration extends the scope of the functiontill
the end d thefile in which the declaration accurs.
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Routine activation is achieved througha routine call, which names the rou-
tine and specifies the parameters on which the routine operates. Since arou
tine is adivated by call, the cdl statement must be in the routine's scope.
Besides having their own scope, routines also define ascope for the declara-
tions that are nested in them. Such local declarations are only visible within
the routine. Depending onthe scope rules of the language, routines can also
refer to norocal items (e.g., variables) other than thase declared locdly.
Nonlocd items that are potentially referenced by every unit in the program
are cdled global items.

The header of the routine defines the routine’' s name, its parameter types, and
the type of the returned value (if any). In brief, the routine's header defines
the routine type. In the example of Figure 9, the routine stypeis:

routine with one int parameter and returning int
A routine type can be precisely defined bythe cncept of signature. The sig-

nature specifies the types of parameters and the return type. A routine fun
which behaves like a function, with inpu parameters of types 71, T2, .. ., Tn
and returning a value of type R, can be defined by the foll owing signature:

fun: Ty xToXx.. XT,->R
A routine @l istype correct if it conforms to the correspondng routine type.
For example, the call

i=sum (10); Fiisdedaredasanint*/
would be correct with resped to the function definition d Figure 9. Instead,
the call

i =sum (5.3);
would beincorred.

A routing's|_valueis areference to the memory area which stores the routine
body (i.e., the routine’'s exeautable statements). Activation causes exeaution
of the routine body, which constitutes the r_value that is currently boundto
the routine. In the dowve C example, the r_value is boundto the routine stati-
cdly, at trandation time. A more dynamic binding pdicy can be achieved by
languages which suppat the concept of variables of type routine, to which a
routine value @n be asigned. Some languages suppat the nation d a
“pointer to a routine” and povide away of getting a routine |_value, which
can be assgned (as a r_value) to a pointer. For example, the following C
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statement declares a pointer ps to a function with an int parameter and return-
inganint:

int (*ps) (int);
The following assgnment

ps= & sum,;
makes ps paint to the | _value of the previously defined routine sum. A call
may then beissued viaps asin the following example:

inti=(*ps) (5); /I thisinvokesther_ value of the routinethat is currently referred to by
S*/

Thg use of pointers to routines allows different routines to be invoked each
time apanter is dereferenced. This provides a way to achieve a dynamic
binding pdicy, that canna be achieved by diredly calling aroutine, which is
statically boundto its body. Languages that exploit the distinction between
routine |_value andr_value, and all ow variables of type routine and panters
to routines to be defined and manipulated, treat routines in much the same
way as variables: they are said to treat routines as fir st-class objects.

Some languages (like Pascd, Ada, C, and C++) distingush between declara-
tion and definition of aroutine. A routine declaration introduces the routine’s
header, withou specifying the body. The nameis visible from the dedaration
point on, upto the scope end. The definition spedfies both the header and the
body.The distinction between declaration and dfinitionis necessary to all ow
routines to call themselvesin amutual recursion scheme, asill ustrated by the
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foll owing fragment.

int A (int x, int y); // dedaratiuon of afunction with two int
/Il parameters and returning an int
/I A isvisible from this point on
float B (int z) //thisis a definition of afunction; B isvisible from this point on

intw, u;
W= A (z, u); flcalls A, which is visible & this point

|
int A (int x, inty) //thisis A’ s definition

float t;
t=B (x); //B is visible here

}

A routine definition specifies a mmputational process. At invocation time, an
instance of the process is executed for the particular values of the parameters.
The representation d a routine during execution is call ed a routine instance.
A routine instance is compaosed of a @de segment and an activation record.
The code segment, whaose @ntents are fixed, contains the instructions of the
unit. The contents of the activation record (also call ed frame) are changeable.
The adivation record contains all the information recessary to execute the
routine, including, among dher things, the data objeds associated with the
local variables of a particular routine instance. The relative position d a data
object in the activation record is called its offset. In order to suppat returning
the execution to the aller, the return pant is saved as part of the adivation
record at routine invocation time.

The referencing environment of a routine instance U consists of U's local
variables, which are boundto oljeds gored in U's activation record (local
environment), and U's nonlocal variables, which are bound to oljects stored
in the activation records of other units (nonlocal environment). The modifica-
tion d adataobject bound to anonlocal variable is call ed a side-effect.

Routines can dften be activated recursively, that is, aunit can call itself either
diredly or indirectly throughsome other unit. In ather words, a new activa-
tion can ocaur before termination of the previous. All the instances of the



85

same unit are omposed of the same ade segment but different adivation
records. Thus, in the presence of recursion, the binding between an adivation
record and its code segment is necessarily dynamic. Every time aunit is acti-
vated, abinding must be establi shed between an activationrecord and its code
segment to form a new unit instance.

When aroutine is activated, parameters may be passed from the cdler to the
cdlee. Parameter passng allows for the flow of information among pogram
units. In most cases, ony data entities may be passed. In some @ses, routines
may also be passd. In particular, this feature is offered by languages where
routines are first-class objects.

Parameter passng and communication via norlocal data are two dfferent
ways of achieving inter-unit information flow. Unlike communication via
global environments, parameters allow for the transfer of different data at
each call and provide advantages in terms of readabili ty and modifiability.

It is necessary to distinguish between formal parameters (the parameters that
appear in the routine' s definition) and actual parameters (the parameters that
appear in the routine's call). Most programming languages use a positional
method for binding adual to formal parameters in routine calls. If the rou-
tine's header is

routine S (F1,F2, . .. Fn);
andtheroutinecal is

cal S(A1,A2,...An)
the paositional method implies that the formal parameter Fi is to be boundto

adual parameter Ai,i=12,..n. In some caes the number of actual and formal
parameters need na be the same. For example, in C++ formal parameters can
be given a default value, which is used in case the correspondng actual
parameters are nat passed in the call.

For example, given the following function header:
int distance(int a= 0, int b =0);
the @l distance () is equivalent to distance (0, 0), and the call distance (10) IS

equivalent to distance (10, 0). For further comments, see Exercise 42.

Besides the paositional association method, Ada dlows also a named parame-
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ter asociation. For example, having defined a procedure with the following
header

procedure Example (A: T1; B: T2:=B1,; C: T3);
--parameters A, B, and C are of types T1, T2, and T3, respedively;
--adefault value is spedfied for parameter B, given bythe value of B1
asuming X, Y, and z to be of types T1, T2, and T3, respedively, the following

cdlsarelegal:

Example (X, Y, 2);
--thisis a pure positional association
Example (X, C=>Z)
--X isbound to A positionally, B gets the default value
--Z isbound to C in a named association
Example (C=>Z,A =>X,B=>Y);
--al correspondences are named here
We take up the issue of parameter passngin Sedion 2.6.6 where we give an
abstract implementation model and describe the different kinds of parameter

passng modes.

2.4.1Genericroutines

Routines fador a code fragment that is executed at diff erent points of the pro-
gram in a singe place and asggn it a name. The fragment is then executed
through invocation, and customized through prameters. Often, hawvever,
similar routines must be written several times, because they differ in some
detail aspeds that canna be factored through @rameters. For example, if a
program neels both a routine to sort arrays of integers and arrays of strings,
two dfferent routines must be written, ore for each parameter type, even if
the astraa algorithm chaosen for the implementation d the sort operation is
the samein bah cases.

Generic routines, as offered by some programming languages, provide asolu-
tion to this problem. In this sction we provide a view of generic routines as
they appear in languages like C++ or Ada. More complex schemes will be
discussed in Chapter 4 and in the case of ML functions in Chapter 8. A
generic routine can be made parametric with respect to atype. In the previous
example, the routine would be generic with respect to the type of the aray
elements. Type parametersin a generic routine, however, differ from conven-
tional parameters, and require adifferent implementation scheme. A generic
routine is a template from which the specific routine is generated through
Instantiation, an operation that binds generic parameters to actual parameters
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at compile time. Such hinding can be obtained via macroprocessng, which
generates a new instance (i.e., an actual routine) for each type parameter.
Other implementation schemes, however, are also passble.

Figure 10 shows an example of a generic swap routine in C++. Generic C++
units are clled templates. More on generics, their eff ect on reusabili ty of pro-
gram comporents, and the feaures offered by C++ in support of these con
cepts will be discussed in Chapter 7.

template <class T> void swap (T& a, T& b)

/* the function does not return any value; it is generic with resped to type T;
a and b refer to the the same locdions as the adual parameters;

swap interchanges the two values*/

Ttemp=g&

a=b;

b = temp;
}

FIGURE 10. A generic routinein C++

2.4.2More on scopes: aliasing and overloading

As our discussion so far emphasized, a central isue of programming lan-
guage semantics has to dowith the cnventions adopted for naming. In pro-
grams, names are used to denote variables and routines. The language uses
speda names (denoted by operators), such as + or * to denote certain pre-
defined operations. So far, we implicitly assumed that at each pant in a pro-
gram a name denotes exactly one entity, based on the scope rules of the
language. Since names are used to identify the corresponding entity, the
asumption d unique binding between a name and an entity would make the
identification urambiguouws. This restriction, havever, is amost never true
for existing programming languages.

For example, in C one can write the foll owing fragment:

inti,j, k;

float a, b, c;

i :j +k;

a=b+g;
In the example, operator + in the two instructions of the program denotes two
different entities. In the first expresson, it denotes integer addition; in the
sewmnd, it denctes floating-point addition. Althoughthe name is the same for



88 Syntax and semantics Chap.2

the operator in the two expressions, the binding between the operator and the
correspondng operation is different in the two cases, and the exact binding
can be established at compil e time, since the types of the operands all ow for
the disambiguation.

We can generalize the previous example by introducing the concept of over-
loading. A name is said to be overloaded if more than ore entity is boundto
the name at a given pant of a program and yet the specific occurrence of the
name provides enoughinformation to al ow the binding to be uniquely estab-
lished. In the previous example, the types of the operands to which + is
applied all ows for the disambiguation.

As another example, if the secondinstruction d the previous fragment would
be dhanged to

a=b+c+b();
the two occurﬁénces of name b would (unambiguously) denate, respectively,
variable b and routine b with no parameters and returning afloat value (assum-
ing that such routine is visible by the assgnment instruction). Similarly, if
ancther routine named b, with ore int parameter and returning a float value is
visible, instruction

a=b()+c+b();
would urambiguosly dencte two call sto the two dfferent routines.

Aliasing is exadly the oppasite of overloading. Two names are aliasesif they
denote the same antity at the same program point. This concept is especialy
relevant in the case of variables. Two alias variables dare the same data
object in the same referencing environment. Thus modification d the object
under one name would make the effect visible, maybe unexpectedly, under
the other.

Althoughexamples of aliasing are quite common, ore shoud be careful since
this feature may lead to error prone and dfficult to read programs. An exam-
ple of diasingis $own bythe following C fragment:

inti;
int fun (int& a);

a=a+1;
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printf ("%d", i);
main ()
X = fun (i);

}
When functionf is executed, namesi and a in fun denote the same data object.
Thus an assgnment to a would cause the value of i printed by fun to dffer
from the value held at the paint of call.

Aliasing can easlly be ahieved through panters and array elements. For
example, the following assgnmentsin C

intx=0;
int* i = &x;
int* j = &x;

would make *i, *], and x ali ases.

2.5 An abstract semantic processor

To describe the operational semantics of programming langueges, we intro-
duce asmple astract procesr, caled SIMPLESEM, and we show how lan-
guage anstructs can be executed by sequences of operations of the astract
processor. In this section, we provide the main features of SIMPLESEM,;
additional details will be introduced incrementally, as additional language
features are introduced.

In its basic form, SIMPLESEM consists of an instruction pointer (the refer-
ence to the instruction currently being executed), a memory, and a processor.
The memory is where the instructions to be executed and the data to be
manipulated are stored. For ssimplicity, we will assume that these two parts
are stored into two separate memory sections. the code memory (C) and the
data memory (D). Both C's and D's initial addressis O (zero), and bdh pro-
grams and data are assumed to be stored from the initial address The instruc-
tion panter (ip) isaways used to pant to alocation in C; it isinitialized to 0.

We use the notation D[X] and C[X] to denate the values gored in the X-th cell
of D andc, respectively. Thus X isan | _value and D[X] is the @rrespondng
r_value. Modification d the value stored in acdl i s performed byinstruction
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set, with two parameters: the addressof the cdl whose mntents is to be set,
and the expresson evaluating the new value. For example, the effect on the
data memory of instruction

set 10, D[20]
isto assgnthe value stored at locaion 20into location 10.

Inpu/output in SIMPLESEM is achieved quite simply by wsing the set
instruction and referring to the speaal registers read and write, which provide
for communication o the SIMPLESEM machine with the outside world. For
example,

set 15, read
means that the value read from the inpu deviceisto be stored at location 15

set write, D[50]
means that the value stored at location 50is to be transferred to the output
device.

We ae quite liberal in the way we dlow values to be combined in expres-
sions; for example, D[15]+D[33]*D[41] would be aan acceptable expresson,
and

set 99, D[15]+D[33]*D[41]
would be an acceptable instruction to modify the contents of location 99.

Aswe mentioned, ip is SIMPLESEM'sinstruction panter, which isinitialized
to zero at each new execution and automatically updated as each instructionis
executed. The machine, in fact, operates by executing the following steps
repeatedly, until it encounters a specia halt instruction:

1. Get the aurrent instruction to be exeauted (i.e., C[ip]);

2. Increment ip;

3. Exeaute the aurrent instruction.
Notice, howvever, that certain programming language instructions might mod-
ify the normal sequential control flow, and this must be reflected by SIM-
PLESEM. In particular, we introduce the foll owing two instructions: jump and
jumpt. The former represents an urcondtional jump to a certain instruction.
For example,
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jump 47
forces the instruction stored at address 47 d C to be the next instructionto be
executed; that is, it sets ip to 47. The latter represents a conditional jump,
which occurs if an expresson evaluates to true. For example, in:

jumpt 47, D[3] > D[8]
the jump occurs only if the value stored in cell 3 is greater than the value
stored in cdl 8.

SIMPLESEM allows indirect addressing. For example:

set D[10], D[20]
assgns the value stored at location 20into the cell whose addressis the value
stored at location 10.Thus, if value 30is gored at location 10, the instruction
modifies the contents of location 30.Indirection is also passble for jumps.
For example:

jump D[13]
jumps to the instruction stored at location 88 @ C, if 88isthe value stored at
location 13.

SIMPLESEM, which is ketched in Figure 11, is quite simple. It is easy to
understand haw it works and what the éfects of executingitsinstructions are.
In ather terms, we can assume that its smanticsis intuitively known; it does
nat require further explanations that refer to ather, more basic concepts. The
semantics of programming languages can therefore be described by rules that
spedfy how each construct of the language is trandated into a sequence of
SIMPLESEM instructions. Since SIMPLESEM is perfectly understood, the
semantics of newly defined constructs becomes also known. As we will see,
however, SSIMPLESEM will aso be enriched as new programming language
concepts are introduced. This will be dore in this bookincrementally, as we
address the semantics of new concepts.
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FIGURE 11.The SIMPLESEM machine

2.6 Execution-time structure

In this gction we discusshow the most important concepts related to the exe-
cution-time processing d programming languages may be explained using
SIMPLESEM. We will proceed gradually, from the most basic concepts to
more complex structures that reflect what is provided by modern general-pur-
pose programming languages. We will move through a hierarchy o lan-
guages that are based on variants of the C programing language. They are
named C1 throughC5.

Our discussion will show that languages can be dassfied in severa caego-
ries, according to their execution-time structure.

Satic languages. .
Exemplified by the ealy versions of FORTRAN and COBOL, these lan-

guages guarantee that the memory requirements for any program can be eval-
uated before program execution begins. Therefore, al the needed memory
can be allocated before program execution. Clearly, these languages cannat
allow recursion, kecause reaursion would require an arbitrary number of unit
instances, and thus memory requirements could na be determined before
execution. (As we will see later, the implementation is not required to per-
form the memory allocation statically. The semantics of the language, how-
ever, give the implementer the freedom to make that choice)

Section 2.6.1and Sedion 2.6.2will discusslanguages C1, C2, and its variant
C2', all of which fall under the category of static languages.
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Sack-based languages o _
Historically headed by ALGOL 60 andexemplified bythe family of so-called

Algd-like languages, this class is more demanding in terms of memory
requirements, which cannot be mmputed at compile time. However, their
memory usage is predictable and foll ows a last-in-first-out discipline: the lat-
est allocated activation record is the next one to be deall ocated. It is therefore
passible to manage SIMPLESEM’ s D store as a stack to model the execution-
time behavior of this class of languages. Notice that an implementation o
these languages need na use a stack (although, most likely, it will): deall oca-
tion d discarded activation records can be asoided if store can be viewed as
unbounad. In ather terms, the stack is part of the semantic model we provide
for the language; strictly speaking, it is not part of the semantics of the lan-

guage.

Section 2.6.3and Section 2.6.4 dkcuss languages C3 and C4, which fall
under the category of stack-based languages.

Fully dynamic languages . . .
These languages have un unpedictable memory usage; i.e, data ae dynami-

cdly alocated oy when they are needed duing execution. The problem
then becomes how to manage memory efficiently. In perticular, how can
unused memory be recognized and reallocated, if needed. To indicate that
store D isnaot handed accordingto apredefined policy (like a FIFO padlicy for
a stadk memory), the term “hegp” is traditionaly used. This class of lan-
guagesisillustrated bylanguage C5in Section 2.6.5.

2.6.1C1: A language with only simple statements

Let us consider a very simple programming language, called C1, which can
be seen as alexical variant of a subset of C, where we only have simple types
and simple statements (there ae no functions). Let us assume that the only
data manipulated by the language are thase whase memory requirements are
known staticdly, such as integer and floating pant values, fixed-size arays,
and structures. The entire program consists of a main routine (main ()), which
encloses a set of data declarations and a set of statements that manipulate
these data. For ssimplicity, input/output is performed by invoking the opera-
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tions get and print to read and write values, respectively.

main ()
L
inti, j;
get(i,]);
while (i =)
if (i >j)
i-=];
else
j-=1

print (i);

FIGURE 12.A C1 program

A C1 program is shown in Figure 12 and its graightforward SIMPLESEM
representation before the exeaution starts is hown in Figure 12. The D por-
tion shows the activation record of the main program, which contains gace
for al variables that appear in the program. The C portion shows the SIM-
PLESEM code.

cell reserved for i

o

set 0, read , L
program’s activation

set 1, read 1| cell reserved for record

jump 8, D[0] = D[1]

jump 6, D[0] 0 D[1]

set 0, D[0] - D[1]

jump 7 D
set 1, D[1] - D[O]

jump 2

set write, D[0]
halt i P

© O N4 O O N g N R O

FIGURE 13.Initial state of the SIMPLESEM machine for the C1 program in Figure 12

2.6.2C2: Adding simpleroutines
Let us now add a new feature to C1. The resulting language, C2, allows rou
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tinesto be defined in a program and all ows routines to dedare their own local
data. A C2 program consists of a sequence of the following items:

» a(possbly empty) set of data dedarations (global data);
» a(posdgbly empty) set of routine definitions and or dedarations;

» amainroutine(main ()), which containsitslocd datadedarationsand a set of statements,
that are aitomatically adivated when the exeaution starts. The main routine cannot be
cdled by other routines.

Routines may accesstheir local data and any gobal data that are not rede-

clared internally. For simplicity, we asume that routines canna cdl them-
selves recursively, do na have parameters, and dona return values (these
restrictions will be removed later).

Figure 14 shows an example of aC2 program, whose main routine gets called
initially, and causes routines beta and alpha to be call ed in a sequence.

inti=1,j=2,k=3;
?lpha()

inti=4,1=5;

i+=k+l;

b

beta ()

{
intk =6;
i;j+k;
apha();

y

main ()
beta ();

}
FIGURE 14. A C2 program

Under the assumptions we made so far, the size of each unt’s adivation
record can be determined at translation time, and all activation records can be
allocaed before execution (static allocation). Thus each variable can be bound
to aD memory addressbefore exeaution. Static all ocationis a straightforward
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implementation scheme which daes nat cause any memory all ocation ower-
heal at run time, bu can waste memory space In fact, memory is all ocated
for a routine even if it is never invoked. Since our purpose is to provide a
semantic description, nd to dscussan efficient implementation scheme, we
asume static dl ocation. The run-time model described in Section 2.6.3could
be aapted to provide dynamic memory allocation for the C2 classof lan-

Figure 15 shows the state of the SIMPLESEM machine dter instructioni +=k
+ | of routine alpha has been exeauted. The first location d each adivation
record (offset 0) is reserved for the return pointer. Starting at location 1,
space isreserved for the local variables. In general, for an instance of unit A,
the return panter will contain the aldress of the instruction that shoud be
executed after unit A terminates. This does not apply to main, which daes not
returnto a c@ler. On rea computers, however, mainiscalled bythe operating
system, and after termination main must return control to the operating sys-
tem. Also nadice that we maintain an activation record to keg dobal data at
the low addressend d store D.
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FIGURE 15.State of the SIMPLESEM exeauting the program of Figure 14

set 6, 16

jump 100

set 4, D[4]+D[2]+D[5]

jump D[3]

set 0, D[1]+D[7]

set 3, 125

jump 50

jump D[6]

main
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So far, we implicitly assumed that in C2 the main program and its routines are
compiled in ore mondithic step. It may be @mnvenient instead to alow the
various units to be compil ed independently. Thisisillustrated by a variant of
C2 (called C2") which allows program units to be put into separate files, and
eah file to be separately compiled in an arbitrary order. The file which con-
tains the main program may also contain gobal data declarations, which may
then be imported by ather separately compiled unts, which consist of single
routines. If any of such routines needsto access ®me globally defined data, it
must define them as external. Figure 16 shows the same example of Figure
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14, wsing separate compilation.

file 1 file 2 file 3
inti=1,j=2,k=3; externint k; externint i, j;
extern beta (); apha extern alpha ( );
main () 0 {p 0 ?eta()
- } alpha ();
beta (); e

) }

FIGURE 16. Program layout for separate compilation

Asin the ase of C2, a SSIMPLESEM implementation can reserve the first
location d each activation record (except for main) for the pointer to the
cdler’sinstruction, to be exeauted upon return. Further consecutive locaions
are then reserved for local variables, which can be boundto their off set within
the activation record, as each routine is independently compil ed. Independent
compilation, havever, does nat alow variables to be boundto their absolute
addresses. Because of independent compilation, imported gobal variables
canna even be boundto their offsets in the global activation record. Simi-
larly, routine cls canna be boundto the starting addressof the wrrespond
ing code segments.

To resolve such urresolved addresses, a linker is used to combine the inde-
pendently translated modues into a single executable modue. The linker
assgns the various code segments and adivation records to stores C and D
andfill sany missng information that the compil er was unable to evaluate.

From this discusson we see that C2 and C2' do na differ semanticadly.
Indeed, orce alinker collects al separately compiled comporents, C2' pro-
grams and C2 programs canna be distinguished. Their differenceisin terms
of the user-suppat they provide for the development of large programs. C2'
allows parall el development by several programmers, who might work at the
same time on dfferent units.

Independent compilation, as offered by C2', is a simplified version d the
facility offered by several existing programming langueges, such as FOR-
TRAN and C.
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2.6.3C3: Supporting reaursive functions

Let us add two new features to C2: the aility of routines to cdl themselves
(direct recursion) or to cdl one ancther in areaursive fashion (indirect recur-
sion), and the abili ty of routines to return values, i.e., to behave as functions.
These extensions define anew language, C3, whichiisillustrated in Figure 17
throughan example.

intn;
int fad ()

int loc;
if (n>1){
loc=n--;
return loc * fad ();

}

else
return 1;

main ()

get (n);
if (n>=0)
print (fad ());
else
print ("input error");

FIGURE 17. A C3 example

Aswe mentioned in Section 2.4,in order to suppat mutual recursion between
two routines-say, A and B—the program must be written according to the fol-
lowing pettern:

A’sdedaration (i.e.,, A’s healer);

B’s definition (i.e., B's header and body);

A’sdefinition;
Let usfirst analyze the dfect of the introduction d recursion. Although each
unit's adivation record has aknown andfixed size, in C3it is not known how
many instances of any unt will be needed duing exeaution. As an example,
for the program shown in Figure 17, at agiven pdnt of execution two activa-
tions are generated for function faa if the read value of n is greater than o
equal to two. All different activations have the same code segment, since the
code does nat change from one adivation to ancther, bu they need dfferent
adivation records, storing the different values of the locd environment. As
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for C2, the cmpiler can hind each variable to its off set in the wrrespondng
adivationrecord. However, as oppased to C2, it isnot passhble to perform the
further binding step which transforms it into an absolute aldress of the D
store until exeaution time. In fact, an activation record is alocated by the
invoking function for each new invocation, and each new allocaion estab-
lishes anew binding with the correspondng code segment to form anew acti-
vation d the invoked function. Consequently, the final binding step which
adds the offset of a variable-known statically—to the starting address (often
cdled base address) of the adivation record—knavn dyramically—can ony
be performed at executiontime. To make this possble, we will usethe cll at
address zero in D to store the base addressof the activation record of the air-
rently executing unit (we also call thisvalue CURRENT).

When the current instance of a unit terminates, its activation record is no
longer needed. In fact, no dher units can accessitsloca environment, andthe
semantic rule of function invocation requires a new activation record to be
freshly all ocated. Therefore, after a function completes its current instance, it
is possble to free the space occupied by the activation record and make it
avail able to store new adivation records in the future. For example, if A cdls
B which then calls C, the activation records for functions are dl ocaed in the
order A, B, C. When C returns to B, C's activation record can be discarded;
B's activationrecord is discarded next, when B returnsto A. Because the acti-
vation record that is freed is the one that was most recently allocated, activa-
tion records can be alocated with a last-in/first-out pdicy on a stack-
organized storage.

In order to make return from an adivation pasible, the following recessary
information is dored in the activation record: addressof the instruction to be
executed (return point) and base address of activation record to become
adive uponreturn. In the ase of C2, ory thereturn pdnt needed to be saved,
because throughit the (unique) activation record associated with the cdlee
also becomes known. If more than ore activation may exist for a given unt,
this more general solution kecomes necessary. Therefore we asume that the
cdl at offset O of activation records contains the return pant, while the cell at
off set 1 contains apainter to the base aldress of the call er's activation record—
this painter is cdled the dynamic link. The dhain of dynamic links originating
in the currently active activation recard is called the dynamic chain. At any
time, the dynamic chain represents the dynamic sequence of unit activations.
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In order to manage SIMPLESEM's D store as a stack, it is necessary to know,
a run time, the address of the first free cell of D, since anew adivation
record is alocated from that point on. We will use D’s cell at address1 to
keep this information (we all this value FREE). Finadly, it is necessary to
provide memory space for the value returned by the routine, if it behaves asa
function. Since the routine’' s adivation record is deall ocaed uponreturn, the
returned value must be saved into the aller’ s activation record. That is, when
afunctional routineis called, the cdl er’ s activation record is extended to pro-
vide space for the return value, and the call eewrites the returned value into
that space (using a negative offset, since the location isin the cller’s activa-
tion record) before returning?.

Figure 18 provides an intuitive view of SIMPLESEM's D store. Activation
records are dlocated ore on top d the previous, and the dlocated memory
grows from the upper part of the store (correspondng to low addresses)
downwards.

0
growth
1 of the stack
2
3
CURRENT
activation record
of the caller
FREE
return :
point dynamic
(to C memory) link
activation record
of the currently
exeauting routine

1. For further details concerning the management of return values, see Exercise 21.
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FIGURE 18. Structure of the SSIMPLESEM D memory implementing a stack
Since recursive routines are the main additional features of C3, we now show

how the semantics of routine call and return are specified in terms of SIM-
PLESEM instructions.

Routine call

set1,D[1] +1 assume one cdl is aufficient to hdd
thereturned value

set D[1],ip+4 set the value of the return point in
the cdleés
adivation record

set D[1] + 1, D[Q] set the dynamic link of the cdle€s
adivation record to pdnt to the
cdler’ s adivation record

set 0, D[1] set CURRENT, the aldress of the
currently exeauted adivation record

set 1, D[1] + AR set FREE (AR isthe sizeof the
cdleésadivationrecord)

jump start_addr start_addr is an addressof C where
thefirst instruction of the cdleés
code s stored.

Return fromroutine

set 1, D[0] set FREE

set 0, D[D[0] +1] set CURRENT

jump D[D[1]] jump to the stored return point

We asaume that before the execution d a C3 program starts, ip is st to pant
to the first instruction d main () and the D memory is initiaized to contain
space for the global data and for the adivation record of main (). Such activa-
tion record contains ace just for loca main’s variables (if any); space for the
address of the return instruction and for the dynamic link are not needed,
since the main routine does not return to acall er. Its termination simply means
that the execution terminates. The values dored in D[0] and D[1] are dso
asumed to be initialized before execution. D[(Q] is st to the address of the
first location o main’s activation record and D[ 1] must be set to the addressof
the first free location after main’ s activation record.

As an exercise, let us srow how the program of Figure 17 is exeauted by the
SIMPLESEM machine. The code stored in the C memory is the foll owing:
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0 set2, red reads the value of n; 2 isthe asolute address where
global variable nis stored

1 jumpt10,D[2] <0 teststhe value of n

2 st1,D[1]+1 cdl to fad starts here; space for the result saved

3 setD[1],ip+4

4 setD[1] +1, D[0]

5 set0, D[1]

6 setl D[1]+3 3isthesizeof fad’sadivation record

7 jump12 12 isthe starting address of fad’s code

8 setwrite, D[D[1] -1] DI[1] - 1isthe aldress where the result of the cdl to fad
is stored

9 jump13 end of the cdl

10 set write, “input error”

11 halt thisisthe end d the ade of main

12 jumpt 23,D[2] 08 1 teststhe value of n

13 set D[Q] + 2, D[2] assignsntoloc

14 st2,D[2] -1 deaementsn

15st1,D[1] +1 cdl to fad starts here; space for the result saved

16 set D[1], ip + 4
17 set D[1] + 1, D[O]

18 st 0, D[1]
19 set1,D[1] +3 3isthesizeof fad’s adivation record
20 jump 12 12 isthe starting address of fad’s code

21 st D[Q] - 1, D[D[O] + 2] * D[D[1] - 1] thereturned value is gored in the
cdler'sadivationrecord

22 jump 24
23 =t D[0]-1,1 return 1
24 st 1, D[Q] this and the next 2 instructions correspond to the return

from the routine
25 set 0, D[D[0] + 1]
26 jump D [D[1]]

Figure 19 provides two snapshats of the D memory: immediately after the
first call to fad (case (a)) and at the return pdnt from the third activation o
fact when the initialy read inpu value is 3 (case (b)). The reader is urged to
try the example on paper, gang throughall i ntermediate steps of execution.

Note that the stack-based abstrad implementation scheme discussed in this
sedion also can be used for implementing C2. We discussed C2 in terms of
static memory all ocation, bu this was smply an implementation choice. The
advantage of a stack-based implementation would be that only the minimum
amourt of data store is allocated at any gven time. The disadvantage, of
course, isthat a more complicated memory management scheme is needed.
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0 CURRENT 0 12 CURRENT
1 FREE 1 15 FREE
2 n 2 1 n
3 ret. value 3 ret. value
/V 4 ret. point /V 4 8 ret. point
fact' SAR 5 dyn. link fad SAR 5 2 dyn. link
\‘ 6 loc \A 6 loc
7 ret. value
@ 8 21 ret. point
/' 9 dyn. link
fact SAR 10 > loc
11 1 ret. value
12 21 ret. point
fact sAR13 8 dyn. link
\‘ 14 loc

b
FIGURE 19. Two snapshots of the D memory ()

2.6.4C4: Supporting block structure

The structuring faalities offered by C3 allow programs to be defined as a
sequence of global declarations of data and routines. Routines may cdl them-
selvesin arecursive fashion.In this sction we discussa new extensionto ou
language family, which collectively define anew family C4. The family C4
contains two members: C4' and C4". C4' dlows local declarations to appear
within any compound statement. C4" suppats the ability to nest a routine
definition within ancther. Conventionally, the new features offered by C4'
and C4" are mlledively called block structure. Block structureis used to con
trol the scope of variables, to define their lifetime, and to divide the program
into smaller units. Any two blocks in the program may be ather digoint (i.e.,
they have no pation in common) or nested (i.e., ore block completely
encloses the other).
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2.6.4.1 Nesting via compound statements

In C4', blocks have the following form of compound statement, which can
appear wherever a statement can appear:

{<dedaration_list>; <statement_list>}

It is easy to realize that such compoundstatements follow the aforementioned

rule of blocks: they are either digoint or they are nested. A compoundstate-

ment defines the scope of its locally declared variables. such variables are
visible within the compound,including any compoundstatement nested in it,

provided the same name is not redeclared. An inner declaration masks an

external declaration for the same name. Figure 20 shows an example of a C4'
function having rested compound statements. Function f has local declara-

tionsfor x, y, andw, whase scope extends from //1 to the entire function body,
with the following exceptions:

» x isrededared in //2. From that dedaration until the end of the whil e statement the outer
X isnot visible;
* yisrededaredin//3. From that dedaration urtil the end o the whil e statement, the outer
yisnotvisible;
» w isrededared in //4. From that dedaration until the end of the if statement, the outer
dedarationisnot visible.
Similarly, //2 declares variables x and z, whose visibility extends from the

dedaration urtil the end d the statement, with ore exception. Since x is rede-
clared in//4,the outer x is masked bythe inner x, which extends from the dec-



106 Syntax and semantics Chap.2

laration urtil the end o theif statement.

intf();
{ //block 1
intx,y,w; n
while (...)
/Iblock 2
intx,z 12

while(.. )

{ /lblock 3
inty; 113
o /lend block 3

/Iblock 4
int X, w; 14

} /lend block 3
} /lend block 2
if(..)
{ I/block 5
inta b,c,d; 115

y /lend block 5
} /lend block 1

FIGURE 20. An example of nested bocksin C4'

A compound statement also defines the lifetime of locdly declared data
Memory spaceis boundto a variable x as the block in which it is declared is
entered during execution.The binding is removed when the block is exited.

In order to provide an abstract implementation of compound statements for
the SIMPLESEM madhine, there ae two ogions. One consists of staticdly
defining an activation record for a routine with nested compoundstatements,
ancther consists of dynamically alocaing rew memory space correspondng
to locd data & each compoundstatement is entered duing execution. The
former scheme is smpler and more time efficient, whil e the latter can lead to
a more space efficient implementation. We will discussthe former scheme,
and leave the latter to the reader as an exercise, which can easily be solved
after reading Section 2.6.4.see Exercise 27).

Let us refer to the example of Figure 20. Note that the while block that



107

dedares variables x and z and the if block that declares a, b, ¢, and d are dis-
joint; similarly, the while block that declares variable y and the if block that
dedares x and z are digoint. Sincetwo dgoint blocks canna be active at the
sametime, it ispossble to use the same memory cell sto store their local val-
ues. Thus, the activation record of function f can be defined as 1own in Fig-
ure 21. The figure shows that the same cells may be used to store aand x, b
andw, c and w, €etc.; i.e., operator “--" denotes an owerlay. The definition o
overlays can be done at translation time. Having dore so, the run-time behav-
ior of C4'is exadly the same as was discussd in the ase of C3.

return pointer

dynamic link

xin/l1l

yin//l

win//1

xin//2--ain//5

zin//2--bin//5

yin//3-xin/l4-cin//5

win//4--din//5

FIGURE 21. An adivation record with overlays

A block structure can be described by static nesting tree (SNT), which shows
how blocks are nested into ore ancther. Each noce of a SNT describes a
block; descendants of a node N which represents a certain block denote the
blocks that are immediately nested within the block. For example, the pro-
gram of Figure 20is described bythe static nesting treeof Figure 22.
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block 1
block 2 block 5
block 3 block 4

FIGURE 22.Static nesting treefor the block structure of Figure 20

2.6.4.2 Nesting via locally declared routines

As we mentioned, Hock structure may result from the ability to nest com-
poundstatements within unnested routines, to nest routine definitions within
routines, or both. C and C++ only suppat the nesting d compound state-
ments within routines. Pascal and Modua-2 allow routine nesting, bu do nd
support nesting d compoundstatements. Ada dl ows bath.

intx,y,z
f1()
{ //block 1
:cr21t(t,)u; block 1 /1 block4 block 0
Iiblock 2 T
int x, w; 112
f3() block 1 block 4
/Iblock 3
inty,w,t; // 3 |
p ffend block 3 block 2
X=y+t+w +z |
} /lend block 2
Jfend block 1 block 3
]anain 0); enaplec Block 0 is introduced to
, /lblock 4 represent the outermost
intzt; level of the program
y Jlend block 4 (b)

(a)
FIGURE 23. A C4" example (a) and its gatic nesting tree (b)
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Let us examine how routine nesting might be incorporated into ou language.
Theresulting variationwill be called C4". As siownin Figure 23(a), inC4" a
routine may be dedared within ancther routine. Routine 3 can ony be called
within f2 (e.g., it would na be visible within f1 and main). A call to 3 within
f2’sbodywould be alocd cdl (i.e., a all to alocally declared routine). Since
f3 is interna to 2, f3 can also be alled within f3's body (dired recursion).
Such a cal would be a call to a nonlocdly declared routine, since 3 is
dedared in the outer routine f2. Similarly, 2 can be called within f1’s body
(locd call) and bdh within 2's and 3's bodes (norlocd cdls). Moreover,
the data declared in //1are visible from that point until the end d 1 (i.e., //6),
with ore exception. If a dedaration for the same name gpears in internally
dedared routines (i.e., in //2 or in//3), the internal declarations mask the outer
dedaration. Also, within aroutine, it is possible to accessbath the local vari-
ables, and nonocal variables declared by enclosing ouer routines, if they are
nat masked. In the example, within f3's body, it is possible to access the non
local variables x (dedared in //2), u (dedared in //1) and the global variable z.

As dhown in Figure 23 (b), the ancept of a static nesting tree @n be defined
in this case too. Block 0 isintroduced to represent the outermost level of the
program, which contains the dedarations of variablesx, y, z, and functions 1 (
yand main ().

global
env. XY, 2
main zt
f1 t,u
f2 X, W
f3 Yy, w,t
CURRENT )
f2 X, W

FIGURE 24. A sketch of the run-time stack (dynamic links are shown as arrowed li nes)

Let us examine the dfect of the foll owing sequence of calls: main cdlsf1, f1
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cdls 2, f2 cdls f3, 3 cdls f2. Figure 24 shows a portion d the adivation
record stadk correspondng to the example. The descriptionis highly simpli-
fied, for readabili ty purposes, bu shows all the relevant information. For each
adivation record, we indicate the name of the rrespording routine, the
dynamic link, and the names of variables whose values are kept in it. Let us
suppose that the execution onthe SIMPLESEM madhine reaches the assgn-
ment x =y +t+w+zinf2. Thetrangation processwe discussed so far isableto
bind variables x and w to offsets 2 and 3 of the topmost activation record
(whose initial addressis given by D[Q], i.e., CURRENT); but what abou
variablesy, t, and z? For sure, they shoud na be boundaacording to the most
recently established binding for such variable names, since such bindingwere
establi shed bythe latest activations of routines 3 (y andt) and main (z). How-
ever, the scope rules of C4" require variables y and z referenced within f2 to
be the ones dedared gobally, and variable t to be the one declared locdly in
f1. In ather words, the sequence of activationreards stored in the stack repre-
sent the sequence of unit instances, as they are dynamically generated at exe-
cution time. But what determines the norlocd environment are the scope
rules of the language, which depend onthe static nesting d routine declara-
tions.

global Xy, 2

en\L' » Yo

¥

L mair z,t

\ —

static links are shown as

// ‘\fl tLu ((Jlotted arrowed lines)
U X, W
\ N
\ gl YWt

AN

\ —
f2 X, W CURRENT

FIGURE 25. The run-time stack of Figure 24 with static links

One way to make aacessto norocal variables possble is for each adivation
record to contain a pointer (static link) up the stac to the activation record of
the unit that statically enclosesit in the program text. We will use the location
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of the activation record at offset 2 to store the value of the static link. Figure
25 shows the static links for the example of Figure 24. The sequence of static
links that can be followed from the active adivationrecord is call ed the static
chain. Referencing norocd variables can be explained intuitively as a search
that traverses the static chain. To find the crrect binding between a variable
and a stadk location, the static chain is sarched urtil a bindingis found.In
our example, the reference to t is boundto a stack locaion within f1's activa-
tion record, whereas references to y and z are boundto a stack location within
the global environment—asindeed it should be. Noticethat in this sheme, the
global environment is accessed in the same uniform way as any ather norlo-
cd environment. In such a case, the value of the static link for main’s activa-
tion record is assumed to be set automaticdly before execution. In order to
usethecell at off set 2 of main’ s activationrecord to hdd the value of the static
link, as we do for any ather activation record, the cells at offsets 0 and 1are
kept unused. Alternatively, accessto the global environment can be treated as
aspecial case, by using absolute addresses.

In pradice, searching alongthe static chain, which would entail considerable
run-time overhead, is never necessary. A more efficient solution is based on
the fact that the activation record containing a variable named in a unit U is
always a fixed distance from U's activation record along the static chain. If
the variable islocal, the distance is obviously zero; if it is avariable declared
in the immediately enclosing unt, the distance is one; if it is a variable
dedared in the next enclosing wnit, the distanceis 2, and so on.In general, for
eah referenceto avariable, we can evaluate adistance attribute between that
reference and the arrespording declaration. This distance dtribute an be
evauated and boundto the variable & trandlation time. Consequently, each
referencemay be statically boundto a pair (distance, offset) within the activa-
tion record.

Based on the pair (distance, offset), it is possble to define the following
addressing scheme for SIMPLESEM. If d is the value of the distance, starting
from the address of the aurrent activation record (CURRENT, the value stored
in D[0]), we traverse d steps along the static chain. The value of the offset is
then added to the address © found, and the result is the actual run-time
address to the norlocal data object. We can define thisformally in terms of a
recursive function fp (d), which can then be esily trandated into SIM-
PLESEM. Function fp (d), which stands for the frame pointer—a pointer to an
adivation record-that is d static links away from the active activation record,
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can be defined as:

fp(d) = if d=0 then D[0] else D [fp (d-1)+2]
For example, fp (0) is smply D[0], i.e., the address of the current (topmost)
adivation record; and fp(1) iS D[D[0]+ 2].

Using fp, accessto a variable x, with <distance, offset> pair <d, o>, is provided
by the foll owing address

D[fp(d)+ o

The[sgﬁngnti]cs of function call defined in Section 2.6.3 eeds to be modified
in the case of C4", in order to take into accourt the install ation d static links
in activationrecords. This can be dorein thefollowingway. First, ndice that,
aswe did for variables, one can define the concept of distance between arou
tine cl and the @rrespondng declaration. Thus, if f calls alocal routine f1,
then the distance between the call and the declaration is 0. If f contains a call
to a function declared in the block enclosing f, the distance is 1. This, for
example, would be the caseif f callsitself recursively. If f islocal to function
gandf containsa al to afunctionh declared in the block enclosing g, the dis-
tance between the call andthe declarationis 2, and so on.Therefore, the static
link to install for activationrecord of the calleg, if the calleeisdedared at dis-
tance d, shoud pant to the activation record that is d steps along the static
chain ariginating from the call er's activation record.

In conclusion, the semantics of routine all can be defined by the foll owing
SIMPLESEM code:

Routine call

set1,D[1] +1 set spacefor the result of the
function cdl (assume 1 cdl needed)

set D[1],ip+5 set the value of the return point in
the cdleés adivation record

set D[1] + 1, D[Q] set the dynamic link of the cdleés
adivation record to pant to the
cdler'sadivation record

set D[1] + 2, fp(d) set the static link of the cdleés
adivation record

set 0, D[1] set CURRENT, the aldress of the

currently exeauted
adivation record
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set 1, D[1] + AR set FREE (AR isthe sizeof the
cdleésadivationrecord)
jump start_addr start_addr is an addressof memory C

where the first instruction of the
cdleéscodeis gored.

2.6.5C5: Towards more dynamic behaviors

So far we assumed that the data storage requirements of each urit are known
at compil e time, so that the required amourt of memory can be reserved when
the unit is allocated. Furthermore, the mapping d variables to storage within
the activation record can be performed at compil e time; i.e., each variable is
boundto its offset statically. In this section we discuss language features that
invalidate this assumption, and we show how to define semantics of such fea-
tures.

2.6.5.1 Activation records whose size becomes known at unit activation

Let usfirst introducelanguage C5', byrelaxing the assuumption that the size of
al variables is known at compile time. Such is the case for dynamic arrays,
that is, arrays whase bound become known at execution time, when the unit
(routine or compoundstatement) in which the array is declared is activated.

For example, in the Ada programming language, it is possble to define the
following type:

type VECTOR isarray (INTEGER range <>); --defines arrays with unconstrained index
and declare the following variables:

A: VECTOR (1. .N);
B: VECTOR (1. .M); --N and M must be bound to someinteger value when these two dec
larations are processed at exeaution time

The dstract implementation that defines the semantics for this case is rather

straightforward. At translation time, storage can be reserved in the adivation
record for the descriptors of the dynamic arays. The descriptor includes one
cdl in which we store a painter to the storage areafor the dynamic array and
one cdll for each o the lower and upper bounds of each array dimension. As
the number of dimensions of the array isknown at translation time, the size of
the descriptor is known statically. All accesses to a dynamic aray are trans-
lated as indirect references throughthe pointer in the descriptor, whose offset
is determined staticdly.



114

At runtime, the adivationrecord is all ocated in several stages.

1. The storage required for data whose size is known staticdly and for descriptors of
dynamic arays are dl ocated.

2. When the dedaration of a dynamic aray is encountered, the dimension entries in the
descriptors are entered, the adual sizeof the aray is evaluated, and the adivationrecord
isextended (that is, FREE isincreased) to include spacefor the variable. (This expansion
is possible because, being the adive unit, the adivation record is on top of the stadk.)

3. The pointer in the descriptor is %t to paint to the aeajust allocated.
In the previous example, let us suppcse that the descriptor all ocaed when

variable A is declared is at offset m. The cell at off set m will paint at run time
to the starting addressof A; the cells at offsets m+1 and m+2 will contain the
lower and uppr bounds, respedively, of A’sindex. The runtime actions cor-
respondng to entry into the unit where A’s dedaration appeas will update
the value of D[1] (i.e., FREE) to all ocate spacefor A, based on the known value
of N, and will set the values of the descriptor at off sets m, m+1, andm+2.

Any aaccessto elements of A are trandated to indired references. Assuming
eah integer occupiesonelocation d D and suppaingthat | isalocal variable
stored at offset s, instruction A [1] = 0 would be trandlated into SIMPLESEM
as.

set [D[D[O] + m] + D[D[0] + 5]], O

denotes the base

address of A denotes the value of |

2.6.5.2 Fully dynamic data allocation

Now let us consider ancther language variation, called C5", in which data @an
be dlocaed explicitly, through an exeautable dlocation instruction. In most
existing languages, this is achieved by defining panters to data, and by pro-
viding statements that all ocate such datain afully dynamic fashion.

For example, in C++ we can define the following type for nodes of a binary
tree:

struct node {
int info;
node* |eft;
node* right:

h
The following instruction, which may appear in some code fragment:
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node* n = new node;
explicitly alocates a structure with the three fields info, left, and right, and

makes it accesgble viathe painter n.

According to this alocation scheme, data ae al ocated explicitly as they are
nealed. We anna allocate such data on a stad, as do automaticdly allo-
caed data. For example, suppacse that afunction append_left is cdled to gener-
ate anew node and make its accessble through field left of node pointed byn.
Also, suppacse that n is visible by append_left asanorniocal variable. If the node
al ocaed by append Ieft would be all ocated onthe stack, it would be lost when
append_left returns. The semantics of these dynamicadly allocated data, instead,
is that their lifetime does nat depend onthe unit in which their allocaion
statement appears, bu lasts as long as they are accessble, i.e.they are
referred to by some existing panter variables, either diredly or indirectly.

An abstract implementation d this concept using SIMPLESEM can be very
simple, and consists of allocaing dyramic datain D starting from the high-
address end. Thisareaof D is aso cdled the heap. New data are al ocated in
the heap as the dlocation instructions are executed, and we can assume that
the size of the SIMPLESEM D store is sufficient to hdd all data that are
dynamicaly alocated viathe new instruction. Figure 26 gves an oweral view
of how memory D ishanded, in order to suppat both a stack andahegp. We
will return to the practical isaue of actually implementing dynamic al ocaion
in amemory-efficient way in Chapter 3. From a semantic viewpoint, this sSm-
ple implementation scheme an be sufficient.
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stack

heap

FIGURE 26. Management of the D memory

Sidebar start The Structure of Dynamic Languages

The term “dynamic languages’ implies many things. In generd, it refers to
those languages that adopt dynamic rather than static rules. For example,
APL, SNOBOL4 and several LISP variants use dynamic typing and dyramic
scope rules. In principle, of course, a language designer can make these
choices independently of one ancther. For example, one can have dynamic
type rules but static scope rules. In practice, hovever, dyramic properties are
often adopted together.t

In this sidebar, we will examine how the adoption d dynamic rules changes
the semantics of the language in terms of run-time requirements. In general, a
dynamic property implies that the crrespondng kindings are carried ou at
run time and canna be dore & trandation time. We will examine dynamic
typing and dyramic scoping.

In a language that uses dynamic typing, the type of a variable and therefore
the methods of accessand the dl owable operations canna be determined at
trandation time. In Section 2.6.5,we saw that we need to keep a run-time
descriptor for dynamic arrays variables, because we anna determine the size
of or starting address of such variables at trandation time. In that case, the

1. We dready mentioned that there are dynamically typed languages (like ML and Eiffel) that support static
type checking.
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descriptor has to contain the information that canna be cmputed at transa-
tiontime, namely, the starting addressandthe aray bound. It was passble to
keep the descriptor in the activation record because the size of the descriptor
was fixed and knowvn at trandlation time. In the case of dynamically typed
variables, we aso need to maintain the type of the variable in the descriptor.
If the type of a variable may change at runtime, then the size and contents of
its descriptor may also change. For example, if a variable dhanges from a
two-dimensional array to athree-dimensional array, then the descriptor needs
to grow to contain the values of the bounds for the new dimension. Thisisin
contrast to the descriptors of dynamic arays whaose wntents were fixed at
unit adivationtime. Every access to a dynamic variable must be preceded by
aruntime dheck onthe type of the variable, followed by appropriate aldress
computation, depending onthe current type of the variable.

What is maintained for each variable in the activation record for aunit? Since
nat only the variable's size may change during program exeaution, bu so may
the size of its descriptor, descriptors must be kept in the heap. For each vari-
able, we maintain apointer in the activationrecord that pointsto the variable's
descriptor in the heap which, in turn, may contain a pointer to the object itself
in the hegp.

In order to dscussthe dfect of dynamic scope rules, let us consider the exam-
ple program of Figure 27. The program is written using a C-like syntax, bu it
will be interpreted according to an APL-like semantics, i.e., according to
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dynamic scope rules.

sub2 ()

dedarex;

}

subl ()
dedarey;
X
B VAR
sub2 ();

}

main ()

dedare x,Y, z
z=0;
X =5;
y=T,
subl,;
sub2;
}

FIGURE 27. An example of adynamicdly scoped language

A program consists of a number of routines andamain program. Each routine
dedaresitslocal variables (y in the cae of subi, x in the cae of sub2, x, y, zin
the case of main). Any access to a variable that is not locally declared is
implicitly assumed to be an accessto anonlocal variable. A variable declara-
tion does not specify the variable's type: it smply introduces a new name.
Routine names are considered as global identifiers.

Since scope rules are dynamic, the scope of anameistotally dependent onthe
run-time cdl chain (i.e., onthe dynamic chain), rather than the static structure
of the program. In the example shown in Figure 27 consider the point when
the cll to sub1isisaued in main. The norlocal referencesto x and z within the
adivation d subl are boundto the global x and z defined by main. When func-
tion sub2 is activated from sub1, the norlocal reference to y is boundto the



119

most recent definition d y, that is, to the data objed associated toy in subl's
adivation record. Return from routines sub2 and then subl1 causes deall ocation
of the correspondng activation records and then execution d the all to sub2
from main. In this new activation, the norlocal referenceto y from sub2, which
was previously boundto y in subi, is now boundto the global y defined in
main.

An abstrad implementation mechanism to reference norlocal data can be
quite simple. Activation records can be dlocated on a stack and joined
together by dyramic links, as we saw in the case of conventional languages.
Each entry of the activation reaord explicitly records the name of the variable
and contains a pointer to a heg area, where the value can be stored. Alloca-
tion ona heap is necessary because the anount of storage required by each
variable an vary dynamically. For each variable-say, v—the stack is sarched
by following the dynamic chain. The first association foundfor v in an acti-
vationreoord is the proper one. Figure 28ill ustrates the stack for the program
of Figure $20when sub2is called by subi, whichiis, in turn, called by main.

z
main X
y
subl dynamic link ‘\
y
sub2 dynamic link
X
] 1
] 1

HEAP

FIGURE 28. A view of the run-time memory for the program of Figure 27

Althoughsimple, this accessng mechanism is inefficient. Another approach
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is to maintain a table of currently adive norloca references. Instead of
seaching aongthe dynamic chain, asingle lookupin this table is sufficient.
We will nat discussthis lution any further but the reader shoud nae that
this technique speeds up referencing norocal variables at the expense of
more daborate actions to be executed at subprogram entry and exit. These
additional actions are necessary to updhte the table of active norlocal refer-
ences.

Sidebar end

2.6.6Parameter passng

So far we assumed that routines do nd have parameters. we only assumed
that they can return avalue (see Section 2.6.3. We will now remove this lim-
itation by dscussng hav parameter passng may be abstractly implemented
on SIMPLESEM. We first addressthe issue of data parameters, and then we
will analyzeroutine parameters.

2.6.6.1 Data parameters

There ae different conventions for passng data parameters to routines. The
adopted convention is either predefined by the language, and therefore it is
part of the language semantics, or can be chosen by the programmer from
several options. In either case, it is important to know which convention is
adopted, because the choice made affeds the meaning d programs. The same
program may in fad produce different results under different data parameter
passng conventions. Three @mnventions for data parameters are discussed
below: call by reference, call by copy, and call by name. Each o them isfirst
introduced informally, and then defined precisely in terms of SIMPLESEM
adions.

Call by Reference (or by Sharing) _
The alling unt passs to the caled unt the address of the adual parameter

(which is in the cdling unt's referencing environment). A reference to the
correspondng formal parameter in the called unt is treated as a reference to
the locationwhaose addressis so passed. The dfect of call by referenceisintu-
itively described in Figure 29. If the formal parameter is assgned avalue, the
correspondng adual parameter changes value. Thus, a variable that is trans-
mitted as an actual parameter is dhared, that is, directly modifiable by the sub-
program. If an actual parameter isanything aher than avariable, for example,
an expresson a a constant, the subprogram receives the addresswithin the
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cdling unt's activation record of atemporary location that contains the value
of the actual parameter. Some languages tred this stuation as an error.

Environment
of the callee

Environment
of the cller

]
adual parameter

FIGURE 29.A view of call by reference

Suppcse that call by referenceis being added to C4. In order to define aSIM-
PLESEM implementation that specifies smantics precisely, we need to
extend the actions described in Section 2.6.3.The allee's adivation record
must contain ore cdl for each parameter. At procedure cll the cdler must
initi ali ze the contents of the all to contain the addressof the correspondng
adual parameter. If the parameter cell is at off set off and the adtual parameter,
which is boundto the pair (d, o), isnat itself a by-reference parameter, the fol-
lowing action must be added for each parameter:

set D[0] + off, fp(d) + 0
If the actual parameter itself is a by-reference parameter, the SSIMPLESEM
adion shoud be:

set D[O] + off, D[ fp (d) + 0]
When the routine body is executed, parameter reference is performed via
indirect addressng. Thus, if x is a forma parameter and off is its offset,
instruction

x=0;
istrandated as

set D[D[0] + off], 0

Call by copy
In cdl by copy—urike in call by reference-formal parameters do nd share
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storage with adual parameters; rather, they act as local variables. Thus, call
by copy protects the cdli ng unt from intentional or inadvertent modificaions
of adua parameters. It is passible further to classfy cdl by copy into three
modes, according to the way local variables correspondng to formal parame-
tersare initiali zed and the way their values ultimately affect the actual param-
eters. These three modes are call by value, by result, and by \alue-resuilt.

In call by value, the calling unt evaluates the actual parameters, and these
values are used to initialize the wrresponding formal parameters, which act
as local variablesin the cdled unt. Call by value does nat alow any flow of
information back to the cller, since assgnmentsto formal parameters (if per-
mitted) do nd affect the cdling unt.

In call by result, local variables correspondng to formal parameters are not
set at subprogram call, but their value, at termination, is copied back into the
correspondng actual parameter's location within the eavironment of the
cdler. Call by result does nat permit any flow of information from the cller
to the cdl ee.

In call by value-result, locd variables dencting formal parameters are both
initiali zed at subprogram cdl (asin cdl by value) and delivered upontermi-
nation (as in call by result). Information thus flows from the cller to the
cdlee (at the paint of cal) and from the clee to the caler (at the return
point).

A description d the semantics of call by value in terms of a SIPLESEM
implementation is trivial. The cdlee's activation record must contain space
for by-value parameters, as normal local data. The difference here is that the
cdl must provide for initiaizaion o such data. We leave this and the other
two cases of cdl by copy as exercises for the reader.

One might wonder whether call by reference and cdl by value-result are
equivaent. If this were the case, implementing parameter passing in ore
mode would be equivalent to implementing it in the other. It can be shown,
however, that call by reference may produce a different result from cal by
value-result in the following cases:

 two formal parameters bemme diases (i.e., the two dfferent names denate the same
objed);
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 aformal parameter and a nonlocd variable which isvisible bath by the cdler and bythe
cdleebecme diases.
We will provide two examples to motivate these statements. The first case

may happen if-say— a[i] and a[j] are two integer actual parameters corre-
sponding to the formal parametersx andy, andi happensto be equal toj at the
point of call. In such a @ase, the dfect of cdl by reference is that x andy
would be diased, since they would refer to the same aray element. If the row-
tine contains the foll owing statements:

x=0;
++;
theyr$ult of the al isthat the array element of index i (andj) is %t to 1. Inthe
case of call by value-result, let a[i] be 10 at the paint of call. The cal would
initialize x and y to the 10. Then x becomes 0 and y becomes 11, due to the
above assignment statements. Finally, uponreturn, first 0 is copied badk into a
[il andthen 11is copied back into the same cdl, if copies are performed in this
order. Asaresult, the array element is st to 11.

As an example of the second case, suppacse that a routine is called with ore
integer actual parameter awhich correspondsto the formal parameter x. Let a
be visible by the routine as a nonlocal variable. Suppase that the routine con-
tains the following statements:

a=1,

X=X+gq
In the aase of call by reference, the dfed of the cll isthat ais %t to 2. In the
case of call by value-result, if as vaue is 10 at the cdl point, the value

bewmmes 11 uponreturn.

Call by name
Asin call by reference, aformal parameter, rather than being alocd variable

of the subprogram, denctes alocationin the environment of the cdler. Unlike
with call by reference, however, the formal parameter is not boundto aloca-
tionat the paint of call; it isboundto a (possbly diff erent) locaion each time
it is used within the subprogram. Consequently, each assgnment to a formal
parameter can refer to a different location.

Basically, in cal by name each occurrence of the formal parameter is
replaced textually by the adual parameter. This may be atieved by asimple
kind d macro processng, with ore exception that will be discussed below.
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This apparently smple rule can lead to ursuspeded compli cations. For exam-
ple, the following procedure, which is intended to interchange the values of a
and b (aandb are by-name parameters)

swap (int a, b);
int temp;
{
temp =&
a=b;
b = temp;

b
most likely produces an urexpected result when invoked bythe cdl

swap (i, a[i]) o
The replacement rule specifies that the statements to be executed are

temp =1i;

i =ali];

a[i] = temp;
If i=3anda[3] =4 beforethe cdl, i =4 and a[4] = 3 after the cll (a[3] is unaf-
fected)!

Ancther trap is that the actual parameter that is (conceptually) substituted into
the text of the called unt belongs to the referencing environment of the cller,
not to that of the callee For example, suppase that procedure swap a'so counts
the number of timesit is called and it is embedded in the foll owing fragment.

intc;

swap (int a, b);
int temp;

{
temp=a;, a=b;
b =temp; c ++;

}
y ()

intc,d;
swap (c, d);

When swap is cdled byy, the replacement rule specifies that the statementsto
be executed are

temp =c¢;
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c=d,

d =temp;

C++;
However, the location boundto name c in the last statement belongs to x's
adivation record, whereas the location boundo the previous occurrences of ¢
belongto y's adivation record. This shows that plain macro processng daes
not provide a corred implementation d cal by name if there is a conflict
between names of norlocds in the routine’s body and rames of locds at the
point of call. This example aso shows the possible difficulty encourtered by
the programmer in foreseeing the runtime binding d actual and formal
parameters.

Call by name, therefore, can easily lead to programsthat are hard to read. It is
also ursuspectedly hard to implement. The basic implementation technique
consists of replacing each reference to aformal parameter with a cll to arow-
tine (traditionally call ed thunK) that evaluates a referenceto the a¢ual param-
eter in the gpropriate environment. One such thunkis created for each actual
parameter. The burden of run-time cdl s to thunks makes cdl by name costly.

Due to these difficulties, cdl by name has mostly theoretical and hstorical
interests, bu has been abandored by pradical programming languages.

Call by referenceisthe standard parameter passng mode of FORTRAN. Call
by nameis dandard in ALGOL 60, bu, ogionally, the programmer can spec-
ify cal by value. SIMULA 67 provides call by value, call by reference, and
cdl by name. C++, Pascd and Modua2 alow the programmer to pass
parameters either by value (default case) or by reference. C adopts call by
value, bu allows call by reference to be implemented qute eaily via point-
ers. Ada defines parameter passng based onthe intended use, as either in (for
inpu parameters), out (for output parameters), or inout (for inpu/output
parameters), rather than in terms of the implementation mechanism (by refer-
ence or by copy). If the mode is nat explicitly specified, in is assumed by
default. More onthiswill be discussed in Chapter 4.

2.6.6.2 Routine parameters

Languages supporting variables of type routine are said to treat routines as
first-class objeds. In particular, they allow routines to be passed as parame-
ters. Thisfacility isuseful in some practical situations. For example, aroutine
S that evaluates an analytic property of afunction (e.g., cerivative & a given
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point) can be written withou knowledge of the function and can be used for
different functions, if the functionis described by aroutine that is ®nt to Sas
a parameter. As ancther example, if the language does not provide explicit
features for exception handling (see Chapter 4), one can transmit the excep-
tion handler as a routine parameter to the unit that may raise an exception
behavior.

Routine parameters behave very differently in staticdly and dynamicdly
scoped languages. Here we concentrate on statically scoped languages. Hints
on hav to hande dynamically scoped languages are given in a sidebar.

Consider the program in Figure 30. In this program, b is called by main (line
14) with actual parameter a; inside b, the formal parameter x is caled (line
15), which in this case corresponds to a. When a is called, it shoud execute
normally just as if it had been called drectly, that is, there shoud be no
observable diff erencesin the behavior of aroutine alled drectly or througha
formal parameter. In particular, the invocation d a must be able to access the
nonlocal environment of a (in this case the global variables u andv. Note that
these variables are not visible in b because they are masked by b's local vari-
ables with the same names.) This introduces a dight difficulty because our
current abstract implementation scheme does not work. Aswe saw in Sedion
2.6.4,the cl to aroutine is translated to several instructions. In particular, it
IS nea@ssry to reserve space for the activation record of the cdlee and to set
upits datic link. In the ase of “cdl x” in b, thisisimposgble at trandation
time because we do nd know what routine x is, let alone its enclosing urit.
Thisinformation, in general, will only be known at run time. We can hande
this stuation bypassngthe size of the activation record and the needed static
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link at the point of call.

intu,v;

a()

inty;

b,(routi ne x)

O©CoO~NOOOR~AWNE
) —~

intu,v,y;
10 c()
11
12 y=...
13 .
14}
15 x();
16 b (c);
17 e
18}
19 main ()
20 {
21 b (a);
22},

FIGURE 30. An example of routine parameters

In general, how dowe know this gatic link to pass? From the scope rules, we
know that in arder for aunit x (in this case, main) to pass routine ato routine b,
x must either:

(a) Have procedure a within its ope, that is, a must be nornocdly visible or
local (immediately nested); or

(b) a must be a formal parameter of x, that is, some actual procedure was
passd to x as aroutine parameter?.

The two cases can be handled in the foll owing way:

Case (a): The static link to be passed isfp (d), a pointer to the adivation record
that is d steps alongthe static chain ariginated in the alling unt, whered is
the distance between the cll point where the routine parameter is passed and
its declaration (recall Section 2.6.4.

1. Case (b) cannot occur in the case where X is Mai N, since Main cannot be clled by other routines.
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Case (b): The static link to be passed is the one that was passed to the cller.

We leave the task of formulating these rules in terms of SIMPLESEM as an
exercise for the reader.

What abou calling a routine parameter? The only difference from calling a
routine directly is that both the size of the cdlee's activation record and its
static link are simply copied from the parameter area.

The program in Figure 30 shows anather subtle point: when routine parame-
ters are used in a program, norocal variables visible & a given pant are not
necessrily those of the latest all ocated activation record of the unit where
such variables are locdly declared. For example, after the recursive cll to b
when cis passed (line 16), thecal to x inb (line 15) will invoke c recursively.
Then the assgnment toy in ¢ (line 12) will nat modify they in the latest acti-
vation record for b but in the one all ocated prior to the latest one. Figure 30
shows this paint.

Let us review the impact of procedural parameters. First, we ha d to extend
the basic procedure call medanism to ded with the additional semantic com-
plexity. Procedure calls now haveto deal with dfferent cases of objects. Both
the procedure call's smantic description and its implementation have
increased in complexity. Contrast this with, say, adding a new arithmetic
operator to a language that requires hardly any changes to ou semantic
description at al. We can say that the aili ty to passprocedures as parameters
adds to the semantic power (and complexity) of a language. On the other
hand, it makes the language more uniform in the way the different language
constructs are handled: routines are first-classobjects, and can be treaded un-
formly as any ather objects of the language.

This is an example of a general property of languages, caled orthogonality.
This term describes the ability of a language to suppat any combination o
basic constructs to achieve any degree of power, withou restrictions and
withou “special cases’.

sidebar-start Routine parametersin dyremically scoped languages

Routines passed as parameters smetimes cause a peculiar problem in lan-
guages with dyramic scope rules, such as early versions of LISP. If we con
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sider the program in Figure 30 undbr dynamic scope rules, when routine ais
cdled throughx, referencesto u andv in awill be boundto theu andv in b and
naot to thase in main. Thisis difficult to use and confusing since when the rou-
tine a was written, it was quite reasonable to exped accessto u andv in main
but because b happens to contain variables with the same names, they mask
out the variables that were probably intended to be used.

Simply stated, the problem is that the nonlocal environment, and therefore the
behavior of the routine, is dependent on the dynamic sequence of calls that
have been made before it was activated. Consider several programmers work-
ing on dfferent parts of the same program. A seemingly innocuous dedsion,
what to name a variable, can change the behavior of the program entirely.

The problem, however, was discovered very ealy in the development of
LISP and a new feature was added to the language to alow a routine to be
passed along with its naming environment. If a routine is preceded by the
keyword FUNCTION, the routine is passed along with its nonoca environ
ment at the point of call. When such a procedure isinvoked, the eavironment
information passed with the parameter is used to set up the current norlocal
environment. Thisis arather complicated mechanism, bu it seems to be the
only reasonable way for procedural parameters to accessthe norlocd envi-
ronment. Of course, a different—-and more radicd—solution to the problem
would be to change the language semantics, and adopt static scope rules for
the entire language, as most modern LI1SPs do.

sidebar end

2.7 Bibliographic notes

In this chapter we have studied programming language semantics in an infor-
mal but systematic way, by describing the behavior of an abstrad language
processor. Formal approaches to the definition d semantics are also passble,
aswe briefly discussed. (Meyer 1991 providesaview of the theoretical foun
dations of programming languages and their semantics. Our view hereis ori-
ented towards language implementation, in order to allow the reader to
appreciate the resources that may needed, and the costs that may be involved,
in runnng a program. We have anphasized the important concepts of bind-
ing, bhnding time, and kinding stability. Thisviewpoint istaken by other text-
books on programming languages, from a classc (Pratt 1984) to a recent one
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(Ben Ari 1996. Johrston (Johrston 197) presents the contour model, an
interesting operational model that describes the concepts of binding withou
referring to the stadk-based abstrad machine. The reader who might be inter-
ested in the details of language implementation shoud refer to compiler text-
books, like (Waite and Goos 1984, (Aho et a. 1986, and (Fisher and
LeBlanc 1988.

2.8 Exercises

1. Provide syntax diagrams for the lexicd rules of the language described in Figure 5.

2. Inthe example of Figure 5 asemicolon is used to terminate eab statement in a sequence.
That is a sequence is written as{ statl; stat2; . . .; statn;}. Modify the syntax so that the
semicolon would be used as a separator between conseautive statements, that is: {statl;
dtat2; . . .; statn}. Pragmaticdly, can you comment on the diff erences between these two
choices?

3. Modify both the EBNF and the syntax diagrams of Figure 6 to represent Modula-2 if and
while statements.

4. Briefly describe scope binding for Pascd variables. Does the language alopt static or
dynamic binding?

5.1n Sedion 2.2 we say “Perhaps aurprisingly, there ae languages suipporting bah static
type dedking and polymorphic variables and routines’. Why should one exped, in
general, static type thedking to be impossible for polymorphic variables and routines?

6. Following the definition d static binding gven in Sedion 23, spedfy the time and
stability of the binding between a C (or C++) const variable and its value. How about
constants in Pascd?

7. Can the |_value of a variable be accesed only when its name is visible (i.e., within
scope)?

Why? Why not?

8. What is the solution adopted by C, Ada, Modula-2, and Eiffel to the problem of
uninitialized variables?

9. In general, it is not possible to chedk staticdly that the r_value of an unitialized variable
will not be used. Why?

10. Does Pascd al ow anamed variable and a pointer share the same data objed? Why? Why
not?

11. C and C++ distinguish between dedaration and definition for variables. Study this
language fedure and write a short explanation of why this can be useful.

12. C++ aso alows functions to accest more parameters than are spedfied in the function
definition. Why and how is this possible?Write aprogram to ched thisfedure.

13. What isthe diff erence between maaos and routines? Explain it in terms of the mncept of
binding.

14. Describe if and hav routines may be passed as parametersin C/C++.

15. Describe the two ways (named vs. positional) provided by Ada to associate actual and
formal parameters.

16. Discuss the EQUIVA LENCE statement of FORTRAN in the light of aliasing.
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17. A routine may be history-sensitiveif it can producedifferent results when adivated twice

with the same values as parameters and accessble nonlocd variables. Explain why a
language with static memory all ocation allows writi ng history-sensitive routines.

18. Define an algorithm that performs the linkage step for C2'.
19. Write the sequence of SIMPLESEM instructions corresponding to a functional routine

20.

21.

22.

cdl and return to take into acoount return values. For simplicity, you may assume that
return values may be stored in asingle SIMPLESEM cdl.

Write a simple C3 program with two mutually reaursive routines, describe their
SIMPLESEM implementation, and show snapshats of the D memory.

In Sedion 26.3 we asumed function routines to return their output value in a locaion
within the cdler's adivation record. A number of detail aspeds were left out from our
discusson. For example, weimplicitly assumed the cdlsall ocaed to hold the result to be
released when the cdler routine returns. This, however, implies awaste of memory space
if alarge number of cdls is performed. Also, we did na provide asystematic way of
generating SIMPLESEM code for the evaluation of expressons that contain multiple
function cdls, asin

a=f(x)+b+g(y, 2);
Discuss how these problems may be solved.

For the following C3 program fragment, describe eab stage in the life of the run-time
stadk urtil routine betais cdled (reaursively), by alpha. In particular, show the dynamic
and static links before eab routine cdl.

inti=1,j=2,k=3;
beta ();
?Ipha()

}

inti=4,1=5;

i-+=ke+H;
beta();

beta ()

} .

intk =6;

i;j+k;
apha();

main ()

}

Béta();

23. Based on the treament of reaursive functions, discuss dynamic dlocation in the cse of

C2 and show how the scheme works for the example of the Sedion 26.2.
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25.

26.

27.

28.
29.
30.

31

32.
33.
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In our treadment of C4' using SIMPLESEM, we said “In order to provide an abstrad
implementation of compound statements for the SIMPLESEM machine, there ae two
options. The former consists of staticdly defining an adivation record for aroutine with
nested compound statements; the latter consists of dynamicdly allocaing new memory
space orresponding to locd data & ead compound statement is entered during
exeaution. The former schemeissimpler and moretime dficient, whilethelatter can lead
to a more space éficient actual implementation.” Write adetailed comment justifying
such a statement.

Consider the following extension to C3. A variable loca to aroutine may be dedared to
be own. An own variable is al ocated storage the first time that its enclosing routine is
adivated, andits storage remains all ocated until program termination. Normal scoperules
apply, so that the variableisknown orly within the unit inwhich it isdedared. In esence,
the dfed of the own dedaration isto extendthelifetime of the variableto cover the entire
program exeaution. Outline an implementation model for own variables. For simplicity,
you may assume that own variables can only have simple (unstructured) types.

Referring to the previous exercise, assume that own variables are not automaticaly
initiali zed to certain default values. Show that this limits their usefulnessgredly. Hint:
Show, as an example, how an own variable can be used to keep tradk of the number of
times aroutine has been called.

Discussa SIMPLESEM abstrad implementation using dynamic dl ocaionfor C4' nested
blocks.

Explain why the static and dynamic links have the same value for blocks.
Trandate function fp (Sedion 2.6.4) into SIMPLESEM code.

An implementation technique for referencing the nonlocd environment in C4", which
differsfrom the use of static links as presented in Sedion 26.4.2, isbased on the use of a
display. The display is an array of variable length that contains, at any point during
program exeaution, pointers to the adivation records of the routines that form the
referencing environment-that is, exadly those pointers that would be in the static chain.
Let an identifier be bound to the (distance, offset) pair <d, 0>. The display is set up such
that display [d] yieldsthe aldress of the adivation record which contains the identifier at
offset 0.

(&) Show pictorialy the equivalent of Figure 25 when displays are used instead of static
links. Assume that, like arrent and freg the display is kept in the initial portion o the
data memory.

(b) Show the SIMPLESEM adions that are needed to update the display when aroutine
is cdled and when aroutine returns. Pay spedal attention to routine parameters.

(c) Displays and static chains are two implementation aternatives for the same semantic
concept. Discussthe relative alvantages and disadvantages of ead solution.

Chedk a guage of your choice (e.g., Pascd or C++) to seeif it alows expressions to be
passed by reference. Spedfy in what cases (if any) thisis allowed and provide a oncise
justification d the behavior. In cases where it does not (if any), write (and run) simple
programs which demonstrate the reason.

Provide afull description of a SIMPLESEM implementation of cdl by value.

Provide afull description of a SIMPLESEM implementation of cdl by result. Note that
the semantics can be different if the address of the actual result parameter is evaluated at
the point of cdl or at the return point. Why? Show an example where the dfed would be
diff erent.
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34. Can a monstant be passed as a by-reference parameter? Ched this in a language of your
choice

35. Provide afull SIMPLESEM implementation for cdl by value-result. Can the aistract
implementation for cdl by reference be used as a semantic description o cdl by value
result?

36. Consider the example program shown below. Discusscdl by reference and cdl by value-
result for swap (a[i], &j]). What happensifi =j?
swap (int x, int y);

X =X +y;

y=Xx-y,

X=X-Y;
}

37. Write ashort paper on C maaos, comparing them with routines. What are the binding
poli cies adopted by the language?How do you compare parameter handling for maaos
with the general parameter pasdng mechanisms described in this chapter?

38. Predsely discusshow cal by reference can be implemented in C++,

39. Study parameter passing mechanismsin Ada and write ashort paper discussing them and
comparing them with resped to conventional parameter passing modes.

40. Explain why the aiomatic definition of semantics of assignment statements, given in
terms of function asem, is inacarate in the presence of side-effedsin the evaluation o
the right-hand side expression and aliasing for the left-hand side variable.

41. Explain why the denotational definition of semantics of assgnment statements, given in
terms of function dsem, isinacairate in the presence of side-effedsin the evaluation of
the right-hand side expression and aliasing for the left-hand side variable.

42. We observed that in C++ formal parameters can be given a default value, which is used
in case the arresponding adual parameters are not passed in the cdl. For example, given
the following function header: int distance (int a = 0, int b =0); the cdl distance(); is
equivalent to distance (0, 0); and the | distance (10); is equivalent to distance (10, 0);.
Explain why this language fedure interads with overloading and haow thisinteradionis
solved by C++.
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Structuring the data

C HAPTER 3

Computer programs can be viewed as functions that are applied to values of
certain inpu domains to produce results in some other domains. In conven-
tional programming languages, this function is evaluated througha sequence
of steps that produce intermediate data that are stored in program variables.
Languages do so by providing features to describe data, the flow of computa-
tion, and the overall program organization. This chapter is on mechanisms for
structuring and aganizing data values; Chapter 4 is on mechanisms for struc-
turing and aganizing computations; Chapter 5 is on the mechanisms that lan-
guages provide for combining the data and computation mechanisms into a
program.

Programming languages organize data throughthe cncept of type. Types are
used as a way to classfy data according to dfferent categories. They are
more, however, than pue sets of data. Databelongngto atype dso share cer-
tain semantic behaviors. A typeis thus more properly defined as a set of val-
ues and a set of operations that can be used to manipulate them. For example,
the type BOOLEAN of languages like Ada and Pascd consists of the values
TRUE and FAL SE; Bodean algebra defines operators NOT, AND, and OR
for BOOLEANS. BOOLEAN vaues may be created, for example, as a result
of the gplication d relational operators (<, 8, >, S, +, ) among INTEGER
expressions.

Programming languages usually provide a fixed, bult-in set of data types,
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and mechanisms for structuring more mmplex data types garting from the
elementary ones. Built-in types are discussed in Section 3.1.Constructors that
allow more cmmplex data types to be structured starting from built-in types
are discussed in Section 3.2.Section 3.3is abou type systems, i.e., on the
principles that underlie the organization of acollection d types. The type sys-
tem adopted by alanguage affects the programming style enforced bythe lan-
guage. It may also have a profoundinfluence on the reliability of programs,
since it may help prevent errors in the use of data. Moreover, understanding
the type system of a language helps us understand subtle and compli cated
semantic isaues. Section 3.4 reviews the type system of existing programming
langueges. Finally, Section 3.5is abou implementation models.

3.1 Built-in types and primitive types

Any programming languege is equipped with afinite set of built-in types (or
predefined) types, which namally reflea the behavior of the underlying
hardware. At the hardware level, values belongto the untyped damain o bit
strings, which constitutes the underlying unversal domain of computer data.
Data belongng to such uriversal domain are then interpreted dfferently by
hardware instructions, according to dfferent types. At the hardware level, a
type may thus be considered as a view under which data belongng to the uni-
versal type may be manipulated. As an example of a hypahetical microcom-
puter, the bit string"010010D" might be interpreted asinteger "74" (coded in
two’'s complement representation) when it is the agument of the machine
instruction ADD (which dces integer addition). However, it would be inter-
preted as a bit string by the machine instruction CPL (which daes bitwise
complement). It might be interpreted as ASCII charader "I" if printed by
instruction PCH (which printsan ASCII character).

The built-in types of a programming languege reflect the diff erent views pro-
vided bytypical hardware. Examples of built-in types are:

* bodeans, i.e., truth values TRUE and FAL SE, along with the set of operations defined by
Boolean algebra;

 charaders, e.g., the set of ASCII charaders;

* integers, e.g., the set of 16-hit values in the range <-32768, 37767>; and

* reds, eg., floating pant numberswith given size and pgredsion.
Let us analyze what makes built-in types a useful concept. This discusson
will help us identify the properties that types in general (i.e., na only the
built-in ones) shoud satisfy. Built-in types can be viewed as a mechanism for
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classifying the data manipulated by a program. Moreover, they are a way of
protecting the data against forbidden, a nomsensical, maybe unintended,
manipulations of the data. Data of a cetain type, in fact, are only manipulable
by the operations defined for the type. In more detail, the following are
advantages of built-in types:

1. Hiding of the underlying representation. This is an advantage provided by the
abstradions of higher-level languages over lower-level (macdhine-level) languages. The
programmer does not have accss to the underlying ht string that represents a value of a
certain type. The programmer may change such hit string by applying operations, but the
changeisvisible a a new value of the built-in type, not as a new bit string. Invisibility of
the underlying representation has the following benefits:

Programming style. The a@stradion provided by the language increases program
readability by proteding the representation o objeds from undisciplined
manipulation. This contrasts with the underlying conventional hardware, which does
not enforceprotedion, but usually allows any view to be gplied on any bit string. For
example, alocation containing an integer may be added to one containing a charader,
or even to alocation containing an instruction.

Modifiability. The implementation of abstradions may be changed without affeding
the programs that make use of the @stradions. Consequently, portabili ty of programs
isalsoimproved, that is, programs can be moved to machines that use diff erent internal
data representations. One must be caeful, however, regarding the predsion d data
representation, that might change for different implementations. For example, the
range of representable integer valuesis different for 16- and 32-bit machines.

Programing languages provide feaures to read and write values of built-in types, as well
as for formatting the output. Such feaures may be ather provided by language instruc-
tions or through predefined routines. Machines perform input/output by interading with
peripheral devicesin a complicated and machine-dependent way. High-level languages
hide these complicaions and the physicd resources involved in macdine input/output
(registers, channels, and so on).

2. Correct use of variables can be checked at trandation time. If the type of ead variableis
known to the compiler, ill egal operations on avariable may be caight whil e the program
istranslated. Although type diedking daes not prevent all possible errorsto be caight, it
improves our reliance on programs. For example, in Pascd or Ada, it cannot ensure that
Jwill never be zeo in some expression 1/J, but it can ensure that it will never be a
charader.

3. Resolution of overloaded operators can be done at trandation time. For readability
purposes, operators are often overloaded. For example, + isused for both integer and red
addition, * is used for both integer and red multiplication. In ead program context,
however, it should be clear which specific hardware operation is to be invoked, since
integer and red arithmetic differ. In a staticaly typed language, where dl variables are
bound to their type & trandation time, the binding between an overloaded operator and
its corresponding machine operation can be established at trandation time, sincethe types
of the operands are known. This makes the implementation more dficient than in
dynamicdly typed languages, for which it is necessary to keep tradk of typesin run-time
descriptors.
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4, Accuracy control. In some caes, the programmer can explicitly associate aspedfication
of the acaracy of the representation with atype. For example, FORTRAN all owsthe user
to choose between single and dauble-predsion floating-point numbers. In C, integers can
be short int, int, or long int. Each C compiler is freeto choase gpropriate size for its
underlying hardware, under the restriction that short int and int are & least 16 bits long,
long int is at least 32 hits long, and the number of bits of short int is no more than the
number of bits of int, which is no more than the number of bits of longint. In addition, it
isposshleto spedfy whether an integer issigned or unsigned. Similarly, C provides both
float (for single-predsion floating point numbers) and double (for double predsion
floating point numbers). Accuracy spedficdion allows the programmer to dred the
compil er to all ocate the exad amount of storage that is needed to represent the data with
the desired predsion.

Some types can be called primitive (or elementary). That is, they are not built

from other types. Their values are @omic, and canna be decompased into
simpler congtituents. In most cases, bult-in types coincide with primitive
types, but there ae exceptions. For example, in Ada both Charader and String
are predefined. Data of type string have constituents of type Charader, how-
ever. In fact, String is predefined as:

type String is arr ay (Positive range <>) of Charader
It is dso possble to declare new types that are dementary. An example is

given by enumeration typesin Pascd, C, or Ada. For example, in Pascal one
may write:

type color = (white, yellow, red, green, blue, blad);
The same would be written in Ada &

type color is (white, yellow, red, green, blue, blak);
Similarly, in C one would write:

enum color { white, yellow, red, green, blue, blad};
In the three caes, new constants are introduced for a new type. The constants

are ordered; i.e., white<yellow <. . .< black. In Pascal and Ada, the built-in suc-
cesor and predecessor functions can be goplied to enumerations. For exam-
ple, succ (yellow) in Pascd evaluates to red. Similarly. colorpred (red) in Ada
evaluates to yellow.

3.2 Data aggegates and type wonstructors

Programming languages alow the programmer to specify aggregations of
elementary data objects and, recursively, aggregations of aggregates. They do
so by providing a number of constructors. The resulting oljects are called
compound objects. A well-known example is the aray constructor, which
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constructs aggregates of homogeneous-type elements. An aggregate object
has a unigue name. In some cases, manipulation can be dore onasinge de-
mentary component at a time, each comporent being accessble by a suitable
seledion operation. In many languages, it is also passble to manipulate (e.g.,
assgn and compare) entire aggregates.

Older programming languages, such as FORTRAN and COBOL, provided
only a limited number of constructors. For example, FORTRAN only pro-
vided the aray constructor; COBOL only provided the record constructor. In
addition, through constructors, they simply provided a way to define anew
single aggregate objed, na atype. Later languages, such as Pascal, allowed
new compoundtypes to be defined by spedfying them as aggregates of sim-
pler types. In such a way, any number of instances of the newly defined
aggregate can be defined. According to such languages, constructors can be
used to define both aggregate objects and new aggregate types.

Since in this chapter we ncentrate on data types, we review constructors
that generate compound d@ta. One shoud nd ignare, however, that routines
can also be seen as constructors which alow elementary instructions to be
combined to form new operations. In addition, the distinction between data
and routines vanishes in the case of programming langueges that trea rou-
tines as first classobjeds, which can be assigned, passed as parameters, be
members of data structures, etc.

Type @nstructors are discussed and exemplified in Section 32.1 through
Section 3.2.6.Section 3.2.7 discusses how structured data values can be
denoted in some languages. Sedion 32.8 will discusshow new types can be
defined na only through composition d more elementary types, bu also by
speafying the operations to be used for their manipulation. In the discusson,
we will first describe the constructors abstractly in terms of a mathematical
model, and then we will show how different programming languages provide
concrete constructs to represent the abstract model.

3.2.1Cartesian product

The Cartesian product of nsets Ay, A,, .. ., A, dendted A; x A, x .. .x A, iSa
set whose dements are ordered n-tuples (ay, a,, . . ., a,), where each a, belongs
to A,. For example, regular palygons might be described by an integer-the
number of edges-and a red—-the length of each edge. A paygon would thus
be an element in the Cartesian product integer x red.
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Programming languages view elements of a Cartesian product as composed
of anumber of symbdlically named fields. In the example, apaygoncould be
dedared as composed o an integer field (no_of_edges) hading the number of
edges and areal field (edge _size) halding the length of each edge.

Examples of Cartesian product constructors in programming langueges are
structures in C, C++, Algd 68 and PL/I, records in COBOL, Pascal, and
Ada. COBOL was the first languege to introduce Cartesian products, which
proved to be very useful in data processng applicaions. For example, in a
payroll transaction, employees are described by an ntuple of attributes (such
as name, address, social seaurity number, saary, etc.), some of which-in
turn—may be described by an ntuple of attributes (e.g., an addressis com-
posed of stred name, number, city, state, and zip code). Such an aggregation
can be described by arecord.

As an example of a Cartesian product constructor, consider the following C
dedaration, which defines a new type reg_polygon and two oljeds a pol and

b_pol;

struct reg_polygon {
int no_of_edges;
float edge size
|3
struct reg_polygon pol_a, pol_b = {3, 3.45};
The two regular polygors pol_a and pd_b are initialized as two equil ateral tri-

angleswhose edge is 3.45.The notation {3, 3.45} is used to implicitly define a
constant value (also called a compound value) of type reg_polygon (the palygon
with 3 edges of length 3.45).

The fields of an element of a Cartesian product are selected by specifying
their name in an appropriate syntactic notation. In the C example, ore may
write:

pol_ano_of edges=4;
to make pd_a quadrilateral. This g/ntadic notation for selection, which is
commonin programming languages, is cdled the dot notation.

3.2.2Finite mapping

A finite mappingis afunction from afinite set of values of adomain type DT
onto values of arangetype RT. Such functionmay be defined in programming
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languages through the use of the medhanisms provided to define routines.
Thiswould encapsulate in the routine definition the law associating values of
type RT to values of type DT. This definitionis called intensional. In addition,
programming languages, provide the array constructor to define finite map-
pings as data aggregates. This definition is called extensional, since dl the
values of the function are explicitly enumerated. For example, the C declara-
tion

char digits[10];
defines amapping from integersin the subrange O to 9to the set of charaders,
althoughit does nat state which charader corresponds to each element of the
subrange. The foll owing statements

for (i = 0; i < 10; ++i)
digits[i] ="";
define gne[chh corresponcence, by initializing the aray to all blank charac-
ters. This example dso shows that an olject in the range of the function is
seleded byindexing, that is, by providing the gppropriate value in the domain
as an index of the array. Thus the C notation digits [i] can be viewed as the
applicaion d the mapping to the agument i. Indexing with a value which is
not inthe domain yields an error. Some languages specify that such an error is
to be trapped. Such atrap, hovever, may in general only occur at runtime.

C arrays provide only simple types of mappings, by restricting the domain
type to be an integer subrange whaose lower boundis zero. Other program-
ming languages, such as Pascal, require the domain type to be an ordered ds-
crete type. For example, in Pascal, it ispossible to declare

var x: array [2. .5] of integer;
which defines x to be an array whose domain type is the subrange 2. .5.

As another example of Pascd, having defined a type computer manufacturer by
enumeration

type computer_manufadurer = (ibm, deg, hp, sun, apple, compag);
one may use the array type constructor to define the following rew type to
represent data déou each computer manufadurer

type ¢ m_data = array [computer_manufadurer] of integer
and then the foll owing ceta objects
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var ¢_m_profits, c m_employees: ¢ m_data;
For example, c_ m_employeeshp] would gve the number of employees of com-
puter manufacturer hp. If only the dataregarding profits are needed, ore could
simply define an array data aygregate instead o defining a new type, of
which many instances can be generated:

var ¢_m_profits: array [computer_manufadurer] of integers;
Languages that allow variables to be initialized when they are declared may

also provide away to initialize aray oljeds. For example, in C arrays may be
initi ali zed through a compound \alue, as shown bythe following example

char digits[10] ={"","","",”"," "'},
where{'’,’’,’’,’’,’ '} isa ompound \a ue of type "array of 5 characters.”

Similarly, in Adaone might write

X: array (INTEGER range 2. .6) of INTEGER := (0, 2, 0, 5, -33);
to define an array whoseindex isin the subrange 2. .5,wherex(2) =0, X(3) = 2,
X(4) =0, X(5) = 5, X(6) = -33.

Itisinterestingto ndethat Adauses brackets"(" and™)" instead of "[" and"]"
to index arrays. Thismakesindexing an array syntactically identical to calling
afunction. As a mnsequence, the fact that amappingis defined extensionally
or intentionally does nat affect the way the mappingisused, bu depends only
on hov the mapping is defined; that is, it hides the implementation d the
mapping abstraction from the user.

Notice that an array element can—in turn—be an array. This allows multidi-
mensional arraysto be defined. For example, the C dedaration

int x[10][20];
dedares an integer rectanguar array of 10 rows and 20columns.

In some languages, such as APL, Algd 68, and Ada, indexing can be used to
seled more than ore element of the range. For example, in Ada X(3. .5
seleds a subarray of the previously declared array. This operation is called
dlicing, that is, it selects a sliceof the array. Slicingis not provided by C.

In adynamicdly typed language like SNOBOL4, the aray construct does not
require that the dements of the range set be al of the same type (or, equiva-
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lently, damain and range types of mappings are unions of all types). For
example, one dement might be an integer, ancther a real, and yet a third a
string. In ather words, the range set can be viewed as the union d all
SNOBOL4 types. The TABLE construct provided by SNOBOL4 further
extends this nation, by allowing the domain type to be the union d all
SNOBOL4 types. For example, the foll owing statements create aTABLE and
assgn values to some of its elements:

T=TABLE ()
T<'RED’> ="WAR’
T<6> =25

t<4.6> ='PEACFE’
The TABLE construct is quite powerful because it provides the capability of
associative retrieval, such as T<’'RED’>, which yields '"WAR’, or T<6>, which
yields 25. Such aggregates are called associative data structures.

The domain of afinite mappingis often defined as a finite subset of a (theo-
retically) infinite set. For example, an array whose index isin therange 0. .9
defines afinite mapping whose domain is afinite subset of integers. The strat-
egy for binding the domain of afinite mapping to a specific finite subset of a
given type varies according to the language. Basically, there are three poss-
ble choices:

1. Compile-time binding. The subset is fixed when the program is written and it is frozen at

translation time. This restriction was adopted by FORTRAN, C, and Pascd.

2. Object-creation time binding. The subset is fixed at run time, when an instance of the
variable is creaed. In Sedion 2.6.5.1 we cdled finite mappings of this kind dynamic
arrays. As an example, in Adait is possible to dedare an unconstrained array type by
using symbol <> (the box) which stands for unspedfied range. When a variable of the
unconstrained array type is dedared, the bounds must be stated as expressions to be
computed at run time. Oncethe binding is established at run time, however, it cannot be
changed (i.e., the binding is static).

type INT_VECTOR is array (INTEGER range <>) of INTEGER;

X:INT_VECTOR (A. .B*C);

3. Object-manipulation time binding. Thisisthe most flexible and the most costly choicein
terms of run-time exeaution. For these so-cdl ed flexible arays, the size of the subset can
vary at any time during the objed’s lifetime. Thisis typicd of dynamic languages, like
SNOBOL4 and APL. Of compil ed languages, only Algol 68 and CL U offer such feaures.
The 1995 proposed C++ standard library contains vedors, which are flexible C++ arrays.
Sincethe memory spacerequired for such data may change during exeaution, allocation
must use the hegp memory.
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3.2.3Union and discriminated union

Cartesian products defined in Section 3.2.1allow an aggregate to be on
structed throughthe conjunction of its fields. For example, we saw the exam-
ple of a polygon,which was represented as an integer (the number of edges)
and a rea (the edge size). In this sction we explore a cnstructor which
allows an element (or atype) to be spedfied byadisunction of fields.

For example, suppase we wish to define the type of a memory addressfor a
machine providing bah absolute and relative addressng. If an addressisrela
tive, it must be added to the value of some INDEX register in order to aacess
the correspondng memory cdl. Using C, we @an dedare

union address{
short int offset;
long unsigned int absolute;

The declaration is very similar to the case of a Cartesian product. The differ-
ence isthat here fields are mutually exclusive.

Values of type address must be treated dfferently if they denate offsets or
absolute addresses. Given a variable of type aldress however, there is no
automatic way of knowingwhat kind d value is currently associated with the
variable (i.e., whether it is an absolute or a relative aldress). The burden of
remembering which of the fields of the unionis current rests on the program-
mer. A posshle solutionisto consider an addressto be an element of the fol-
lowing type:

struct safe_address {
address location;
descriptor kind;

¥
where descriptor is defined as an enumeration

enum descriptor {abs, rel};
A safe aldressis defined as composed o two fields: one halds an address, the
other holds a descriptor. The descriptor field is used to keep tradk of the aur-
rent address kind. Such a field must be updated for each assgnment to the
correspondnglocationfield.

This implementation corresponds to the abstract concept of a discriminated
union. Discriminated unions differ from unions in that elements of a discrim-
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inated union are tagged to indicate which set the value was chosen from.
Given an element e belongngto the discriminated urion d two setssand T, a
function tag applied to e gives either 'S or 'T'. Element e can therefore be
manipulated according to the value returned by tag.

Type cheding must be performed at runtime for elements of both urions and
discriminated urnions. Nothing prevents programsto be written (and compiled
with noerror) where an element is manipulated as a member of type T while
it isin fact amember of type S or vice-versa. Discriminated urions, however,
are patentially safer sincethey allow the programmer to explicitly take the tag
field into consideration before applying an operation to an element, athough
they canna prevent the programmer from breaching safety by assigning the
tag field avalue which is inconsistent with the other fields.

There ae languages that get close to properly suppating the nation o dis-
criminated urion. For example, Pascd offers variant records to represent dis-
criminated unons. The following Pascd declarations define asafe aldress

type natura = 0. .maxint;
address type = (absolute, off set);
safe_address = record
case kind: address type of
absolute: (abs_addr: natural);
offset: (off_addr: integer)
end
Type natural (defined as a subrange of non-negative integers) is introduced to

represent absolute addresses. Type address type iS the enumeration d the pos-
sible values of the tag. Field kind of the variant record is called the tag field.
According to the value of the tag field kind, either field abs addr or field
off_addr can be accessed. Accessto field off_addr when the value of the tag
field is absolute would result in a runtime error; similarly, access to field
abs addr when the value of the tag field is offset would result in a run-time
error.

Whil e Pascal allows the concept of discriminated urion to be more naturally
represented than in C, it does not make the implementation safer. In Pascal,
the tag and the variant parts may be accessed in the same way as ordinary
comporents. After the tag field of a safe address representing an offset is
changed to absolute, it is possble to accessfield abs addr. In principle, this
should result in a runrtime aror, because the field shoud be mnsidered as
uninitialized. In practice, howvever, most Pascal implementations do nd per-
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form such a ched, for runtime dficiency reasons. Moreover, the conven-
tional implementation d variant records consists of overlapping all variants
over the same storage area Therefore, by changing the tag field, the machine
interprets the string d bits dored in this area under the different views pro-
vided bythe types of each variant.

This is an inseaure—althoughin some cases practicad—use of variant records.
Viewing the same storage aea under different types may be useful in model-
ing certain pradical applications. For example, a program unit that reads from
an inpu device might view a sequence of bytes according to the type of data
that isrequired. In general, however, thisis an ursafe programming [ractice,
and shoud be normally avoided.

3.2.4Power sat

It is often useful to define variables whose value an be any subset of a set of
elements of agiven type T. The type of such variablesis powerset (T), the set of
all subsets of elements of type T. Type T is called the base type. For example,
suppose that a language processor accepts the following set O of options

LIST_S, to produce alisting of the source program;
LIST_O, to produce alisting of the objed program;
OPTIMIZE, to optimizethe objed code;
SAVE_S, to save the sourceprogram in afile;
SAVE_O, to save the objed program in afile;
» EXEC, to exeaute the objed code.
A command to the procesor can be any subset of 0, such as

{LIST_S, LIST_O}

{LIST_S, EXEC}

{OPTIMIZE, SAVE_O, EXEC}
That is, the type of acommand is powerset (O).

Variables of type powerset (T) represent sets. The operations permitted onsuch
variables are set operations, such as union and intersection.

Althoughsets (and paversets) are common and basic mathematical concepts,
only a few languages—-naably, Pascal and Modua-2—provide them through
built-in constructors and operations. Also, the set-based language SETL
makes sts the very basic data structuring mechanism. For most other lan-
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guages, set data structures are provided through libraries. For example, the
C++ standard library provides many data structures, including sets.

3.2.5Sequencing

A sequence consists of any number of occurrences of elements of a certain
comporent type CT. The important property of the sequencing constructor is
that the number of occurrences of the cmporent is unspecified; it therefore
allows objects of arbitrary size to be represented.

It is rather uncommon for programming languages to provide aconstructor
for sequencing. In most cases, thisis achieved byinvoking ogerating system
primiti ves which access the file system. It is therefore difficult to imagine a
common abstract characterization d such a constructor. Perhaps the best
example is the file constructor of Pascal, which models the conventional data
processing concept of a sequential file. Elements of the file an be accessed
sequentialy, ore after the other. Modificaions can be accomplished by
appending a new values at the end d an existing file. Files are provided in
Adathroughstandard li braries, which suppat both sequential and drect files.

Arrays and recursive list definitions (defined next) may be used to represent
sequences, if they can be stored in main memory. If the size of the sequence
does nat change dynamically, arrays provide the best solution. If the size
needs to change whil e the program is executing, flexible arrays or lists must
be used. The C++ standard library provides a number of sequence implemen-
tations, including vector and list.

3.2.6Reaursion

Recursion is a structuring mechanism that can be used to define aggregates
whose size can grow arbitrarily and whaose structure can have arbitrary com-
plexity. A recursive data type T is defined as a structure which can contain
comporents of type T. For example, a binary tree an be defined as either
empty or as atriple omposed of an atomic dement, a (Ieft) binary tree, and a
(right) binary tree. Formally, if we assume that nil denotes the enpty (or null)
tree, int_bin_tree (the set of al binary trees of integers) may be described using
the union and Cartesian product of sets:

int_bin_tree={nil} U (integer x int_bin_treex int_bin_tred
As ancther example, alist of integers may be described recursively as



148 Structuring the data Chap.3

int_list={nil} U integer x int_list
where nil here denates the empty list.

Conventional programming languages al ow reaursive data typesto be imple-
mented via pointers. Each comporent of the recursive type isrepresented bya
location containing a pointer to the data objed, rather than the data object
itself. Thus, in the int_list example, the implementation would be astructure,
where one field contains an integer and the other field pants to a structure of
the same type, and so on.The list itself would be identified by ancther loca-
tion containing the painter to the first element of the list.

The C andin Adafragmentsin Figure 31 dcefine the type of an integer list and
avariable that can pant to the head of a specific integer list instance

© (Ada)
struct int_list { type INT_LIST_NODE;

int val; type INT_LIST _REFisaccesINT_LIST _NODE;

int_list* next; type INT_LIST_NODE is
}; record
int_list* head, VAL: INTEGER;

NEXT: INT_LIST REF;
end;

HEAD: INT_LIST_REF;

FIGURE 31.Dedarations of list elementsin C and Ada

Similar implementations of recursive types can be provided in C++, Pascal,
and Modua-2.

Functional languages, as we will see in Chapter 7, provide a more astract
way of defining and manipulating recursive types, which masks the underly-
ing panter-based implementation. For example, in ML alist can be denoted
aseither [] (the empty list) or as[x: :xg, the list composed of the head element
x and the tail li st xs. In order to find an element in alist, we an write the fol-
lowing self-explaining high-level function:

funfind (el,[]) =fase
| find (e, [e: :elg]) = true
|  find (e, [y: : ys] =find (e, ys)
3.2.6.1 Insecurities of pointers
Pointers are apowerful, but low-level, programming mechanism that can be
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used to buld complex data structures. In particular, they all ow recursive data
structures to be defined. As any low level mechanism, however, they often
allow obscure and insecure programs to be written. Just as unrestricted goto
statements broaden the context from which any labelled instruction can be
executed, urrestricted pointers broaden the context from which a data object
may be accessed. Let us review a number of cases of insecurities that may
arise and pcassible ways of controlli ng them.

1. Some languages, like Pascd or Ada, require pointers to be typed. For example, a Pascd
variable p dedared of type “integer, is restricted to point to objeds of type integer. This
allows the compiler to type hed the mrred use of pointers and oljeds pointed to by
pointers to be type chedked for corred use by the compiler. On the other hand, other
languages, like PL/I, trea pointers as untyped data objeds, i.e., they alow a pointer to
addressany memory location, nomatter what the contents of that locationis. Insuch a case,
dynamic type dcecking should be performed to avoid manipulation of the objed via
nonsensica operations.

2. C requires painters to be typed bu, unlike Pascd, it also all ows arithmetic operations to
be gplied to pdnters. For example, having dedared int* p (p is a pointer to dbjeds of
typeint), one cax writep = p +i;, wherei is an int variable. This would make x refer to
the memory locaiionwhich isi integer objeds beyond the one p is currently pointing to.
It is up to the programmer to guaranteethat the objed pointed by x is an integer. For
example, consider the foll owing C fragment:

int x = 10;

floaty = 3.7;

int* p=& x; /* &x denotesthe aldress of x; thus p pointsto x */

p ++; /* makes p point to the next locaion, which contains a float value */
*p +=X; [* increments by 10the value of vy, interpreted asanint */

printf ("%f", y); /* reinterprets the modified contents of cdl y asafloat */

Although potentially unsafe, pointer arithmetic can be useful in pradice Infad, C point-
ers and arrays are dosely related. The name of an array can also be used as a pointer to
itsfirst element and any operation that can be achieved by array subscripting can also be
donewith panters.

Accessing arraysviapointersisin general faster than using the more readable aray nota-
tion, unless the compiler generates optimized code. It is therefore preferable when effi-
ciency is crucial, thus trading readability for performance As an example of using a
pointer to access an array, consider the foll owing fragment:

int n, ved [10]; /*declares an integer vedor */

int* p=&ved[0]; /* p pointsto thefirst element of p */

for (n=0; n < 10; n++) /* initializes array elementsto zero */

*p++=0;
Incrementing a pointer may done dficiently by asingle machineinstruction. Thus acces
to an array element may be faster than using the standard code generated to access an
array element indexed by an expression.
3. Ther_value of apointer is an address, i.e., an |_value of an dbjed. If such objed isnaot

allocated, we say that the pointer is dangling. A dangling pointer is a serious inseaurity,
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becaise it refers to alocation that is no longer alocaed for holding a value of interest.
Dangling pointers may arisein languages, like C, which all ow the aldress of any variable
to be obtained (viathe & operator) and assigned to a pointer. In the fragment shown in
Figure 32, sincepx isaglobal variable and x is dedl ocaed when functiontrouble returns,
px is left dangling since the objed it points to no longer exists. In order to avoid this
problem, languages like Algol 68 require that in an assignment the scope of the objed
being pointed be & least aslarge asthat of the pointer itself. Thisrestriction, however, can
only be chedked at runtime. For example, consider aroutine with two formal parameters:
X, an integer, and px, a pointer to integers. Whether the asignment of px = &x in the
routine is legal depends on the adual parameters and doviously is unknown at compile
time. As usual, chedking the aror at run time slows down the execaution of the program;
not cheding the eror leaves dangling pointers uncaught.

More on thiswill be said for Adain Sedion 34.3.

void trouble (int* px)

.
int x;
L PX=& X
return;

main ()
int* P;
...trouble (p); ...

FIGURE 32.An example of dangling pointersin C

. To avoid the aove inseauriti es, some languages (like Pascd, Modula-2) further restrict

the use of pointers. Pointers are typed; they cannot be manipulated through arithmetic
operators; there is no way to get the addressof a named variable. Yet other sources of
inseaurity may arisein such languages becaise of storage dedl ocation. Since the anount
of heg storage dl ocated by an exeauting program can become very large, it isimportant
to provide medhanisms for releasing hegp storage @ it becomes unreferenced, to alow
such storage to be later alocaed for new heg variables. Some languages rely on
automatic storage reclamation to make unused hegp storage avail able as later alocation
requests are issued (seeSedion 3.5.2.7). Other languages provide astandard operator to
explicitly dedlocate heg storage. For example, Pascd provides a standard routine
dispose; C++ provides delete. The operator must be explicitly used bythe programmer as
necessary. Unfortunately, however, the programmer can request dedlocation of a heg
variable while there ae still pointers to it, which creaes dangling pointers. This error is
difficult to ched, and most implementations do not provide such fadlity.

. Languagesthat allow pointersto be components of aunion may cause further inseaurities.

For example, if we dedare avariable bad of the following type trouble, bad can be
asdgned an integer value, which is then interpreted as a pointer to access sme
unpredictable location:
union trouble {
intint_var;
int* int_ref;
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}

In the case of C, thisisthe same & the result of pointer arithmetic. But in alanguage that
does not support pointer arithmetic, union types may cause pointer inseaurities. For
example, the same undesirable dfed may occur in Pascd using variant records.

3.2.7Compound values

Besides suppating the aility to define structured variables, some languages
allow constant values of compound (or composite) objects to be denoted. For
example, in C++ one can write:

char hello[]={'h", '€, ’'I",’l,"0","\0'};
struct complex {
float x, y;
H
complex a={0.0, 1.1};
This fragment initiali zes array hello to the array value {'n', ’e,’I’,’l, o', ’\0'},

i.e., the string "hello" ('\0' is the null character denating the end o the string).
Structure aisinitiali zed to the structure value {0.0, 1.1} .

Ada provides a rich and elaborate set of facilities to define values of com-
pound olpects. For example, the foll owing expressons denate objeds of the
type INT_LIST_NODE defined in Section 3.2.6.

(VAL =>5, NEXT => new INT_LIST_NODE (0, null))
--field NEXT of the objed pointsto a dhild nade which contains value 0
--and has null NEXT pointer
--the child node is defined positionaly; i.e., 0 isthe value of field VAL and null
--isthe value of field NEXT

(10, null);
--thisrecord value is described positionally
Array oljects can aso be denated in Ada. For example, a variable Y of the

following type

type BOOL_MATRIX isarr ay (0. .N, 0. .M);
can beinitialized in the following way:

Y :=(1. N-1=>(0. .M =>TRUE), others=> FALSE);
--al rows except for the first and the last areinitialized to TRUE
--thefirst and the last are initialized to FALSE

Thisisan equivalent way of initializing the array:

Y :=(0|M =>(0..N =>FALSE), others => TRUE);
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--row 0 and M areinitialized to FAL SE; others are initi ali zed
The aility of compound olpeds to be diredly denated is a nice syntactic

shorthand that frees the programmer from accessing each comporent at a
time. Moreover, it favors asound pogramming practice such that every vari-
ableisinitialized asit is declared.

3.2.8User-defined types and abstract data types

Modern programming languages provide many ways of defining rew types,
starting from built-in types. The simplest way, mentioned in Section 3.1, con
sists of defining rew elementary types by enumerating their values. The con-
structors reviewed in the previous ctions go ore step further, since they
allow complex data structures to be compased out of the built-in types of the
language. Modern languages al so allow aggregates built throughcompasition
of built-in types to be named as new types. Having gven atype name to an
aggregate data structure, one can declare @& many variables of that type as
neassary by smple dedarations.

For example, after the C declaration which introduces a new type name com-
plex

struct complex {
float red_part, imaginary_part;

any number of instance variables may be defined to hdd complex values:

complex a, b, c, .. .;
By providing appropriate type names, program readabili ty can be improved.
In addition, byfactoring the definition d similar data structuresin atype dec-
laration, modifiability is also improved. A change that needs to be gplied to
the data structures is applied to the type, na to all variable declarations. Fac-
torizaion also reduces the chance of clerical errors and improves consistency.

The ability to define atype name for a user defined data structure is only a
first step in the direction of suppating data astractions. Aswe mentioned in
Section 3.1,the two main benefits of introducing typesin alanguage ae das-
sification and protection. Types allow the (otherwise unstructured) world of
data to be organized as a collection d different categories. Types also all ow
data to be protected from undesirable manipulations by specifying exadly
which operations are legal for objeds of a given type and by hiding the con-
crete representation. Of these two properties, only the former is achieved by
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defining a user-defined data structure as atype. What is needed is a construct
that allows both a data structure and operations to be specified for user-
defined types. More precisely, we need a nstruct to define abstrad data
types. An abstract data type is a new type for which we can define the opera-
tions to be used for manipulating instances, while the data structure that
implements the type is hidden to the users. In what foll ows we briefly review
the aonstructs provided by C++ and by Eiffel to define astract data types.
Further elaboration d the mncepts presented here will be discussed in Chap-
ter 5 and 6 The way abstract data types can be defined in ML is presented in
Chapter 7.

3.2.8.1 Abstract data typesin C++

Abstract data types can be defined in C++ throughthe class construct. A class
encloses the definition d a new type and explicitly provides the operations
that can be invoked for corred use of instances of the type. As an example,
Figure 33 shows a dassdefining the type of the geometrica concept of point.

class point {
intx,y;

public:
point (inta intb){ x=ay=b;} Il initializes the cordinates of a point
voidx_move (inta) { x +=a; } /I moves the point horizontally
voidy_move (intb){ y +=b;} /I moves the point verticdly
voidreset (){ x=0;y=0;} // moves the point to the origin

H

FIGURE 33.A C++ dassdefining point

A classcan be viewed as an extension d structures (or records), where fields
can be both data and routines. The difference is that only some fields
(declared pubic) are accessble from outside the class Non-pulic fields are
hidden to the users of the class In the example, the classconstruct encapsu-
lates bath the definition d the data structure defined to represent points (the
two integer numbers x and y) and d the operations provided to manipulate
points. The data structure which defines a geometrical point (two integer
coordinates) is not directly accessble by users of the dass Rather, pants can
only be manipulated bythe operations defined as pulic routines, as siown by
the foll owing fragment:
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point p1 (1, 3); /l instantiates p1 and initiaizes its value
point p2 (55, 0); /l instantiates p2 and initializes its value
point* p3 = new paint (0, 0); /I p3 pointsto the origin

pl.x_move (3); /I moves pl horizontally

p2.y_move (99); /I moves p2 verticdly

pl.reset (); /I pasitions pl at the origin

The fragment shows how operations are invoked on pants by means of the
dot notation; that is, by writing “object_name.puldic_routine_name’. The
only exceptions are the invocations of constructors and destructors. We dis-
cussconstructors below; destructors will be discussed in alater example.

A constructor is an operation that has the same name of the new type being
defined (in the example, point). A constructor is automatically invoked when
an oect of the dassis alocated. In the case of paints p1 and p2, thisis done
automaticdly when the scope in which they are declared is entered. In the
case of the dynamicdly allocated pant referenced by p3, this is dore when
the new instruction is executed. Invocation d the constructor all ocates the
data structure defined by the dassand initializes its value according to the
constructor’s code.

A special type of constructor is a copy constructor. The constructor we have
seen for paoint buil ds apoint out of two int values. A copy constructor isableto
build a paint out of an existing pant. The signature of the copy construtor
would be:

point (point&)

The copy constructor is fundamentally a different kind d constructor because
it allowsusto buld anew objed from an existing doject withou knowingthe
comporents that constitute the object. That is what our first constructor does.
When a parameter is passed by value to a procedure, copy construction is
used to buld the formal parameter from the agument. Copy construction is
amost similar to assgnment with the difference that on assignment, bah
objects exist whereas on copy construction, a new object must be aeated first
andthen avalue assgned toit.

It isalso pasgbleto define generic abstract data types, i.e., datatypesthat are
parametric with resped to the type of componrents. The cnstruct provided to
support this feature is the template. As an example, the C++ template in Fig-
ure 34 implements an abstract data type stack which is parametric with
respect to the type of elements that it can store and manage acording to a
last-in first-out pdlicy. The figure also describes a fragment that defines data
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objects of instantiated generic types:

template<class T> class Stack{

intsize
T* top;
T* s
public:
Stadk (int sz) {top=s=new T [size=s7];}
~Stad () {delete[ ] s} //destructor
void push (T €l) {*top++ =¢€l;}
T pop() {return *--top;}
int length () {returntop - s}
|3
void foo () {

Stack<int> int_st (30);
Stack<item> item_st (100);

i r.1t._st.push (9);
} e

FIGURE 34.A C++ generic dbstradt datatype and its instantiation

The template also shows an example of a destructor. A destructor is recog-
nized by having the name of the dass prefixed by ~ (which stands for “the
complement of the constructor”). The purpose of a destructor isto perform a
cleanupafter the last use of an olject. In the example, the deanup dedl ocates
the aray used to store the stack. It is called automatically for automatic
objects (i.e., oljects al ocaed in the runtime stack) upon exit from the scope
in which the objeds are declared. It must be cdled explicitly for dynamic
objects alocated in the heg in order to free the memory when the object
beammesinaacessble. Thisoperation, aswe dready mentioned, may generate
dangling references if the object being released is still referenced. If no con-
structors and/or destructors are explicitly spedfied for a dass the language
provides for implicit construction/destruction which depends on the types of
the encapsulated data.

3.2.8.2 Abstract data typesin Eiffel

Eiffel provides a dassconstruct to implement abstract data types. Figure 35
describes the abstract datatype POINT in Eiffel.
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Another class can become a dient of POINT by declaring references to
objects of type POINT:

pl, p2: POINT;
Objeds can be created and boundto such references, and then manipulated
according to the type’ s operations:

pl.make point (4, 7);
p2.make poaint (55, 0);
pl.move x (3);
p2.move_y (99);
plreset ();

class POINT export
X_move, y_move, reset
creation
make_point
feature
X, Y: INTEGER,;
x_move (a: INTEGER) is
-- moves the point horizontally
do
X:=X+a
end; --x_move
y_move (b: INTEGER) is
-- moves the point verticaly
do
y:=x+b
end; --y_move
resetis
-- moves the point to the origin
do
x=0;
y=0
end; -- reset
make_point (a, b: INTEGER) is
-- setsthe initial coordinates of the point
do
X:=g
y:=b
end -- make_point
end; -- POINT

FIGURE 35. An Eiffé classdefining point

C++ instances of an abstract data type an be dther stack obeds or heap
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objects. That is, they can be assciated bah with automatic variables or be
dynamicdly alocated and referred to by panters. In the example in Figure
33, the objects associated with variables p1 and p2 are (automatically) alo-
caed onthe stack; the objects to which p3 paints is dynamically allocated on
the heap. In Eiffel, al objects (except for built-in elementary values like inte-
gers) areimplicitly allocated onthe heap and made accessble viapointers. In
the example of Figure 35, p1 and p2 are in fact pointers to oljects, which are
alocaed (andinitialized) by theinvocation d the creation operation.

The Eiffel make_point is analogous to the C++ constructor but must be called
explicitly to creae the object. The C++ concept of copy construction—creat-
ing a new object from an existing like objed—is not associated with each
object. Rather, the langauge provides a function ramed clone which can be
cdled with an olject of any type to create anew object which isa opy d the
original object.

The Eiffel language assumes a set of principles that shoudd gude program-
mers in a disciplined and method cd development of programs. It is possble
to asciate a tasswith an invariant property, i.e., a predicate that character-
izes all possble mrred instances of the type. For example, consider a variant
NON_AXIAL_INT_POINT of class POINT which describes the set of points with
integer coordinates that do nd belongto the axes x and y. The x- and y-coor-
dinates of the elements of classNON_AXIAL_INT_POINT canna be zro; that
is, theinvariant property for such classiswritten as:

x*y/=0
To engure that the invariant is stisfied, suitable mnstraints must apply to the
exported routines of the dass Thisis gated in Eiffel by defining two predi-
cdes. a precondition and a postcondition. These two predicates characterize
the states in which the routine can start and shoud end its exeaution. A class
is sid to be consistent if it satisfies the following condtions:

1. for every credion routine, if its precondition holds prior to exeaution, the invariant holds
upon termination

2. for every exported routine, if the precondition and the invariant hold prior to exeaution,
the postcondition and the invariant hold upon termination.
If these two rules are satisfied, by smple induction ore an prove that the

invariant will always be true for all reachable object states.
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classNON_AXIAL_POINT export
X_move, y_move
creation
make_point
feature
X, Y: INTEGER,;
x_move (a: INTEGER) is
-- moves the point horizontally
require
x+al/=0
do
X:=X+a
ensure
x/=0
end; --x_move
y_move (b: INTEGER) is
-- moves the point verticdly
require
y+b/=0
do
y:=x+b
ensure
y/=0
end; --y_move
make _point (a, b: INTEGER) is
-- setsthe initial coordinates of the point
require
a*b/=0
do
X=a
y:=b
end -- make_point
invariant
X*y/=0
end; -- NON_AXIAL_POINT

FIGURE 36.An Eiffel classdefining apoint that may not lie on the axesx and y

Class NON_AXIAL_INT_POINT is presented in Figure 36. The reader shoud be
able to verify manually that the @owve condtions 1. and 2.for classconsis-
tency are verified.

Eiffel does not prescribe that facilities be provided by the language imple-
mentation to check that al classes are cnsistent. It does not even force pro-
grammers to provide precondtions, postcondtions, and invariants: assertions



159

are optional, athoughtheir use is good pogramming practice If they are
present, an Eiffel implementation can check such properties at runtime. This
is an effedive way of debuggng Eiffel programs. Aswe will see in Chapter
4, it also suppats g/stematic programmed ways of error handling.

Eiffel suppats the implementation d generic abstract data types, via generic
classes. As an example, Figure 37 shows an implementation d a generic
stack abstract data type in Eiffel. The definition d precondtions, postcond-
tions, and invariants are left to the reader as an exercise.

class STACK [T] export
push, pop, length
creation
make_stack
feature
store: ARRAY [T];
length: INTEGER;

make_stadk (n: INTEGER) is
do store.make (1, n); --this operation al ocates an array with bounds 1, n
length :=0;
end; --make_stadk

push (x: T) is
do length :=length + 1;
put (X, length); --element X is gored at index length of the aray
end; --push

pop: T is
do Result := store@ (length);
-- the dement in the aray whose index islength is copied in the
-- predefined objed Result, which contains the value returned by the
-- function
length :=length - 1;
end; --pop
end --classSTACK
FIGURE 37.An Eiffel abstraa data type definition

3.3 Type systems

Types are afundamental semantic concept of programming languages. More-
over, programming languages differ in the way types are defined and behave,
and typing issues are often qute subtle. Having discussed type @ncepts
informally in dfferent languages < far, we now review the foundetions for a
theory of types. The goal is to help the reader understand the type system
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adopted by a language, defined as the set of rules used by the language to
structure and aganize its colledion d types. Understanding the type system
adopted by a language is perhaps the major step in understanding the lan-
guage' s semantics.

Our treatment in this sction is rather abstract, and daes nat refer to any spe-
cific programming language feaures. The only assumption made is that a
type is defined as a set of values and a set of operations that can be gplied to
such values. Asusual, since values in our context are stored somewhere in the
memory of acomputer, we use the term object (or data object) to denote both
the storage and the stored value. The operations defined for a type are the
only way of manipulating its instance objects: they protect data objects from
any illegal uses. Any attempt to manipulate objects with ill egal operationsisa
type error. A program is said to be type safe (or type secure) if all operations
in the program are guaranteead to always apply to data of the corred type, i.e.,
no type errors will ever occur.

3.3.1Static ver sus dynamic program checking

Before focusing ou discusson ontype erors, abrief digressionis necessary
to dscussmore generally the kinds of errors that may occur in a program, the
different times at which such errors can be checked, and the effed of check-
ing times on the quality of the resulting programs.

Errors can be dasdfied in two categories. language erors and applicaion
errors. Language errors are syntactic and semantic errors in the use of the
programming language. Application errors are deviations of the program
behavior with respect to speafications (assuming specifications capture the
required behavior correctly). The programming language shoud facilitate
bath kinds of errorsto be identified and removed. Idedly, it shoud help pre-
vent them from being introduced in the program. In general, programs that
are readable and well structured are less error prone and easier to check.
Heredter we ancentrate on language erors. A discussion d applicdion
errorsisout of the scope of this book software design methods addressappli -
cdion errors. Therefore, here the term “error” implicitly refers to “language
error”.

Error checking can be acomplished in different ways, that can be classfied
in two broad categories: static and dyramic. Dynamic checking requires the
program to be executed on sample input data. Satic checking does nat. In
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generd, if a dheck can be performed statically, it is preferable to doso instead
of delaying the check to run-time for two main reasons. First, paential errors
are detected at runtime only if one can provide inpu data that cause the error
to be revealed. For example, atype error might exist in a portion d the pro-
gram that is not exeauted by the given input data. Second, dyramic checking
slows down program execution.

Static checking is often called compil e-time (or translation-time) checking.
Actualy, the term “compil e-time dhecking” may na be an accurate synonym
of “static checking’, since programs may be subjed to separate compil ation
and some static checks might occur at link time. For example, the possble
mismatch between a routine clled by one modue and defined in another
might be checked at link time. Conventional linkers, urfortunately, seldom
perform such checks. For simplicity, we will continue to use the terms static
checking and compile-time (or translation-time) checking interchangeably.

Static checking, though preferable to dyrnamic checking, daes not uncover all
language errors. Some erors only manifest themselves at runtime. For exam-
ple, if div is the operator for integer division, the compiler might check that
both operands are integer. However, the program would be erroneous if the
value of the divisor is zero. This possibility, in general, canna be decked by
the compiler.

3.3.2Strong typing and type cheding

The type system of alanguage was defined as the set of rules to be followed
to define and manipulate program data. Such rules constrain the set of legal
programs that can be written in alanguege. The goal of a type system is to
prevent the writing d type unsafe programs as much as possble. A type sys
tem is said to be strong if it guarantees type safety; i.e., programs written by
following the restrictions of the type system are guaranteed nd to generate
type errors. A language with a strong type system is sid to be astrongly
typed language. If a language is grondy typed, the absence of type errors
from programs can be guaranteed bythe compiler. A type system issaid to be
weak if it is not strong. Similarly, a weakly typed language is a language that
isnat strondy typed.

In Chapter 3 we introduced the concept of a statically typed language. Such
langueges are said to oley to a static type system. Precisaly, such atype sys-
tem requires that the type of every expressons be known at compile time. An
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example of a static type system can be achieved by requiring that

1. only built-in types can be used;
2. al variables are dedared with an associated type;

3. all operations are spedfied by stating the types of the required operands and the type of
the result.

A statically typed language is a strondy typed language, bu there ae
strondy typed languages that are not statically typed. For example, we will
show in Chapters 6 and 7examples of languages where the binding ketween a
variable and its type anna be established at compile time, and yet the rules
of the type system guarantee type safety; i.e., they guarantee that corredly
compiled programs will execute withou generating type errors.

In general, we may observe that many strong type systems exist. Since al of
them guarantee type safety, how shoud a language designer choose a type
system when defining a new programming language? There ae two corflict-
ing requirements to be accommodated in such a design dedsion: the size of
the set of legal programs and the efficiency of the type checking procedure
performed by the wmpiler. Since atype system restricts the set of programs
that can be written, we might come out with rules that allow only very simple
programs. In principle, atype system which restricts the set of legal programs
to the anpty set is a strong type system. It is also trivial to check. But it is
obviously useless. The previous example of static typing allows for a simple
checking procedure, bu it is overly restrictive. Dynamic typing, as we will
demonstrate in Chapters 7 and 8,isavery powerful programming facili ty that
can be combined with strongtyping. In such a case, however, the is required
to perform a complex type checking procedure.

3.3.3Type compatibility

A strict type system might require operations that exped an operand d atype
T to beinvoked legally only with a parameter of type T. Languages, however,
often allow more flexibility, by defining when an operand d ancther type—
say Qs aso acceptable withou violating type safety. In such a case, we say
that the language defines whether, in the context of a given operation, type Q
is compatible with type T. Type compatibility is also sometimes called con-
formance or equivalence. When compatibility is defined precisely by the type
system, a type decking procedure aan verify that al operations are aways
invoked corredly, i.e., the types of the operands are compatible with the types
expected bythe operation. Thus alanguage defining anation d type compat-
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ibility can still have astrongtype system.

Figure 38 shows a sample program fragment written in a hypaheticd pro-
gramming language.

struct s1{
inty;
int w;

|3

struct s2{
inty;
intw;

|3

struct s3 {
inty;

1
s3func (sl 2)
{

b
sla x;
2 b;

s3¢;
intd;

a=b; (1)
x =2 --(2)
¢ =func (b); --(3)
d =func (a); --(4)

FIGURE 38. A sample program

The strict conformance rule where a type name is only compatible with itself
is cdled name compatibility. Under name compatibility, in the above exam-
ple, instruction (2) is type @rred, since a and x have the same type name.
Instruction (1) contains a type aror, because a and b have different types.
Similarly, instructions (3) and (4) contain type errors. In (3) the function is
cdled with an argument of incompatible type; in (4) the value returned bythe
functionis assgned to avariable of an incompatible type.

Structural compatibility is another possble conformance rule that languages
may adopt. Type T1 is dructurally compatible with type T2 if they have the
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same structure. This can be defined reaursively as follows:

e T1lisname compatible with T2; or

e Tl and T2 are defined by applying the same type anstructor to structurally compatible
corresponding type components.
Accordingto structural equivalence, instructions (1), (2), and (3) are type cor-

rect. Instruction (4) contains atype error, since type s3 is nat compatible with
int. Note that the definition we gave does not clealy state what happens with
the field names of Cartesian products (i.e., whether they are ignared in the
check or they are required to coincide and whether structurally compatible
fields are required to occur in the same order or not). For smplicity, we
asume that they are required to coincide and to occur in the same order. In
such a @ase, if we rename the fields of s2 asy1 andwi1, or permute their occur-
rence, s2 would nolonger be compatible with s1.

Name compatibility is easier to implement than structural compatibility,
which requires areaursive traversal of a data structure. Name compatibility is
also much stronger than structural compatibility. Actually, structural compat-
ibility goes to the extreme where type names are totall y ignared in the check.
Structural compatibility makes the dassification d data objects implied by
types exceedingly coarse.

For example, having defined the foll owing two types:

struct complex {
float &
float b;

st'ruct point {
float &
float b;

the programmer can instantiate variables to represent—say—pants on a plane
and values of a.c. valtage. The type system all ows to use them interchange-
ably, athough most likely the programmer has chosen two dfferent type
names in order to keep the different sets of objects separate. In conclusion,
name cmpatibility is often preferable. It prevents two typesto be considered
compatible just because their structure happens to be identicd by coinci-
dence.

Often programming languages do nd take much care in defining the adopted
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nation d type compatibility they adopt. Thisissueisleft to be defined by the
implementation. An urfortunate nsequence is that different implementa-
tions may adopt different nations, and thus a program accepted by a compiler
might be rejected by ancother. This unfortunate case happened, for example,
when Pascal was originaly defined, athoughlater 1ISO Pascd defined type
compatibility rigorously, mainly based on rame compatibility. C adops
structural compatibility for all types, except structures, for which name com-
patibility isrequired.

Type compatibility in Adais defined via name compatibility. Since the lan-
guage introduces the concept of a subtype (see &so Sedion 3.3.5, oljects
belongng to dfferent subtypes of the same type ae compatible. In Ada,
when avariable is defined by means of a constructor, asin

IA: array (INTEGER range 1. .100) of INTEGER;
abrand rew anonymous type isimplicitly introduced, followed by a variable

dedaration:

type ANONYMOUS 1lisarray (INTEGER range 1. .100) of INTEGER;
IA: ANONYMOUS 1;
Thus, if two variables 1A and 1B are declared:

IA: array (INTEGER range 1. .100) of INTEGER,;
IB: array (INTEGER range 1. .100) of INTEGER,;
the two variables are mnsidered to have noncompatible types, since their

anonymous type names would be different.

3.3.4Type conversions

Suppcse that an olject of type T, is expeded by some operation at some point
of aprogram. Also, suppacse that an olject of type T, is avail able and we wish
to apply the operation to such olject. If T, and T, are compatible according to
the type system, the goplication d the operation would be type correct. If they
are not, ore might wish to apply a type conwversion from T, to T, in order to
make the operation pasible.

More precisely, let an operation be defined by a function fun expeding a
parameter of type T, and evaluating aresult of typeR;:

fun: T; >Ry
Let x, be avariable of type T, andy, of typeR,. Suppcsethat T, and T, (R, and
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R,) are not compatible. How can fun be gplied to x, and the result of the rou-
tine be asggned to y,? This would require two conversion functions to be
avail able, t,; and ry,, transforming oleds of type T, into oljects of type T,
and olhjects of type R, into ojeds of type R,, respedively:

to1: Tz -> Tl

M1 Rl -> R2
Thus, the intended adion can be performed byfirst applying t,; to x,, evaluat-
ing fun with such argument, applying r,, to the result of the function, and
finally assgningtheresult toy,. That is:

(i) y2=rga(fun (t21(x2)))
For some languages any required conversions are applied automatically by
the compiler. Following the Algd 68 terminology, we will call such auto-
matic conversions coercions. In the example, if coercions are avail able, the
programmer might ssimply write

(it) yo=fun(xp)
and the compil er would automatically conwvert (i) into ().

In generd, the kind d coercion that may occur at a given pant (if any)
depends on the context. For example, in C if we write

X=X+2z
where zisfloat and x isint, x is coerced to float to evaluate the aithmetic oper-
ator + (which stands for real addition), and the result is coerced to int for the
assgnment. That is, the aithmetic coercionisfrom int to float, but the assgn-
ment coercionis from float to int.

C provides a simple coercion system. In addition, explicit conversions can be
applied in C using the cast construct. For example, acast can be used to owver-
ride an uncesirable aercion that would atherwise be applied in a given con
text. For example, in the above assgnment, ore can force aconversion o z to
int by writing

X=X+ (int) z
Such an explicit conversionin Cis ssmantically defined by assuming that the
expression to be converted is implicitly assgned to an unramed variable of
the type specified in the cast, using the coercion rules of the language.
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Ada does not provide any coercions. Whenever a conversion is alowed by
the language, it must be invoked explicitly. For example, if X isdeclared as a
FLOAT variable and | is an INTEGER, assgning X to | can be accomplished by
the instruction

| := INTEGER(X);
The conwversion function INTEGER provided by Ada computes an integer from
afloating pant value by roundng to the neaest integer.

The existence of coercionrulesin alanguage has both advantages and disad-
vantages. The advantage isthat many desirable conversions are aitomaticdly
provided bythe implementation. The disadvantage is that since implicit trans-
formations happen behind the scenes, the language becomes compli cated and
programs may be obscure. In addition, coercions wegen the usefulness of
type checking, since they override the declared type of objects with default,
context sensitive transformations. For example, Alga 68 consistently applies
the principle of implicit conversions to the extreme. The type of the value
required at any gven pant in an Algd 68 pogram can be determined from
the context. But the way coercions interact with ather constructs of the lan-
guage @an make programs quite hard to understand. Unexpected dfficulties,
in particular, arise because of the interaction between coercions and overload-
ing d operators and routines.

3.3.5Types and subtypes

If atypeis defined as a set of values with an associated set of operations, a
subtype can be defined to be asubset of those values (and, for simplicity, the
same operations). In this section we explore this nation in the context of con-
ventional languages, ignaring the ability to specify user-defined operations
for subtypes. The concept of subtype will have aricher semantics in the con-
text of objed-oriented languages, as wil | be discussed in Chapter 6.

If ST is a subtype of T, T isalso cdled ST's supertype (or parent type). We
asume that the operations defined for T are automatically inherited by ST. A
language suppating subtypes must define:

1. away to define subsets of agiven type;

2. compatihility rules between a subtype and its supertype.
Pascd was the first programming language to introduce the concept of a sub-
type, as a subrange of any dscrete ordinal type (i.e., integers, bodean, char-
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ader, enumerations, or a subrange thereof). For example, in Pascal one may
define natural numbers and dgits as foll ows:

type natural = 0. .maxint;
digit =0. .9;
small =-9..9;
where maxint iS the maximum integer value representable by an implementa-

tion.

A Pascal program can only define asubset of contiguous values of a discrete
type. For example, it cannot define a subtype EVEN of al even integers or
multi ples of ten in the range -1000. .1000Different subtypes of a given type
are wnsidered to be compatible among themselves and with the supertype.
However, type safe operations are not guaranteed to evaluate with noerror.
No error arisesif an olject of asubtypeis provided in an expressonwhere an
object of its supertype is expected. For example, if an expresson requires an
integer, one may provide anatural; if it expectsanatural, ore might provide a
digit. If, however, a small is provided where adigit is expected, an error
arises if the value provided is nat in the range expected. That is, if an argu-
ment of type T is provided to an operation expecting an operand d typeR, the
expression is type safe if either R or T is a subtype of the other, or both are
subtypes of ancther type Q. No value aror will occur at runtimeif T isasub-
type of R. In all other cases, the operation must be checked at runtime and an
error may arise if the value transmitted dces not belongto the expected type.

Ada provides a richer notion d subtype than Pascd. A subtype of an array
type @n constrain its index; a subtype of a variant record type @n freeze the
variant; a subtype of a discrete ordinal type is a finite subset of contiguows
values. Examples of Adatypes and subtypes are shown in Figure 39.
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type Int_Vedor isarr ay (Integer range < >) of Integer;
type Var_Rec(Tag: Bodea) is
record X: Float;
case Tag of
when True => Y Integer;
Z: Red;
when False=> U: Char;
end case;
end record;
subtype Vec 100isInt_Vedor (0. .99);
--this subtype cnstrains the bounds of the aray to 0. .99
subtype X_trueis X (True);
--this aubtype freeza the variant where Tag = True; objeds of the subtype thus
--havefields X, Y, and Z;
subtype SMALL isInteger range-9. .9;
--this subtype defines a small set of integers

FIGURE 39.Examples of Adatypes and subtypes

Ada subtypes do nd define new types. All values of all subtypes of a certain
type T are of type T. The subtype wmnstruct can be viewed as away to signal
that certain runtime diecks must be inserted by the compiler to ensure that
objects of a given subtype always recave the spedfied restricted set of val-
Ues.

3.3.6Generic types

As we mentioned, modern languages allow parameterized (generic) abstract
datatypesto be defined. A typicd exampleisastack of elements of a param-
eter type T, whaose operations have the foll owing signatures:

push: stack (T) x T -> stack (T)  --pushes an element on top of the stack
pop: stack (T) ->stadk (T) X T --extracts the topmost element from the stack
length: stadk (T) -> int --compute the length of the stack
An implementation d this example was illustrated in Sedion 3.2.8for C++

and Eiffel. In the example, the astract data type being defined is parametric
with respect to a type, and the operations of the generic type are therefore
defined as generic routines. The operations defined for the type stak(T) are
supposed to work uniformly for any possble type T. However, since the type
is not known, honv can such routines be type decked to guarantee type
safety?
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A possibility is provided by languages like Ada, C++, and Eiffel, where
generic types must be explicitly instantiated at compile time by hinding
parameter typesto “rea” types, that are known at compile time. Thisadieves
static typing for each instance of each generic type, and therefore each
instance is gatically checked to ensure type safety. Instantiation, havever, is
naot required in languages like ML. Aswe will see in Chapter 7, hovever, the
language still ensures type safety staticaly.

3.3.7Summing up: monomor phic versus polymor phic type systems

A simple strong type system can be provided by a statically typed language
where every program entity (constant, variable, routine) has a specific type,
defined by a declaration, and every operation requires that an operand o
exactly the type that appears in the operation dcefinition can be provided. For
such alanguage, it is posshbleto verify at compil e time that any occurrence of
that constant, variable, or routine is type crrect. Such atype systemis called
monomorphic (from ancient Greek, “single shape”): every obed belongs to
one and orly one type. By contrast, in a polymor phic (“ multiple shape”) pro-
gramming languages every constant and every variable can belongto more
than ore type. Routines (e.g., functions) can accept as a formal parameter
adual parameters of more than ore type.

By examining closely traditional programming languages like C, Pascd, or
Ada, however, we have seen in the previous secions that al deviate from
strict monomorphism in ore way or ancther. Compatibility, discussed in Sec-
tion 33.3,is afirst departure from strict monamorphism, since it allows any
compatible type to be acepted where acertain typeis needed. Coercion, ds-
cussed in Sedion 3.3.4jsaso adeviationfrom strict monamorphism. In fact,
it dlows an operand d one type to be used when an olject of a different type
is expected. Subtyping, dscussed in Sedion 3.3.5, provides yet another
example of deviation, since an element of the subtype dso belongs to the
supertype. As yet another example, overloading (introduced in Sedion 3.3.3
allows operators, like + or *, to be applied to bah integer operands and real
operands.

Since palymorphic feaures creep in most—if not all—existing languages, adis-
tinction ketween monamorphic and pdymorphic languages is of no practica
use. All practical languages have some degree of poymorphism. Conse-
quently, the important questions to answer are: Can dfferent kinds (or
degrees) of polymorphism be identified? How far can we go with pdymor-
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phism, and yet retain strong typing? Understanding the possble different
forms of paymorphism can help us appredate the sometimes profound
semantic differences among them. Moreover, it will help us organize con
ceptslike mercion, subtyping, and owerloading, which were examined in pre-
vious ctions sparately, into a coherent conceptual framework.

Polymorphism can be classfied as shown in Figure 40. For the sake of sim-
plicity and abstraction, let us discuss Figure 40 in the case of paymorphic
functions, i.e., mathematical functions whase arguments (domain and range)
can belong to more than ore type.

parametric

et

universal

polymorphism \ inclusion
\ / overloading
ad-hoc
\ coercion

FIGURE 40. A classdfication of polymorhism

A first distinction is between urniversal palymorphism and ad-hoc polymor-
phism. Ad-hoc polymorphism does not really add to the semantics of amono
morphic language. Ad-hoc poymorphic functions work on afinite and dten
small set of types and may behave differently for each type. Universal poly-
mor phism characterizes functions that work uniformly for an infinite set of
types, al of which have some cmmon structure. Whereas an ad-hoc paly-
morphic function can be viewed as a syntadic abbreviation for a small set of
different monamorphic functions, a universal paymorphic function executes
the same code for arguments of all admisgble types.

The two major kinds of ad-hoc poymorphism are overloading and coercion.
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In overloading, the same function rame can be used in dfferent contexts to
dencte different functions, and in each context the function actually denoted
by agiven nameis uniquely determined. A coercion isan operation that con-
verts the agument of afunction to the type expeded bythe function. In such
a cae, pdymorphismisonly apparent: the functionadually worksfor its pre-
scribed type, althoughthe agument of a diff erent type may be pased toit, but
it is automatically transformed to the required type prior to function evalua-
tion. Coercions can be provided statically by code inserted by the compiler in
the case of statically typed languages, or they are determined dyramically by
runtime tests on type descriptors, in the case of dynamicaly typed lan-

guages.

Overloading and coercion can be illustrated by the C example of the aith-
metic expresson a + b. In C, + is an ad-hoc paymorphic function, whose
behavior is different if it is applied to float values or int numbers. In the two
cases, the two dfferent machine instructions float+ (for real addition) or int+
would be needed. If the two operands are of the same type-say, floai—the +
operator is boundto float+; if both are boundto int, + is boundto int+. The fact
that + is an overloaded operator is a purely syntactic phenomenon. Since the
types of the operands are known statically, ore might eliminate overloading
statically by substituting the overloaded + operator with float+ or int+, respec-
tively. If the types of the two operands are different (i.e., integer plus real or
real plusinteger), however, the float+ operator is invoked after converting the
integer operandto real.

Figure 40 dfines two kinds of universal poymorphism: parametric and
incluson pdymorphism. Subtyping, dscussed in Section 3.3.5,isan example
of inclusion polymorphism. A function isindeed appli cable to any type that is
a subtype of a given type. This concept is applicable not only to the case of
subtyping d Section 33.5, bu also the more general concept that will be dis-
cussd in the mntext of object oriented languages in Chapter 6.

Parametric polymorphism is perhaps the most genuine form of universa
polymorphism. In this case the polymorphic function works uniformly on a
range of types that are spedfied as parameters. Generic routines, as in the
case of ML functions, are examples of parametric polymorphic functions. Ina
language like Adafor which, as anticipated in Sedion 3.3.6, gneric routines
are instantiated at compile time, with full binding d type parameters to spe-
cific types, genericity isonly an apparent kind o polymorphism; that is, it can
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be viewed as a case of ad-hoc paymorphism.

The term dynamic polymorphism is also frequently used to dencte the ase
where the binding between language entities and the form they can take var-
ies dynamicdly. Languages that suppat unrestricted forms of dynamic paly-
morphism canna provide astrongtype system. By providing suitable forms
of inclusion and/or parametric polymorphism, however, languages can pre-
servea strong type system. We will discussthis in Chapter 6 for objed-ori-
ented languages, which can suppat inclusion polymorphism, and in Chapter
7 for the functional language ML, which suppats parametric polymorphism.

3.4 Thetype structure of existing languages

In this section we review the type structure of a number of existing program-
ming languages. The description provides an owerall hierarchical taxonamy
of the features provided by each language for data structuring. For a full

understanding d language semantics, such description must be comple-
mented by a precise understanding d the rules of the type system (strongtyp-
ing, type ompatibility, type nwersion, subtyping, gnericity, and
polymorphic features), according to the concepts discussed in Sedion 3.3.
Our discusson will touch onthe main fedures of type structures. Other com-
ments were given in previous parts of this chapter. Moreover, the reader is
urged to refer to language manuals for a discusson d al detail s and subtle-
tiesthat canna be addressed in this treament.

3.4.1Pascal

The type structure of Pascal is described in Figure 42. A different decomposi-
tion d unstructured types would be in terms of ordinal types and red types.
Ordinal types comprise integers, bodeans, characters, enumerations, and sub-
ranges. Ordinal types are characterized by a discrete set of values, each o
which has (at most) a unique predecessor and a unique successor, evaluated
by the built-in functions pred and succ, respectively.

Figure 42 shows how structured types can be built in Pascal. Recursive data
structures are defined via pointers. Cartesian products are defined by records.
Unions and dscriminated urions are described by variant records. Comments
on these constructs, and particularly ontheir possble insecurities, were given
ealier. Finite mappings are described by arrays, whaose index type must be an
ordinal type. The sizeof an array isfrozen when the aray typeis defined, and
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canna change during execution. Pascal regards arrays with dfferent index
types as diff erent types. For example, a1 and a2 below are different types.

typeal = arr ay [1. .50] of integer;
a2 =array[1..70] of integer;
This was a serious problem in Pascal as originally defined. Because proce-
dures require formal parameters to have a spedfied type, it was not passhble,
for example, to write a procedure capable of sorting bdh arrays of type a1 and
type a2. During the standardization d Pascd by 1SO, anew feature was added
to solve this problem. This feature, cdled the conformant array, allows the
formal array parameter of a procedure to conform to the size of the actual
array parameter. The adual and formal parameters are required to have the
same number of indexes and the same componrent type. The example ill us-
trates the use of conformant arrays.

procedure sort (var a array [low. .high: integer] of CType);
var i integer;
more: boolean;
temp: CType;
begin
more :=true;
while more do begin
more = false;
for i :=low to high- 1 do begin
if a[i] >a[i + 1] then begin { move down element}
temp :=alil;
a[i] :=ali +1];
a[i +1] :=temp;
more :=true
end
end
end
end;

FIGURE 41.An example of conformant arrays in Pascal
When the procedure sort is called with aone-dimensional array parameter, low

and high assume the values of the lower and upger bounds of the adual param-
eter, respectively.

Anocther solution, nd available in Pascal, could have been based on genericity
(i.e., alowing a procedure to be generic with respect to the array bound).
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More generaly, Pascal provides only limited forms of ad-hoc polymorphism.
Some built-in operators, like + or succ, are overloaded. In fad, succis applica-
ble to operators of any ordina type. Similarly, + can be applied to integer
operands, real operands, or even sets (in which case it denotes the union oper-
ator). The language dso defines cases of coercion. For example, if an integer
is added to a real, the integer is coerced to a real, and the aldition is per-
formed.

As we mentioned earlier, Pascd is not a strondy typed language. For exam-
ple, itsoriginal definition dd na carefull y define the concept of type compat-
ibility. Moreover, subtypes are defined by the language & new types, and
thus the type of an expresson may in general depend onthe values of the
operands at runtime.

Pascd types
u nstructured p0| nters structured
recursive
data types
enumeratlon
g f| le
built-in subran - reoor sequence
- integer * Cartesian product et
- redl - variant record power
- char discriminated union f|n|te mapping
- bodean
FIGURE 42. The type structure of Pascal
3.4.2C++

Thetype structure of C++ isgiven in Figure 43. C++ distingushes between to
caegories of types. fundamental types and derived type. Fundamental types
are ather integral or floating. Integral types comprise char, shart int, int, longint,
which can be used for representing integers of different sizes. Floating-point
types comprise float, double, and long double. New integral types may be
dedared viaenumerations. For example

enum my_small_set {low = 1, medium =5, high = 10}
Arrays are declared by providing a @nstant expresson, which defines the
number of elementsin the array. For example
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float fa[15];
dedares an array of floating-point numbers that can be indexed with a value

intherange0. .14.

C++ distinguishes between pdanters and references. A referenceisan aiasfor
an olject. Therefore, once areferenceis boundto an olject, it canna be made
to refer to a different object. For example, having declared

inti=5;
int& j =1i;
i andj denote the same object, which contains the value 5.

When the referencé s lifetime starts, it must be boundto an olged. Thus, for
example, ore canna write the following declaration

int& j;
It is possble, however, to bind a reference to an olject through @rameter
passng. This is actualy the way C++ suppats parameter passng by refer-
ence. For example, according to the following routine declaration

void fun (int& X, float y)
x represents a by-reference parameter, which is bound to its correspondng

adual parameter when the routine gets cdled.

Pointers are quite different. A pointer is a data object whose value is the
address of another objed. A painter can be made to refer a different objects
duringitslifetime. That is, it is possbleto assign a new value to apointer, na
only to the objed referenced by the pointer. Of course, it is possble to use
pointers also in the cae where a reference would do. In fact, references are
not provided by C, but were alded to the language by C++. Aswe mentioned,
however, panters are extremely powerful, bu difficult to manage, and dten
dangerous to use. They shoud be used only when necessary. References
shoud be used in al other cases.

Another mgjor distinctive feature of the C++ type system is the aility to
define new types throughthe dass construct. As we discussed, this alows
abstract data type implementations to be provided. If no protection is needed
onthe data declared in a dass classes without default access restrictions can
be defined as gructures, viathe struct construct.
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Finally, two ather kinds of types can be derived in C++ by using the function
and the union constructs. As we dready olserved, the function construct
defines a new data objed. It isthus possible to define pointers and references
to functions, passfunctions as parameters, etc. The union construct defines a
structure that is capable of containing ohects of different types at different
times.

C++ types
fundamental \derived
/ / union
) \
integral floatihg e /
function structure
pointer to ’ referenceto 1SS
objed/function/.  gbject/function
class member
FIGURE 43. The type structure of C++
3.4.3Ada

The type structure of Ada is described in Figure 44. Such structure is dis-
cused and evaluated in this sction, except for concurrency related types,
which are discussed in Chapter 4, and tagged types, which are discussed in
Chapters 5 and 6.

Unstructured (scalar) types can be both numeric (i.e., integers and reals) and
enumerations. All scdar types are ordered, i.e., relational operators are
defined onthem. Enumeration types are similar to those provided by Pascal.
Integer types comprise a set of consecutive integer values. An integer type
may be either signed o moduar. Any signed integer typeisasubrange of sys-
tem.Min_Int. .System.Max_Int, which denate the minimum and maximum integer
representable in a given Ada implementation. A modular integer is an abso-
lute value, greaer than o equal to zero. The Ada language predefines a
signed integer type, called Integer. Other integer types, such asLong_Integer O
Short_Integer, may also be predefined by an implementation. Programmer-
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defined integer types may be specified as shown by the following examples:

type Small_Intisrange-10. .10; -- range bounds may be awy static expressons
type Two_Digit ismod 100; --the values range from 0 to 99;
--in general, the bound must be astatic expression

As we mentioned, Ada allows subtypes to be defined from given types. Sub-
types do nd define anew type. They conform to the nation d subtypewe dis-
cussd in Section 3.3.5.Two subtypes of Integer are predefined in Ada:

subtype Natural is Integer range 0. INTEGER'LAST;
subtype Positiveis Integer range 1. .INTEGER'LAST;

Adaprovides arich and elaborate set of faciliti esfor dedingwith real values;
only the basic aspeds will be reviewed here. Red types provided by the lan-
guage ae just an approximation d their mathematical courterpart (universal
real, in the Ada termindogy). In fad, the fixed number of bits used by the
implementation to represent real values makes it possble to store the exact
value of only a limited subset of the universal reals. Other real numbers are
approximated. Real typesin Ada come in two forms: floating pant and fixed
point. A floating-point red type gproximates a universal real with an error
that is relative to the number’s absolute value. A fixed-point real approxi-
mates auniversal red with an error that is independent of the value being rep-
resented. The language predefines one floating-point real type, called Float. It
is left to the implementation whether additional real types, such as Short_Float
or Long_Float, shoud be provided. The programmer can define alditional
floating-point red types, such as:

type Float_1isdigits 10;
The digits clause specifies the minimum number of significant decimal digits
required for the type. Such minimum number of digits defines the relative
error boundin the gproximate representation o universal reals. Given a
floating pant real type, attribute Digits gives the minimum number of digits
asciated with the type. Thus, Float_1 Digits yields 10, whereas Float' Digits
yields an implementation dependent value.

Fixed-point real types provide another way of approximating unversal reals,
where the approximation error is independent of the value being represented.
Such error boundis gecified as the delta of the fixed-point red. An ardinary
fixed-point real typeisdeclared in Adaas:

type Fix_Ptisdelta 0.01 range 0.00. .100;
The declaration defines both the delta and the range of values.
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A decimal fixed-paint typeis ecified by providing the delta and the number
of decimal digits. For example

type Dec Ptisdelta 0.01 digits 3;
includes at least the range -99.9. .99.9

Ada's structured (or composite) types comprise arays and records. Arrays
can have staticdly known bound, asin Pascd. For example

type Month is (JAn, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, De0);
type Yealy_ Pay isarr ay (Month) of Integer;
type Summer_Pay is arr ay (Month range Jul. .Sep) of Integer;
Such array types are dso said to be constrained. Constraints, however, donat

nedl to be staticall y defined; that is, Ada supparts dynamic arrays as we show
next. First, ore @an declare unconstrained array types by stating an urspeci-
fied range, indicated bythe symbad <> (box):

type Some_Period_Pay isarr ay (Month range <>) of Integer;
type Int_Vedor isarr ay (Integer range <>) of Integer;
type Bool_Matrix isarr ay (Integer range <>, Integer range <>) of Boolea;
In Ada, array types are dharacterized by the types of the comporents, the

number of indices, and the type of each index; the values of the bounds are
not considered to be apart of the aray type, and thus may be left unspecified
a compile-time. The values of the bounds, hovever, must become known
when an olject is creded. For example, ore can declare the following vari-
ables:

Spring_Salary: Some_Period Pay (Apr. .Jun);

Z: Int_Vedor (-100. .100);

W: Int_Vedor (20. 40);

Y: Bool_Matrix (0. .N, 0. .M);
Notice that the values of the bound need na be given by a static expresson.
It isonly required that the bounds be known at run time when the object dec-

larations are processd.

An interesting way of instantiating the bounds of an array is by parameter
passng. For example, the following function receives an olgect of type
Int_Vector and sums its comporents:

function Sum (X: Int_Vedor) return Integer;
Result: Integer := 0; --dedaration with initiali zation
begin
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for I'in X'First. X'Last loop
--attributes First and Last provide the lower and upper bounds of the index
Result := Result + X (1);
end loop;
return Result;
end Sum;

The function can thus be cdled with array parameters of different sizes; for
example

A :=Sum (Z) + Sum (W);
Adaviews strings as arrays of characters of the following predefined type:

type String is arr ay (Positive range <>) of charaders;
A line of 80 characters, initi alized with all blanks, can be declared as foll ows:

Line: String (1. .80) := (1. 80=>"");
Similar to Pascal, Ada records can suppat both Cartesian products and (dis-
criminated) unions. An example of a Cartesian product is

typeInt_Charis
X: Integer range 0. .100;
Y: Charader;
end reoord;
Ada provides a safe version d discriminated unions through \ariant records.
For example, one may write the foll owing Ada declarations (correspondng to
the example discussed in Section 3.2.3

type Address Typeis (Absolute, Offset);
type Safe_Addressisrecord (Kind: Address Type := Absolute)
case Kindis
when Absolute =>
Abs_Addr: Natural);
when Offset =>
Off_Addr: Integer;
end case;
end reoord,;
Type Safe_Address has a discriminant Kind that defines the possble variants of
an address. The default initial value of the discriminant is declared in the

exampleto be Absolute. Thus an olject dedared as

X: Safe_Address;
is an absolute address by default. The discriminant of avariableinitialized by
default can be dhanged orly by assignment of the record as a whale, na by
assgnment to the discriminant alone. This forbids the produwcing d inconsis-
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tent data objects, and makes variant records a safe representation o discrimi-
nated unons.

The discriminant of a variable can also be initialized explicitly when a vari-
ableisdeclared, asin the following case:

Y: Address (Offset);
In such a @se, the variant for the object is frozen, and canna be danged

later. The compiler can reserve the exact amourt of space required by the
variant for the constrained variable. The foll owing assgnments

X:=Y;

X := (Kind => Off set, Off _Addr => 10);
are legal and change the variant of variable X to Offset. The following assgn-
ment, which would change the variant for v, isillegal

Y =X,
Accessto the variant of an olject whose discriminant is initialized by default,
such as

X.Off_Addr := X.Off_Addr + 10;
requires a runtime check to verify that the object is accesed corredly
accordingto its current variant. In the example, if the addressis not an offset,
the error exception Constraint_Error IS raised.

Access types (pointers) are used mainly to allocae and dedlocate data
dynamicdly. As an example, the following dedarations define a binary tree:

type Bin_Tree Node; --incomplete type dedaration
type Tree Ref isaccess Bin_Tree Node;
type Bin_Tree Nodeis
record
Info: Charader;
Left, Right: Tree Ref:
end;
(Note that an incomplete type declaration is needed when recursive types are

being d:fined.)

If P and Q are two panters of type Tree Ref, the Info comporent of the node
referenced by PisP.Info. The node itself is P.all. Thus, assgnment of the node
pointed by P to the node pointed by Q iswritten as
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Qal :=Pall;
If T isapointer of type TREE_REF, alocation d anew node pointed by T can
be accomplished as foll ows:

T :=new Bin_Tree Nodg;
The following assgnment

T.al := (Info => 0, Left => null, Right => null);
initializes T to pant to a node whose Left and Right painters are null, i.e., they
do nd refer to any entity. The language defined value null denctes a null
pointer value.

Adaalso alows painters to refer to routines. For example, the following dec-
laration defines type Message Routine to be any procedure with an input param-
eter of type String

type Message Routine is access procedure (M: String);
If Print_This is a previously defined procedure with an input parameter M of

type String, one can write

Give Message: Message Routine; --dedares a pointer to aroutine
Give_Messge := Print_This' Access; --accessyields areferenceto the routine

Give Message.dl ('Thisls A Serious Error’);
--invokes Print_This; ".all" (dereferencing) is optional

Finally, it is also passble in Ada to define painters which refer to named
objects, fields of records, or array elements. Such referenceable objects (or
parts of an olject) must be declared as aliased (dynamically all ocated data ae
aliased). As the name indicaes, such elements are acessbhle via severa pos-
sible names (aliases). If an element is declared as aiased, the attribute Access
can be gplied to provide a pointer to the dement. For example, having
dedared the following chta

Structure: arr ay (1. .10) of aliased Component;
--Component is a previously defined type
Mine, Y ours: Component;

i\/i i.ne := Structure (1)’ Access; --Mine points to the first element of the aray
Y ours := Structure (2)' Access --Y ours points to the second element of the array
As we discussd in Sedion 3.2.6,adlowing panters to refer to named data

objects (or parts thereof) can generate dangling references. Thisisavoided in
Ada by run-time cheding that an olject referenced by a pointer is all ocated
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in an activation record that is more recently allocated than the adivation
record of the unit in which the accesstypeisdeclared. This check ensures that
the object will live & least as long as the acesstype, which in turn ensures
that the accessvalues cannd refer to oljectsthat do nd exist.

The Adatype system is largely based onPascal, bu is richer, more complex,
and more systematic. It also solves several of the problems and insecurities of
the original Pascal definition. As a result, the language gets close to the god
of strongtyping. Type compatibility (based on rame compatibili ty) is explic-
itly spedfied. The nation d subtype and the necessary run-time decks are
precisely defined. If a new type is to be defined from an existing type, a
derived type construct is provided. For example

type Celsiusis new Integer;
type Farenheit is new Integer;
define two new type; Integer istheir parent type. New types inherit al proper-

ties (values, operations, and attributes) from their parent type, bu they are
considered as diff erent types.

Overloading and coercion are widely available in Ada. The language aso
provides for inclusion pdymorphism in the case of subtypes and type exten-
sions (see Chapter 6).

Finally, Ada makes extensive use of attributes. Attributes are used to desig-
nate properties of data objects andtypes. Aswe saw in many examples < far,
the value of an attribute is retrieved by writing the name of the entity whose
attribute is being sough, followed by a’ and the name of the dtribute. Ada
predefines alarge number of attributes, more can be defined by an implemen-
tation.
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Adatypes

unstructured (SCﬂK(ms(poi nter)  structured
/ \ - to dbject \
recursive
discrete / eal data type concurrency

- torodtine related
floating i ; fianrirtzymappi ng i ::?r?)ﬁcted

enumeration point fixed pant : i
- charadter - grdl_nagly - record S OHeNCe (string) tagged
- boolean - Uema cartesian product
- other enum. . - variant record _

integer discriminated union

- signed integer

- modular integer
FIGURE 44. The type structure of Ada

3.5 Implementation models

This section reviews the basic implementation models for data objects. The
descriptionislanguage independent. It is intended to complement the concep-
tual model of programming language processng provided in Chapter 2, by
showing hav data can be represented and manipulated in a machine. It is not
intended, havever, to provide adetail ed accourt of efficient techniques for
representing data objects within a computer, which can be highly dependent
onthe hardware structure. Rather, straightforward solutions will be presented,
alongwith some comments on alternative, more dficient representations.

Following Chapter 2, data will be represented by a pair consisting o a
descriptor and a data object. Descriptors contain the most relevant attributes
that are needed duing the trandlation process. Additional attributes might be
appropriate for specific purpaoses. Typically, descriptors are kept in a symbal
table during translation, and orly a subset of the dtributes gored there needs
to be saved at run time. Again, we will pay little dtentionto the physical lay-
out of descriptors, which depends on the overall organization d the symbadl
table.

3.5.1Built-in and enumerations
Integers and reals are hardware-supported on most conventional computers,
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which provide fixed and floating-point arithmetic. Existing computers may
also provide different lengths for the suppated arithmetic types. In a lan-
guage like C, these aerefleaed by long and short prefixes. If the language pro-
vides different lengths for arithmetic types and the underlying hardware does
nat, an implementationis usually free to ignare the prefixes. In the ase of C,
it isonly required that short should na be longer than int, which shoud na be
longer than long. If we ignare the isaue of different lengths for arithmetic
types, for simplicity, integer and real variables may be represented as siown
in Figure 45and Figure 46.

descriptor
sign
integer bit
memory word
FIGURE 45.Representation of an integer variable
sign bit for mantissa
descriptor : : sign kit for exponent
red v v
——>| | | k bit exponent h bit mantissax memory word

FIGURE 46.Representation of afloating-paint variable

Values of an enumerationtype ENUM can be mapped, ore-to-one, to integer
values in the range 0. .n1, nbeing the cardinality of ENUM. This mapping
does nat introduce any passhility of mixing upvalues of type ENUM with
values of any ather enumeration type, if al run-time acesses are routed viaa
descriptor containing the type information. The use of the descriptor is of
course not necessary for typed languages. Note that, in alanguage like C, the
mapping d enumeration types to integersis not just part of the implementa-
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tion d the type (and as auch, invisible to the programmer), but it is explicitly
stated in the language definition. This allows the programmer to take advan-
tage of this knowledge, and find ways to break the protedion shield provided
by the type to accessthe representation drectly.

Boodleans and charaders can be viewed as enumeration types, and imple-
mented as above. To save space, characters and bodeans can be stored in
storage units small er than aword (e.g., bts or bytes), which might be addres-
sable by the hardware, or may be packaged into a single word and then
retrieved by suitable word manipulation instructions that can dsassemble the
contents of a word. In such a @se, accessng individual charaders of bod-
eans may be lessefficient, bu it would save memory space. Thus the choice
of the implementation model depends on a trade-off between speed and
Space.

3.5.2Structured types

In this section we review how to represent structured types, bult viathe con
structors discussed in Section 3.2.0ur discusson will nat be dependent on
the specific syntax adopted by an existing language. Rather, it will refer to a
hypahetical, self-explaining, programming notation. For simplicity, we will
asume that variables are declared by providing an explicit type name. For
example, this means that a declaration d—say— afinite mapping X:

X: float array [0. .10];
isashorthand for adeclaration d atype followed by adeclaration d an array
variable:

type X_typeisfloat array [0. .10];

X: X_type;
Similarly, we assume that if a type declaration contains a structured compo-
nent, such comporent is sparately defined by a type declaration. For exam-
ple, if afield of a Cartesian prodict is a finite mapping, there are two type
dedarations. the dedaration d an array type T and the declaration of a struc-
ture, with afield o type T. As aconsequence of these assumptions, each com-
porent of astructured typeis either abuilt-intype, or it is a user-defined type.

Asfor built-in types, each variable is described by a descriptor andits forage
layout. The descriptor contains a description d the variable's type. In an
adual implementation, for efficiency reasons, all variables of a given type



187

might have a smplified descriptor which pdnts to a separately stored
descriptor for that type.

Section 3.5.2.1dedswith Cartesian products. Section 3.5.2.2ea swith finite

mappings. Unions and dscriminated urions are discussed in Section 3.5.2.3.
Powersets and sequences are discussed in Sections 3.5.2.4and 3.5.2.5 Sec-

tion 3.5.2.6 thcusses user-defined types through a simple class construct.

Finally, Section 3.5.2.7contains an introduction to the management of the

hegp memory, which is needed for dynamically allocated oljeds, like those

defined by arecursive type, and implemented via pointers.

3.5.2.1 Cartesian product

The standard representation d a data object of a Cartesian product typeis a
sequentia layout of comporents. The descriptor contains the Cartesian prod-
uct type name and a set of triples (name of the selector, type of the field, ref-
erenceto the data object) for each field. If the type of thefield isnat abuilt-in
type, the type field pants to an appropriate descriptor for the field.

Figure 47 illustrates the representation for the foll owing case of a variable of
Cartesian product type with afield which isitself of a Cartesian product type:

type ancther_typeY is druct{
float A;
int B;

|

type sample_typeis struct {
int X;
another_type;

sz'ample_typex;
Note that each comporent of the Cartesian product occupies a certain nunber
of addressable storage units (e.g., words). In a statically typed language, if
each component is guaranteed to occupy a fixed memory size, knowvn by the
compiler, the descriptor is not needed at run time, and the reference to each
field can be evaluated staticdly by the compiler as afixed offset with respect
to theinitial addressof the mmpaosite objed.
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type | sample_type

constructor struct

selector X
type int
reference p integer value
seledor Y —® floating pant value
type I —p| integer value
reference
type another_type
constructor struct
selector A
type float
reference
selector B
type int
reference

FIGURE 47.Representation of a Cartesian product

3.5.2.2 Finite mapping

A conventional representation d a finite mapping al ocates a certain number
of storage units (e.g., words) for each component. The descriptor contains the
finite-mapping type name; the name of the domain type, with the values of
the lower and upger bound the name of the range type (or the referenceto its
descriptor); the reference to the first locaion d the data area where the data
object is stored.

For example, given the declarations

type X_typeisfloat array [0. .10];
X_typeX;
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the correspondng representation is given in Figure 48.

A reference to X[I] is computed as an off set from the addressA_X of the first
location d the array. Let the domain type be the integer subrange M. N. Let K
be the number of words occupied by each element of the array (thisis known
from the type of the range, but might be stored in the descriptor to avoid com-
puting such value each time it is necessary). The offset to be evaluated for
aaessngA[l] iISK(l - M).

In a statically typed language with arrays of statically known index bound,
the descriptor does nat need to be saved at runtime. The only exception are
index bound, which may be used to check at run time that the index value
belongs to the stated range.

As we discussed in Chapter 2 (Sedion 2.6.5, in a language that suppats
dynamic arays, the value of the aray in the adivation record is composed of
two parts. Thefirst part (often call ed dope vector) contains a referenceto the
data object (which, in general, can orly be evaluated at runtime) and the val-
ues of the bounds (to be used for index checking). The secondpart isthe array
itself, which is accessed indirectly throughthe dope vector.

type X_type — 0
constructor array 1
index type int

lower bound 0
upper bound 10
range type float 10
reference data object

FIGURE 48. Representation of afinite mapping

3.5.2.3 Union and discriminated union

Union types do nd require any special new treatment to be represented. A
variable of a union type has a descriptor that is a sequence of the descriptors
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of the mmporent types. Instances of the values of the mmporent types sare
the same storage area.

Discriminated urion types are provided by existing programming languages
as extensions of the Cartesian product. For example Pascal and Ada provide
discriminated unions as variant records. The variant record is a cnstruct can
be viewed asthe wnjunction o several fields plusadigunction d fields, pre-
fixed bythe definition d atag field. When the conjunction d fieldsis empty,
we obtain a discriminated urion. As an example, the reader may consider the
foll owing Pascal-li ke fragment. Since dl variants are the same storage area,
avariable z of type z_type can be represented as in Figure 49. Note that the
various variants are acessible via a ase table, aacording to the value of the
tag field.

type X_typeisfloat array [0. .10];
type Z_type = record
case kind: BOOLEAN of
TRUE: (a: integer);
FALSE: (b: X_type)
end
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type Z_type
constructor | variant record

selector kind

type boolean p boolean value
reference casetable
case table - TRUE
FALSH
selector a ¢
type| X_type
constructor array vi
index type int seledor b
lower bound 0 type int
upper bound 10 reference
range type float
reference

FIGURE 49.Representation of a discriminated union

3.5.2.4 Power sets

Powersets can be implemented efficiently, in terms of access time, manipula-
tion time, and storage space, provided that a machine word has at least as
many hits asthere ae potential members of the set. (i.e., the cardinality of the
base type). The presence of the i-th element of the base typein a certain set S
isdenoted by a “1” as the value of the i-th hit of the word associated with S.
The empty set isrepresented by all zerosin the word. The union between sets
is easily performed by an OR between the two asociated words, and the
intersection byan AND. If the machine does nat allow bit-level access test
for membership requires gifting the required hit into an accessible word
pasition (e.g.,the sign ht), or using amask. The eistence of such an appeal -
ing representation for powersets is resporsible for the implementation
defined limits for the cardinality of representable sets, which is normally
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equal to the size of amemory word.

3.5.2.5 Sequences

Sequences of elements of arbitrary length ona secondary storage are repre-
sented as fil es. File management isignared here, being ou of scope. Strings,
as sippated by many languages, are just array of characters. In ather lan-
guages, such as SNOBOL4 and Algd 68, strings may vary arbitrarily in
length, having no pogrammer-specified upper bound.Thiskind d array with
dynamicdly changing size must be al ocated in the heap (see Chapter 2, Sec-
tion 2.5.2.6.

3.5.2.6 Classes

User-defined types gedfied viathe smple classconstruct introduced in Sec-
tion 3.2.8 are easy to represent as extensions of structures. The differences
are:

1. only public fields are visible outside the construct. Such fields must be tagged as public
in the descriptor.

2. some fields may be routines. It is thus necessary to be ale to store routine signaturesin
descriptors.

The reader can easily extend the representation scheme presented in Sedion
3.5.2.1to keep these new requirements into accourt. Since the @de of the
routines encapsulated in a classis shared by all class instances, routine fields
are represented as pointers to the routines.

Objeds that are instances a new type defined by a dassare treated as any
other data objed. Some languages alow the programmer to chocse whether
classdefined oljects must be dl ocated onthe stadk or onthe heg. For exam-
ple, in C++ after classpoint isdedared asin Figure 33, the following ceclara
tions are possble in some functionf:

point x (1.3, 3.7);

point* p = new point (1.1, 0.0);
In the first case, x isanamed variable that is all ocated in f's activation record
on the stack. In the second, p is allocated in f's adivation record, while the
data structure for the point is all ocated onthe heap. Hegp management isdis-
cussd next.



193

3.5.2.7 Pointers and garbage collection

A pointer holds as a value the aldressof an olject of the type to which the
pointer is boundto. Pointers usually can have aspecia null value (e.g.,void in
C and C++, nil in Pascal). Such anull value can be represented by an address
value that would cause ahardware-generated error trap to cach an inadvert-
ent referencevia apointer with nul value. For example, the value might be an
address beyondthe physical addressng spaceinto a protected area.

Pointer variables are alocated as any ather variable on the activation record
stack. Data objects that are all ocated via the run-time all ocation primitive new
are alocated in the heap. Heap management isa aucial aspect of a program-
ming language implementation. In fact, the free storage might quickly be
exhausted, unessthere is sme way of returning al ocated storage to the free
area.

The memory alocated to hdd a hegp olject can be released for later reuse if
the object is no longer aacessble. Such an olject is sid to be garbage. Pre-
cisely, an olject is garbage if no variable in the stack paintsto it and—+reaur-
sively—no dher garbage points to it. There ae two main aspects involved in
hegp management. One is the recogntion that some portion of alocated
memory is garbage; the other is to recycle such memory for new memory
all ocaion requestsissued bythe user.

Garbage recognition dten relies onthe programmer, whoisrequired to naify
the system that a given oljed became useless For example, in order to state
that the object pointed by p is garbage, in C++ one would write delete(p) andin
Pascd one would write dispose(p). As we mentioned, thereis no guaranteethat
only oljeds that become unreferenced be defined as garbage: the wmrred use
of delete (or dispose) entirely relies on the programmer’ s resporsibility. Shoud
the programmer inadvertently mark an olject as garbage, the pointer to it
bewmmes dangling.

Ancther strategy is to let the runtime system take cre of discovering gar-
bage, by means of a suitable astomatic garbage collection algorithm. Auto-
matic garbage wllection is vital for languages that make heavy use of
dynamicdly generated variables, like LISP. In fact, garbage @llection was
invented for implementing the first LISP systems. Eiffel, which unformly
treats all objects as referenced by panters, provides an automatic garbage
colledor. Althoughthe subject is usually treated in courses on data structures,
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we provide abrief and simplified view of possble strategies for automatic
garbage mllection.

Garbage wllection can be performed incrementally by using a reference
counting scheme. Under such a scheme, each heap allocaed olject is sup-
posed to have an extra descriptor field, to store the aurrent number of pointers
to it. Whenever a pointer variable is deallocated from the stack, the reference
count of the heap olged pointed byit is decreased by ore. When the reference
court becomes zero, the object is dedared to be garbage, and the reference
court of any olject pointed by it is deaeased by ore. This method thus
releases an olject as Lonasit isfoundto become unreferenced. The problem
with this method, havever, is that it does not work for circular hegp data
structures (see Figure 50). If a painter to the head of acircular list is deall o-
caed, the nodes of the list are not foundto be garbage, because the reference
court for each nockisone.

*

FIGURE 50. A circular hegp data structure

A nonincremental strategy for automatic garbage collection consists of all o-
cding free cdls from the heg urtil the free space is exhausted. Only at that
point the system enters a garbage llecting phase. We describe one such
scheme under the simplifying assumption that:

* the heg data objeds have fixed size
* it is known a-priori which fields of a hegp dbjed contain pointers to ather heg data
objeds, and

* itispossibleto find all the pointers from the stad into the heap.
The following method for garbage collection allows all reachable heg data
objects to be distingushed from garbage objects. To doso, a working set of
pointers T may be used. Initially, T contains the stack values which pant into
the heap. An element E is repeatedly extracted from T, the objects referenced
by E are marked, and E is replaced by the painters to the node(s) contained in
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E, if they are not marked. When T becomes empty, all reachable heap data
objects have been marked. All other objects are garbage.

A number of variations have been propased in the literature to make this gar-
bage collection method more dficient. Its main problem, however, is that
“useful” processngtime islost when the garbage wllector isinvoked. In an
interactive system, this may be perceived by the programmer as an urex-
peded slow-down of the gplication, which occurs at unpredictable times. In
a red-time system, this can be particularly dangerous, because an urgent
request for service might arrive from the environment just after the garbage
colledor has garted its rather complex activity. Garbage @llection time is
distributed more uniformly over processng time by using the reference
courting scheme, bu unfortunately such scheme works only partially. An
appealing solution, which canna be reviewed here, is based onaparall el exe-
cution scheme, where the garbage collector and the normal language proces-
sor execute in parallel.

Having dscovered which heg data objects are garbage (either by explicit
natification by the programmer, or by running a garbage collector), ore
should decide how to regycle them by adding them to the free storage. One
possibility isto link all free aeas in afreelist. In such a ase, each bock
would contain at least two cdls: onefor the block size, and ore for the pointer
to the next block. It is convenient to keep the list ordered byincreasing Hock
address, so that as a block is ready to be added to the list, it can be merged
with passible aljacent blocksin the list. As anew storage aeaisto be dlo-
caed, the freelist is searched for a matching dock., according to some pal-

icy.

3.6 Bibliographic notes

The systematic view of data aggregates and the dassfication d type n
structors presented in Section 3.2is taken from a paper of C.A.R. Hoare in
(Dahl et a. 1972).

Programming language research in the 70's emphasized the need for taming
(or eliminating) inseaure constructs, which can cause programs to be difficult
to write and evaluate, and therefore potentially urreliable. Several works con-
centrated onevaluating the type structure of existing languages to find inse-
curities. For example, (Welsh et a. 1977 and (Tennent 1978 provide a
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criticd assesgment of the origina Pascal definition. Another research drec-
tion concentrated on rew language constructs that could solve the insecurities
that were found in existing languages. The work on Euclid (Popek et al.
1977, which was briefly illustrated in this chapter, is a notable example of
this research stream. Other language experiments emphasized the need to
support program reliability through language constructs that favor moduarity
andinformation hiding. The concept of abstract data type wasintroduced, and
langueges like CLU (Liskov and Zill es 1975,Liskov and ***) were designed
and implemented to suppat program decomposition through abstract data
types. CLU, as we mentioned, is based onthe ealy seminal work on SIM-
ULA 67 (Dahl et al. 1970Q. The SIMULA 67 experience, and the language
experiments made in the 70's, can be viewed as the origin of later develop-
ments baoth in the direction d modular languages (like Modua-2 and Ada)
and ohed-oriented languages (like C++, Smalltalk and Eiffel). More onthese
concepts will be discussed in Chapters6 and 7.

Language experiments and developments proceeded in paralel with more
theoretical work which laid the semantic foundations of the concepts of type,
subtype, pdymorphism, strongtyping, etc. We gave a arsory introductionto
such work in Section 3.3.The interested reader shoud refer to (Cardelli and
Wegner 1985 for a deeper treatment of the subject. (Cleveland 1986 is
ancther goodsource for many of these concepts.

For a detailed understanding d the type systems of different languages, the
reader shoud refer to the language manuals referenced in the Glossary.
Implementation models for data objects are analyzed in the dorementioned
paper by Hoare in (Dahl et a. 1972) and in most compil er textbooks, such as
(Aho et a. 198) and (Fisher and LeBlanc 1988. Garbage wllectionis ur-
veyed in (Cohen 1982 and (Appel 1990. It isaso hriefly discussed in most
textbooks on dhta structures, such as (Wood 1993.

3.7 Exercises

1. Ada supports discriminated unions through variant records. Write a short report
describing how Adadoes this, and how it differs from Pascd and C.

2. Discuss the possible strategies adopted by a programming language to bind a finite
mapping to a spedfic finite domain (i.e., to bind an array to a spedfic size). Also, give
examples of languages adopting each different strategy.

3. Show how a variant record type in Pascd or Ada can be used to define abinary tree of
either integer or string values.
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4, Write ashort report illustrating hav array manipulation fadliti es are richer in Ada than
in Pascd (or C).

5. What is a dangling reference?How can it arise during exeaution? Why isit dangerous?

6. Consider the C++ classin Figure 3.2. What happensiif the size of the aray used to store
the stadk is exceaded by the push operation?

7. Add assertionsto the Eiffel program in Figure 3.5. Discuss what happens when the length
of the aray is excealed by a cdl to push, and what happens when pop is cdled for an
empty stack.

8. Eiffel doesnot provide destructor operations (similar to C++). What does the language do
when an oljed should be destroyed? When does this happen in Eiffel?

9. Define aC++ or an Eiffel implementation for the ageneric abstrad data type defining a
first-in first-out queue, whose operations have the following signatures

enqueue: fifo (T) x T -> fifo (T) --adds an element to the queue
dequeue: fifo (T) -> fifo (T) x T --extrads an element from the queue
length: fifo (T) -> int --computes the length of the queue

10. Discuss the truth or falsity of the following statement, and discuss its relevance “A
program can be unsafe and yet exeaute without type erorsfor all possible input data.”

11. Anindex chedk verifies that the index of an array isin the bounds dedared for the aray.
Can index chedk be performed staticdly? Why? Why not?

12. What is a strong type system? Why is it useful ?

13. Is a static type system strong? And, conversely, is astrongtype system static?

14. What kind of type compatibility does the typedef construct of C introduce?

15. In Section 3.3.4, we made the foll owing statement “ Unexpeded dfficulties, in particular,
arise because of the interadion between coercions and overloading of operators and
routines.” Provide examplesthat justify this statement.

16. Define monomeric and pdymorphic type systems.

17. Compare genericity in Ada (or C++) and in ML. Which can be defined as an example of
parametric polymorphism?

18. Chedk in the Pascd manual if procedures and functions can be overloaded.

19. Justify through examples the foll owing statement on Pascd “since subtypes are defined
by the language & new types, strong typing is not strictly enforced by the language”.

20. In C++, what is the difference between assgning a value to a pointer or to areference?

21. In C++, what is the difference between taking the aldress (via operator &) of apointer or
of areference?

22. Figure 5.9, which describes the C++ type system, shows the existence of pointersto class
members. Study the language manual and provide an example that shows the use of this
feaure.

23.In C++, eadt class has an associated default assgnment operator which does a
memberwise wpy of the sourceto the target. But when anew objed of class T isdedared
thisway:

Tx=y;
the apy constructor of x isused to construct x out of y. Why can the asignment opera-
tion not be used? What is the diff erence between assignment and copy construction?

24. In Eiffel, eath ojed hasafedaure cdled copy whichisused for assignment to the objed.
For example, a.copy(b) assgns the value of objed b

25. Write ashort report comparing variant records in Pascd, C++, and Ada.
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26. Discuss how storage is all ocated for classinstancesin C++ and in Eiffel.

27. Jugtify or confute the following statement: “Ada dtributes support program portabili ty”.

28. How can the following union variable X be represented?

type X_typeisunion Y_type, W_type;
type Y _typeisfloat array [0. .10];
type W_typeis struct{

float A;

int B;
b
X_typeX;

29. Instead o having only one freelist for unused hegp storage aess, one could keep severa
free lists, one for ead ohjed type. Discuss advantages and disadvantages of this
alternative implementation.

30. Write areaursive dgorithm to dothe marking of all reatable hegp dbjeds.

31. Write ashort report on passible diff erent policiesfor extrading ablock from the heg free
list as anew storage aeaneedsto be dlocaed. In order to survey the possible solutions,
you may refer to books on data structures.

32. The simplest possible readion of the run-time system to a statement like dispose (in
Pascd) isto ignoreit. That is, storageis not freed for later reuse. How would you design
an experiment to chedk what a language implementation adually does? Perform the
experiment on an available implementation of Pascd

33. Referring to the implementation schemes discussed in Sedion 35, write an abstradt

algorithm to perform structura type compatibility. Hint: Be caeful not to cause the
algorithm to loop forever.
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Structuring the
computation

CHAPTTETR R 4

This chapter is devoted to a detailed analysis of how computations are struc-
tured in a programming languages in terms of the flow of control among the
different comporents of a program. We start in Section 4.1with a discusson
of the dementary constituents of any program: expressons (which pay afun-
damental role in al programming languages, including functional and logic)
and statements (which are typicd of conventional statement-based lan-
guages). Our discussion will then be based primarily on conventional pro-
gramming languages. We will first analyze statement-level control structures
(Sedion 4.2, which describe how individual statements can be organized
into various patterns of control flow to construct program units.

Programs are often decomposed into urnts. For example, routines provide a
way of hierarchically decompasing a program into unts representing rew
complex operations. Once program units are @nstructed, it becomes neces-
sary to structure the flow of computation amongsuch unts. Different kinds of
unit-level control structures are discussd in Sedion 4.3throughSection 4.8.
The simplest kind d unit-level control regime is the routine call and return
(Sedion 4.3. Ancther kind d control regime is exception handling (Sedion
4.4), which suppats the aility to deal with anomalous stuations which may
arise even asynchronously, as the program is being executed. Features sup-
porting advanced control regimes are then introduced in Section 4.5(pattern
matching, which suppats case-based analysis), Sedion 4.6(nondeterminism
and backtracking), and Section 4.7 (event-driven control structures). Such
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features are quite common in nonpocedura languages, like ML and PRO-
LOG, and will in fad be taken upin the presentation d such languages in
Chapters 7 and 8.Finally, Sedion 4.8provides an introduction to the cntrol
structures needed for concurrent programming, where units exeaute largely
independently.

4.1 Expressions and statements

Expressons define how a value can be obtained by combining aher values
through ogrators. The values from which expresions are evaluated are either
denoted by a literal, as in the case of the red value 57.73, @ they are the
r_value of avariable.

Operators appearing in an expresson denote mathematicd functions. They
are charaderized by their aritiy (i.e., number of operands) and are invoked
using the function's sgnature. A unary operator is applied to orly one oper-
and. A binary operator is applied to two operands. In general, an-ary operator
is applied to n operands. For example, -’ can be used as a unary operator to
transform—say-the value of a postive expression into a negative value. In
genera, however, it is used as a binary operator to subtract the value of one
expression from the value of another expresson. Functional routine invoca-
tions can be viewed as n-ary operators, where n is the number of parameters.

Regarding the operator’ s notation, ore can dstinguish between infix, prefix,
and patfix. Infix notation is the most common rotation for binary operators:
the operator iswritten between itstwo operands, asin x +y. Postfix and prefix
notations are common especially for nonbinary operators. In prefix notation,
the operator appeas first, and then the operands follow. This is the mnven-
tional form of functioninvocation, where the function reme denates the oper-
ator. In postfix notation the operands are followed by the correspondng
operator. Assuming that the arity of each operator isfixed and knavn, expres-
sionsin prefix and pastfix forms may be written withou resorting to paren-
theses to spedfy subexpressons that are to be evaluated first. For example,
the infix expression

a*(b+c)
can be written in prefix form as

*a+bc
andin paostfix form as
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abc+*

In C, the increment and deaement unary operators ++ and -- can be written
bath in prefix and in pastfix natation. The semantics of the two forms, how-
ever, isdifferent; that is, they denote two dstinct operators. Both expressons
++k and k++ have the side dfect that the stored value of k isincremented by
one. In the former case, the value of the expresson is the value of k incre-
mented by ore (i.e., first, the stored value of k is incremented, and then the
value of k is provided as the value of the expression). In the latter case, the
value of the expressionis the value of k before being incremented.

Infix natation is the most natural one to use for binary operators, since it
allows programs to be written as conventional mathematical expressons.
Althoughthe programmer may use parentheses to expli citly group subexpres-
sions that must be evaluated first, programming languages complicate matters
by introdwing their own conwventions for operator asciativity and prece-
dence. Inded, this is dore to facilitate the programmer’s task of writing
expressions by reducing redundancy, bu often this can generate cnfusion
and make expressions less understandable, especially when switching lan-
guages. For example, the convention adopted by most languagesis such that

a+b*c
isinterpreted implicitly as

a+(b*c)
i.e., multiplication has preaedence over binary addition (as in standard mathe-
matics). However, consider the Pascal expresson

a=b<c
and the C expresson

a==b<c

In Pascal, operators < and = have the same precedence, and the language
spedfiesthat application d operators with the same precedence proceeds | eft
to right. The meaning d the dowve expressionis that the result of the equality
test (a=b), which is a bodean value, is compared with the value of ¢ (which
must be a bodean variable). In Pascal, FALSE is asaumed to be less than
TRUE, S0 the expresson yields TRUE only if aisnot equal to b, and c is TRUE;
it yelds FALSE in all other cases. For example, if a, band c ae dl FALSE, the
expression yields FALSE.
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In C, operator "less than" (<) has higher precedence than "equa" (==). Thus,
first b < cisevaluated. Such partial result is then compared for equality with
the value of a. For example, asauming a=b = ¢ = false (represented in C as
ze0), the evaluation of the expresson yields 1, which in C stands for true.

Some languages, like C++ and Ada, allow operators to be programmer
defined. For example, having defined a new type Set, ore can define the oper-
ators + for set union and - for set difference The aility of providing po-
grammer-defined operators, as any ather feature that isbased onoverloading,
can in some @ses make programs easier to read, and in ather cases harder.
Readability isimproved sincethe programmer is allowed to use familiar stan-
dard operators and the infix natation also for newly defined types. The eff ect
of thisfeature, however, is sich that several actions happen behind the scenes
when the program is processed. This is goodwhenever what happens behind
the scenes matches the programmer’ s intuition; it is bad whenever the eff ects
are obscure or counterintuitive to the programmer.

Some programming languages suppat the aility of writing condtional
expressiorns, i.e., expressonsthat are ammpaosed of subexpressions, of which
only oreisto be evaluated, depending onthe value of a wndtion. For exam-
ple, in C one can write

(a>b)?a:b
which would be written in a perhaps more @nventionally understandable
form in ML as

if a>bthena dseb
to yield the maximum of the values of aandb.

ML alows for more genera conditional expressons to be written using the
"case" constructor, as shown by the foll owing simple example.

case X of
1=>11(y)
| 2=>f2(y)
| _=>g(y) . . . .
In the example, the value yielded bythe expressonisfi(y) if x=1, f2(y) if x=

2, g(y) otherwise.

Functional programming languages are based heavily onexpressions. In such
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languages, a program is itself an expresson, defined by a function applied to
operands, which may themselves be defined by functions applied to operands.
Conventional languages, instead, make the values of expressonsvisible & a
modification d the computation's date, throughassgnment of expressions to
variables. An assignment statement, like x =y + z in C, changes the state by
asciatinganew r_value with x, computed asy + z. To evaluate the expres-
sion, ther_values of variablesy and z are used. The result of the expresson
(anr_value) isthen asggned to a memory location by using the |_value of x.
Since the assignment changes the state of the computation, the statement that
executes next operates in the new state. Often, the next statement to be exe-
cuted is the one that textualy follows the one that just completed its execu-
tion. Thisisthe cae of a sequence of statements, which is represented in C
as

statement_1,
statement_2;

.stla.tement_n;
The sequence can be made into a compound statement by enclosing it
between the pair of brackets{ and }. In ather languages, like Pascal and Ada,
the keywords begin and end are used instead of brackets.

In many conventional programming languages, like Pascal, the distinction
between assgnment statements and expressionsis sarp. In ahers, like C, an
assgnment statement is adually an expresson with a side-effect. The value
returned by an assignment statement is the one that is gored in the left oper-
and d the assgnment operator "=". A typical exampleis given bythe follow-
ing loop which reads siccessive inpu characters urtil the end o file is
encourtered:

while ((c = getchar ()) != EOF)
[* assigns the characdter read to ¢ and yields the read value, which is compared to the
end of file symbol */

Furthéffnore, in C the asggnment operator associates from right to left. That
is, the statement

a=b=c=0;
isinterpreted as

a=(b=(c=0)
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Many programing languages, like Pascal, require the left-hand side of an
assgnment operator to be a simple denotation for an|_value. For example, it
can be avariable name, or an array element, or the cell pointed by some vari-
able. More generally, other languages, like C, allow any expresson yielding a
modifiable|_ valueto appear onthe left-hand side. Thus, it is possible to write
the following kind d statement

(p>0)?p*: 0" =0; _ :
which setsto zero the element pointed by the maximum of p and q.

As another example, ore can write

*OH+ = * Qg+

Thepright-ﬁand side expresson yields the value pointed by g. The left-hand
sideisan expressonwhich providesther_value of p, which isthe areference,
i.e., anl_value. So the overall effect isthat the value of the object pointed by
qiscopied into the objed painted by p. Both pointers are dso incremented as
a side effed. Since the dove asgnment is an expresson, the value of the
expressionisthat of the object pointed by q. For example, the following con-
cise piea of code copies a sequence of integers terminated byzero panted by
p into a sequence pointed by q.

while ((*p++ =*q++) 1=0) { };
Sequences, as hown before, are the simplest form of compoundstatements.
Often, the syntax of the language requires each statement in a sequence to be
saparated from the next by a semicolon. For example, in Pascd a sequence
can be written as:

begin
stat_1;
stat_2;
stat_n
end
Other languages, instead, require each statement to be terminated by a semi-
colon, and therefore do nat need any special separator symbal. For example,
in C we would write
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stat_n;

Alt}houghthe choice between the two syntactic forms has no deep implica-
tions, pragmatically the latter can be more convenient, because one does not
neel to dstingush between the last statement of a sequence (which dces not
require the separator, and any cther statements, since al are terminated by a
semicolon.

Programming languages provide other kinds of compoundstatements in addi-
tionto sequences. We will survey them in Section 5.2.In the rest of this chap-
ter, we implicitly concentrate on conventional languages, unless explicitly
stated atherwise. Functional languages, which are not based oncomputations
defined by successve state changes, will be studied in Chapter 7.

4.2 Conditional execution and iteration

Condtional execution d different statements can be spedfied in most lan-
guages by the if statement. Languages differ in several important syntactic
detail s concerning the way such a wnstruct is offered. Semantically, how-
ever, they are all alike. Syntactic details are not irrelevant: aswe mentioned in
Section 3.1.1,the syntactic gopeaance of a program may contribute to its
readability, ease of change and, Utimately, to itsreliability.

Let us gart with the example of the if statement as originaly provided by
Algad 60. Two forms are possible, as shown by the following examples:

ifi=0 ifi=0
theni:=j; theni:=j
elsebegin  i:=i+1;
j=j-1
end

In the first case, noaternative is specified for the casei | 0, and thus nothing
happensifi!o. Inthe latter, two alternatives are present. Sincethe case where
i rois described by asequence, it must be made into a ompoundstatement by
bracketing it between begin and end.

The selection statement of Algal 60 raises a well-known ambiguity problem,
illustrated by the following example

if x>0thenif x<10then x :=0elsex := 1000
It isunclear if the dse dternative is part of the innermost condtional (if x < 10
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...) or the outermost condtional (if x>0...). The execution o the above state-
ment with x = 15would assgn 1000to x under one interpretation, but leave it
unchanged under the other. To eliminate ambiguity, Alga 60 requires an
uncondtional statement in the then branch of an if statement. Thus the adove
statement must be replaced by either

if x> 0then begin if x <10then x := 0 else x := 1000 end
or

if x> 0then beginif x<10then x :=0end elsex := 1000
The same problem is lved in C and Pascd by automatically matching an
else branch to the closest condtional without an else. Even thoughthis rule
removes ambiguity, howvever, nested if statements are difficult to read, espe-
cialy if the program is written withou careful indentation (as sown abowe).

A syntactic variation that avoids this problem is adoped by Algd 68, Ada,
and Modua-2, which use aspeda keyword as an enclosing final bracket of
the if statement (fi in the case of Algd 68, endif in the case of Ada, end in the
case of Modua-2). Thus, the dove exampleswould be coded in Modua-2 as

if x>0then if x<10then x :=0€elsex := 1000 end end
or

if x>0then if x<10then x :=0end else x := 1000 end
depending onthe desired interpretation.

Choasing among more than two alternatives using ony if-then-else state-
ments may lead to awkward constructions, such as

if a
then S1
else
ifb
then S2
else
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if c
then S3
else A
end
end
end
To solve this syntactic inconvenience, Modua-2 has an else-if construct that

also serves as an end hracket for the previous if. Thus the above fragment
may be written as

if a
then S1
elseif b
then S2
elseif c
then S3
eseHA
end
C, Algad 68, and Ada provide simil ar abbreviations.

Most languages also provide an ad-hoc construct to express multi ple-choice
seledion. For example, C++ provides the switch construct, illustrated by the
foll owing fragment:

switch (operator) {

case’'+':
result = operandl + operand2;
bre&k;

case’*':
result = operandl * operand2;
bre&k;

case’-’:
result = operandl - operand2;
bre&k;

case'/":
result = operandl/ operand2;
bre&k;

default:
bre&k; --do nahing

Eac}:h branch is labelled by ore (or more) constant values. Based onthe value
of the switch expresson, the branch labelled bythe same valueis slected. If
the value of the switch expresson daes nat match any o the labels, the
(optional) default branch is exeauted. If the default branch is not present, no
adion takes place The order in which the branches appear in the text is
immaterial. In the above example, an explicit bre statement is used to termi-
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nate each branch; otherwise executionwould fall into the next branch.

The same example may be written in Ada &

case OPERATOR is
when '+ => result = operandl + operand?2;
when '*’ => result = operandl * operand2;
when '~ => result = operandl - operandz;
when '/’ => result = operandl / operand2;
when others => null;

end case

In Ada, after the selected branch is executed, the entire case Statement termi-
nates.

Iteration alows a number of actions to be exeauted repeatedly. Most pro-
gramming languages provide diff erent kinds of loop constructsto define iter-
ation d adions (called the loop body). Often, they distingush between loops
where the number of repetitions is known at the start of the loop, and loops
where the body is executed repeatedly as long as a condtion is met. The
former kind d loopis usualy called a for loop; the latter is often called the
while loop.

For-loops are named after a common statement provided by languages of the
Algad family. For statements define a control variable which assumes al val-
ues of a given predefined sequence, ore after the other. For each value, the
loop bodyis executed.

Pascd alows iterations where antrol variables can be of any ordinal type:
integer, bodean, character, enumeration, a subranges of them. A loop has
the foll owing genera appearance:

for loop_ctr_var := lower_bound to upper_bound do statement
A control variable assumes all of its values from the lower to the upper

bound. The language prescribes that the control variable and its lower and
upper bound must not be dtered in the loop. The value of the cntrol vari-
ableis also assumed to be undefined ouside the loop.

As an example, consider the following fragment:

type day = (sun, mon, tue, wed, thu, fri, sat);
var week_day: day;
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for week_day :=montofrido. ..
As anather example, let us consider how for-loops can be written in C++, by
examining the following fragment, where the loop bodyis executed for all
valuesof i fromOto 9

for (inti=0;i1<10;i++) {.. }

The statement is clearly composed of three parts: an initialization and two
expressions. Theinitializaion providestheinitial state for the loopexeaution.
The first of the two expresgons ecifies a test, made before exch iteration,
which causes the loopto be exited if the expresson becomes zero (i.e., false).
The second spedfies the incrementing that is performed after each iteration.
In the example, the statement also dedares avariablei. Such variable's sope
extends to the end d the block enclosing the for statement.

In C++, either or both of the expressionsin afor loop can be omited. Thisis
used to write an endessloop,as

for (;:){..}
Whileloopsarealso named after a aommon statement provided bylanguages
of the Algd family. A while loop describes any number of iterations of the

loop body,ncluding zero. They have the following general form

while condition do statement
For example, the following Pascd fragment describes the evaluation of the
greatest common dvisor of two variables aandb using Euclid’ s agorithm

whilea!bdo
begin
if a> b then
a:=a-b
else
b:=b-a
end
The end condtion (a!b) is evaluated before executing the body d the loop.
Theloopisexited if aisequal tob, sincein such case aisthe greatest common
divisor. Therefore, the program works also when it is executed in the special

case where the initial values of the two variables are equal.

In C++, whil e statements are similar. The general form is:

whil e (expression) statement
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Another way to write an endessloopin C++ istherefore

while (1) {. . }
Often langueges provide ancther similar kind of loop, where the loop control
variable is checked at the end of the body. In Pascal, the construct has the fol-
lowing general form

repeat
statement
until condition

In a Pascal repeat loop,the body isiterated as longas the conditi on evaluates
to false. When it becomestrue, the loopis exited.

C++ provides a do-whil e statement which behavesin asimilar way:

do statement whil e (expression);
In this case the statement is exeauted repeatedly urtil the value of the expres-

sion becomes zero (i.e., the condtionisfalse).
Adahas only one general loop structure, with the following form

iteration_spedfication loop

loop_body
end loop

where iteration_specificationis either

whil e condition
or

for counting_var in discrete_range
or

for counting_var in reverse discrete range
An exampleis provided bythe following fragment:

for K in Index_Range while A (K) /=0do
B (K) :=B (K)/A (K);
Endessloops are easy to write, since iteration_spedfication is optional. In addi-
tion, loops can be terminated by an urncondtional exit statement

exit;
or by acondtional exit statement
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exit when condition
If the loopis nested within ather loops, it is posgble to exit an inner loopand

any number of enclosing loogs.

Main_Loop:
loop

loop
é>.<i.t Main_Loop when A =0;
end loop;
end Iooﬁ Main_Loop;

-- after the exit statement exeaution continues here
In the example, control is transferred to the statement following the end d

Main_Loop when A isfoundto be equal to zerointheinner loop. The «it state-
ment is used to specify a premature termination d aloop.

C++ provides a bre& statement, which causes termination d the smallest
enclosing loop and passes control to the statement following the terminated
statement, if any. It a'so provides a continue Statement, which causes the termi-
nation d the airrent iteration o aloop and continuation from the next itera-
tion (if thereis one). A continue statement can appear in any kind d loop (for
loop,and bdh kinds of whileloops).

In some caes, it is useful to allow the programmer to define amechanism to
step throughthe dements of agiven collection. To doso, aprogramming lan-
guage might provide suppat for user-defined control structures, in much the
same way as it provides suppat for user-defined types and operations. For
example, having defined a set, the programmer might neel to sequence
through all elements in the set. User-defined control structures which
sequence through elements of user-defined coll edions are sometimes called
iterators. Languages providing constructs for the implementation d abstract
data types easily alow iterators to be defined. For example, in C++ let the
generic "collection d elements of type T" be defined by atemplate. To define
an iterator, we @n design three operations that are exported by the template:
start (), which initializes the loop bypasitioning a cursor on the first element
of the allection (if any), more (), which yields true if there are el ements left
to examine in the mlledion, and next (), which yields the aurrent element and
pasitions the cursor on the next element of the llection (if any). A typica
iteration onan instantiated collection X of elements of type T would be
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Ty,

X.start ();

while (X . more()) {
y=X.next();
.../l manipulate y

Thi}s solution works for user-defined types, provided they define operations
start, more, and next. It does not work for colledions defined by bult-in con
structors (such as arrays), for which these operations are not defined. In
Chapter 5, we will see amore general way of defining iterators which work
for any kinds of collections.

4.3 Routines

Routines are a program decomposition mechanism which allows programs to
be broken into several units. Routine cdls are control structures that govern
the flow of control among pogram units. The relationships among routines
defined by cdls are asymmetric: the caler transfers control to the cdlee by
naming it explicitly. The calee transfers control bad to the caller withou
namingit. The unit to which control is transfered when aroutine R terminates
is aways the one that was executing immediately before R. Routines are used
to define astract operations. Most modern languages alow such abstract
operations to be defined recursively. Moreover, many such languages all ow
generic operations to be defined.

Chapter 2 presented the basic runtime modeling issues of routine adivation,
return, and parameter passng. In this sction we review how routines can be
written in different languages and what style issues arise in properly structur-
ing programs.

Most languages distingush between two kinds of routines. procedures and
functions. A procedure does nat return a value: it is an abstrad command
which is caled to cause some desired state change. The state may change
because the value of some parameters transmitted to the procedure gets modi-
fied, o because some norlocal variables are updated by the procedure, or
because some actions are performed onthe external environment (e.g., read-
ing a writing). A function corresponds to its mathematical courterpart: its
adivation is supposed to return a value, which depends on the value of the
transmitted parameters.
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Pascd provides both procedures and functions. It allowsformal parameters to
be either by value or by reference. It also all ows procedures and functions to
be parameters, as siown by the following example of a procedure header:

procedure example (var x: T; y: Q; function f (z: R): integer);
In the example, x isaby-reference parameter of type T; y isaby-value param-
eter of type Q; f isafunction parameter which takes one by-value parameter z
of type R and returns an integer.

Ada provides both procedures and functions. Parameter passing modeis ec-
ified in the header of an Ada routine as either in, out, or in out. If the mode is
not specified, in is asumed by default. A formal in parameter is a cnstant
which orly permits reading d the value of the @rrespondng actual parame-
ter. A formal in aut parameter is a variable and permits both reading and
updeting d the value of the associated adual parameter. A formal out param-
eter is a variable and permits updeting d the value of the associated actual
parameter. In the implementation, parameters are passd either by copy a by
reference Except for cases that are explicitly stated in the language standard,
it is left to the implementation to choose whether a parameter shoud be
passed by referenceor by copy. Aswe discussed in Section 3.6.6,n the pres-
ence of aliasing, the two implementations may produce different results. In
such a case, Ada defines the program to be aroneous; but, urfortunately, the
error can orly be discovered at runtime.

In C dl routines are functiond, i.e., they return avalue, unessthe return type
is void, which states explicitly that no value is returned. Parameters can ony
be passd by value. It is possble, however, to achive the dfect of cdl by ref-
erencethroughthe use of pointers. For example, the following routine

void proc (int* x, inty);
*X = *X + y;

}
increments the object referenced by x by the value of y. If we @l proc as fol-
lows

proc (&3, b); /* &ameansthe aldressof a*/
x isinitialized to point to a, and the routine increments a by the value of b.

C++ introduced away of directly specifying call by reference. This frees the
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programmer from the lower level use of pointersto simulate cdl by reference.
The previous example would be written in C++ as follows.

void proc (int& X, int y);
{

X=X+Y;

}

proc (a, b); -- no address operator is needed in the cal
While Pascal only alows routines to be passd as parameters, C++ and Ada

get closer to treating routines as first-classobjects. For example, they provide
pointers to routines, and allow pointers to be bound dymamically to dfferent
routines at runtime.

4.3.0.1 Style issues: side effects and aliasing

In Chapter 3 we defined side df ects as modifications of the norlocal environ-
ment. Side dfedsare used principally to provide amethod d communicaion
among pogram units. Communicaion can be established through nothocal
variables. However, if the set of norloca variables used for this purpose is
large and each unit has unrestricted accessto the set of norlocd variables, the
program becomes difficult to read, understand, and modify. Each unt can
patentially reference and updite every variable in the norlocal environment,
perhaps in ways nat intended for the variable. The problem is that once aglo-
bal variable is used for communication, it is difficult to distinguish between
desired and unaesired side effects. For example, if unit ul calsu2 and u2 inad-
vertently modifies a norlocal variable x used for communication ketween
units u3 and u4, the invocation d u2 produces an undesired side effect. Such
errors are difficult to find and remove, because the symptoms are not easily
traced to the cause of the error. (Note that a smple typing error could lead to
this problem.) Ancther difficulty is that examination of the cl instruction
alone does nat reved the variables that can be dfected by the call. This
reduces the readability of programs because, in genera, the entire program
must be scanned to uncerstand the effed of a cll.

Communicaion va unrestricted access to noriocal variables is particularly
dangerous when the program is large and compaosed of several unitsthat have
been developed independently by several programmers. One way to reduce
these difficulties is to use parameters as the only means of communication
among unts. The overheal caused by parameter passng is almost always tol-
erable, except for critical applicaions whose resporse times must be within
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severe bounds. Alternatively, it must be passhble to restrict the set of norlocal
variables held in common bytwo units to exactly those needed for the com-
munication between the units. Also, it can be useful to spedfy that aunit can
only real, bu naot modify some variable.

Side dfedsalso are used in passng parameters by reference. In such acase, a
side effed is used to modify the actual parameter. The programmer must be
caeful not to produce undesired side dfeds on adua parameters. The same
problem arises with call by name. A more substantial source of obscurity in
cdl by name isthat each assgnment to the same formal parameter can aff ect
different locations in the environment of the alling unit. Such problems do
not arisein call by copy.

Languages that distingush between functions and procedures suggest a pro-
gramming style in which the use of side dfeds s restricted. Side effects are
an acceptable programming practice for procedures. Indeed, this shoud be
the way a procedure sends results bad to the caller. Side dfects, howvever,
are unadvisable for function subprograms. In fact, function subprograms are
invoked by writing the subprogram name within an expresson, asin

v:=x+f(x,y)+z

In the presence of side effeds —in Pascd, for example-the call to f might pro-
duce a bangeto x ory (if they are passed by reference), or even z (if zisglo-
ba to the function) as a side dfect. This reduces the readability of the
program, since a reader expeds a function to behave like a mathematical
function. Also, ore @anna rely on the commutativity of addition in general.
In the example, if f modifies x asaside dfed, the value produced for w is dif-
ferent if x isevaluated before or after cdlingf.

Besides aff ecting readability, side dfects can prevent the compil er from gen-
erating ogimized code for the evaluation d certain expressions. In the exam-

ple

w=x+z+f(x,y) +f (X, y) +x+z
the compiler canna evaluate function f and subexpresson x+ z just once.

The recognition that side effects on parameters are undesirable for functions
affeded the design d Ada, which allows only in formal parameters for func-
tions.
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In Chapter 2 we defined two variables to be aliases if they denote (share) the
same data object during a unit activation. A modification d the data object
under one variable name is automatically visible throughall aias variables
that share the objed. An example is provided by the FORTRAN EQUIVA-
LENCE statement. For instance, the statements

EQUIVALENCE (A, B)

A=54
bind the same data object to A and B and set its value to 5.4.Consequently,
the statements

B=5.7

WRITE(6, 10)A
print 5.7, even thoughthe value explicitly assgned to A was 5.4.The assgn-
ment to B affects bath A and B.

As we observed in Chapter 2, dliasing may arise during the execution d a
procedure when parameters are passed by reference. Consider the foll owing
C++ procedure, which is suppcsed to interchange the values of two integer
variables withou using any locd variables.

void swap (int& X, y)

X+=y;
y=x-y;
X-=Y,

Before proceeding, examine the procedure and dedde whether or nat it works
properly.

The answer is "generally yes'; in fact, the procedure works properly except
when the two actual parameters are the same variable, asin the all

swap (a, a);
In this case, the procedure sets ato zero, because x andy become diases and

thus any assignments to x andy within the procedure affect the same locdion.
The same problem may arise from the call

swap (b[i],b[]]);
when the index variablesi andj happen to be equal.

Pointers can cause the same problems. In fact, the cal
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swap (*p, *0) _ . _
does nat interchange the values pointed at by p and q if p and g happen to pant

to the same data object.

The a&owve aliases occur because of the foll owing two condtions.

» Formal and adtual parameters share the same data objeds; and
 Procedure cdls have overlapping acua parameters.
Aliasing also may occur when aformal (by reference) parameter and a global

variable denote the same or overlapping cita objeds. For example, if proce-
dure swap isrewritten as

void swap (int & xr)

X+= @
a=x- g
X-=a

where aisaglobal variable, the cal

swap (a)
generates an incorred result, because of the aliasing between x and a. Aliasing

does naot ariseif parameters are passed by \alue result; such parameters act as
local variables within the procedure and the correspondng adual parameters
beamme dfected only at procedure exit. Thisisthe reason d the semantic dif-
ference between cdl by reference and call by value-resuilt.

The disadvantages of diasing affect programmers, readers, and language
implementers. Subprograms can become hard to understand because, occa
sionally, different names dencte the same data object. This problem cannat be
discovered by inspecting the subprogram: rather, discovery requires examin-
ing al the units that may invoke the subprogram. As a consequence of alias-
ing,asubprogram call may produce unexpected and incorred results.

Aliasing also impairs the posshility of generating ofimized code. For exam-
ple, inthe case

a=(X-y*z)+w;

b:=(x-y*2z)+uy;
the subexpression x - y * z cannot be evaluated just once ad then used in the
two assgnmentsif aisan aliasfor x, y, or z.
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Althoughside effeds and ali asing can cause difficulties and insecurities, pro-
grammers using conventional languages need to learn how to live with them.
In fact, it is nat passble to eliminate from a language dl features which can
cause them, such as poainters, reference parameters, global variables, and
arrays. Thiswould leave us with avery lean and impractical language indeed.
Other approaches were taken in experimental |anguages (such as Euclid-see
sidebar), bu they did na become practically acceptable.

**** gdebar start on Euclid

The approach taken by Euclid is to pace restrictions on the use of such fea-
tures as pointers, reference parameters, global variables, and arraysto rule out
the possibility of aliasing. For reference parameters, the problems only arise
if adual parameters are overlapping. If the actual parameters are smple vari-
ables, it is necessary to ensure that they are dl distinct. Thus the procedure
cdl

p(a &)
is considered illegal by Euclid. Passng an array and ore of its comporents

also is prohibited. For example, the call

p(b[1],b)
to a procedure whose formal by-reference parameters are an integer x and an

integer array y of indexes 1. .10 isill egal becausey [1] and x are aliases. These
forms of illegal aiasing can be caugh at trandationtime.

However, the cll

swap (b [i], b[]) o o _ -
to the procedure swap generates aliasing orly if i isequal to j. Euclid specifies

that in such a ase the conditioni !j be generated bythe translator as alegality
asrtion. In the testing phese, legality assertions can be compil ed automati-
cdly into runtime dhecks by using a suitable compiler option. If at run-time
an assertion evaluates to false, executionis aborted and a suitable eror mes-
sage is produced. The main use of legality assertions, however, isin program
verification. The Euclid system, in fact, includes a program verifier, and a
Euclid program is considered corred only if the truth of all legality assertions
is proven bythe verifier.

Handling aliasing in the presence of pointersis more wmplex. Consider the
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following program fragment, written in C++ instead of Euclid for simplicity

™ pg
p=new T,

Thg pfoblem of aliasing ketween *p and *q is handed in the same way that
arrays and array elements are handed, that is, *p and *q may be viewed as
seledors that reference omporents of an implicitly defined colledion o
data-the set of all data objects of type T— the same way that b [i] and b [j] refer-
ence comporents of array b. An assgnment to b [i] or b [j] iS viewed as an
assgnment to the entire data object b, which happens to change the value
stored in orly one portion d b. Similarly, an assignment to *p or *q may be
viewed as amodificaion d the set of components of type T.

This might appear to be an ingenious but tricky way of looking at the problem
of aiasing for pointers. In fact, different data structures might be composed
of dynamically generated comporents of the same type T. View-ing an
assgnment to *p as an assignment to the set of data objects of type T, that is,
asamodification of any of such data structures, isnot really helpful. To all ow
an extralevel of cheding for nonowerlapping panters, Euclid introduces the
concept of a collection. The programmer is required to dvide all dynamic
objects into separate coll ections and indicate which pdnters can pant into
which collections. Each pdnter can be boundto orly ore ollection. An
assgnment between two pointers is legal only if the two panters point into
the same collection.

Detecting illegal aliasing between panters caused by procedure callsis now
similar to the case of arrays. In fact, a @llection ¢ and a pointer boundto C
are similar to an array and a variable used as an index. Dereferencing is
exactly like indexing within an array. For example, if p and g pant into the
same mlledion, and *p and *q are both passwed, the nonowrlapping rule
requiresthetest p!qto be produced as a legality asertion.

Aliasing also can occur between gobal variables and formal parameters of a
procedure. In Euclid, detedion d aiasing in such cases does naot require any
additional work. In fad, global variables must be explicitly imported by a
subprogram if they are needed, and they must be accessble in every scope
from which the subprogram is called. For each imported variable, it is also
neassary to indicae whether it can be read or written ar both. Thus, modifi-
able global variables can be treated by the diasing detection algorithm as
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implicit additional parameters passed by reference.

The explicit importation d global variables all ows the programmer to restrict
the set of variables visible within a procedure to any subset of the (non
masked) variables dedared in the outer scopes. The translator thus can ensure
that only visible variables are accessed in a unit and such accesses are legal,
for example, that a read-only variable annot be modified. Thisis an advan-
tage over the pure ALGOL-li ke scope rules—especially for large programs, in
which inner procedures automatically inherit al the (non-masked) variables
dedared in the enclosing scopes and can modify them in an urcontrolled way.

Finally, Euclid functions-as oppased to procedures—are not allowed to have
by-reference parameters and can import only read variables. Thus, their exe-
cution canna cause side effects, and they behave like mathematical func-
tions.

An important consequence of disalowing aiasingin procedures is that pass
ing parameters by reference is equivalent to passng them by value-result.
Therefore, the choice of how to implement parameter passing can be made by
the trandlator based exclusively onefficiency considerations.

The Euclid approach is certainly interesting, the adopted solutions are clean
and favor reliable programming. Some restrictions imposed by Euclid cannat
be enforced by a traditional compiler and require a program development
environment that includes a program verifier. In particular, all | egality asser-
tions need to be proven by the verifier. This certainly adversely affected the
practical acceptance of the language. More generally, Euclid is a goodexam-
pleto illustrate the tradeoffs that a language designer shoud achieve between
freedom and flexibility, onthe one side, and strict enforcement of program-
ming dscipline, on the other. Euclid gaes definitely in the latter diredion,
whereas widely used languages like C++ goin the former.

4.4 Exceptions

Programmers often write programs under the optimistic assumption that noth-
ing will gowrong when the program executes. Unfortunately, however, there
are many reasons which may invalidate this assumption. For example, it may
happen that under certain condtions an array is indexed with a value which
exceeds the declared bounds. An arithmetic expresson may cause a division
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by zero, a the square roct operation may be exeauted with a negative argu-
ment. A request for new memory allocation issued by the run-time system
might exceed the amount of storage avail able for the program exeaution. Or,
finaly, an embedded application might receive a message from the field
which owerrides a previously received message, before this message has been
handed by the program.

Often programs fail unexpectedly, maybe ssimply displaying some obscure
message, as an erroneous program state is entered. This behavior, however, is
unaaceptable in many cases. To improve reliability, it is necessary that such
erroneous condtions can be recognized by the program, and certain adions
are executed in resporse to the error. To do so, howvever, the conventional
control structures we have discussed so far are simply inadequate. For exam-
ple, to check that an index never exceeds the array bounds, ore would need to
explicitly test the value of the index before any indexing takes place and
insert appropriate resporse code in case the bound are violated. Alterna-
tively, onewould li ke the run-time machine to be ale to trap such anomalous
condtion, and let the resporse to it be programmable in the language. This
would be more efficient under the asumption that bound volations are the
exceptional case.

To cope with this problem, programming languages provide feaures for
exception handing. According to the standard termindogy, an exception
denotes an unckesirable, anomalous behavior which suppacsedly occurs rarely.
The language aan provide facilities to define exceptions, recognize them, and
speafy the resporse code that must be executed when the exceptionis raised
(exception handler).

Exceptions have awider meaning than merely computation errors. They refer
to any kind d anomalous behavior that, intuitively and informally, corre-
sponds to a deviation from the expected course of actions, as envisioned by
the programmer. The @ncept of "deviation" canna be stated in absolute and
rigorous terms. It represents adesign decision taken by the programmer, who
deddes that certain states are "normal”, and "expeded”, while others are
"anomalous'. Thus, an exception daes not necessarily mean that we arein the
presence of a catastrophic error. It simply means that the unit being executed
isunableto proceed in a manner that leads to its normal termination as geci-
fied by the programmer. For example, consider a @ntrol system which pro-
cesses inpu messages defined by a given protocol. The normal course of
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adions consist of parsing the inpu message and performing some actions that
depend onits contents. The arrival of a message which does not match the
expected syntax might be cnsidered as an exception, to be handed by an
exception hander, a dealy identifiable piece of codethat is sparate from the
rest of the program that hand es the normal case.

Earlier programming languages (except PL/I) offered nospedal help in prop-
erly handling exceptional condtions. Most modern languages, however, pro-
vide systematic exception-handling features. With these features, the concern
for anomalies may be moved ou of the main line of program flow, so as not
to olscure the basic algorithm.

To define exception handling, the foll owing main decisions must be taken by
aprogramming language designer:

4. What are the exceptions that can be handled? How can they be defined?

5. What units can raise an exception and how?

6. How and where can a handler be defined?

7. How does control flow after an exception israised in order to read its handler?

8. Where does control flow after an exception has been handled?
The solutions provided to such questions, which can dffer from language to
language, aff ect the semantics of exception handling, its usability, and its ease
of implementation. In this section, we will analyze the solutions provided by
C++, Ada, Eiffel, and ML. The exception handling facilities of PL/I and CLU
are shown in sidebars.

4.4.1Exception handling in Ada

Ada provides a set of four predefined exceptions that can be aittomaticdly
trapped and raised by the underlying run-time madine:

 Constraint_Error: failure of aruntime ched ona cnstraint, such as array index out of
bounds, zero right operand d adivision, etc.;

» Program_Error: failure of aruntime ched onalanguage rule. For example, afunctionis
required to complete normally by exeauting a return statement which transmits a result
badk to the cdler. If this does not happen, the exceptionis raised;

» Storage_Error: failure of arun-time chedk onmemory avaliability; for example, it may be
raised byinvocation of new;

 Tasking_Error: failure of aruntime dhed onthe task system (seeSedion 5.8).

A program unit can dedare new exceptions, such as
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Help: exception;
which can be eplicitly raised in their scope as

raise Help;
Once they are raised, bult-in and programmer-defined exceptions behave in
exactly the same way. Exception henders can be dtached to a subprogram
body,a package body, a a block, after the keyword exception. For example

begin --thisis ablock with exception handlers
... Statements ...
exception  when Help =>handler for exception Help
when Constraint_Error => handler for exception
Congtraint_Error, which might beraised by a
division by zero
when others => handler for any other exception that is not Help
nor Constraint_Error
end;
In the example, alist of handlersis attached to the block. The list is prefixed

by the keyword exception, and each handler is prefixed by the keyword when.

If the unit that raises the exception povides a handler for it, control is trans-
ferred immediately to that hander: the actions foll owing the point at which
the exceptionis raised are skipped, the hander is executed, and then the pro-
gram continues execution namally from the statement that follows the han-
dier. If the arrently executing unt U does not provide ahander, the unit
terminates and the exception is propagated. The predse dfect of termination
and propagation depend onthe kind d unit that raises the exception.If U isa
block, its termination transfers control to the immediately enclosing unt, in
which the exceptionisimplicitly reraised. If U is aroutine body, its termina-
tion causes the routine to return to the aller and the exception is implicitly
reraised at the point of call. If U isapackage body(seeChapter 5), it actslike
aroutine that isimplicitly called when the package declaration is processed.
If U isatask body(see Sedion 4.8 the exceptionis not propagated further;
that is, the task terminates abnamally. If there is no hender associated with
the padkage body, exeaution d the body is abandored and exeaution contin-
ues in the unit that contains the package dedaration, where the exceptionis
implicitly reraised. In general, if a propagated exceptionis not handed at the
point where it was transferred, it is further propagated, and this processmight
eventually leal to the end d the program. If ahandler isfoundfor an excep-
tion, after its exeaution the processing proceeds normally from the statement
that follows the hander. Exceptions can also be explicitly reraised, via state-
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ment raise. For example, an exception hander that can ony partly hande the
exception might perform some recovery actions, and then might explicitly
reraise the exception.

As an example, consider the program sketched in Figure 51. The figure shows
the overall structure of the program, ignaring all i nternal details. In particular,
procedures are described by showing the scope they define by using solid
lines, while blocks' scopes are shown by dashed lines. Suppase that the fol-
lowing sequence of unit activations occurs:

* Mainisadivated
* block 1 isentered
* block 2 isentered
* Procliscdled
* Proc2iscdled
* block 3 isentered

* block 4 isentered
If an exceptionisraised at this gage, execution d block 4 is abandored anda

___ Main __Proc2
Procl
— —block 3
call to Proc2
- — -—Dblock4
I instruction raising
| the exception

L — —

— —block 5

- — —blockl

- — -—block2 r
|

| call to Procl |

| L — _

-
I
I
I
I
I
I
I
I
I
I

L — -

I
I
I
I

L — _
L

FIGURE 51.An example of an Ada program which raises an exception

check is performed to see if the block provides an exception hander that can
hand e the exception. If ahander isfound,the handler is executed and, if no
further exceptions are raised, execution continues from the statements that
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follow block 4. If nat, the exception is propagated to the enclosing dock 3.
That is, execution d block 3 isabandored, and a dhedk for an exception han-
dler provided by Hock 3is performed. If ahandler is provided, and its execu-
tion terminates normally, procedure Proc2 returnsto its cdler normally. If naot,
the exception is propagated to the cdler, and thus exeaution d block 2 is
abandored. If noexception henders are provided by procedure Proci, block 2,
and Hdock 1, eventually the Main program terminates abnarmally.

To provide an abstrad implementation model of exception handling, each
dedared exception (including bult-in ores) can be boundto an interna
exception rame at compile time. The internal exception rame shoud dstin-
guish between two exceptions having the same name, bu having dfferent
scopes. At run time, the binding ketween an exception code raised by a unit
and the correspondng hander is dynamic, and foll ows the chain of unit acti-
vations. A possble solution consists of having in each activation record a
fixed-contents handler table, which contains the descriptors of al the han-
dlers that appear in the unit. (For simplicity, let us assume an implementation
model of blocks which all ocates a new activation record onthe stack as the
block is entered—see Chapter 2.) Each descriptor in the table contains

1. theinternal exception name handled by the handler;
2. apointer to the handler body.
When an exception is raised, its code is used to search for a hander in the

hander table. If it isfoundthere, control istransferred to its body.If nat, the
adivationreard is deleted from the stack, and the seach is performed in the
cdler’ s hander table using the address of the return pant.

By unwinding the dynamic chain in the propagation process an exception can
be propagated ouside its sope. In such a case, it can orly be handled by a
cach al hander (when others ..). The static scope rules of the language
ensure that it canna be handed by any aher locally dedared exception
which, by coincidence, has the same name. The implementation scheme
sketched above ensures this by gving them different internal exception
names.

4.4.2Exception handling in C++

Exceptions may be generated bythe run-time environment (e.g., dweto adivi-
sion by zero) or may be explicitly raised by the program. An exception is
raised by a throw instruction, which transfers an object to the crrespondng
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hander. A hander may be attached to any piece of code (a block) which
needs to be fault tolerant. To doso, the block must be prefixed by the key-
word try. As an example, consider the following simple case:

classHelp{...}; // objedsof thisclass have apublic atribute "kind" of type enumeration
/I which describes the kind of help requested, and other public fields
which
/I carry spedfic information about the point in the program where help
/I is requested
class Zerodivide{ } ; // assume that objeds of this class are generated by the run-time sys-
tem

try {
// fault tolerant block of instructions which may raise help or zerodivide exceptions

}

céach (Help msg) {
// handles a Help request brought by oljead msg
switch (msg.kind) {
case MSG1:

casé MSGZ
}
} .
céch (Zerodivide) {
/I handles a zerodivide situation

}
Suppcee that the abowve try block contains the statement

throw Help (MSG1);
A throw expresgon causes the execution d the block to be abandored, and

control to betransferred to the gpropriate handler. It also initiali zes atempo-
rary olject of the type of the operand d throw and uses the temporary to ini-
tialize the variable named in the hander. In the example, Help (MSG1) actually
invokes the constructor of classHelp passng a parameter which isused bythe
constructor to initialize field kind. The temporary olject so creded is used to
initi ali ze the formal parameter msg of the matching cach, and control is then
transferred to the first branch (case MSG1) of the switch in the first handler
attadhed to the block.

The above block might call routines which, in turn may raise exceptions. If
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one such routine raises a—say—help request and daes not provide a hander for
it, the routine' s execution is abandored and the exception is propagated to the
point of call within the block. Execution d the block, in turn, is abandoned,
and control is transferred to the hander as in the previous case. In aher
terms, C++, like Ada, propagates unhanded exceptions. Like Ada, a caught
exception can be propagated explicitly, by simply saying throw. Also, as in
Ada, after a hander is executed, exeaution continues from the statement that
foll ows the one to which the matched handler is attached.

Unlike Ada, any amount of information can flow alongwith an exception. To
raise an exception, in fact, one can throw an olject, which contains data that
can be used by the handler. For example, in the previous example, a help
request was signalled by providing an olject which contained spedfic infor-
mation onthe kind d help requested. If the data in the thrown oljed are not
used by the handler, the cach statement can simply specify a type, withou
naming an ojed. This happensin ou example for the division byzero.

C++ routines may list in their interface the exeception they may raise. This
feature dlows a programmer to state the intent of aroutine in a predse way,
by specifying bdh the expected namal behavior (the data it can aacept and
return), and its abnamal behaviors. For example

void foo (') throw (Help, Zerodivide);
might be the interface of a function foo which is called within the above fault

tolerant block. Knowing that the used function foo may indeed raise excep-
tions, the dient code may guard against anomalous behaviors by providing
appropriate exception handing fadlities, aswe did.

The problem here is what happens if foo terminates by raising ancther excep-
tionthat isnat listed in itsinterface. This might happen, for example, because
an error other than adivision byzero is caugh by the run-time machine (e.g.,
an uncerflow). In such a case, a spedal function unexpeded () is automaticdly
cdled. Its default behavior, which could be redefined by the programmer,
eventually causes abort () to be cdled, which terminates the program execu-
tion.

Thelist of posgble exceptionsraised by aroutine, however, isnot required to
be included in the routine interface If no list is provided, it means that any
passible exception can be propagated. Instead, if the empty list throw () iSpro-
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vided, this means that no exceptionis propagated by the routine.

If an exception is repeatedly propagated and no matching handler is ever
found, the special function terminate ( ) is cdled automaticdly. Its default
behavior, which can be redefined by the programmer, eventually aborts the
program exeaution.

Since the exceptions that can be raised in C++ are expressions of a given
type, ore @n use the general facilities available to structure types (and
abstract data types) to organize exceptions. For instance, one an use enumer-
ations to structure and clasgfy exceptions in groups. In the previous exam-
ples, if only the specific kind d needed help must be provided to handle
exceptions of type Help, the following definition would suffice

enum Help {MSG1, MSG2, .. };
and the correspondng catch statement would be rewritten as

céach (Help msg) {
switch (msg) {
case MSGL:

casé MSGZ
Other interesting ways of organizing exceptions can be achieved by organiz-

ing the rrespondng classes according to subtype hierarchies, by means of
subclasses (see Chapter 6).

Intuitively, an abstract implementation o the C++ mechanism can be similar
to what we outlined for Ada. When an exception is raised, the dynamic chain
is unwound uril the gpropriate hander is found.Further comments will be
provided in Section 4.45.

4.4.3Exception handling in Eiffel

The feaures provided by Eiffel to suppat exception handling have been
strondy influenced by a set of underlying software design grinciples that pro-
grammers should follow. A key nation d such design grinciplesis called the
contract. Each software comporent has obligations with resped to ather com-
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porents, since such comporents may rely onit to provide their own services.
Syntactically, such oligations are described by the interface of the compo-
nent (a das9, i.e., bythe features exported to the other classes. Semanticdly,
they are specified by the precondtions and pastcondtions of every exported
routines and bythe invariant condti on. Once the program compiles corredly,
syntactic obligations are guaranteed to have been verified. What may happen,
however, is that semantic obligations are nat fulfilled duing execution. This
is how exceptions may arise in Eiffel.

Thus, exceptions may arise in Eiffel because an assertionis violated (assum-
ing that the program has been compiled under the option that sets runtime
checking o). They can aso arise because of anomalous gates caught by the
underlying abstract machine (memory exhausted, dereferencing an urinitial-
ized padnter, ..). Finaly, they can arise because a cdled routine fails (see
below for what this means).

To respond to an exception, an exception hander (rescue clause) may be
attached to any routine. There are two passible gproaches to exception han-
dling, which comply with the contrad-based methoddogy underlying Eiffel
programming. The first approach is called organized panic. Following this
approach, the routine raising the exception fails; that is, as an exception is
raised, the routine’ s execution is abandored and control is transferred to the
correspondng rescue clause, if any. The handler performs some clean up of
the object’ s state and then terminates signalling failure. The clean up shoud
leave the object in a wnsistent state, i.e., the invariant shoud be true when
the handler terminates. If norescue clauseis attached to theroutine, it isasif a
rescue Clause with an empty list of clean up statements were atached to it.
Routine failure, in turn, causes an exception to be propagated to the cller.
Thus, if al exceptions are handed according to organized panic, al routines
eventually fail; that is, any failure caises an orderly shut down of the execut-
ing program.

As an example, consider the abstract data type NON_AXIAL_INT_POINT that
was defined in Figure 4.4 and suppose that the program is compiled with the
option"check assertion” on. If any o the operationsis caled bya dient mod-
ule with parameters that do na satisfy the correspondng precondtion (e.g.,
one of the parameters of make point is zero), control is transferred to the
implicit empty rescue clause that is attached to all exported operations. This
causes propagation d the failure to the objea that call ed the operation with
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improper arguments. To explain the reason d the failure to the programmer,
one might attach rescue dauses to the routines of the dassin Figure 4.4
which print out a message describing the reason for the fail ure, i.e., violation
of the precondtion.

An alternative approach to organized panic is cdled retrial. This means that
the hander can find an aternative way to fulfil the object’s contract. Thisis
achieved by a statement retry which may appear in the rescue clause and
would cause re-exeaution d the routine’ sbody.In such a Gase, if re-exeaution
does nat raise an exception, the routine does nat fail and the object’s contract
would be fulfilled. As an example, suppcse that several methods are available
to solve a spedfic task, so that if one of them fails, another can be tried
instead; the task only fails if nore of the available methods succeeds. This
strategy can be stated in Eiffel according to the following scheme:

try_several_methodsis
locd
i: INTEGER;
--it isautomaticaly initialized to O
do
try_method (i);
rescue
=i+l
if i <max_trialsthen
--max_trialsisa constant
retry
end
end
It is easy to verify that routine try_several_methods only fails if all possble

methods fail. Otherwise, if one of the methods siccedls, the routine returns
normally to its caller.

*kkkhkk gart gdebar PL/I******

PL/I was the first language to introduce exception handling. Exceptions are
cdled CONDITIONS in PL/I. Exception handers are declared by ON state-
ments:

ON CONDITION (exception_name) exception_handler
where exception_handler can be a simple statement or a block. An exceptionis

explicitly raised bythe statement
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SIGNAL CONDITION (exception_name);
The language dso defines a number of built-in exceptions and provides /s

tem-defined handers for them. Built-in exceptions are automatically raised
by the execution d some statements (e.g., ZERODIVIDE is raised when a
divide by zero is attempted). The action performed by a system-provided han-
dler is gecified by the language. This action can be redefined, howvever, as
with user-defined exceptions.

ON ZERODIVIDE BEGIN;

END;
Handlers are boundto exceptions dynamicdly. When an ON unit is encount
tered during execution, a new binding takes place between an exceptionand a
hander. Once this binding is established, it remains valid urtil it is overrid-
den bythe exeaution d another ON statement for the same exception, or until
termination d the block in which the ON statement is exeauted. If more than
one ON statement for the same exception appeas in the same block, each new
binding owerridesthe previous one. If anew ON statement for the same excep-
tionappeasin an inner block, the new binding remains in force only urtil the
inner block is terminated. When control exits a block, the bindings that
existed prior to bock entry are reestabli shed.

When an exceptionis raised (either automaticdly or by a SIGNAL statement),
the handler currently boundto the exception is executed as if it were asub-
program invoked explicitly at that point. Therefore, uness otherwise speci-
fied by the hander, control subsequently will return to the point that issued
the SIGNAL.

PL/I does nat alow the programmer to passany information from the point
raising the exception to the exception handler. If this is necessary, the pro-
grammer must resort to gobal variables, which can be an ursafe program-
ming pactice. Furthermore, use of globa variables is not always possble.
For example, when a STRING-RANGE exception is raised, indicaing an
attempt to access beyond a string's bound, there is no practical way for the
exception hander to know which stringisinvaved if two or more strings are
visible in the scope.

PL/I exception-handling mechanisms can be compli cated further by explicitly
enabling and dsabling bult-in exceptions; user-defined exceptions canna be
disabled, because they must be explicitly signaled anyway. Most built-in
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exceptions are enabled by default and boundo the standard system-provided
error handler. Enabling a previously disabled exception (or an exception that
isnat enabled by default) can be specified by prefixing a statement, block, or
procedure with the exception reme, for example

(ZERODIVIDE) : BEGIN
END;
The scope of the prefix is datic; it is the statement, block, or procedure to

which it is attached. An enabled exception can be explicitly disabled by pe-
fixing a statement, block, or procedure with NO exception_name. For example

(NOZERODIVIDE) : BEGIN;

END
*kkkkk a’]d S' dmar PL/I *kkkkk

*** gidebar start Exception handing in CLU

In CLU, exceptions can only be raised by procedures. That is, if a statement
raises an exception, the procedure containing the statement returns abnar-
mally by raising the exception. A procedure anna hande an exception
raised by its execution: its caller shoud be in charge of handing it. The
exceptions that a procedure may raise ae to be declared in the procedure’s
header. This choice is a consequence of the design methodthat CLU wishes
to enforce. CLU views a procedure as the implementation o an abstract oper-
ation, whase meaning should be visible by ather units throughthe operation's
interface (defined by the header). The exceptions that a procedure may raise
charaderizethe astract behavior of the procedure, and thus shoud be known
to the caler. Exceptions may be raised explicitly by means of a signal
instruction. Built-in exceptions are raised automaticaly; for example, an
exceptionisraised if the value of the denominator iszero in adivision.

Exception handers can be dtadhed to statements by except clauses having
the foll owing syntactic form

<statement> except <handler_list> end
where <statement> can be any (compound statement of the language. If the
execution d a procedure invocation within <statement> raises an exception,
control is transferred to <handler_list>. A<handler_list> has the following
form
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when <exception_list_1>: <statement_1>

when <exception_list_n>: <statement_n>

If the raised exception belongs to <exception _list_i>, then <statement_i>
(the hander body) is executed. When the execution d the handler body is
completed, control passes to the statement that follows the one to which the
hander is attached. If statement_i> contains a cdl to a unit, anather excep-
tion may be raised. In such a case, control flows to the except statement that
encloses <statement>. If the raised exception is not named in the exception
list that shoud handle it, it is propagated to the enclosing statements. If no
hander is found within the procedure that issued the call, the procedure
impli citly signals alanguage-defined exception fail ur e and returns.

*** gdebar end

4.4.4Exception handlingin ML

The functional language ML all ows exceptionsto be defined, raised, and han-
dled. There ae also exceptionsthat are predefined bythe language and raised
automaticdly by the runtime madine while the program is being executed.

As an example, the following declaration introduces an exception

exception Neg
which can be raised subsequently in the following function ceclaration

funfad (n) =
if n<0thenraise Neg
eseif n=0then1
elsen *fad (n- 1)
A call such asfad (-2) would cause the evaluation of the functionto be dan-
dored, the exception raised and, since no hender is provided, the program to

stop bywriting the message "Failure: Neg".

Suppcse we wish to hande the exception byreturning Owhen the functionis
cdled with a negative agument. This can be dore, for example, by defining
the foll owing new function

fun fad_0 (n) = fad (n) handle Neg => 0;
which uses faa as a subsidiary function. Exceptions that are not handed in a
chain o function calls are implicitly propagated. That is, suppcse that func-
tionfaa iscdled by some functionf which daes nat provide ahand er for Neg;



234 Structuring the computation Chap.4

functionf, in turnis cdled byfunctiong, which provides a hander for Neg, in
the same way as function faa_0 does. In such a @asg, if the evaluation d the
foll owing expresson:

g (f (fad (-33)))
resultsin 0.

4.4.5A compar ative evaluation

The languages we surveyed in the previous sctions are goodrepresentatives
of the different approaches followed by progranming languages to provide
exception handing. Althoughthe field has matured in the past years and the
main design cedsion to be faced by language designers are now basicdly
restricted to a limited number of possble choices, till there ae differences
and there is no consensus on a common scheme that languages sroud adopt.
We will compare and evaluate the diff erent solutions adopted by existing lan-
guages by examining the questions we posed at the beginning o our discus-
sion, that is:

1. What are the exceptions that can be handled? How can they be defined?

2. What units can raise an exception and how?

3. How and where can a handler be defined?

4. How does control flow after an exceptionisraised in arder to read its handler (if

any)?

5. Where does control flow after an exception has been handled?
Regarding giestions 1 and 2, all languages (except Eiffel) are quite similar.
They al allow bath bult-in and programmer-defined exceptions. The main
differences are whether an exception can carry information and how it can do
so. In Ada (and PL/l) an exception is basically a named signal, and thus it
does not allow any additional information to be passed to the hander along
with it. In C++ any desirable data may be passed alongwith the exception’.

Eiffel follows an ariginal approach in that exception handing hes been
designed to fit a precise program development discipline. According to such
discipline, an exception arises only if a routine fails because of some error.
The language dso explicitly and predsely defines what may cause aroutine
to fail. Thus, in most cases there is no reed for naming exceptions, nar for
providing a raise statement. All that matters is whether a fail ure that would

1. Actually in Adait is possble to passto the handler information about the exception occurrence, and a
number of predefined operations are provided to extract some limited information from the exception accurrence.
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violate the objed’s contract occurred in aroutinel.

Exception handers in bah Ada and C++ can be dtached to any block. In
Eiffel it can be dtached to any routine. As an exceptionis raised, control is
transferred to the gpropriate handler. To match the raised exception with the
correspondng hander, Ada and C++ unwind the run-time stack by following
the dynamic chain urtil the relevant handler (if any) isfourd. In Eiffel, each
routine providesits own hander (either explicitly or implicitly), and the stack
isunwound ony if the routine fails.

The combination d static scope rules for exception dedarations, adopted by
languages like Ada and C++, with dyramic binding ketween an exception
raised by some unit and its handler cause suhtlelties that can make programs
hard to read. We illustrate the point in the ase of C++, in arder to show the
reader how different language features may interfere with each aher, thus
making language semantics and language implementation more complex.

Consider two separate files, which contain parts of a program. File 1 contains
the foll owing definitions:

classA {};
voidf () {

'.[h.r.ow A();
File 2 contains the following declarations and definitions

externvoid f ();
classA {};
voidfoo () {
'.[r.y.{
£
}
cach (A a){
| }
If when fiscalled byfoothe exceptionis thrown and nd handled byf, propa-

1. To provide finer control over the handling d exceptions, Eiffel also providesaKernd Library class
EXCEPTIONS, throughwhich exceptions may also be named and raised explicitly.
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gationreaches the catch point in File 2. The scope rules of the language, how-
ever, are such that the parameter of the cach and the object thrown are bound
to dfferent types, and therefore the match dces nat occur, and the exception
is further propagated. Besides affecting undrstandability, ease and efficiency
of the implementation are dso affeded. Type information, in fact, must be
kept to perform the required run-time binding.

The last important point abou exception handling is where wntrol shoud
flow after an exception is handed. There are esentialy two passble solu-
tions, which corresponds to different styles of handing exception: termina-
tion and resumption. The resumption scheme implies that the hander’s code
may cause control to return to the point where the exception was raised,
whereas the termination scheme does nat allow that. Of the languages dis-
cussd here, only PL/I fully suppats the resumption scheme. Ada and C++
support termination. Althoughfor many years the debate on termination ver-
sus resumption gave no clear indication d which approach is superior, termi-
nation hes now gained wider acceptance. Practical experience with languages
providing resumption hes siown that the resumption mechanism is more
error-prone. Furthermore, it can promote the unsafe programming pradice of
removing the symptom of an error withou removing the cause. For example,
the exception raised for an uracceptable value of an operand could be han-
dled byarbitrarily generating an acceptable value and then resuming the com-
putation. CLU is even stricter than the other languagesin that it does nat even
allow the unit that raises an exception to try to handle it. Rather, the unit (a
procedure) terminates abnamally and daces the burden o handing the
exception uponits cdler. The aller expeds the exception to be possibly
raised, since it islisted in the unit’sinterface definition.

Eiffel is different from all other languages with respect to termination and
resumption. Termination in Eiffel is stronger than in ather languages. In fact,
after control is transferred to a rescue clause which daces not contain a retry,
completion of the clause implies that the routine fails, and the failure is nati-
fied to the cller. In C++, onthe other hand, if a atch clause terminates with-
out raising another exception, execution continues from the statement that
foll ows the one to which the aurrently completed handler is attached. Further-
more, Eiffel provides an explicit way of describing a disciplined form of
resumption (retry). The retry statement provided by Eiffel does nat fully corre-
spord to the abowve definition d resumption, since the statement executed
after the hander terminates in na the one that caused the exception. Rather,
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retry allows aroutine that failed to beretried asawhadle.

4.5 Pattern matching

Pattern matching is a high level way of stating condtions, based on which,
different actions are spedfied to occur. Pattern matching is the most impor-
tant control structure of the string manipulation programming language
SNOBOL4 (see sidebar). Pattern matching is also provided by most modern
functional programming languages, like ML, Miranda, SASL, andisalso pro-
vided bythe logical language PROLOG and byrule-based systems.

Let us gart by dscussng the foll owing simple definitions of adatatype anda
function:

datatype day = Mon | Tue | Wed | Thu | Fri | Sat | Sun
fun day_off (Sun) =true
|[day off (Sat )= true
|day off (_)=fase
In the example, function day _off is defined by a number of cases. Depending
on the value of the parameter with which the function will be invoked, the
appropriate case will be selected. Cases are chedked sequentialy, from the
first one on. If thefirst two cases are not matched bythe value of the parame-
ter with which the function is called, the third aternative will be selected,

since the so-called wild card "_" matches any argument.
As another example, consider the following function definition:

fun reverse (nil) = nil
| reverse (head::tail) = reverse(tail) @ [head]
In this caseg, if the agument is an empty list, then reverse is defined to return
the empty list. Otherwise, suppose that the agument isthelist[1, 0,5, 99, 2.
Asaresult of pattern matching [1, 0, 5,99, 2] with head::tail, head iS boundto
1 andtail isboundto [0, 5,99, 2]. Thus the result of reverse is the concatenation
(operator @) of reverse ([0, 5, 99, 2]) with the list [1].

As a final example, suppcse that a new operation to reverse lists is to be
defined, such that a (sub)list remains unchanged if its first element is zero.
The following functionrev would dothe job:

fun rev(nil) = nil
| rev(0::tail) = [0] @ tail
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| rev(head::tail) = rev(tail) @ [hea]

In this case, since pattern matching examines the various aternatives sequen-
tialy, if the functionis invoked with a non-empty list whose first element is
zeo, the second alternative would be selected. Otherwise, for a nonempty
list whose first element is not zero, the third aternative would be selected.

As the example shows, pattern matching hes a twofold effect. On the one
hand, it chooses the course of action based onthe agument; on the other,
since the pattern can be an expresson with variables, it binds the variablesin
the pattern (if any) with the values that match. The same bound \ariables can
then be used in the expresson that defines the value of the function. Pattern
matching can thus be viewed as a generalization d conventional parameter
passng. The value of actual parametersis used to match the pattern appearing
in the formal parameter part. Thus the case selected by pattern matching can
vary from cdl to cdl.

More will be said on pttern matching for ML in Chapter 7. Chapter 8
addresses pattern matchingin the case of Prolog.

*** gdebar start Pattern matching in SNOBOL4

SNOBOLA4 is a string-oriented language in that charader strings are the most
important primitive data type with many bult-in operations. A pattern is a
data structure that spedfies a set of strings. A pattern is used in pattern-
matching statements to examine a subject string for the presence of a pattern.
For example, the statement

MESSAGE PAT
means "seach the string MESSAGE for the occurrence of the pattern PAT." If,

previousto this gatement, we had executed these two assgnment statements:

MESSAGE = 'THERE ARE NO ERRORS HERE.'
PAT = 'ERROR'
then the &owve pattern-matching statement will succeed. The nation d suc-

cessandfailure of statementsisused in SNOBOLA4 to control the flow of exe-
cution in a program. Each statement can specify labels of target state- ments
for success, failure, or unconditionally. For example

MESSAGE PAT : S(OK) F (NOTFOUND)
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will transfer control to the statement labelled oK if the pattern-matching suc-
ceeds and to NOTFOUND otherwise. The pattern PAT is the simplest kind o
pattern we can have-simply ore string. We may specify a pattern as a choice
amonganumber of patterns:

SUBJECT ='I'|'YOU' |'WE'
Now SUBJECT will match any stringthat contains'I', "'you’ or 'WE'. A pattern
may be defined also as a concatenation d other patterns:

SENTENCE = SUBJECT VERB OBJECT "
The pattern SENTENCE will match any string that contains the patterns suB-

JECT, VERB, OBJECT, followed by a period. We can then define patterns for
SUBJECT, VERB, and OBJECT:

VERB ='EAT' | TAKE'
OBJECT = 'FOOD' | 'THE SFOON' | THE CAR'
The set of patterns defines the grammar of atiny and highly simplified subset

of the Engli sh language. For example, the grammar can represent strings such
as

| TAKE THE CAR
YOU EAT FOOD

Pattern matching can recognize the sentences that are grammatically correct.
In fact, the statement

TEST SENTENCE
will succeed if a valid sentence (according to ou grammar) occurs in the
string TEST. This pattern will adually match a sentence anywherein the string
but SNOBOL4 provides facilities to constrain the pattern further, for exam-
ple, to have one sentence and nahing more.

What we have seen so far is actually only a small sample of SNOBOL4' s pat-
tern matching paver. One of the interesting features is the unevaluated
expressionthat can be used to buld recursive patterns. The unary operator '+’
delays the evaluation d its operand. The expression *E is cdled an urevalu-
ated expression. The unevauated expression is evaluated when the interpreter
encourters it as part of a pattern-matching operation. Consider the pattern
PAT defined with assgnment statement:

PAT =* PAT 'B'|'A'
Thevalue of PAT is dored as PAT 'B' | 'A", postponing the evaluation o PAT (in
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*PAT) to pattern-matching time. At pattern-matching time, this pattern will

match either 'A' or *PAT 'B', which at thistime cuses the pat- tern matcher to
substitute avalue for PAT. The current value of PAT is*PAT 'B' | 'A". There-
fore, PAT also will match 'AB' or *PAT 'BB'. Thus, we have arecursive defini-
tion for PAT, which causes it to match strings of the form A AB ABB ABB.. B.
Now, recall from Section 3.1that to specify the syntax of any interesting lan-
guage, we need to use reaursive rules. Suppase that we want to write a
SNOBOL4 program to recognize arithmetic expressons as defined by the
grammar we introduced in Chapter 2. The following two statements, which
closely mirror the EBNF definition d arithmetic expressons, will do exadly
what we want:

OPERATOR ="+, ', "*", '
EXPRESSION ='(' *EXPRESSION ') | *EXPRESSION OPERATOR *EXPRESSON |
IDENTIFIER

All these examples emphasize the dedarative nature of the languaege. In

SNOBOL4, we dedare the structure pattern and leave it to the underlying
implementation-the SNOBOLA4 interpreter—to find a way to search for the
existence of the pattern. If we were solving the same problem in amore con-
ventional language, like C, we would spend most of our effort describing the
procedures for the search. The dedarative style suppated by SNOBOL4
alows the language to be seen as a precursor of the paradigm provided by
logic languages, which will be examined in Chapter 8.

*** gdebar end

4.6 Nondeterminism and backtracking

Problem solutions can dften be described via and-or decompositions into sub-
problems. For example, to solve problem A, ore needsto solve either B, C, or
D; to solve-say—C, ore needsto solve E, F, and G. This can be represented as
an and/or tree (see Figure 52). Node A, which has noincoming arcs, is called
aroot node; nodesB, D, E, F, and G, which have no exitingarcs, are cdl ed |eaf
nodes. And/or decompasitions can also be described-in the hypaheticd syn-
tax of some programming language-as

AifBor
Cor
D;
Cif Eand
F and
G;
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The solution d A isdescribed as adigunction of subproblems; the solution o
C is described as a conjunction of subproblems. We can further assume B, D,
E, F, and G to be problem solving routines, which can terminate in either a
success or afailure state.

If the order in which subproblems are solved is unspedfied (andirrelevant as
far as the problem statement is concerned), we say that the program is nonde-
terministic. In the example, this means that the order in which B, C, or D are
tried does not matter. Smilarly, the way in which E, F, and G are tried dces
not matter. The only thing that mattersis that a solution ke found,if it exists,
or anatification d failureis delivered to the request to solve A, if no solution
exists. The latter case happens if all three subproblems in the digunct fail,
which means aso that at least one of the subproblems of the conjunction
fail ed.

An and/or problem decomposition can be viewed as a high-level design d a
problem solution, which is then implemented in any progrmming language
using the conventional constructs it provides. However, there ae program-
ming languages (like logic languages of the Prolog family or the string
manipulation language Icon) which suppat this way of decomposing prob-
lems directly. Since features of this kind are very high level, a programming
language incorporating them is extremely powerful. As one @n imagine,
however, these fedures are hard to implement efficiently. Abstractly, thisis
the theme of problem solving byexploring a large search space for solutions.
Posgble strategiesto deal with it are described in textbooks on artificial intel-
ligenceand computer algorithms.
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One solution strategy is to explore the and/or treein parallel, in arder to make
the search for the solutiontime efficient. In such a Gase, subproblemsB, D, E,
F, and G would be solved in paralel. Another more dasscal strategy for a
sequential implementation o the search is based onbacktracking. Backtrack-
ing means that to find a solution, a dhoice is made & each branch of the tree.
The choice can be fixed, arbitrary, or based onsome heuristic knowledge of
the problem being solved. If a subproblem solution fails, badktracking
implies that another passhble subproblem solution ke tried. This ensures that
the overall problem solution fails only if thereis noway of solving the prob-
lem withou fail ure. Thus, through kacktracing, ore needsto guarantee com-
pletenessof the search.

More on badtracking will be said in Chapter 8 in the case of logic and rule-
based languages.

*** maybe in hibliographic remarks say that 1con combines backtracing and
pattern matching.***

4.7 Event-driven computations

In some @ses, programs are structured conveniently as reactive systems, i.e.,
systems where certain events occurring in the environment cause certain pro-
gram fragmentsto be executed. An exampleis provided by modern user inter-
faces where anumber of small graphicd devices (called widgets) are often
displayed to mediate human-computer interaction. By operating onsuch wid-
gets (e.g., by clicking the mouse on a push-button) the user generates an
event. The event, in turn causes a certain application fragment to be executed.
Exeaution d such afragment may cause further screen layouts to be gener-
ated with anew context of available widgetsonit. The eventsthat can be gen-
erated in any gven state are defined by the context.

The entire goplicaion can be viewed as a system which reacts to events by
dispatching them to the appropriate piece of code that is resporsible for han-
dling the event. As a consequence, the application is dructured as a set of
fragments that are resporsible for handling specific events.

This conceptual view of an application can be viewed as away of structuring
its high-level design, which would then need to be detailed by a conventional
implementation. There ae languages, however, that directly support this con
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ceptua view, by poviding the necessary abstradions. For example, lan-
guages like Visua Basic, Visua C++, or Tcl/Tk alow one to separately
design the widgets and the ade fragments, and to bind events on a widget to
the fragments which respondto the event. More on such toodls will be said in
Chapter 9.

Another common event-driven control paradigm is the one based onso-called
triggers. Triggers became popuar in recent years, in conjunction with new
developmentsin thefield of so-called adive data bases. Sincethereisno pe-
cise and unversal definition d atrigger, we will give examples based ona
hypahetical language syntax. An active data base consists of a conventional
underlying (passive) data base and a set of activerules (or triggers) of thefol-
lowing form

on event
when condition
do adion

When the event associated with the rule occurs, we say that the rule is trig-
gered. A triggered rule is then checked to see if the condtion hdds. If thisis
the case, the rule can be exeauted.

As an example, the following trigger specifies that the total number of
employees roud be updated as a new employee record isinserted in the data
base.

oninsert in EMPLOYEE
when TRUE
do emp_number ++

As another example, in a database applicaion, triggers may be used to spec-
ify some constraints that must be verified as new elements are inserted or
existing elements are updated o deleted from the database. For example, a
constraint might be that no employee can have a salary that is more than the
average salary of managers. A trigger might watch that no insertion, updie,
or deletion Miolates the constraint; if that happens, some gpropriate adion
would be undertaken.

A trigger-based problem solution can be viewed as ahightlevel design, which
is then implemented in any programming language using the conventional
constructsit provides. In the bove example, the check that trigger condtions
beame true might be explicitly associated with the start and the end d each
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class member routine, along with the execution d the correspondng code
fragment. However, there ae languages where trigggers are directly available
as a built-in language construct; i.e., they are implemented by the underlying
runtime machine. As an example, the forthcoming SQL standard includes
triggers as one of itsfedures.

4.8 Concurrent computations

Sometimes it is convenient to structure our software as a set of concurrent
units which execute in parallel. This can occur when the program is executed
on a computer with multiple CPU’s (multiprocessor). In such a case, if the
number of procesors coincides with the number of concurrent units, we say
that underlying machine that executes the program provides for physical par-
alelism: each unt isin fact executed by its dedicated procesor. Parallelism,
however, may be smply logical. For example, if the underlying machineisa
uniprocesr, the logicd view of paralel execution may be provided by
switching the CPU from one unit to ancther in such away that all units appear
to progress smultaneously. The switching of the execution d the uniproces-
sor among the various units can be performed by a software layer, imple-
mented ontop d the physical machine, which provides the programmer with
aview of an abstrad parallel machine where dl units are exeauted simulta-
neously. Once such abstract machineisin place, one @nin fact abstraa away
from the physical architecture of the underlying haerdware, where comporents
are actually exeauted. The hardware structure might be amulti processor, with
eah processor dedicaed to a single unit, or it might be amultiprogrammed
uniprocesr. Allowing for the posshility of different machines means that
the correctnessof a concurrent system canna be based onan assumption o
the speed of execution of the units. Indeead, the speed can dffer greatly if
every unit is executed by a dedicated processor, or if a single processor is
shared by several units. Moreover, even if the achitecture isknown, it is dif-
ficult to design a system in such a way that its correctnessdepends uponthe
speal of exeaution d the units. We will return to these paints in the discus-
sion d implementation models for concurrency.

Concurrency is an important area of computer science, which is often studied
in dfferent context: machine achitectures, operating systems, distributed
systems, databases, etc. In this sction we give an overview of how program-
ming languages suppat concurrency. Concurrent programs suppat concur-
rency by allowing a number of units (called processes) to exeaute in parall el
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(logicaly or physicdly).

If the abstract madchine that executes the program does nat suppat concur-
rency, it is passhble to simulate it by transferring control explicitly from one
unit to anather. This low-level approach is suppated bycoroutines, reviewed
in the sidebar.

*** Coroutine sidebar start

Coroutines are a low-level construct for describing pseudo-concurrent units.
They can be used to simulate paralelism on a uniprocesor by explicitly
interleaving the execution of a set of units. Therefore, they do nat describe a
set of concurrent units, bu a particular way of sharing the processor to simu-
late cncurrency.

Coroutines can be viewed as program units that activate one another explic-
itly, via aresume primitive. At any time, only one unit is executing. When a
unit is executing, control may be explicitly transferred to ancther unit (via
resume), Which resumes execution at the place where it last terminated. Conse-
quently, units adivate each ather explicitly in an interleaved fashion, accord-
ing to a predefined pattern of behavior.

As an example, consider the the two coroutines client and give_ me _next sShown
in Figure 53, written in a hypabhetical, self-explaining programing language.
Unit client repeatedly activates unit give_me next to get the next value of avari-
able. Each reactivation d unit give me next produces a new value, which
depends on the previously generated value. The two urits resume one
ancther. Thereisaglobal variablei, which is ared by client and give_me next.
Unit main, which is activated initialy, resumes client.
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unit client { unit give_me_next {
| int stop_value=.. . int step () {
| while (i = stop_value) {

for Gi{
i +=step ();
resume dient;

resume give_me_next;

I
I
| b
I
I I
I
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L——— — — — — — 4 main{
resume dient;

FIGURE 53. An example of coroutines

An abstrad implementation model of coroutines differs from the case of rou-
tines. When a wroutine A issues aresume to a coroutine B, one must save (in
A's activation record) the painter to the instruction foll owing the in-struction
resume B. Moreover, A's activation record is not dedl ocated. If coroutines can
have nested unts that may be activated reaursively, each coroutine requires
an activation record stadk that can grow and shrink independently of the other
stacks. In addition, as in the example, they may accessthe global environ
ment.

*** Coroutine end

To suppat correct interaction among pocesses, a language shoud provide
suitable synchroniztion statements (or primitives). We introduce this concept
throughan example. Suppase that a certain system contains concurrent activ-
ities of the following two kinds: producers and consumers. A producer pro-
duces a stream of values and daces them into a suitable data structure (a
buffer of a cetain size, N). A consumer reads these values from the buffer in
the same order asthey are produced and then processes such values according
to some policy. Thisexampleisa dassc standard problem that exhibits many
relevant isaues of concurrency. An abstrad description o two produwcer and
consumer proceses is own in Figure 54. A given system might contain
many such processes, and all might interad throughthe same buffer.
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Process Producer Process Consumer

reped forever { repea forever {
produce a element; produce a element;
append the dement to the buffer; append the dement to the buffer;

FI GURE 54.Sample processes:roducer and a mnsumer

The two processs in Figure 54 are described by cyclic and, idedly, norter-
minating program units, which cooperate to achieve the common gal of
transferring data from the producer (which could be reading them from an
inpu device) to the consumer (which could be storing them in afile). The
buffering mechanism alows the two processes to proceed at their own
spedls, by smoathing the effect of their variations. To guarantee the @rrect-
nessof the aoperation, however, the programmer must ensaure that no mat-
ter how quickly or dowly the producer and the consumer progress there will
be no attemptsto writeinto afull buffer or to read from an empty buffer. This
can be accomplished by the use of synchronization statements. In genera,
synchronization statements allow a process to be delayed in the execution o
an operation, whenever that is necessary for correct cooperation with ather
concurrent units. In the example, when the buffer is full, the producer is
delayed if it tries to append an element, urtil the consumer removes at least
one dement. Similarly, when the buffer is empty, the consumer is delayed if
it tries to remove an item, until the producer appends at least one new ele-
ment.

Ancther, more subtle, need for synchronization may arise when several activ-
ities can legally have acess to the same buffer. For example, suppcse that
append and remove are implemented by the fragmentsin Figure 55:

Append Remove
t++ t--
i =next_in(); j = next_out ();
buffer [i] = x; x = buffer [out];

FIGURE 55.0perations to append and remove from a buffer

where t represents the total number of elements gored in the buffer, next_in
and next_out are two operations that yield the value of the buffer index where
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the next element can be stored and where the next element isto be read from,
respectively. Let us assume that the individual statements in Figure 55 are
indivisible instructions of the astrad machine, in the sense that if one such
adion starts to exeaute, it is guaranteed to finish before any other instruction
execution is darted. The sequences, howvever, canna be assumed to be indi-
visible, i.e., the execution d their constituent actions may be interleaved by
the underlying machine. As an example, suppose that the buffer is initially
empty. A producer might start depositing into the buffer by performing the
first two actions. The total number of buffered items becomes 1 and the index
of the position where the item shoud be depaosited is evaluated. Suppacse that
at this point another producer gets accessto the buffer (sincethe buffer is not
full). If this producer completes al three actions, the value will be depaosited
in the second bufer ot (sincethe first one was acquired bythe first producer
who dd na complete its own deposit). At this point, a @nsumer might access
the buffer (which is not empty, sincet = 2). Thisisan error, howvever, because
the consumer would real its value from the position which was assgned to
the first producer, bu no assignment was ever performed to such pasition. To
avoid this error, we say that the two statement sequences must be exeauted in
mutual exclusion; synchronization grimitives must allow mutual exclusionto
be specified.

In general, synchronization grimitives may be viewed as mechanisms that
constrain the order in which operations performed by different processes are
executed. Let {P, P, . . .,P,} be aset of concurrent processes. Each process
can be assigned for execution to an abstract madine, like SIMPLESEM that
was discussed in Chapter 2. Let ip; be the value of the instruction panter of
the i-th abstrad machine which executes P;; ip; yields the aldress of the
instruction C;(ip;) which isto be executed next in each processi. If the pro-
cesses are logicaly independent, at any instant, al machines can execute
Ci(ip;). Synchronization, havever, may force some abstract machines to
remain in idle until some mndtionis met that alows them to resume execu-
tion.

Besides g/nchronization, pogramming languages must provide faciliti es to
describe communication among pocesses. Communication allows informa-
tion to flow from one processto ancther. It is through synchronization and
communication that processes cooperate in problem solving. Communication
can be achieved in dfferent ways, depending onthe underlying computation
model. The traditional way to achieve communication is via a shared mem-
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ory. According to such model, all concurrent processes have accessto a com-
mon set of variables. This model reflects an undelying abstract
multi processor architecture with a common memory areawhere al proces-
sors can read and write. Ancother paradigm for communication is message
passing. In such acase, the model reflects more dosely an underlying decen-
tralized architecture where processors are cnrected by a network on which
messages can flow. Both paradigms, of course, can be implemented onany
underlying architecture, athoughimplementation d—say—the shared memory
paradigm on a physicaly distributed architecture is much less natural and
requires considerably more suppat than implementing the message passng
paradigm.

The rest of this chapter is organized as foll ows. Sedion 4.8.1lillustrates how
processes may be defined in programming langueges, using the Ada languege
as a case-study. In Section 4.8.2we review two kinds of synchronizaion
mechanisms-semaphares and signals-and dscusscommunication via shared
memory. We also discuss communication via message passng and the ren-
dezvous mechanism. Finally, Sedion 5.8.3discusses implementation models.
Our presentation dees not gointo details of thislast point, which goes beyond
the scope of thisbook, andis usually discussed in textbooks on operating sys-
tems.

4.8.1Processes

A concurrent programming language must provide constructs to define pro-
cesses. Processes can belongto atype, of which several instances can be cre-
ated. The language must define how and bywhom a processisinitiated, i.e., a
new independent execution flow is spawned by an executing unt. It also need
to address the issue of processtermination, i.e., howv can a processbe termi-
nated, what happens after a processterminates, etc.

In this section we will briefly review the main concepts and solutions pro-
vided by Ada. In Ada, processs are @lled tasks. The execution d an Ada
program consists of the execution d one or more tasks, each representing a
separate computation that proceeds concurrently with ather tasks, with which
it may interad throughsynchronization statements.

Tasks can be defined by atask type, of which many instances can be declared.
It isalso passbleto dedare atask object (shortly, atask) directly. The decla-
ration of atask (type) spedfies how the task (or all instances of the type) can
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interact with ather tasks. Aswe will see shortly, interadionwith atask can be
achieved by calling ore of its entries, which must appea in its dedaration.
Thus, the declaration d atask type is a declaration d an abstract data type;
entries represent the operations avail able for interaction with task objects. In
Ada, the body of the task (type) , which describes the implementation d the
task’ sinternal code, can be described separately from its declaration.

Thisis an example of atask type dedaration:

task type SERVER is
entry NEXT_REQUEST (NR: in REQUEST);
entry SHUT_DOWN,;

end SERVER;

task SERV_PTRisaccessSERVER,; --dedaresapointer to a SERVER
These are examples of task object declarations:

MY_SERVER: SERVER,;

task CHECKER is
entry CHECK (in T: TEXT);
entry END;

end CHECKER;

HIS SERVER _PTR: SERV_PTR := new SERVER,;
The execution d task consists of executing its body. The mecdhanism for acti-

vating a task is smilar to the mechanism that allocates gorage to variables.
For example, consider the foll owing fragment

procedure Pis
A, B: SERVER;
HER_SERVER_PTR: SERV_PTR,;

begin
HER_SERVER_PTR := new SERVER;
end. P
Tasks A and B are activated as the block in which they are locdly dedared is

entered at run time. The task panted at by HER_SERVER_PTR is activated by
the execution d the new operation.

The concept of task termination is more complex, andwill not described in all
its subtelties. For simplicity, let us assume that a task can terminate when it
reaches the last statement of its body and (1) all of the locally declared task
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objects have terminated, and (2) tasks allocated by a new and referenced only
by panterslocal to the task have terminated.

4.8.2Synchronization and communication

In this section we present some dementary mechanisms for process ynchro-
nization and interprocess communication: semaphares, signals and monitors,
and rendezvous. Semaphares are low level synchronization mechanisms that
are mainly used when interprocess communication cccurs via shared vari-
ables. Monitors are higher level constructs that define abstract objects used
for interprocess communication; synchronization is achieved via signals.
Finally, rendevous is anather mechanism that combines synchronization and
communication via message passing.

4.8.2.1 Semaphores

A semaphare is a data object that can assume an integer value and can be
operated on bythe primitives P and V. The semaphare isinitialized to a cer-
tain integer value when it is declared.

The definitionsof Pand Vv are

P(s): ifs>0thens=s-1
€else suspend current process

V (9): if thereisaprocess suspended on the semaphore
then wake up process
eses=s+1
The primitives P and v are assumed to be indivisible, atomic operations; that
is, orly one processat atime can be exeauting P or vV operations on the same
semaphae. This must be guaranteed by the underlying implementation,

which shoud make P and Vv behave like elementary madine instructions.

The semaphore has (1) an asciated data structure where the descriptors of
processes suspended on the semaphae ae recorded, and (2) a pdicy for
seleding e processto be woken upwhen required by the primitive v. Usu-
aly, the data structure is a queue served onafirst-in/first-out basis. However,
it isaso passible to asggn priorities to processes and devise more cmplex
palicies based onsuch priorities.

The simple producer-consumer example of Figure 54 can be solved using
semaphaes as fiown in (as usual, we adopt an arbitrary, self-explanatory C-
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like notation).
int n=20;
buffer buf; // aglobal buffer variable, with gperations append and remove which up-
date
/1 1, total number of buffered items;
semaphore mutex = 1; Il used to guaranteemutual exclusion
in=0; /I semaphore to control the reading from the buffer
spaces= n; /I semaphore to control the writinginto the buffer
process producer {
inti;
for (55){
produce (i);
P (spaces); -- wait for freespaces
P (mutex); -- wait for buffer availability

--the buffer must be used in mutual exclusion
buffer . append (i);

V (mutex); -- finished acassing buffer
V (in) -- one more item in buffer
|3
b
process consumer {
intj;
for (55){
P (in); -- wait for item in buffer
P (mutex); -- wait for buffer availability
--the buff er must be used in mutual exclusion
j = buffer.remove ();
V (mutex); -- finished acaessing buffer
V (spaces) -- one more spacein buffer
|3
}

FIGURE 56.Producer-consumer example with semaphores

The keyword process starts the segments of code that can proceed concur-
rently. Three semaphares areintroduced. Semaphares spaces andin are used to
guarantee the logical correctness of the accesses to the buffer. In perticular,
spaces (Nnumber of available free positions in the buff er) suspends the producer
when it tries to insert a new item into a full buffer. Similarly, in (number of
items already in the buffer) suspends the consumer if it tries to remove an
item from an empty buffer. Semaphare mutex is used to enforce mutual exclu-
sion d accesses to the buffer. We @an see that semaphares are used bah for
pure synchronization, as in mutex, to ensure that only one processmay use the
buffer at a time, and for a kind d communication among pocesses. For
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example, V (spaces) by the consumer communicates to the producer that it has
consumed an item and that more space is now avail able in the buffer.

Programming with semaphares requires the programmer to associate one
semaphae with eadh synchronization condtion. Our example shows that
semaphares are asimple but low-level mechanism, their use @n be awkward
in practice andthe resulting programs are often dfficult to designand under-
stand. Moreover, little checking can be dore statically on grograms that use
semaphares. For example, a compiler would na be ale to catch the incorrect
use of a semaphare, such as one resulting from a change of Vv (mutex) into P
(mutex) in the producer process (see Exercise 16). Catching such an error is
impossble because it requires the tranglator to know the semantics of the pro-
gram, that is, that the operations on the buffer are to be exeauted in mutual
exclusion, and mutex is used to guarantee such mutual exclusion. Therefore,
semaphares require considerable discipline on the part of the programmer.
For example, ore shoud na forget to exeaute a P before accessng a shared
resource, or negled to execute av to release it.

Using semaphares for synchronization pupaoses other than mutual exclusion
iseven more avkward. In the producer-consumer example, process consumer
suspends itself by executing P (spaces) when the buffer isfull. It is the respon
sibility of some other piece of code, the consumer in this case) to provide the
matching v operation. If the programmer forgets to write a v (spaces) after
each consumption, the producer will become blocked forever.

Semaphares are often provided by operating systems to suppat systems pro-
gramming. They have also been integrated into a number of existing pro-
gramming languages, such as PL/l and Algdl 68 (see sidebar).

*** gdebar start

PL/I was the first language to allow concurrent units, cdled tasks. A proce-
dure may be invoked as atask, in which case it executes concurrently with its
cdler. Tasks also can be assigned priorities. Synchronization is achieved by
the use of events, which are binary semaphares that only can assume one of
two values: '0B and '1'B (Bodlean constants O and 1). A P operation ona
semaphare is represented by a WAIT operation onthe completion d an event
E: WAIT (E). A Vv operation is represented by signaling the coompletion d the
event: COMPLETION (E) = '1'B. PL/I extends the notion d semaphaes by
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allowingthe WAIT operationto name several events and an integer expresson
e. The processwill be suspended urtil any e events have been completed. For
example, WAIT (El, E2, E3) (1) indicates the waiting for any ore of the events:
El, E2, O E3.

ALGOL 68 suppats concurrent processesin aparal e clause whaose anstitu-
ent statements are daborated concurrently. Synchronizaion can be provided
by semaphares, which are data objects of type sema.

*** G debar end

4.8.2.2 Monitors and signals

Concurrent Pascal introduced the signal and monitor constructs into the pro-
gramming languages. Signals are synchronizaion gimitives, monitors
describe dstract data types in a concurrent environment. The operations that
manipulate the data structure ae guaranteed to be executed in mutual exclu-
sion bythe underlying implementation. Cooperation in accessng the shared
data structure must be programmed explicitly by using the monitor signal
primitives delay and continue.

Using the notation d Concurrent Pascal, the program in Figure 57 il lustrates
the use of monitors in the producer-consumer example.
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typefifostorage =
monitor
var contents: array [1. .n] of integer; {buffer contents}
tot: 0. .n; {number of itemsin buffer}
in, {position o item to be alded next}
out: 1. .n; { position of item to be removed next}
sender, recaver: queue;
procedure entry append (item: integer);
begin if tot = n then delay (sender);
contents[in] :=item;
in:=(inmod n)+1;
tot :=tot + 1,
continue (recever)
end;
procedure entry remove (var item: integer);
begin if tot = 0 then delay (receaver);
item := contentq out];
out := (out mod n) + 1,
tot :=tot - 1;
continue (sender)
end;
begin {initiali zation part}
tot:=0;in:=1;out:=1
end

FIGURE 57.Producer-consumer example with monitor

An instance of the monitor (i.e., abuffer) can be declared as

var buffer: fifostorage
and can be aeded by the statement init buffer. Monitor instances are astract
objects through which interprocess communication and synchronization is
coordinated.

The init statement allocates dorage for the variables defined within the moni-
tor definition (i.e., contents—the contents of the buffer, tot—the total number of
buffered items, and in and out—the paositions at which the next items will be
appended and removed, respectively) and executes the initialization part
(which setstot to zero, andin and out to ore). The monitor defines the two pro-
cedures, append and remove. They are declared with the keyword entry, which
means that they are the only exported procedures that can be used to manipu-
late monitor instances. Cooperation ketween the producer and the consumer
is achieved by wing the synchronizaion primitive signals delay and continue.



256 Structuring the computation Chap.4

The operation delay (sender) suspends the executing process(e.g., the producer)
in the queue sender. The processlosesits exclusive accessto the monitor's data
structure and its execution is delayed urtil another process (e.g., the con
sumer) exeautes the operation continue (sender). Similarly, with delay (recever) a
consumer processis delayed in the queue recever if the buffer is empty, until
the producer resumes it by executing the instruction cortinue (recéver). The
execution d the continue (q) operation makes the cdling processreturn from
the monitor call and, additionally, if there are processes waiting in the queue
g, one of them immediately will resume the exeaution o the monitor proce-
dure that previously delayed it.

The structure of a Concurrent Pascal program that uses the @ove monitor to
represent cooperation between a producer and a @nsumer is given in Figure
58.

const n = 20;

typefifostorage= ...asabove. ..
type producer =

process (storage: fifostorage);

var element: integer;

begin cycle
.sfo.rage.append (element);
end
end,

type mnsumer = process (storage: fifostorage);
var datum: integer;
begin cycle

storage.remove (datum);

end
end;
var meproducer: producer;
youconsumer: consumer;
buffer: fifostorage;
begin
init buffer, meproducer (buffer), youconsumer (buffer)
end

FIGURE 58. Overal structure of aConcurrent Pascal program with two processes (aproducer and a
consumer) and one monitor (a buffer)
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Processes are described in the example a nornterminating, cyclic ectivities
(cycle...end). Two particular instances (meproducer and youconsumer) are declared
as boundto an instance of the resource type fifostorage and subsequently acti-
vated as concurrent processes by the init statement.

4.8.2.3 Rendezvous

The examples given so far used shared memory for interprocess communica-
tion. A globally accessble buffer was used by producer and consumer pro-
cesses, and suitable synchronization promitives were introduced to allow
them to proceed safely. In the example using semaphares, synchronizaion
and communication features were separate. Semaphares are used for synchro-
nization; shared variables are used for communicaion. In the monitor exam-
ple, the two issues were more intertwined, and the resulting construct is
higher level. One @an view the monitor construct as defined by two logical
comporents. an abstract object which is used for communication among po-
cessesin mutual exclusion,and a signal mecdhanism that suppats s/nchroni-
zdion (e.g., the aility to delay and resume processes, based onsome logical
condtion). Note that while the first comporent is intrinsicdly based on a
shared memory computation paradigm, the second is nat, and might be used
also in adecentrali zed scheme for concurrent computation.

In this section we ill sustrate the rendezvous concept introduced by the Ada
programming language. The @nstruct can be viewed as a hight-level mecha
nism that combines synchronization and communication, where communica-
tionis based onthe message passing conceptual paradigm. The wnstruct, per
se, can be naturally used to write software for distributed architectures,
althoughits posgble interadion with ather features in Ada @an make this
quite difficult. Hereafter we ancentrate on the basic properties of rendez-
vous, additional feaures and the interadion with ather facili ties provided by
the language (such as scope rules and exception handling), will beignared for
the sake of simplicity.

The Adatask olject in Figure 59 describes a processthat hand es the opera-
tions append and remove on a buffer.
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task Buffer_ Hander is --task dedaration
entry Append (Item: in Integer);
entry Remove (Item: out Integer);
end,;
task body Buffer_Handler is--task implementation
N: constant Integer := 20;
Contents: arr ay (1. .N) of Integer;
In_Index, Out_Index: Integer range 1. .N :=1;
Tot: Integer range 0. .N :=0;
begin loop
seled
when Tot <N =>
accept Append (Item: in Integer) do
Contents (In_Index) := Item;

end;
In_index := (In_Index mod N)+1;
Tot:=Tot+ 1

or
when Tot > 0 =>
accept Remove (Item: out Integer) do
Item := Contents (Out_Index);
end;
Out_Index := (Out_Index mod N) + 1;
Tot:=Tot-1;
end seled;
end loop;
end Buffer_Handler;

FIGURE 59.An Adatask that manages a buffer

The declaration d task Buffer_Hander Specifies Append and Remove as entries.
An entry can be viewed as a port, throughwhich atask can send amessage to
ancther task, which can then accept it. The task can indicate its willingnessto
axcept amessgeif itisan owner of the crrespondngentry (i.e., the entry is
dedared init). It does © by executing the accet statement. At this point, the
sender and the receiver tasks can be viewed as meding together (in French,
they perform arendezvous).

If the sender cdlsthe entry (i.e., sendsthe message) before the receiver isaues
an accept, the sender is suspended urtil the rendezavous occurs. Similarly, a
suspension d the receiver occursif an accept statement is executed before the
correspondng entry is called (i.e., before the message is ®nt). Note that a
task can accept messages from more than ore task; consequently, each entry
patentially has a queue of tasks which sent messagesto it.
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The acceot Statement is smilar to aroutine. After a repetition d the header of
the entry, the do. . end part (accept body) specifies the statements to be exe-
cuted at the rendezvous. Once amatch between an entry call and the corre-
spording accept occurs, the sender is suspended urtil the accept body is
executed by the alled task. The acept body is the only place & which the
parameters of the entry are accessble. Possble out parameters (as in the ase
of REMOVE) are passed back to the sender at the end d the rendezvous, that
is, when the execution d the acept body is completed. Theredter, the two
tasks that met in the rendezvous can proceed in paral €.

The bodes of tasks PRODUCER and CONSUMER, which interad with
BUFFER_HANDLER in the producer-consumer example, are sketched in Figure
60.

PRODUCER CONSUMER
loop loop
produce anew value V; Buffer_Handler . Remove (V );
Buffer_Hander . Append (V); consumeV;
exit when V denotes the end of exit when V denotes the end of
the stream; the stream;
end loop; end loop

FIGURE 60.Sketch d the producer and consumer tasksin Ada

In the example of Figure 59, accet Statements are enclosed within a selea
statement. The sdea statement specifies ®veral aternatives, separated by or,
that can be dhosen in a nondeterministic fashion. The Ada selection is speci-
fied by an accet statement, passbly prefixed (asin our example) by a when
condition. Execution df the select statement proceeds as foll ows'.

1. The @nditi ons of the when parts of al aternatives are evaluated. Alternativeswith atrue
condition, or without a when part, are mnsidered open; otherwise, they are mnsidered
closed. In the example, both alternatives are open if 0 < TOT < N.

2. An gpen dternative can be seleded if arendezvousispaossible (i.e. an entry cdl already

has been issued by another task). After the dternative is sleded, the crresponding
accet body is exeauted.

3. If there ae open aternatives but none can be seleded immediately, the task waits until a
rendezvousis posshle.

1. Thisisasimplified view of Ada. We are ignoring several features that would complicate our presentation.
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4. If there ae no open aternatives, an error condition is sgnaled by the language-defined
exception PROGRAM_ERROR.

4.8.2.4 Summing up

Semaphares, monitors, and rendezvous are al primitives for modeling con-
current systems. As we pointed ou, semaphaees are rather low-level mecha
nisms. programs are difficult to read and write, and few checks on their
corred use @n be dore automatically. Monitors, on the other hand, are a
higher-level structuring mechanism. Using monitors, a typical system struc-
turing proceeds by identifying (1) shared resources as abstract objects with
suitable aacessprimitives (passive entities), and (2) processes (active entities)
that cooperate through the use of resources. Resources are encapsulated
within monitors. Mutual exclusion onthe accessto a shared resource is guar-
anteed automaticdly by the monitor implementation, bu synchronizaion
must be enforced by explicitly suspending and signaling processes via delay
and continue Statements. The distinction between adive and passve entities
(processes and monitors, respectively) disappears in a scheme based onren-
dezvous. Shared resources to be used cooperatively are represented by tasks,
that is, by adive cmporents representing resource managers. A request to
use aresource is represented by an entry cal, i.e., by sending a message
which must be accepted by the corresponding resource manager.

A system structured viamonitors and processes can be re-structured via tasks
and rendezvous, and vice versa; the choice between the two schemes is
largely dependent on personal taste. As we mentioned, the latter scheme mir-
rors more directly the behavior of a concurrent system in a distributed archi-
tecture, where remote resources are actually managed by pocesses that
behave & guardians of the resource. However, it can be somewhat awkward
in case processes need to communicate via shared oljects. In fact, early expe-
rience with the Ada programming language, which initially provided ony
rendezvous, showed that the need for additional tasks to manage shared data
often led to poa performance Therefore, Ada 95 introduced akind d moni-
tor construct—protected types—in addition to the rendezvous.

The use of an Ada protected type to implement our runnng example of a
buffer type (Fifo_Storage) is siownin Figure 61.
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proteded type Fifo_Storageis
entry Append (Item: in Integer);
entry Remove (Item: out Integer);
private
N: constant Integer := 20;
Contents: arr ay (1. .N) of Integer;
In_Index, Out_Index: Integer range 1. .N :=1;
Tot: Integer range 0. .N :=0;

proteded body Fifo_Storageis
entry Append (Item: in Integer) when Tot<N is
begin
Contents (In_Index) := Item;
In_Index := (In_Index mod N) + 1;
Tot:=Tot+1
end Append;

entry Remove (Item: out Integer) when Tot > 0is
begin
Item := Contents (Out_Index);
Out_Index : = (Out_Index mod N) + 1,
Tot:=Tot-1;
end Remove;
end Fifo_Storage;

FIGURE 61.A proteded Ada type implementing a buffer

Similar to the monitor, operations defined for a proteded type are executed
by the underlying abstract machine in mutual exclusion. There are two kinds
of posgble operations. routines (i.e., procedures and functions) and entries.
Entries (shown in the above example) have an associated barrier condtion
which is used for synchronization. Routines have no associated barriers. The
difference with the monitor isthat noexplicit signals are issued. Rather, when
an entry is caled its barrier is evaluated; if the barrier is false then the alling
processis suspended and queued. At the end d the execution d an entry (or a
routine) body,all barriers which have queued tasks are re-evaluated, thus pos-
sibly allowing a suspended task whose barrier became true to be resumed.
The &sence of explicit signalsto be exchanged for synchronization purposes
makes the construct simpler to use and the correspondng abstraction easier to
understand than in the case of monitors.

Ada is perhaps the best example of a programming language which provides
a wherent set of well integrated features suppating concurrent programming.
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Most other languages do nd. Such languages often provide suppat for con-
current programming either via call sto low-level operating system primitives
or vialibraries added to language implementations.

*** Lindaisalibrary for C?7?72+**

*** To suppat distributed systems programming, there ae libraries support-
ing remote procedure cdls. In such a case** *****

*** task library of C++***
*** gidebar on data concurrency? 72¥**

4.8.3Implementation models

In a concurrent system, process either are suspended (waiting onsome syn-
chronization condtion) or are potentially adive, that is, there ae no logical
obstacles to their execution. In general, only a subset of potentialy active
processes can be running, uressthere are as many procesrs as there are
patentially active processs. In the mmmon case of a uniprocessor, only one
of such processes can be running at a time. It is thus customary to say that
processes can be in ore of the following states (see also Figure 62).

* - Waiting

* - Realy (i.e., potentialy adive, but presently not runnning)

* - Running
The state of a processchangesfrom runningto waitingif thereis ssmelogica
condtion that prevents the process from continuing its execution. That is, the
procesis suspended bythe exeaution d some synchronization statement (e.g.,
the buffer is full for the producer process). The state can later change from
waiti ng to running if some other process performs a suitable synchronizaion
statement (e.g., a wnsumer process $gnals that the buffer is not full any
more).

In concurrent programming, the programmer has no drect control over the
speead of exeaution d the processes. In particular, the user is not resporsible
for changing the state of a processfrom ready to runnng (operation d selec-
tionin Figure 62), which is dore by the underlying implementation. Figure 62
shows that a processcan leave the runnng state and enter the ready state & a
consequence of the adion d preemption.
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Selection

Process Process

Running

creation Preemption termination

Synchronization
statement executed
by the process

Synchronization
statement executed
by some other process

FIGURE 62 State diagram for a process

Preemption is an action performed by the underlying implementation; it
forces a processto abandonits running state even if, from alogicd point of
view, it could safely continue to be executed. A process can be preempted
either after it performs a synchronizing statement that makes ancother sus-
pended processenter the ready state (e.g., aVv onasemaphare) or when some
other condtion accurs, such as the expiration d a specified amourt of time
(timedlice).

After the preemption d one process ore of the ready processes can enter the
running state. This kind of implementation allows the programmer to view
the system as a set of activities that proceed in paralédl, even if they are dl
executed by the same procesor. Only one processat atime can be executed
by the processor, but each processruns only for a limited amourt of time,
after which control is given to ancther process. It is possble to have nonpe-
emptive implementation o concurrency. In this case, execution switches to
ancther processonly when the airrently executing process deliberately sus-
pendsitself or requires the use of an uravailable re-source

The portion d run-time suppat of a concurrent language resporsible for the
implementation d the state transitions shown in Figure 62, is called the ker-
nel. To illustrate the basic features of a kernel, consider the case of asingle
processor shared by a set of processes. For the sake of simplicity, we will
ignare the problems of synchronizing processes with inpu/output devices and
concentrate our attention onthe interadions amonginterna processs. More
complete discussons of these isaues are traditionaly (and more properly)
addressed in textbooks on operating systems. Here we provide only aglimpse
of the basic problems that are relevant to understanding concurrency features
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of programming languages.

The information abou a processneeded by the kernel is represented in a pro-
cess descriptor, ore for each process The descriptor for a processis used to
store dl the information reeded to restore the process from a waiting a
blocked state to the running state. This information (cdled process status)
includes the process priority (if priorities are used) and al information
required to instruct the procesor abou the identity and pant of execution d
the process—-naably, the contents of the machine registers (program courter,
index registers, accumulator, and so on). Saving the status of the process
when the processbecomes suspended and restoring the status when the pro-
cessbecomes runningis one of the kernel's jobs.

The kernel can be viewed as an abstract data type; it hides some private data
structures and provides procedures that provide the only ways to use these
data structures. All of the kernel’ s operations are assumed to be exeauted in a
noninterruptible way; i.e., al interrupts are disabled whil e they are being exe-
cuted. The kernel's private data structures are organized as queues of process
descriptors. The descriptors of ready processes are kept by the kernel in
READY_QUEUE. Thereisalso ore CONDITION_QUEUE for each condtion that
might suspend a process that is, there is one queue for each semaphore and
one for each oljed declared to be of type queue in a monitor (and for each
entry in a protected Ada type). Each such queue is used to store the descrip-
tors of all processes suspended onthe semaphare or delayed in the queue. A
variable RUNNING denates the descriptor of the running process. A typica
snapshat of the kernel's data structures is shown in Figure 5.4. The queues
used by the kernel can be mnsidered as instances of an abstract data type
whose operations are defined by the following signatures:

engueue: Queue x Descriptor -> Queue -- inserts a descriptor into the queue
dequeue: Queue -> Queue x Descriptor -- extrads a descriptor from the queue
empty:  Queue -> Boolean -- true if the queue is empty; false otherwise

In what follows, we discussthe basic operations performed by the abstract
machine to execute concurrency constructs. The notation we use is a self-
explaining pseudo-code based onC++. Whenever necessary, additional com-
ments are added to the pseudo-code.

Time dlicing is implemented by a dock interrupt. Such an interrupt activates
the following kernel operation Suspend-and-Seled, which suspends the most
recently running process into READY_QUEUE and transfers a ready process
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into the runnng state.

RUNNING —

READY_QUEUE —p» — .

CONDITION_QUEUE_1 — ! .

CONDITION_QUEUE_2 — ol

FIGURE 63. Data structures of the kernel

Operation Suspend-and-Seled

RUNNING = process status,

-- save status of running process into RUNNING
READY_QUEUE . enqueue (RUNNING);

-- enqueue RUNNING into READY_QUEUE
RUNNING = READY _QUEUE . dequeue ( );

-- move adescriptor from READY _QUEUE into RUNNING
process_status = RUNNING;

-- adivate the new process)

4.8.3.1 Semaphores

If semaphares are provided by the language, primitives P and v can be imple-
mented as call sto kernel procedures. A suspension ona andtionc caused by
aP operationisimplemented bythe following private operation d the kernel

Operation Suspend-on-Condition (c)

RUNNING = process status,
CONDITION_QUEUE (c) . enqueue (RUNNING);
RUNNING = READY QUEUE . dequeue ();
process_status = RUNNING;

Awakening a process waiting an condtion ¢, caused by a v operation, is
implemented by the foll owing private operation d the kernel.

Operation Awaken
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RUNNING = process status;
READY_QUEUE . enqueue (RUNNING);
READY _QUEUE . enqueue (CONDITION_QUEUE (c) . dequeue ());
-- move adescriptor from CONDITION_QUEUE (c) into READY _QUEUE
RUNNING = READY_QUEUE . dequeue ( );
process_status = RUNNING;
Note that this implementation guarantees indivisibility of primitivesp and v,

since we asumed that kernel operations are nonnterruptible.

4.8.3.2 Monitors and signals

In the case of monitors and Ada’s protected types, asimple way to implement
the required mutual exclusion consists of disabling interrupts when a monitor
procedureis called and enabling them on return from the cdl. We assume that
interrupts are enabled and dsabled by a single machine instruction, andthat a
speda madhine register determines whether interrupts are enabled o dis-
abled. Thisregister is part of the process s$atus and must be saved in the pro-
cessdescriptor when the process is suspended. For the sake of simplicity, we
also assume that monitor procedures do nd contain calls to ather monitor
procedures. When a processcalls a monitor procedure, the value of the return
point from the call is saved in an entry of the processdescriptor. Operations
delay and continue can be implemented by kernel procedures. In particular, delay
is implemented by operation Suspend-on-Condition, and cortinue (c), where cis a
condtion queue, isimplemented by the following operation.

Operation Continue (c)

RUNNING = process status (with interrupts enabled and program counter set to
the return point from the monitor cdl);
READY _QUEUE . enqueue (RUNNING);
if CONDITION_QUEUE (c) . empty then
RUNNING = READY QUEUE . dequeue ( );
else{
RUNNING = CONDITION_QUEUE (c). dequeue ( );
process_status = RUNNING

No}te that we did not state the padlicies for the management of queues in this
abstract implementation. Queues might be handled according to a first-in-
first-out palicy, or one may even use sophisticated strategies which take into
aacournt waiting times and priorities. The part of the kernel resporsible for
choasing a pdlicy is called the scheduler. In ou scheme, the scheduler is a
part of the implementation d the abstrad data type that defines queues.
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4.8.3.3 Rendezvous

In this section, we discuss ®me implementation isaues of Ada's rendezvous
mechanism. There is one queue of ready tasks (READY_QUEUE). Each entry
has a descriptor that contains the foll owing fields.

» A boolean value O describing whether the entry is open (O = true indicates that the task
owningthe entry isready to accept a cdl to this entry).

» A reference W to a queue of descriptors of tasks whase cdls to the entry are pending
(waiting queue).

» A referenceT to the descriptor of the task owning the entry.

» A referencel to the first instruction of the accet body (to simplify matters, we aaume
that no two accept statements for the same entry can appea in a seled statement). This
reference is significant only if the task owning the entry is ready to accept a cdl to the
entry (that is, O = true). For simplicity, we can asaume that the value of this field isa
constant, staticdly associated with the entry.

As usual, we assume that the implementation d the synchronization state-

mentsis dore by kernel operationsthat are noninterruptible, that is, interrupts
are disabled and enabled by the kernel before and after executing such state-
ments. The problem of passng parameters aaosstasksisignared for simplic-

ity.

Let e be an entry that is cdled by atask, and let DESCR (e) be €'s descriptor.
The implementation d acall to entry e can be dore by the kernel as foll ows.

RUNNING = process status;

(DESCR (€) . W) . enqueue (RUNNING); -- the running processis sved
if DESCR (e).0 { -- the entry isopen
for al open entries oe of the task
0e.0 = fasg -- close the entries
RUNNING =DESCR (e) . T; -- the task owning the entry becmes running

RUNNING . pc = DESCR (€) . I;
-- pcisthe field containing the value of the program counter
-- which is set to the value stored in field | of the entry’ s descriptor
else
RUNNING = READY_QUEUE . dequeue ( );

}
When the end d the body d an accet statement is reached, the following ker-
nel actions complete the rendezvous.

RUNNING = process status;

READY _QUEUE . enqueue (Descr (€) . W);
-- move descriptor of cdler referenced by field W of the entry's descriptor
-- into READY _QUEUE

READY _QUEUE . enqueue (RUNNING);
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RUNNING = READY_QUEUE . dequeue ();
process_status = RUNNING;
The adionsto be executed as a mnsequence of an accept statement for entry

e (not embedded in a select statement) are

if (DESCR (e) . W) . empty (){
DESCR (g) . O = true;
DESCR(€) . T = process_status;
RUNNING = READY_QUEUE . dequeue ()
process_status = RUNNING;
} -- if the waiting queue is nat empty, then simply continue
-- exeauting the accet body

To execute aseled statement, alist of the open entriesinvolved in the selec-
tion is first constructed. If this list is empty, then the exception
PROGRAM_ERROR is raised. Otherwise, the following kernel actions are
required.

if for all einthelist (DESCR () . W) . empty () =true{
foral einthelist {
DESCR (€) . O = trug;
DESCR (€) . T = process_status;

h
RUNNING = READY_QUEUE . dequeue ()
process_status = RUNNING;

else
choose an ewith( DESCR () . W) . empty () =false
proceal exeaution from instruction DESCR (€) . |

}

4.9 Bibliographic note

Statement-level control structures were the subject of active research in the
late 60's and ealy 70's. E.W. Dijkstra was first to stressthe need for disci-
pline in programming, and the influence of unconstrained jumps (gato state-
ments) on the production d obscure, urstructured programs (Dij kstra 196&).
Much o the subsequent research on"structured programming’ was amed at
uncovering suitable control structures that could promote the writing d well -
organized, readable programs. For a amprehensive retrospective view of this
work, the reader may refer to (Knuth 1974.

Research onexception handing began in the early 70 s (Goodenough 1975k
The main drections of investigations were design methods and language @mn-
structs to deal with exceptions. For a cmprehensive survey of the field, the
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reader may refer to (Cristian *** ). The discusson reported in the chapter on
exception handing d (Stroustrup 1994 is an excellent account of the
tradeoffs that must be considered by a language designer in the definition o
cetain programming language features. For a detailed understanding d the
different choices made by dfferent programming languages, the reader
shoud refer to the spedfic bibliographic sources (see the Glossary).

Backtracking and and-or graphs are presented in most textbooks on computer
algorithms, such as (Horowitz and Sahni 1978. They are dso often discussed
in the context of artificial intelligence methoddogies (*** ). Event-driven
control structuresin the context of database applications are surveyed in (Fra-
ternali and Tanca***).

An extensive study d coroutinesis reported by (Marlin 1980Q. This includes
asurvey of languages, a semantic description d the concept, and adiscusson
of programming language methoddogies.

Concurrency in programming languages is often studied either as part of an
operating systems course or as a separate course on concurrent programming.
(Andrews 19917 and (Ben Ari 1990 provide an in-depth coverage of concur-
rent and dstributed programing. Historically, the concept of semaphare was
introduced in (Dijkstra 1968h. Monitors were introduced by (Brinch Hansen
1973 and (Hoare 1974). (Hoare 1978 is a dasscal in the literature on mes-
sage passing,. It strondy influenced the rendezvous concept of Ada.

4.10 Exercises

1. Study the case statement of Pascal and compare it to the C++ switch statement and the
Ada cae statement.

2. What is the minimum possible number of iterations of the body of a Pascd while loop?
How about a repeat loop?

3. It can be shown that, in principle, any program can be written using just these @ntrol
structures:

* grouping statementsinto a block;
 if.. then. . .ese. ..
 while. . .do. ..

— Show how other control structures (such asthe case statement or areped loop) can be
represented using the ébove minimal set;

— Discusswhy inpradice aricher set of control structuresis provided by aprogramming
language.
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4. Show how pointersto procedures (or functions) can be used in Adato passprocedures (or
functions) as parameters.

5. Ada, as originally defined, did not allow procedures or functions to be passed as
parameters to a procedure (or function). Can this drawbadk be overcome by the use of
generics? How? What are the differences with resped to passingaroutine & aparameter?

6. Explain why aiasing makes the effed of implementing parameter passing by reference
and by value result different. Give an example.

7. Chedk on the Ada manual how the language spedfies what happens when the dfeds of
passing parameters by reference and byvalue-result are different.

8. What are the strings matched by the following SNOBOL 4 pattern?

OPERATOR ="+, "'
EXPRESSION = *EXPRESSON OPERATOR *EXPRESSON | IDENTIFIER

9. Ada provides feauresto transfer spedfic information on the point where an exception is
raised to the arresponding handler. Ched on the language manual how this can be
acomplished and show how these feaures can be used duing debugging.

10. Comparethe feaure provided by Adato disable exception (seethe language manual) with
the disabling medchanism provided by PL/I.

11. How can the exception handling fadliti es of C++ be used to achieve the same dfed as
that described by the Eiffel fragment of Sedion 5.4.3?

solution

inti
whilei <n

try {
exeaute method i

}
cach fail {
i++;
if i = nthen throw

}

12. Suppase you have aprogram unit U that cdlsafunction fun, which may raise exceptions
and propagatesthem badk to U. There aefivekinds of exceptionsthat can be propagated:
V,X,Y,Z,andW. An exception of kind V allows U to dosomefixing andthen re-invoke
fun. An exception of kind X allows U to do some dean-up of the locd state and then
procea normally. An exception of kind Y alows U to simply propagate the same
exception. An exception of kind Z allows U to perform some adion, and then turn the
recaved exception into another exception which is raised. Finaly, an exception of kind
W forces U to terminate the entire program.

Provide an implementation of this schemein C++, Ada, and Eiffel.

13. Write ashort assessment of exception handling in ML, acmrding to the style of the
assessment we did in Sedion 5.4.4.

14. Examine the manuals of a few languages of your choice to find out what happens if an
exceptionisraised while an exceptionis being hand ed.

15. Discuss how memory is managed for coroutines, assuming a block structured language
where coroutines can be dedared locdly inside (co)routines. Thus, the creaion d a set of
coroutines can beviewed asthe aedion of anew exeaution stad, onefor ead coroutine.
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16. In the producer-consumer example implemented with semaphores in Sedion 48.3.1,
supposethat V (mutex) iswritten incorredly as P (mutex) in process Producer. How does
the system behave?

17. When semaphores are used to implement mutual exclusion, it is passble to associate a
semaphore SR with eat resource R. Each access to R can then be written as

P (SR);
accesR,;
V (SR)
» What should the initial value of SR be?

18. Some mmputers provide an indivisible machine-instruction test and set (TS) that can be
used for synchronization purposes. Let X and Y betwo boolean variables. The exeaution
of the instruction TS (X, Y) copies the value of Y into X and sets Y to false. A set of
concurrent processes that must exeaute some instructions in mutual exclusion can use a
global boolean variable PERMIT, initiali zed to true, and alocd boolean variable X in the
following way:

repeda TS (X, PERMIT)

until X;
instructions to be exeauted in mutual exclusion;
PERMIT:=true

* Inthiscase, processesdo not suspend themselves; they are dways exeauting (thisiscdled
busy waiting). Compare this solution to ore based on semaphores in which Pand V are
implemented by the kernel.

* Describe how to implement P and V on semaphores by using the test and set primitivein
abusy wait scheme.

19. Use proteded typesin Adato implement semaphores.

20. Define an Ada proteded type to implement a shared proteded variable that can be read
and written in mutual exclusion.

21. How can you define task typesin Ada?What are the main diff erences between proteded
types and task types?

22. We implemented mutual exclusion of monitor procedures by disabling interrupts. An
alternative solution uses asemaphorefor ead monitor and performsa P on the semaphore
before entering a monitor procedure, and a rresponding V upon exit. Detail this
implementation and compare the two solutions.

23. Show how an Adatask can be used to implement a semaphore.

24. Show how an Ada proteded type can be used to implement semaphores.

25. Design an Ada padkage that implements the éstrad data type queue that is used in the
abstrad implementation of concurrency in Sedion 5.8.3

26. DesignaC++ classthat implementsthe abstrad datatype queuethat isused in the astradt
implementation o concurrency in Sedion 58.3
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Structuring the program

C HAPTER 5

The basic mechanisms described in previous chapters for structuring ceta
(Chapter 3) and computation (Chapter 4) may be used for programmingin the
small. In Chapter 4, we dso have seen the use of control structures for struc-
turing large programs. This chapter deds drictly with issues of programming
in the large. We describe the basic concepts for structuring large programs
(encapsulation, interfaces, information hding) and the mechanisms provided
by languages to suppat it (padkaging, separate compilation). We dso con-
sider the @ncept of genericity in bulding software comporent libraries. We
do nd go ceeply into olject-oriented programming, which is the subject of
the next chapter.

The production o large programs—those consisting d more than severa
thousand lines—presents challenging problems that do nd arise when devel-
oping smaller programs. The same methods and techniques that work well
with small programs just don't “scale up.” To stress the diff erences between
small and large systems production, we refer to “programming in the small”
and “programmingin the large.”

Two fundamental principles—abstraction and modularity—underlie dl
approaches to programming in the large. Abstraction allows us to uncerstand
and analyze the problem by concentrating onits important aspects. Moduar-
ity allows usto designand buld the program from small er pieces called mod-
ules. During problem analysis, we discover and invent abstractions that all ow
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us to uncerstand the problem. During program design and implementation,
wetry to dscover amoduar structure for the program. In generd, if modues
that implement the program correspond closely to abstractions discovered
during problem analysis, the program will be eaier to understand and man-
age. The principles of moduarity and abstradion help us apply the well-
known problem solving strategy knawvn as “ divide and conquer.”

The concept of a“large program” isdifficult to define predsely. We certainly
do nd want to equate the size of a program (e.g., the number of source state-
ments) with its complexity. Largeness relates more to the “size” and com-
plexity of the problem being solved than to the final size of a program in
terms of the number of sourcelines. Often, however, the size of a program is
agoodindicaion d the mmplexity of the problem being solved. Consider the
task of building an airline reservation system. The system is expeded to keep
a database of flight information. Reservation agents working at remote sites
may accessthe database & arbitrary timesandin any order. They may inqure
abou flight information, such as time and price; make or cancel areservation
onaparticular flight; update existing information, such as the locd telephone
number for a passenger. Certain authorized personnel can accessthe database
to dospeaal operations, such as adding a cancding aflight, or changing the
type of the arplane asgned to a flight. Others may acacess the system to
obtain statisticd data abou a particular flight or all flights.

A problem of this magnitude imposes svere restrictions on the solution strat-
egy and the following key requirements:

» The system hasto function corredly. A seemingly small error, such as assignment to
thewrong pointer, may leal to losing areservation list or interchanging two diff erent
listsand be extremely costly. To guarantee @rreaness of the system virtually any cost
can be tolerated.

» Thesystemis“long-lived.” The mst associated with producing such asystemisso high
that it isnot pradicd to replaceit with atotally new system. It is expeded that the cost
will be recouped only over along period of time.

» Duringitslifetime, the system undergoes considerable modification. For our example,
because of completely unforeseen new government regulations, changes might be
required in price structure, a new type of airplane might be added, and so on. Other
changes might be mnsidered because experiencewith the system has uncovered new
requirements. We might find it desirable to have the system find the best route aito-
maticdly by trying dff erent connedions.

» Because of the magnitude of the problem, many people—tens or hundreds— are
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involved in the development of the system.

The study d these problems and their solutions is outside the scope of this
book they are studied in software engineering. This chapter deals with
requirements that these isaues place on the programming language. Thus, this
chapter is abou program organization issues. Section 5.1reviews software
design methods. Design methods provide guidelines for applying dvide and
conguer in software design. In Section 5.2we discuss the concepts of encap-
sulation, interface, separate compilation, and modue libraries. These on
cepts provide the bases for the gplication d moduarity in programming
languages. Case studies of different languages are provided in Section 5.3.

5.1 Software design methods

To combat the complexities of programming in the large, we need a system-
atic design method that guides us in compaosing a large program out of
smaller units—which we @l modules. A good asign is compaosed of mod-
ules that interact with ore another in well-defined and controlled ways. Con-
sequently, each modue can be designed, understood, and validated
independently of the other modues. Once we have achieved such a design,
we need programming language fadlities that help us in implementing these
independent modues, their relationships, and their interadions.

The goal of software designisto find an appropriate moduar decomposition
of the desired system. Indeed, even thoughthe boundaries between program-
ming in the large and programming in the small canna be stated rigorously,
we may say that programming in the large addresses the problem of moduar
system decomposition, and programming in the small refersto the production
of individual modues. A goodmoduar decompositionis one that is based on
modues that are a independent from each ather as possble. There ae many
methods for achieving such moduarity. A well-known approach is informa-
tion hiding which uses the distribution of “seaets’ as the basis for moduar
decompasition. Each module hides a particular design cecision as its ®aet.
Theideaisthat if design decisions have to be dhanged, orly the modue that
“knows’ the secret design decision reads to be modified and the other mod-
ules remain ureffected.

In Chapter 1 we discussed the importance of software design. If a designis
compaosed o highly independent modues, it suppats the requirements of
large programs.
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* Independent modules form the basis of work assignment to individual team members.
The more independent the modules are, the more independently the team members can
procedl in their work.

» The mrredness of the entire system may be based on the @rredness of the individual
modul es. The more independent the modules are, the more eaily the wrreaness of the
individual modules may be established.

» Defedsin the system may be repaired and, in general, the system may be enhanced
more eaily becaise modificaions may beisolated to individual modules.

5.2 Conceptsin support of modularity

To summarize the discussion d the last section, the key to software designis
moduarizaion. A good modue represents a useful abstraction; it interacts
with ather modues in well-defined and regular ways; it may be understood,
designed, implemented, compiled, and enhanced with accessto only the spec-
ification (not the implementation secrets) of other modules. Programming
languages provide facilities for building programs in terms of constituent
modues. In this chapter, we are interested in programming language concepts
and fadlities that help the programmer in dviding a program into subparts—
modues—the relationships among thase modues and the extent to which
program decompaositions can mirror the decomposition d the design.

We have drealy seen some units of program decmpasition in Chapters 3
and 4.Procedures and functions are an effedive way of breaking a program
into two modues: one which provides a service and anather which uses the
service. We may say that the procedure is a server or service provider and the
cdler is a client. Even at this level we can see some of the differences
between dfferent types of moduarization unts. For example, if we provide a
service a afunction, then the dient has to use the service in an expresson.
On the other hand, if we provide the service in a procedure, then the dient
may na use it in an expression and is forced to use amore assgnment-ori-
ented or imperative style.

Procedures and functions are units for structuring small programs, perhaps
limited to a single file. Sometimes, we may want to arganize aset of related
functions and procedures together as a unit. For example, we saw in Chapter
3 how the class construct of C++ lets us group together a data structure and
related operations. Ada and Modua-2 provide other constructs for this pur-
pose. Before we delve into specific language facilities, we will first look at
some of the underlying concepts of moduarity. These concepts help motivate
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the need for the language facilities and help us compare the different lan-
guage approaches.

5.2.1Encapsulation

A program unit provides a service that may be used by aher parts of the pro-
gram, call ed the clients of the service The unit is sid to encapsulate the ser-
vice. The purpose of encapsulation is to group together the program
comporents that combine to provide aservice and to make only the relevant
aspects visible to clients. Information hiding is a dessgn method that empha-
sizes the importance of concealing information as the basis for moduariza-
tion. Encagpsulation mechanisms are lingustic constructs that suppat the
implementation d information hiding modues. Through encapsulation, a
modueisclearly described bytwo parts: the spedfication and the implemen-
tation. The specification describes how the services provided by the modue
can be accessed by clients. The implementation describes the modu e’ s inter-
nal seaets that provide the specified services.

For example, assume that a program unit implements a dictionary data struc-
ture that other units may use to store and retrieve <name, “id”> pairs. This
dictionary unit makes avail able to its clients operations for: inserting a pair,
such as <*Mehd”, 46>, retrieving elements by supgdying the string compo-
nent of a pair, and celeting elements by suppying the string comporent of a
pair. The unit uses other helper routines and dhta structures to implement its
service. The purpose of encapsulationisto ensure that the internal structure of
the dictionary unit is hidden from the dients. By making Mvsible to clients
only those parts of the dictionary unit that they need to know, we achieve two
important properties.

» The dientis smplified: clientsdo not need to know how the unit worksin order to be &le
to useit; and

» The service implementation is independent of clients and may be modified without
affeding the dients.
Different languages provide different encapsulation facilities. For example, in
C, afile is the unit of encgpsulation. Typically, the entities dedared at the
head of afile ae visibleto the functionsin that file and are dso made avail -
able to functionsin ather files if those functions choase to declare them. The
dedaration:

extern int max;
states that the variable max to be used here, is defined—and storage for it alo-
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caed—elsawhere. Variables declared in a C function are local and knavn
only to that function. Variables declared ouside of functions are assumed to
be availableto ather units, if they dedare them using the extern spedfier. But a
unit may decide to hide such variables from other units by declaring them as
static.

We have dready seen the dassconstruct of C++ in Chapter 3 which makes
only a subset of the defined entities—those declared as public—avail able to
clients. All other classinformation is hidden. Figure 64 is a C++ classthat
dedares the dictionary service mentioned abowve.

classdict {

public:
dict(); /lto initialize adictionary
~dict(); //to remove adictionary

void insert (char* c, int i);
int lookup(char* c);
remove (char* c);
private:
struct node {
node* next;
char* name;
intid};
node* root;

1

FIGURE 64.Interfaceof a dictionary modulein C++

This program declares five pulicly available functions. As we know from
Chapter 4, the first two functions, dict() and ~dict(), may be used to create
and clean upadictionary objed, respectively. The other three functions may
be used to access the dictionary object. The private part of the classdefines
the representation o anode of adictionary andtheroat of the dictionary. This
part of the declaration is not visible to the users of the class The modue
encapsulates the dictionary service, bah providing access and hiding unrec-
essry detail s.

Aswe have seen also in Chapter 3, the built-in types of alanguage are exam-
ples of encapsulated types. They hide the representation d the instances of
those types and alow only legal operations to be performed on those
instances.
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5.2.2Interface and implementation

A modue encapsulates a set of entities and provides access to some of thase
entities. The available antities are said to be exported by the modue. Each of
the exported entities is available throughan interface. The @lledion d the
interfaces of the exported entities form the module interface. Clients request
the services provided by a modue using the modue's interface, which
describesthe modu e’ s gecification. The interface specifies the syntax of ser-
vice requests. Some languages also suppat or require the specificaion d the
interface s semantic requirements. The idea is that the interface is all that the
client needs to know abou the provider’ sunit. The implementation d the unit
is hidden from the client. The separation d the interface from the implemen-
tation contributes to the independence of the dient and the server from one
ancther.

A service provider exports a set of entities to its clients. A client modue
imports thase antities to be able to use the services of the provider modue.
The exported entiti es comprise the service provided by the modue. Some lan-
guages have implicit and ahers explicit medhanisms for import and export of
entities. Languages also dffer with respect to the kinds of entities they all ow
to be exported. For example, some languages allow atype to be exported and
othersdo nd.

The simplest interface, one that we have dready seen in Chapter 4, is a proce-
dure or functioninterface A function declaration such as:

int max (int& x, int& y)

spedfiesto the dientsthat the function max may be cdled by passingto it two
integers; the functionwill return an integer result. Weintroduced the term sig-
nature to refer to these requirements on input and ouput for procedures and
functions. Procedure signatures form the basis of type-checking acrossproce-
dures. The name of the function, max, is intended to convey something abou
the semantics of the function, ramely that the integer it will return is the max-
imum of the two integer input parameters. Idedly, the interfacewould specify
the semantics and the requirements on parameters (for example that they must
be pasitive integers). Most programming langueges do nd suppat such facil -
ities, hawever, and they are left as the task of the designer to be documented
in the design dauments. An exception is the Eiffel language. In Chapter 3,
we saw the use of precondtions and pastcondtions to spedfy such semantic
requirements for procedures, functions, and classes.
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In C++, where the unit of encapsulation is a class, the interface to the dass
consists of the interfages of al the member functions of the dassthat are
avail able to clients as well as any aher entities, such as types and variables,
that are made puldic by the unit. The public entities defined in Figure 64 con-
stitute the interface of the dictionary unit.

Ada treds the separation d interface and implementation qute dtrictly. In
Ada, the unit of encgpsulation is a package. A package encapsulates a set of
entities such as procedures, functions, variables, and types. The package
interface mnsists of the interfaces provided by each of those entities. The Ada
padkage supports encapsulation by requiring the interface of a package
(called package specification) to be declared separately from the implemen-
tation d the padkage (cdl ed package body). Figure 65 shows the Ada pack-
age specificaion for our dictionary unt. The implementation d the
dictionary package is shown in Figure 66. The padkage body contains al the
implementation cetail s that are hidden from the dients. This sparation helps
adhieve both of the goals gated for encgpsulationin Section 5.2.1.The pack-
age body, as can be seen in the figure, defines both the implementation d the
entities defined in the package interface and the implementation o other enti-
tiesinterna to the modue. These entities are completely hidden from the di-
ents of the package. The padkage specification and the padkage body may
appear in dfferent filesand reed na even be compil ed together. To write and
compile a client modue, only the service's package spedfication is neces-
sary.

There ae significant differences between the packages of Ada and classes of
C++. Even from this smple example we can see a difference between the
models suppated by C++ and Ada. In C++, the client can declare severa
instances of the dictionary class In Ada, onthe other hand, amodue may be
dedared orce only and the dient obtains accessto oy asingle dictionary.
package Dictionary is
procedure insert (C:String; I: Integer);
function lookup(C:String): Integer;

procedure remove (C: String);
end Dictionary;

FIGURE 65.Padkage specification in Ada



281

package body Dictionary is
type node;
type node ptr isaccess node;
typenodeis
record
name: String;
id: Integer;
next: node_ptr;
end record;
root: node ptr;
procedure insert (C:String; I: Integer) is
begin
--imlementation...
end insert;
function lookup(C:String): Integer is
begin
--imlementation...
end lookup;
procedure remove (C: String) is
begin
--imlementation...
end remove;
begin
root := null;
end Dictionary;

FIGURE 66.Padcage body in Ada

5.2.3Separate and independent compil ation

The idea of moduarity is to enable the construction of large programs out of
smaller parts that are developed independently. At the implementation level,
independent development of modues implies that they may be compiled and
tested individually, independently of the rest of the program. Thisis referred
to as independent compil ation. The term separate compil ation is used to refer
to the ability to compile unitsindividually but subject to certain ordering con-
straints. For example, C suppats independent compil ation and Ada suppats
separate compilation. In Ada, as we will see later, some units may na be
compiled urtil other units have been compiled. The ordering is imposed to
allow checking d interunit references. With independent compilation, na-
mally there is no static checking of entitiesimported byamodue.

To illustrate this point, consider the program sketch in Figure 67, writtenin a
hypahetical programming language. Separate compil ation means that unit B,
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which imports routine X from unit A, must be compiled after A. This allows
any call to X issued byB to be dhedked staticdly against X’ sdefinitionin A. If
the language al ows modue interfaces to be compiled separately from their
bodes, ony A’s interface must be compiled before B; its body can be com-
piled at any time after its correspondng interface has been compiled.

Unit A Unit B
export routine X (int, int); o

call X (...);
end A ce
end B

FIGURE 67.Sketch of a program composed of two units

Independent or separate compilation is a neaessity in the development of
large programs because it all ows different programmers to work concurrently
on dfferent parts of the program. It is aso impractical to recompil e thousands
of modues when orly afew modues have dhanged. Language concepts and
features are avail able to all ow implementations to determine the fewest num-
ber of units that must be recompiled. In general, programming languages
define:

« the unit of compil ation: what may be compiled independently?

* the order of compilation: are compilation units required to be compiled in any particular
order?

» amount of chedking between separately-compiled modules: are inter-unit interadions
chedked for validity?

The issue of separate compilation is at the border of the language definition
and its implementation. Clearly, if the language requires inter-unit checking
to be performed, this implies a programming environment that is able to
check module implementations against the interfaces of compilation urits
from which they import services, for example atype-checking linker. Inter-
face-checking d separately compiled modues is analogous to static type-
checking for programmingin the small: both are amed at the development of
safe and reliable programs.

5.2.4Libraries of modules

We have seen that C++ classand Ada's padkage make it possble to group
related entities into a single unit. But large programs consist of hundeds or
even thousands of such urits. To control the complexity of dealing with the
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large number of entities exported by all these units, it is essential to be aleto
organize these units into related groups. For example, it is difficult to ensure
that al the thousands of units have unique names! In general, we can always
find goupngs of unitsthat are related rather closely.

A common example of agroupng d related servicesis alibrary of modues
such asalibrary of matrix manipulationroutines. A library collects together a
number of related and commonly used services. Clients typicaly neel to
make use of different libraries in the same program and since libraries are
written by different people, the names in different libraries may conflict. For
example, alibrary for manipulating listsand alibrary for manipulating dctio-
naries may bath export procedures named insert. Mechanisms are needed for
clients to conveniently distinguish between such identicall y-named services.
We have seen that the dot notation helps with this problem at the modue
level. But consider trying to use two different releases of the same library at
the same time. How can you wse some of the entities from one release and
some from the other? Both C++ and Ada have recent additions to the lan-
guage to deal with theseisaues. We will describe these facilitieswhen we dis-
cuss pecific languages. namespaces of C++ on page 295 and child libraries
of Adaon page 302.

5.3 Languagefeaturesfor programmingin thelarge

We have so far discussed the concepts of programming in the large with iso-
lated examples from programming languages. In this section we look at some
interesting ways that existing programming languages suppat—or do nd
support—the programming in the large concepts. All programming languages
provide features for decomposing ograms into smaller and largely autono-
mous units. We refer to such unts as physical modues; we will use the term
logical modue to denote a modue identified at the design stage. A logical
modue represents an abstraction identified at the design stage by the
designer. A logicd modue may be implemented by one or more physical
modues. The doser the relationship between the physical modues and logi-
cd moduesis, the better the physical program organization reflects the logi-
cd design structure.

We will discussthe relevant aspects of each language based onthe foll owing
points:
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» Module encgpsulation: What is the unit of modularity and encapsulation supported by the
language, and how well doesit support different programming paradigms?

 Separation of interfacefrom implementation: What is the relationship among modules
that form a program? What entiti es may be exported and imported by a module?

 Program organization and module groupings: How independently can physicd modules
be implemented and compil ed? What are the visibility and access control mecanisms
supported by the language?
We will discussPascal, C, C++, Ada, and ML. Pascd and C are viewed here
as a representative of the class of traditional, minimalist, procedural lan-
guages. Our conclusions abou them hold, with minor changes, for other
members of the class sich as FORTRAN. C++ is a representative of class
based languages. Ada is a representative of module-based languages,
athoughthe 1995 \ersion d the language has enhanced its object-orientation
support. ML is reviewed as a representative of functional languages. A few
comments on other languages will be given in Section 5.3.6.

In general, our discussion hereis not abou programming paradigms. Object-
oriented and functional programming suppat will be covered in, respec-
tively, Chapters6 and 7.

5.3.1Pascal

In this section we provide an assessment of Pascd’s features for program-
mingin the large. Sincemany dialeds and extensions of Pascd exist, here we
consider the origina version d the language. Most of the inconveniences dis-
cussd here have been eliminated by the enhancements provided by modern
implementations.

The only features provided by Pascal for decompaosing a program into mod-
ules are procedures and functions, which can be used to implement proce-
dura abstractions. The language thus only suppats procedura programming.
Some later versions of the language have modified the origina version o
Pascd extensively by adding olject-oriented programming features.

A Pascd program has the foll owing structure.

program program_name (fil es);
dedarations of constants, types, variables, procedures and functions;
begin
statements (no dedarations)
end.
A program consists of declarations and operations. The operations are either
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the built-in ores provided by the language or those declared as functions and
procedures. A procedure or functionitself may contain the declaration o con
stants, types, variables, and aher procedures and functions. The organization
of a Pascal program is thus atree structure of modues (see static nesting tree
in Section 2.6.4 onpage 104). The tree structure represents the textual nesting
of lower-level modues. Nesting is used to control the scope of names
dedared within modues, according to the static binding rule presented in
Section 2.6.4.

To assessthe structure of Pascal programs, consider the following example.
Suppase that the top-down modular design d amodue A identifies two mod-
ules B and C providing subsidiary procedural abstractions. Similarly, modue
B invokes two private procedural abstractions provided by modues D and E.
Module C invokes a private procedural abstraction provided by F. Figure 68
shows a hesting structure for a program that satisfies the design constraints.

A basic problem with the solution d Figure 68 is that the structure does not
enforce the restrictions on procedure invocations found at the design stage.
Actualy, the structure dlows for the possibility of several other invocaions.
For example E can invoke D, B, and A; C caninvoke B and A, andso on.On
the other hand, the structure of Figure 68impases ome restrictions that might
bewmme undesirable. For example, if we discover that modue F needs the
procedural abstradion provided by modue E, the current structure is no
longer adequate. Figure 69 shows a rearrangement of the program structure
that is compatible with this new requirement. The problem with this new
organizationisthat the structure no longer displaysthe hierarchical decompo-
sition d abstractions. Modue E appears to be a subsidiary abstraction used
by A, athoughthe only reasonfor its placement at that level in the treeisthat
both modues B and F need to refer to it. Similar problems occur for vari-
ables, constants and types. The tree structure provides indiscriminate acess
to variables declared in enclosingmodues. In addition, if any two modues M
and N need to share avariable, this variable must be declared in amodule that
statically encloses both M and N and thus the variable becomes accessble to
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any ather modues enclosed by this enclosing modue.

A

E
D E

FIGURE 68.Static nesting treeof a hypotheticd Pascd program

Further problems are caused by the textual layout of Pascal programs. The
entire program is a single mondithic text. If the program is large, modue
boundries are not immediately visible, even if the programmer uses careful
conventions for indentation. A modue heading can appear well before its
body, lkecause of intervening inner modue declarations. Consequently, pro-
grams can be difficult to read and modify.

The problems with Pascd discussed in this section stem from block structure,
and therefore hald for other ALGOL -like languages. Block structure is ade-
A

D F

FIGURE 69.A rearrangement of the program structure of Figure 68.

quate for programming in the small because it suppats sepwise refinement
quite naturally. It is not so valuable for structuring large programs. The pro-
gram structure resulting from nesting may interfere with the logicd structure
found duing design. This can impair the writability, readability, and modifi-
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ability of programs.

Another important question to addressis how Pascd modues can be devel-
oped independently, and hav longlived and reusable they are. These goals
are ahieved by applying information hding at the design stage to oltain a
clean definition d modueinterfaces. In addition, it is desirable to suppat the
separate implementation o modules. It shoud be possbleto compile and cer-
tify modues sparately. Separately compiled and tested modules shoud be
kept in alibrary, ready for later reuse.

The original Pascal Report does not address these isaues, althoughmost Pas-
cd implementation provided their own solutions. Thus, a number of impor-
tant questions are left unanswered bythe original Report, such as

» What program entiti es can a separate compilation unit export?
» How isaunit interfacespedfied?
» What amount of type chedking aaoss unit interfaces is prescribed to occur?
Different implementations have indeed adopted dfferent solutions to these

points. As aresult, Pascal programs developed ondifferent platforms may be
incompatible. For example, some implementations allow outer-level proce-
dures and functions to be compiled independently. Independently compiled
unitsare assembled viaa standard li nker, which resolves the bindings between
the entities imported by each modue and the @rrespondng entities exported
by ather modues. No intermodue chedkes are performed, hovever, to verify
that, say, a call to an external procedure is inconsistent with the correspond
ing pocedure declaration. Errors of this kind might remain urncaught, urfor-
tunately. There ae modern implementations of Pascd, such as Turbo Pascal,
however, which provide safer separate-compilation facilities based on the
notion d amodule that encapsulates a set of constants, procedures and types.

5.3.2C

C provides functionsto decompase aprogram into procedural abstradions. In
addition, it relies on a minimum of language feaures and a number of con-
ventions to suppat programming in the large. These conventions are well
recognized by C programmers and are even reflected in tods that have been
developed to suppat the language. Indeed, a mgjor portion d the program-
mingin the large suppart is provided bythe file-inclusion commands of the C
preprocesr. Thus, even thoughthe compiler does not provide any explicit
support or checking for inter-modue interaction, the combination o conven-
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tions and the preprocessor has proven in practice to be an adequate and popu
lar way to suppat programmingin the large.

The C unit of physicd moduarity isafile. A logical modue isimplemented
in C by two physical modues (files) which we may rougHy call the module’'s
interface and its implementation. The interface cdled a “header” or an
“include” file, declaresal symbadls exported bythe modue andthus available
to the clients of the module. The header file contains the information reces-
sary to satisfy the type system when the dient modues are compiled. The
implementation fil e of the modue contains the private part of the modue and
implements the exported services. A client modue needing to use the func-
tionality of anather modue “includes’ the header fil e of the provider modue.
A header file may dedare mnstants, type definitions, variables, and func-
tions. Only the prototype of the function—its sgnature—is given by the dec-
laration; the function definition appears in the implementation file. Functions
may nat be nested. Any names defined in afile are known throughou that file
and may also be known outside of that file.

The header files are used to resolve inter-modue references at compile-time.
At link-time, al implementation files are searched to resolve inter-modue
(i.e. inter-file) references. The header file is usualy named with a .h exten-
sion and the implementation file is named with a.c extension. These conven-
tions have largely overcome the lack of any explicit suppat for program
organization.

Figure 70 shows the header and implementation files for a modue providing
a stack data structure. language provides no encapsulation facilities. For
example, the main program in Figure 70 has complete access to the internal
structure of the stacks s1 and s2. In fact, this property is used bythe main pro-
gram to initialize the stacks s1 and s2 to set their stack panters (top) to 0.
There are ways to implement this program to reducethisinterference between
client and server but al depend onthe care taken bythe programmer. Thereis
no control over what is exported: by default, all entitiesin afile ae exported.
Files may be compil ed separately and inter-file references are resolved at link
time with no type-checking. A file may be cmmpiled aslongas al thefiles it
includes are available.
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I* tile stadk.h */

[*dedarations exported to clients*/

typedef struct stadk {
int elments[100]; /* stadk of 100 ints*/
int top; /*number of elements*/

b

extern void push(stac, int);

extern int pop(stac);

/* end of file stadk.h */

[FrExx end of file ok k

[*file stack.c */

[*implementation d stack operations*/

#include'stadk.h"

void push(stack s, int i) {
s.elementg[s.topt++] =1i;

H

int pop (stadk s) {
return --s.top;

H

[Fxxxx end of file ok k

[*filemain.c */
[*A client of stad*/

#include "stadk.h"

void main(){
stadk sl, s2; /*dedare two stadks */
sl.top = 0; s2.top=0; /* initializethem */
inti;

push (s1, 5); /* push something onfirst stadk */
push (s2, 6); /* push something onseond stack*/

i = pop(sl); / pop first stadk */
}
FIGURE 70.Separate filesimplementing and usinga stack in C
The general structure of a C fileis shown in Figure 72. All fil es have similar
structure except that one of the files (only) must contain a function ramed

main, which is called to start the program. Because functions are not allowed
to be nested in C, the nesting problems of Pascal do nd occur.
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#include ...variousfiles...
global declarations
function definitions

void main (parameters)

{

...one main function needed
..inaprogram

}

FIGURE 72.Structure of aC module

Any names defined in the outer level of afile are implicitly known gobally.
These include the names of al the functions defined in the file and any ather
entities defined ouside of those functions. There are two waysto control such
indiscriminate dispersion of nhames.

» A module wanting to use an entity that is defined externally must declare such entities as
being externall y defined.

» A module wanting to limit the scope of one of its defined entitiesto belocd to itself only
may dedare such an entity to be static.
The following two lines import the integer variable maximum_length and hides

the integer variable loca_size from other modues.

extern int maximum_length;

static int locd_size
There are no explicit import/export faciliti es. All control over modue inde-
pendence relies on convention and implementer competence.

5.3.3C++

C++ isbased onC andit shares C’'sreliance on conventions and urit of phys-
ica moduarity as the file. As C, C++ provides functions as a decompasition
construct to implement abstract operations. Nevertheless, C++'s most impor-
tant enhancementsto C are in the aea of programmingin the large. In partic-
ular, the dass construct of C++ provides a unit of logicd moduarity that
supports the implementation d information hiding modues and abstract data
types. Combined with templates, classes may be used to implement generic
abstract data types. The dass provides encapsulation and control over inter-
faces. In this chapter, we review the use of clases as modues. We will exam-
ine the use of classesto support object-oriented programming in Chapter 6.
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5.3.3.1 Encapsulation in C++

The unit of logical moduarity in C++ isthe class A class serves svera pur-
poses including:

* A class defines a new (user-defined) datatype.
* A class defines an encapsul ated unit.
Entities defined by a dass are ather public—exported to clients—or pri-

vate—hidden from clients. There ae also protected variables which will be
discussed in the next chapter.

Since a class defines a user-defined type, to use the services offered by a
class the dient must create an instance of the dass called an object, and wse
that object. C++ suppats the style of programming in which programmers
write applications by extending the types of the language with user-defined
types. Class derivation is a mechanism that suppats the definition of new
types based onexisting types. We will examine thisin more detail i n the next
chapter.

Classes may be nested. But as we saw in the case of Pascal, nesting may be
used orly for programming in the small andis of limited utili ty for program-
mingin the large.

Both classes and functions may be generic, suppating a generic program-
ming style. We will discussgeneric unitsin Section 5.4.

5.3.3.2 Program organization

Classes define the dstractions from which the program is to be compaosed.
The main program or a dient creates instances of the dasses and calls on
them to perform the desired task. We saw the definition d a C++ template
modu e implementing a generic abstrad data type stack in Chapter 3. Figure
73 shows a dassimplementing a stack of integers®. The implementation sep-
arates the interface and the implementationin dfferent files.

1. The same problem can of course be solved by instantiating the generic dass
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[* file stadk.H */
/*dedarations exported to clients*/
class stack {
public:
stadk();
void push(int);
int push pop();
private:
int elments[100]; /* stadk represented as array */
int top =0; /*number of elements*/
1
/I the implementation foll ows and may bein a separate file
void stadk::push( int i) {
elementg[top++] =1i;
int stack::pop (int i) {
return elements[--top];
1
/*end of stack.H*/
[*main.c */
/*A client of stadc*/
#include “stadk.h”
main(){
stadk sl, 2; /*dedaretwo stacks*/
inti;
sl.push (5); /* push something on first stadk */
s2.push (6); /* push something on second stad<*/

i = sl.pop(); # pop first stack */
}

FIGURE 73.Stak classin C++

Some points to observe abou this program are:

In the main program, stacks are declared in the same way that variables of
language-defined types are declared. The operations exported by stack, push
and pop,are called in the main program by using the dot notation and access
ing the desired operation d the appropriate stack objects (s1 or s2). The defi-
nitions of the operations push and pop may appear in the classbody a outside
of it. Finaly, the compiler will try to expand the @de of the member func-
tionsin-line, if posgble, to avoid the overhead of a procedure call.
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C++ suppats the development of independent modues (but does not enforce
it):

1. A classsinterface ad implementation may be separated and even compil ed separately
from each ather. The implementation must include the interfacedefinition and therefore
must be compil ed after the interfacefile eists.

2. Client modules may be compil ed with access to only the interfacemodules of the service
providers and not their implementation modul es.

3. Any names defined in a dass arelocd to the dass unlessexplicitly dedared to be public.
Even s0, client modules must use the dass name to gain accessto the names internal to
the dass.

5.3.3.3 Grouping of units

C++ has sveral mechanisms for relating classes to each aher. First, classes
may be nested. As we have said before, this is a programming in the small
feature. Two ather mechanisms, “friend’ functions and remespaces, are dis-
cus=d next.

Friend functions. A class in C++ defines a user-defined type. As a result, the
operations it defines as pulic are operations on oljects of that type. Some
operations do nd naturally belongto ore object or ancther. For example, if
we define a classfor complex numbers, it may have adata part that stores the
real and imaginary parts of the number, along with exported operations that
let clients create and manipulate objects of type complex. But what abou an
addition operation that takes two complex oljects to add together? Which of
the two complex oljects is the operation a member of ? As ancther example,
consider defining afunctionthat multiplies avector with amatrix. Shoud this
function ke a member of the vector class or the matrix class? To be able to
implement such functions efficiently, they need to have accessto the private
parts of the objects they manipulate but they do nat really belongto a particu-
lar object. Modue-based languages such as Ada and Modua-2 allow these
related entities to be packaged together in asingle module. A classbased lan-
guage such as C++ must adopt a different solution. In C++, aclasscan grant
acacessto its private parts by declaring certain functions asits “friend’. Friend
functions have the same rights as member functions of the classbut are other-
wise normal global functions.

Figure 74 shows the definition d a complex number class The dassdefines
the type complex which is internally compaosed of two doubes, representing
the real and imaginary parts of a complex number. These ae hidden from cli-
ents. The dassexportsamethod d constructinga acmplex number out of two
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doules. Thus, the following declaration creates two complex numbers:

complex x(1.0, 2.0), y(2.5, 3.5);
The other declarations state that the operator functionsto be defined later (+, -
, *, and /) are friends of the class complex and thus may acessthe private
parts of the dass They are not member functions of the class and they are not
exported by the dass. They are simply given preferential treament by the
class Of course, friend functions, even though noexported, are visibleto cli-

class complex {
public:
complex(doubler, doublei ){re=r; im=i;}

friend complex operator+ (complex, complex);

friend complex operator- (complex, complex);

friend complex operator* (complex, complex);

friend complex operator/ (complex, complex);
private:

doublere, im;

1

FIGURE 74.lllustration o the use of friend dedarationsin C++
ents because they are global functions.

Defining these operators as friend functions al ows the clients to naturally use
these functions as binary operations such as:

complex c=x +vy;
If the operation + was made amember of the dass the notation for clients
would be quite avkward. For example, we might have had to write something
like:

c.add(x)
in order to add the complex x to complex c.

The requirement for friend functions is a direct consequence of C++'s use of
classes as user-defined types. In a language like Ada where the package is
used na to define types but to group related entities, we would naturaly
group together type definitions for complex and its related functions in the
same package. The functions automaticdly gain accessto the private parts of
the package because they are part of the package. In bah cases, any changes
to the representation o the data may require danges to the functions,
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whether they are part of a padage or they are friend functions.

Namespaces. In C and in C++, the unit of global namingis afile. Any names
defined at the outer level of afile ae known gobally by default. For example,
the names of al classes defined in a library are known to any client that
includes that file. What if two libraries provide two classes with the same
name? How can a dient use both of those classes? How can alibrary provider
add a new service to its library and be sure that the new name of the service
does not conflict with any existing wses of the clients? Since names are cre-
ated by independent people, a single global name space is a serious problem
in the development of large programs. The solution d C++ isto partition the
global name space into a smaller groups; each group is called a namespace.
The names defined in a namespace are independent from those in any ather
namespace and may be referenced by supdying the name of the namespace.
This mechanisms enables library providers to provide their libraries in their
own namespaces with a guaranteeof independence from other library provid-
ers. Of course, it is necessary for the names of the namespaces themselves to
be unique.

For example, consider the XY Z Corp. that provides a library of classes for
manipulating turbine engines. It might provide its library in a namespae
XY ZCorp:

namespace XY ZCorp {
typedef turbodiesd ...;
void start (turbodiesel);
/1...other definitions

}
A client wanting to use the turbodesel definition hes sveral options. Oneis
to drectly name the definition. The :: operator is used to qualify the
namespace in which to look for the desired oljed.

XY ZCorp::turbodiesd t;
Ancther option is to first create a synonym for the name so that the

namespace name does not neeal to be repeated:

using XY ZCorp::turbodiesel; //creaesa synonym turbodiesel
/...
turbodiesel t;
XY ZCorp::start (t);
Thefina optionisfor a dient that wants to import al the definitions from a
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namespace. The namespace may be opened byimporting it:

using remespaceXY ZCorp; //this “opens’ the namespace ompletely

turbodiesel t;

start (t);
The namespace mechanism isintended to help library providers become inde-
pendent of other library providers, enable them to updite their libraries with-
out danger of interfering with client code, and even provide new releases of
libraries that co-exist with dder releases (each release lives in a different
namespace).

The :: operator is used generally to deal with scope resolution. For example,
=x refers to x in the global environment. X::x refers to x in the scope X which
may be anamespace or a dasswhaose name, X, known in the aurrent referenc-
ing environment.

5.3.4Ada

Ada was designed spedfically to suppat programming in the large. It has
elaborate facilities for the support of modues, encapsulation, and interfaces.
Rather than relying onconvention as in C and C++, Ada makes an explicit
distinction ketween specification andimplementation d amodue. A file may
be compiled if the specifications of the modues it uses are available. Thus,
Ada naturally suppats a software development process in which modue
spedfications are developed first and implementation o those modues may
proceed independently. Ada also requires the existence of a compile-time
library in which module speafications are compiled. A modue may be com-
piled if all the modue specificdions it needs are dready in the library. This
library suppats the cdhedking d inter-modue references at compile time
(Sedion 3.4.3 on jpge 177).

5.3.4.1 Encapsulation in Ada

The package is Ada's unit of moduarity. An Ada modue encapsulates a
group d entities and thus suppats modue-based programming. We have
aready seen that the language's explicit distinction ketween modue specifi-
caion and modue body forces the programmer to separate what is expected
by the modue from what is hidden within the modue. Additionally, Ada sup-
ports concurrent modues or tasks.

In addition to the conceptual moduarity at the padage level, Ada suppats
the separate compilation o procedures and functions as well as padkages. We
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will see an example of thisin the next section.

All unitsin Adamay also be generic. We will discussgeneric unitsin Sedion

5.3.4.2 Program organization

An Ada program is a linear collection d modues that can be ather subpro-
grams or packages. These modues are alled urits. One particular unit that
implements a subprogram is the main program in the usua sense. Modue
dedarations may be nested. Consequently, a unit can be organized as a tree
structure of modues. Any abuse of nesting within a unit causes the same
problems discussed for Pascal. These problems can be miti gated by the use of
the subunt fadlity offered bythe language. Thisfacility permitsthe body d a
modue enbedded in the declarative part of a unit (or subunit) to be written
separately from the enclosing unt (or subunt). Instead of the entire modue,
only a stub need appear in the declarative part of the enclosing urit. The fol-
lowing example il lustrates the concept of the suburnit.

procedure X ( ...) is --unit spedfication
W: INTEGER;
padkageY is --inner unit spedficaion
A: INTEGER;
function B (C: INTEGER) return INTEGER;
endY;
padkage body Y is separate; --thisisastub
begin -- uses of padkageY and variable W
end X;
next file
separate (X)
padkage body Y is
procedure Z (...) is sparate; --thisisastub
function B (C: INTEGER) return INTEGER is
begin --use procedure Z
end B;
endY;
next file

separate (X.Y)
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procedure Z (...) is

begin

end Z;
The prefix separate (X) specifies package bodyy as a subunit of unit X. Simi-
larly, separate (X.Y) spedfies procedure Z as a subunt of package Y nested
within X. The suburit facility nat only can improve the readability of pro-
grams, bu supports a useful technique in top-down progranming. When
writing aprogram at a certain level of abstraction, we may want to leave some
detail sto be dedded at alower level. Suppase yourealize that a certain proce-
dureis required to accomplish a given task. Althoughcalls to that procedure
can be immediately useful when you want to test the execution flow, the body
of the procedure can be written at alater time. For now, all you reed isa stub.
The subunt fadlity, howvever, does not overcome all the problems caused by
the treenesting structure. The textually separate suburit bodyis gill consid-
ered to be logicdly locaed at the point at which the correspondng stub
appears in the enclosing (sub)unit. It is exadly this point that determines the
entities visible to the suburnt. In the example, bah suburts Y and Z can
aacessvariable Wdeclared in unit X.

The interface of an Ada unit consists of the with statement, which lists the
names of units from which entities are imported, and the unit specification
(enclosed within ais... end pair), which lists the entities exported by the unit.
Each logical modue discovered at the design stage can be implemented as a
unit. If the top-down design was done carefully, logicd modues soud be
relatively simple. Consequently, the nesting within unts shoud be shallow or
even norexistent. Ada does nat forbid an abuse of nesting within unts. Actu-
aly, the entire program could be designed as a single unit with a deeply
nested tree structure. It is up to the designer and programmer to adhieve a
more desirable program structure.

The last program structuring isaue is how the interfaces (i.e., import/export
relationships) among unts are spedfied in Ada. A unit exports all the entities
spedfied in its gedfication part. It can import entities from other unitsif and
only if the names of such urits are listed in a suitable statement (with state-
ment) that prefixes the unit. For example, the following unt lists unit X (a
subprogram) in its with statement. Consequently, it is lega to use X within
T’ sbody.
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with X;
packageT is
C: INTEGER,;
procedure D (...);
end T;
packagebody T is

end”'i';
Similarly, the following procedure U can legally cal procedure T.D and
aacessvariable T.C. On the other hand, unt X isnat visible by U.

with T;
procedure U (..) is

end U;
5.3.4.3 Interface and implementation

We have drealy seen in Sedion that Ada strictly separates the specificaion
and body @& apackage. In the previous sction, we have seen haw the use and
with clauses are used to import services from packages. These facilities are
used also to suppat separate compil ation. Recall that separate compil ation, as
oppased to independent compilation, daces a partial ordering oncompil ation
units.

The set of units and suburits comprising a program can be compiled in ore or
more separate compil ations. Each compilation trandates one or more units
and/or subunts. The order of compilation must satisfy the following con
straints.

* A unit can be ompiled only if al units mentioned in its with statement have been
compil ed previoudly.

* A subunit can be compiled only if the enclosing unit has been compiled previously.
In addition, unt spedfications can be mmpil ed separately from their bodes.
A unit body must be cmpiled after its gecification. The specification d a
unit U mentioned in the with statement of a unit W must be compiled before
W. On the other hand, U’s body may be compiled either before or after W.
These constraints ensurethat aunit is submitted for compil ation orly after the
compilation d unit specifications from which it can import entities. The com-
piler saves in a library file the descriptors of al entities exported by units.
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When a unit is submitted for compil ation, the compil er uses the library file to
perform the same amourt of type dhedking onthe unit whether the programis
compiled in parts or asawhadle.

Ada’'s choice of a package & an encgpsulation mechanism, together with its
reliance on separate compil ation, and the separation d specificationand body
creates an interesting issue when a package wants to export atype. Thisissue
leads to the private type feature of Ada.

Theprivatetype. In Figure 65, we dedared a dictionary modue that exports
procedures and functions only. When the client declares its intention to use
the dictionary package, the dictionary olject is allocated. The representation
of the objed is not known to the client. From the package body, we can see
that the entries in the dictionary are actually records that contain three differ-
ent fields. What if we want to export to the dient a type such as
dictionary_entry? This would enable the client to declare variables of type
dictionary_entry. We would like to export the type but not its representation.
From the language design pant of view thereis a conflict here. The Adalan-
guage specifies that a client may be compiled with the knowledge only of the
spedfication d the provider modue. But if the provider module is exporting
atype and nd its representation, the size of the type caana be determined
from the speafication. Thus, when the compiler is compiling the client, it
canna determine how much memory to all ocate for variables of the exported
type. Ada's solution to this problem is the private type. The specificaion
must contain the representation d the type but as a private type.

If a package unit exports an encapsulated private data type, the type's repre-
sentation is hidden to the programmer but known to the compiler, thanks to
the private clause gpearing in the package specification. Consequently, the
compiler can generate cde to alocae variables for such types declared in
other units submitted for compilation grior to the padage body (but after its
spedfication). When aunit is modified, it may be necessary to recompile sev-
eral units. The dhange may paentialy affect its siburnts as well as al the
unitsthat nameit in their with statements. In principle, al potentially affected
units must be recompiled.

The separate compilation facility of Ada supparts anincremental rather than a
paralel development of programs, because units must be developed accord-
ing to a partial ordering. This is not an arbitrary restriction, bu a cnscious
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design cecisionin suppat of methodca program development. A unit can be
submitted for compilation orly after the interfaces of al used urits are frozen.
Consequently, the programmer isforced to postpore the design d aunit body
until these interfaces have been designed. One of the goals of separate compi-
lationisto suppat production of reusable software. Certified modues can be
kept in a library and later combined to form different programs. The Ada
solution is deficient on this point for package units exporting encapsulated
(private) datatypes. The visible part (the spedfication) of such packages must
include the type’'s operations and a private clause that specifies the type's
internal representation. This representation is not usable outside the package
body; it is there only for suppating separate wmpilation. Logicaly, this
information kelongs in the package body, together with the procedure bodes
implementing the type' s operations. Besides being aesthetically ungdeasant,
this feature has sme unfortunate nsequences.

* It violatesthe principle of top-down design. The representation must be determined at the
sametime & the spedfication of the data type, and bdh appea in the same textual unit.

« It limitsthe power of the language to support libraries of reusable modules, unless spedal
cae is taken in the implementation. For example, a module using FIFO queues is
compiled and validated with resped to a FIFO queue package providing a spedfic
representation for FIFO queues (e.g., arrays). The module must be recompiled if one
wants to reuse it in a different program in which FIFO queues are implemented by a
diff erent data structure, even though the interfaces for manipulating FIFO queues are the
samein both cases.

5.3.4.4 Grouping of units

Adahas many feaures for suppating programming in the large. Two clauses,
use and with, are used to import services from other packages. Child library
units are used to group packages together in hierarchical organizations. These
facilities are defined to enable safe separate compilation.

Thewith and use dauses. The with clause is used by a client to import from a
provider modue. For example, if we want to write a modue to manipulate
telephore numbers and we want to use the dictionary modue speafied in
Figure 65, we prefix the telephore modue with awith clause:

with dictionary;
package phone_listis

--references to dictionary.insert(), etc.
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end phone _list;
Now, inside the phore_list padkage, we may refer to the exported entities of
the dictionary package. These references have to be prefixed by the name of
the package from which they areimported. For example, dictionary.insert(...).
To gain drect visibility, and avoid the need to use the dotted name, Ada pro-
vides the use clause:

with dictionary; use dictionary;
package phone listis

--references to insert(), etc.

end. .p.)hone_li ;

Child libraries. The Ada padkage groups together a set of related entities. Cli-
ents may import either selective services from a package or all the services
provided by the package by using the use clause. The padkage is inadequate
as a structural mechanism for grouping a @llection d library modues. Here
are some examples of problemsthat could occur:

» Suppose a tient usestwo different libraries, encapsulated in padkages A and B. Sincethe
client expedsto make extensive use of both libraries, it uses the use clause to import all
thelibrary services. But if libraries A and B export entities with the same name, the dient
would encounter name dashes at compil e time. Ada provides a renaming fadlity to get
around this problem.

* More seriousisthe case where there ae no name dashes. The dient compil es and works
properly. But suppose that a new version of library B is released with new functionality.
It happens that one of the new functions introduced in B has a name identicd to a name
provideby A. The next timethat the dient code is compil ed, compil ation errorswill show
up due to name dashes. These erors would be particularly confusing because the
previously working client code gopeas to na work even though it may na have been
changed.

* Inthe previous case, after the release of the new version of the library B, the dient code
has to be recompiled even though it does not make use of the new functionality of the
library B. The recompilation is necessary only to satisfy Ada's rules on the order of
compil ation.

Ada 95 hes addressed these problems by introducing the nation d child
libraries which all ow padagesto be hierarchically organized. The ideais that
if new functionality is added to an existing library package, the new function-
ality may itself be organized as new package that is a child o the original
library. The child package can be implemented using the facilities of the par-
ent package. But the clients of the origina library are not affeded by the

introduction d a child package. The diild package makes it possble to add
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functionality to a package withou disturbing the existing clients of the pack-
age.

In general, alibrary developer may provide a number of packages organized
as atree. Each padkage other than the root padkage has a parent package. An
existing library may be extended by adding a cild library unit to ore of its
existing noas. The parent library unit, nar any clients of the parent need to be
recompiled. For example, if the library Root exists, we may add Root.Child
withou disturbing Roat or clients of Roat. The Roat.Child may be compiled
separately. It has visibility to Root and to Root’ s siblings.

package Root is
--spedfication of Root library

end Root;

package Root.Child is
--spedfication of a cild library unit

end Root.Child:

package body Root.Child is
--implementation of Root.Child

end Root.Child;

Each of the above segments may be compiled separately. The clients of Root
need na be recompil ed if they do nd use Root.Child.

5.3.5ML

Modularity is not only the province of imperative languages. The nation d
modueisimportant in any language that isto be used for programmingin the
large. For example, ML isafunctional programming language with extensive
support for moduarity and abstraction. In Chapter 7, we will study the basics
of functional programming and ML. In Chapter 7, we will see ML’s suppat
for defining rew types and abstract data types, which also help in program-
minginthelarge. In this sctionwe give abrief overview of ML’ s suppat for
modues.

5.3.5.1 Encapsulation in ML

A modue is a separately compil able unit. A unit may contain structures, sig-
natures, and functors. Structures are the main bulding blocks; signatures are
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used to define interfaces for structures; functors are used to build a new struc-
ture out of an existing structure. We will discuss these more in Chapter 7.
Here, we only examine the structure construct as a padaging unt.

The ML structureis omewhat like the Ada package, used to grouptogether a
set of entities. For example, our dictionary example package of Figure 66
may be written in ML as given in Figure 75. Recall the syntax and case anal-

structure Dictionary =
struct
exception NotFound;

val roat = nil; (*creae an empty dictionary*)

(* insert (c, i, D) inserts pair <c,i> in dictionary D*)
fun insert (c:string, i:int, nil) = [(c,i)]
| insert(c,i, (ccii):ics) =
if c=ccthen (c,i)::cs
else (cc, ii)::insert(c,i,cs);

(* lookup (c, D) finds the value i such that pair <c,i> isin dictionary D *)
fun lookup(c:string, nil) = raise NotFound
| lookup (c, (ccii:int)::cs) =
if c=ccthenii
else lookup(c,cs);
end;

FIGURE 75. Dictionary module in ML (types string and int are nat necessary but used for

explanation here)
ysis gyle of programming from Chapter 5. We will describe the details of the
functionsin Chapter 7. Here, we ae only interested in what is exported bythe
structure, that is, modue.

Such a structure definition corresponds to the package body in that it gives
the implementation for the entities being defined. It also has the property that
al the entities are exported. This dructure exports an exception, NotFound, a
variable root, and two functions insert and lookup. TO use the structure, a dient
uses the dot notation:

val D = Dictionary.creae; (*creae an empty dictionary *)
val newD = Dictionary.insert (“Mehdi”, 46, D); (*insert apair*)

i:.)..l ookup(“Mehdi”, D); (* produces value 46*)
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5.3.5.2 Interface and implementation

The signature of a structure definition consists of the signatures and types of
al the entities defined in the structure. ML aso provides a wnstruct to define
a signature independently of any structure. A signature may be viewed as a
spedfication for a modue. For example, Figure 76 gves the signature of a
modue that exports an exception called NotFound and a function called
lookup.A signature may be used as a specification for a structure. For exam-
ple, we may use the signature of Figure 76 to restrict the exported entiti es of
the structure of Figure 75. The system will dotype checkingto ensure that the
structure provides at least what the signature requires.
signature DictLookupSig = sig
exception NotFound;

val lookup : string * (string * int) list -> int
end

FIGURE 76. A signature defintion for spedalized dctionary

We @n usethe structure and signature we have to creae anew moduewith a
restricted interface and use it accordingly:

structure LookupDict: DictLookupSig = Dictionary;

val L = LookupDict.crede; (* not al owed, must be done by someone dse using adifferent
interface*)

lookupDict.lookup(“Mehdi”, L);

lookupDict.insert(“ Carlo”, 50, L); --error, insert not available

We can see that the ability to define signatures means that we an provide dif-
ferent interfaces to the same implementation, something nd possble in Ada
or C++. We can aso provide different implementations to meet the same
interface

ML aso suppats the concept of generic modues or structures. The signature
facility may be combined with generic structures to instantiate a structure for
particular types. For example, the dictionaries that we have defined so far,
bath in Ada andin ML have been specific to <string, integer> pairs. In ML,
we can remove the occurrences of the terms string andint from Figure 75 and
have a generic dictionary. We will seethisin Sedion 5.4.3.
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5.3.6Abstract data types, classes, and modules

We have discussed an abstract data type & a program moduarization corn-
cept. Languages that provide a class construct, such as C++, suppat the
implementation d abstract data types diredly. For example, Figure 73 shows
a classthat implements an abstract data type stack and a dient that declares
instances of the stack and uses them. The name of the classis used as the type
name to instantiate the objects necessary. Operations are performed diredly
ontheinstantiated oljects, e.g. sl.push(...).

Module-based languages such as Ada or Modua-2, hovever, do nd suppat
objects directly and are operation-oriented. We use a modue to implements
an abstrad data type by packaging the type and its operations together. But
the client creaes instances of the astract datatype and passes them to opera-
tions as necessry, rather than calling the operations associated with the
object. That is, rather than calling si.push(...) the dient calls push(si, ...). In
object-based languages, the object is an implicit first parameter automaticdly
passd to the operation.

In amodue-based language, the need for a construct such as friend functions
does not appear: we simply put al the related functions and types in the same
modue andthey gain visibility to each ather. In an olject-based language, the
requirement to padkage asingle type and its operations together makes it dif-
ficult to deal with operations that do nd belongclearly to a single type. We
generaly have to make such operations global. Java resolves this dichotomy
by suppating bah modues and classes. Classes defined together in the same
modue have visibility to one ancther’ sinternal structure.

A final comparison d Ada and C++ styles concerns the export of types. In
bath languages, a client may instantiate a variable of a type defined by
another modue (or clasg. Given adedaration d the form s T in a dient, an
important question for the compiler is how much storage to allocate for the
instance of s. Even thoughlogicdly thisinformationis part of the implemen-
tation d the modue that implements the type, na part of its gedfication, the
compiler neals the information at the time it compiles the client. Thisis the
reason, as we have see, that Adarequires the private dause in the specifica-
tion part of a package. The information in the private part is there only for the
compiler. C++ also requires the same informationin the private part of a dass
definition.
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Requiring the data representation in the specification d a module means that
if the representation changes, the clients will have to be recompiled. Thisisa
serious cost in large system development. To addressthis problem, Modua-2
introduced the notion o opaque export which allows types to be exported
withou the detail s of their representation. Variables of such types are con
strained to be accessble via painters; therefore there is no reed to have the
equivaent of Ada's private dause in the interface. In fact, the amount of stor-
age to be al ocated in client modues for such data objedsis known to be the
size of a pointer. The restriction that abstrad data types be acessble via
pointers means that every access incurs the st of a pointer dereference but
ensures intermodue decouding. Changing the data structure for an abstract
data type does nat affect client modues either from a logical or from an
implementation viewpaint. The dient modues do nd need to be recompiled.
In CLU and Eiffel, all obeds are acessed through panters and therefore
thereis no reed to have the representation d atypein its specification.

5.4 Generic units

In this chapter, we have mnsidered the issue of moduarity as a suppat for
developing large programs. One important approach to developing large pro-
grams is to buld them from existing modues. Traditional software libraries
off er examples of how such existingmodues may be packaged and used. One
of the criteriafor evaluating the suitability of alanguage for programmingin
the large is whether it provides language medanisms that enable the n-
struction d independent components, the packaging together of related com-
porents, the use and combination d multiple libraries by clients, etc. We
have seen the namespaces of C++ and the libraries and child libraries of Ada
95 as language mechanisms explicitly developed for the suppat of such
padkaging of related and independent software comporents. In this sdion,
we concentrate on genericity as a mechanism for building individual modues
that are general and thus usable in many contexts by many clients.

5.4.1Generic data structures

Let usfirst consider the development of libraries of standard data structures,
for example, stacks and queues. What shoud be the types of elements stored
in these structures? Early typed languages such as Pascal and C require the
designer to define one structure for each datatype to be suppated. Thisisan
unsatisfadory solutionfor two reasons: one isthat the solution oy worksfor
only the types the library designer knows abou and nd for any types to be
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defined by the user of the library; the secondis that the solution forces the
library designer towards code dugicaion. C++ templates and Ada generics
allow us to avoid such code dugication and define atemplate data structure
that isindependent of the type of the dement to be stored in the structure. For
example, we can define ageneric pair data structure in C++:

template <class T1, class T2>
classpair {
public:
T1 first;
T2 second;
pair (T1 x, T2y) : first(x), second(y) { }

The'templ ate parameters T1 and T2 stand for any type. We may “instantiate”
aparticular pair by supgying concrete types for T1 and T2. For example, we
may create a pair of integers or astring, integer pair or a pair of employees:

pair<int, int> intint(2, 1456);

pair<string, int> stringint(“Mehdi”, 46);

pair<employee t, employee t> (jad, jill); /*pair of user-defined type employee t*/
We may refer to pair as a parameterized ar generic type. The template of C++
allows usto define such a parameterized type which may later be used to cre-
ate concrete types such as pair<int, int>. C++’s template facility is particularly
genera because it uses classes as parameters and classes represent types uni-
formly: we may instantiate atemplate with either user-defined or primitive
types. Eiffel suppats a smilar scheme for generic classes, with which, for
example, we can define aclassstadk [T] and then instantiate an intstack from
stad[integer]. In Chapter 3 we saw examples of generic stacks both in C++ and
Eiffel.

5.4.2Generic algorithms

Templates may also be used to define generic agorithms. For example, in
Chapter 2, we saw the following generic function swap which interchanges the
values of itstwo parameters:

template <class T>
void swap(T& a, T& b)

Ttemp=g

a=b;

b = temp;
}
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This function may be used for any two parameters of the same type that sup-
port the “=" operation. Therefore, we can use it to swap integers, reas, and
even user-defined types such as pairs. Thisis quite auseful fadlity because it
gives us the paossibility to write higher-level generic functions such as sort if
they only use generic functions. The ability to write such generic functionsis
helped in C++ by the fact that generic functions do not have to be instantiated
to be used.

To use atemplate data structure, C++ requires explicit instantiation d the
structure, as we saw, for example, in pair<int,int>. For functions, onthe other
hand, explicit instantiation is not necessry. The wmpiler will infer the
instance required and generate it automaticdly. For example, the foll owing
program fragment is valid:

inti,j;
char x, y;
pair<int,string> p1, p2;

.s.\}vao(i, i); Ilswap integers
swap(X, Y); //swap strings
swap(pl, p2); //swap pairs

the compiler will generate three diff erent swap functions, for integers, strings
and pairs of (int, string). To generate an appropriate function, the compiler
checks at generation time that the parameters meet the expected requirements.
Examination d the body d swap shows that the parameters passed must sup-
port assgnment, that is, to be ale to be passed and to be able to be assgned.
(Exercise 22 asks you to explain why pairs meet this requirement.)

Theimplicit parameter requirementsin C++ are made explicit in Ada generic
functions. The same swap functionis defined in Ada as:

generic

typeTisprivate;
procedure swap (x,y: T) is
begin

temp: T =x;

X=Y;

y = temp;
end swap;

The generic is explicitly stated to be based onatype T whichisprivate. The
private indication means that the type supports assgnment and equality. In
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generd, if other operations are required of the type, they have to be stated.
For example, a generic max function will require its operands to suppat an
order operations such as*“>":

generic
typeTisprivate;
with function “<" (x, y: T) return BOOLEAN is<>;
function max (x, y: T) return BOOLEAN is
begin
if x<y
then return x;
else returny;
end if;
end max;
To use the function, we have to first instantiate an instance of it:

function int_max isnew max (INTEGER);
The type parameters passed at instantiation time are checked to ensure that

they suppat the required operations. After instantiation, we have a new func-
tion that we may call:

m :=int_max (3, 6);

The Ada view is that different functions are generated and wsed while the
C++ view isthat thereisjust one function max which isgeneric. It isthe com-
piler's job to generate & many instances as it needs to satisfy al the calls to
the function. The C++ approach is more flexible and is more suppative of
generic programming kecause generic functions are nat treated any dffer-
ently from nongeneric functions. you smply call them. Ada treats generic
functions as a specia type of function that you must instantiate before you
can cal.

We will examine ML’ s generic functions (called pdymorphic) in Chapter 7.

In summary, generic routines allow us to parameterize dgorithms and
achieve ahigher level of generality by capturing an algorithm in atype-inde-
pendent way.

5.4.3Generic modules

Collections of data and algorithms may also be padkaged together and coll ec-
tively made to depend onsome generic type parameter. Both C++ dasses and
Ada packages may be defined as generic in the types they use. We saw a
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generic stadk classin Chapter 3.

The ML suppat for generic modues is particularly interesting because of the
separation of structures and signatures. Recall the ML dictionary modue in
Section 5.3.5.The signature definition d Figure 75 can be defined in a
generic way by nd making any mention d specific types such as int and
string. We have defined such a generic structure in Figure 77. The signature
of thismodue isindependent of specific types. Can we apply the signature of
Figure 76 to this dructure? That signature definition indeed matches this
structure because the structure is more general than the signature requires. By
applyingthe signature, we aerestricting the view of the structure. Applyinga
signature to a paymorphic structure is Smilar to package instantiation in
Ada

structure Dictionary =
struct
exception NotFound;

val roat = nil; (*creae an empty dictionary*)

(* insert (c, i, D) inserts pair <c,i> in dictionary D*)
funinsert (c, i, nil) = [(c,i)]
| insert(c,i, (ccii):ics) =
if c=ccthen (c,i)::cs
else (cc, ii)::insert(c,i,cs);

(* lookup (c, D) finds the value i such that pair <c,i> isin dictionary D *)
fun lookup(c, nil) = raise NotFound
|  lookup (c, (ccii:int)::cs) =
if c=ccthenii
else lookup(c,cs);
end

FIGURE 77. A polymorphic dictionary module in ML

5.4.4Higher levels of genericity

We have seen that we may define ageneric dgorithm that works on any type
of object passd to it. For example, the max algorithm may be applied to any
ordered type. Thisfacility allows usto write one dgorithm for n dfferent data
types rather than n dfferent algorithms. It leads to great savings for writers of
libraries. But consider a higher level of generality. Suppcse we want to write
an algorithm that works on dfferent types of data structures, na just different
data types. For example, we may want to write one dgorithm to doa linear
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seachinany “linea” datastructure. Of course, we have to capture the notion
of linearity somehow but intuitively, we want to be aleto find an element in
a ollectionregardiess of whether the wlledionisimplemented as an array, a
list. The goal of the generic programming paradigm is to develop exadly
these kinds of units. In Chapter 3, we saw one kind d iterator for stepping
througha mll ection. Here we wil| examine adifferent kind o iterator.

A highlevel of genericity is usualy associated with functional languages and
we will seeit in the context of ML in Chapter 7. There ae no particular lan-
guage facilities in Ada or C++ for this kind d programming. However, the
flexibility of C++ templates, combined with owerloading d operators sup-
ports a high degree of generic programming. For example, consider the fol-
lowing function find:

template<class Iter, class T>
Iter find (Iter f, Iter [, T x)

while (*f 1= last && *f 1= x)
++f;
return f;

Wé might think of this function as aacepting two panters into a sequence of
elements. It sequences through the elements by using the ++ on the first
pointer until either the value x is found o the sequence is exhausted. So, the
foll owing code fragment looks throughthe first half of an integer array:

int a/100];

int x;

int*r;

= find(x, &2[0], &a[50]):;

if (r==&4a[5])
// not found

Here, we have used an integer pointer as the template parameter. However,
the function is quite abstrad: nothingin its description constrains us to use it
with pdnters and arrays! It is based on an abstract object which we have
cdled Iter (for iterator). We @an think of an iterator as a generdization d a
C++ pointer. It must suppat the operations: *, to return a value, ++ to step to
the next position, == and != for comparison with ancther Iter. Certainly pant-
ers meet these requirements. But we might imagine writing a list object that
also provides an Iter type object which suppats ++, *, ==, and != operations



313 Structuring the program Chap.5

with the same semantics as thaose of paointers into arrays. More importantly,
any time alibrary writer provides anew linea structure, he an also provide it
with such iterators. In this way, any generic operations will be immediately
usable with the library’s new data structures. What we ae doing is to treat
operations such as !=, *, and ++ as generic operations and writing a higher
level operation find in terms of them. This gyle of generic programming is
possible in C++ and likely will be the way standard libraries are provided.
The alvantages of such an approach for programming in the large is the
reduction d the anourt of code that needs to be written because one generic
unit may be customized automatically depending onthe context of its use. It
isaform of moduarity in which we moduarize based oncommon properties
and spedfic properties. Object-oriented programming is ancther approach to
adhieving this same kind d moduarity. That will be the subjed of the next
chapter.

5.5 Summary

Appropriate abstractions and proper moduarization help us confront the
inherent complexities of large programs. Even with appropriate moduariza-
tion, havever, writing al the modues from scratch is a tedious and time-con-
suming task. Rather than inventing rew abstradions and implementing rew
modues for each new program, we @n improve software productivity by
using previously developed abstractions and modues. In this chapter, we
have studied lingustic mechanisms that help in the building & modues and
libraries of modues that may be used by others. But where do such useful
modu es come from and hav can we build them? Diff erent programming par-
adigms provide different answers to these questions. In the next chapter, we
seehow the object-oriented paradigm answers these questions.

5.6 Bibliographic notes

The problems of programming in the large and techniques for addressng
them are covered in software engineeaing textbooks sich as (Ghezzi 91). An
informal but insightful and entertaining account of problems arising in the
produwction d large software systems may be foundin (Brooks 1995. The
distinction ketween programming in the small and programming in the large
was pointed out in (DeRemer and Kron 1976. The methoddogy d stepwise
refinement is described in (Dijkstra1972. Information hiding was introduced
in (Parnas 19723), (Parnas 1972h). Lauer and Satterthwaite (1979 describe
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the Mesa system and, in particular, how it suppats the design d large sys-
tems. Separate compil ation faciliti es for Pascd are described in (Jensen and
Wirth 19795, (Kieburtz & al. 1979, (LeBlanc and Fisher 197), and (Celen-
tano et a. 1980; for SIMULA 67 in (Birtwistle et al. 1976 and (Schwartz
197&). (Jazayeri 95) discusses the construction of use of generic comporents
in C++. CLOS was onre of the first language implementations to combine
generic functions and olject-oriented programming. Barnes95 is an excell ent
referencefor Ada 95.

5.7 Exercises

1. Discussthe dfea of global variables on thewritability and readability of large programs.
2. Study and present the main feaures of FORTRAN'’s separate compilation.

3. Why isthe ALGOL -like program structure inadequate for programming in the large?
4, Complete the implementation of the padage body in Figure 66 on page 281.

5. Designthe interfaceof an Ada module that provides a symbal table for atranslator (e.g.,
an assembler), and show how a separately compiled procedure can access the symbol
table. The data structure representing the symbal table should be hidden from the
procedure, and all accesses to the symbol table should be routed through abstrad
operations provided by the symbal table module. Can you compil e the procedure before
implementing arepresentation for the symbal table?Why? What iswrongif you cannot?

6. Do the same & Exercise 4 but in C++. Do you runinto the same problems?

7. Suppose two Ada units U1 and U2 must use the same procedure P. Can P be embedded
in a single subunit? Can P be enbedded in a singe unit? In the latter case, what are the
congtraints on the order of compil ation?

8. Inthisexercise, we mmpare nested padkages and child libraries. In particular, answer the
following questions:

Can nested padkages be compil ed separately? Can child libraries be compil ed separately?
Can apadage have both a hild padkage and anested padkage with the same name?Why
not?

What can you conclude aout the utili ty of nested padkages?

9. Describe the todls that an ided program-development system should provide to support
independent development of modules, system structuring from independently developed
modules, and complete intermodul e type cheding.

10. Storage dasses of C: automatic, extern, static (??79

11. Achieving visibility in C units: If avariablesis dedared in a function, which units have
accessto it? If avariable is dedared outside of functions, which units have accesto it?
If avariable is dedared as extern, where is it defined? If a variable is defined as static,
which units have accesto it?

12. We have seen in Chapter 2 that the scope rules of the language provide for the control of
names and their visibility. Discuss the relationship between name scopes in block
structured languages and the dild libraries of Ada and the namespaces of C++.

13. Inthischapter, we have discussed the need for aunit to give accestoits private partsonly
to some units but not export it to al other units. Ada axd C++ have two different ways of
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14.

15.

16.

17.

18.

19.

20.

21.
22.
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satisfyingthisrequirement. What isthe solution provided by each language?Compare the
two fadlities.

(Perhapsfor ch 3) C++ has adefault assignment operation defined for classes. If the user
does not define the assignment operation for a new class, the language uses a member-
wise wpy by default. Is this a good dedsion? Is memberwise wpy desirable in most
situations (hint: consider a stack copy)?

Solve the problem of Figure 73 by instantiating the generic dass defined in Figure 34 on
page 155.

i) Write aC++ and an Eiffel program for a generic abstrad data type defining afirst-in
first-out queue which can contain an unbounded number of items. The operations pro-
vided by queues have the foll owing signatures:

enqueue: fifo (T) x T -> fifo (T) --adds an element to the queue
dequeue: fifo (T) -> fifo (T) x T --extrads an element from the queue
length: fifo (T) -> int --computes the length of the queue

ii) Show how instances can be aeaed.

iii) Next, provide fixed-length queues, such that an exception israised if onetriesto en-
gueue an element in afull queue.

iv) Show examples in which you generate instance objeds that are unbounded queues
and fixed-length queues, and ill ustrate the kinds of polymorphism that can arise with
these two types.

Besides providing the program which solves this problem, write dso a short description
of the rationale of your implementation.

Assumethat | buy a softwarelibrary from avendor. Thelibrary contains the spedficéion
of an abstrad objed stadk. | write aprogram in which | creae an instanceof type stack.
i) Assume the stack objed is written in Ada and the vendor deddes to change the im-
plementation of its push operation. Do | need to recompile my program? Asume the
vendor deddesto change the representation of the stack. Do | need to recompil e my pro-
gram? Explain your answers.
ii) Explain the same two problemsif the language used is C++.
iii) Explain the same two problemsif the language used is Eiffel.

Consider a generic function swap (X, y) which interchanges the values of its two
arguments. Write abubble sort in C++ that uses svap to interchange the dements. How
would your solution be different if you try the same gproach in Ada?

Without generics, if we have m datatypes, n algorithms, and pdatatypes, we need to write
on the order of m*n*p library components to support all possible dgorithms on all
possible data structures for al possible data types. Explain how the use of generics
reduces the number of library components that need to be written. Assuming that we
could write dl the components without generics, what other deficiency remains?

Ada defines two kinds of types: private type and limited private type. What is the
difference between these two? Is there asimilar concept in C++? If not, why not? Does
their absenceimply aladk of functionality in C++?

What is the difference between overloaded functions and generic functionsin C++?

We did not define an assgnment operator for the template type pair in Sedion 5.4.1. Yet,
in Sedion 5.4.2 we used swap with pairs. Swap requires the assignment operator for its
operands. Isthe assignment operator defined for pairs (Hint: ched the C++ rulefor class
definitions).
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23. Compare the implementation of Ada generics versus C++ templates. Does the source of
a C++ template function need to be avail able to be ale to compil ethe dient code?lsthis
necessary for an Ada generic function? If there ae two different cdlsto swap(x,y), will
a C++ compil er generate two instances of swap? What about Ada?

24. Suppose we want to write ageneric sort routine to sort elements of type T. We will want
to use our swap routine from sedion 5.4.2 on page 308. A fragment of the C++ might look
likethis:

template<class T>
sort (...)

-..Swap (X, y);
}
If we were to write sort in Ada, we would have to instantiate swap first. What type

should we use to instantiate swap? Explain the problem. Chedk the Ada definition to find
asolution to this problem.

25. Consider the following generic signature in ML:

signature DictLookupSig = sig
exception NotFound;

val lookup : “t* (“'t*’ “ t) list->int
end

Does the signature match the structure of Figure 75? Does it match the structure of Fig-
ure 767

26. In Sedion 5.4.4, we saw ageneric function cdled find. We said that this function may be
applied to alist data structureif the list provides an appropriate iterator. Write a ¢ass list
which provides such an iterator. That is, class list provides atype cdled iterator. (**give
more details**)
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Obj ect-oriented
languages

C HAPTER 6

In the last chapter, we discussed the problems of programming in the large
and the solutions offered by different programming languages. Moduarity
and abstraction are the two most important principles for building large pro-
grams. In the “pure” object-oriented style of programming, the unit of modu
larity is an abstract data type. We have seen that classes may be used to define
abstract data types. Another important principle of objed-oriented program-
ming is that you may define new classes of objects by extending a refining
existing classes.

Some programming languages have been designed expresdy to suppat this
style of programming. These languages, namely Smalltalk and Eiffel, are
cdled olject-oriented programming languages. Other languages, such as C++
and Ada 95, while not exclusively object-oriented, suppat the paradigm
throughfeaures that enable the programming d extensible astractions. All
object-oriented languages trace their roaots to the language Simula 67 which
introduced the cncept of classand subclassin 1967 .In this chapter we exam-
ine the essential programming language features for the suppat of objed-ori-
ented programming and look at some representative object-oriented
programming languages.

The starting padnt for object-oriented programming is abstrad data types
which we have dready examined in Chapters 3 and 5. We have seen, for
example, that the dass construct of C++ directly suppats the definition o

317
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abstract data types. We may design classes Chair and Table if our application
deds with such entities and then create as many instances of the specific
Chairs and Tables that we need. Next comes the notion d inheritance. For
example, rather than designing a classDiningTable and another classDesk, we
might first designa dassTable which captures the properties of different kinds
of tables and then “derive’ DiningTable and Desk as new classes that “inherit”
properties of Table and add their own urique dtributes. This is a lingustic
issue but also requires a suppating design style. For our example, instead of
considering the problem domain to consists of chairs and tables and desks, we
might decide that the problem domain deals with furniture; some particular
kinds of furniture are tables and chairs; particular kinds of tables are desks
and dningtables; particular kinds of chairs are lounge chairs and sofas. Some
concepts such as furniture ae astract and ony exist as descriptions. Any
particular piece of furniture is actually an instance of a more concrete dass
such asthe chair class By factoringthe common properties of individual con
crete objects at the astract level, we only need to describe them once rather
than many times. The individual kinds of objects sich as chairs only need to
be described by describing their spedfic features that make them unique as
pieces of furniture. We say that a chair inherits the properties of furniture and
may extend a modify these properties as necessary.

Objed-oriented programming is an attractive methoddogy kecause it prom-
ises the aility to package awhoe set of related concepts tied together
through their inheritance relationships. It aims to enable the production o
libraries of related components that are

* easy to understand by users becaise of the relationships among the cmponents
 easy to extend by the use of inheritance
Many languages have been or are being extended to suppat object-oriented

programming. The goal of this chapter is to examine the concepts underlying
object-oriented programming and the implementation d these @ncepts in
several programming languages. In Section 6.1,we introduce the basic con-
cepts of object-oriented programming. In Section 6.2we examine the rela
tionship between inheritance and the type system of the language. In Sedion
6.3 we review the support of object orientation in C++, Eiffel, and Ada 95,
and Smalltalk. Object-orientation has affeded not only the implementation
phase of the software processbut most other phases aswell. In Sedion 6.4we
briefly review thisimpact on design and analysis phases of the software pro-
Cess
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6.1 Concepts of objed-oriented programming

There ae several definitions of what object-oriented programming is. Many
people refer to an olject-oriented program as any program that deds with
entities that may be informally called “objeds.” In contrast to traditional pro-
cedura languages in which the programs consist of procedures and data
structures, oljects are entities that encapsulate data and related operations.
For example, given a stack data structure s, in a procedura language we
would cdl apush operationto add an element asin:

push (s, x);
Dealing with oljects, aswe have seen in C++, wetell the stack olyect to push
an e ement onto itself, asin:

s.push(x);
We F\a\/é )sem that in C++ and Eiffel we can use dasss to define and create
objects. We all a programming language that suppats the definition and wse
of objects object-based. Object-oriented programming languages suppat
additional features. In particular, object-oriented programming langueges are
charaderized bytheir suppat of four facili ties:

* abstrad data type definitions,
* inheritance,
* inclusion polymorphism, and
* dynamic binding of functioncdls.
We have dready discussed abstrad data types extensively. They are used in

object-oriented programming to define the properties of classes of objects.

Inheritanceis a mechanism that allows us to define one abstract data type by
deriving it from an existing abstract datatype. The newly defined type “inher-
its” the properties of the parent type. Inclusion pdymorphism allows a vari-
able to refer to an olject of a dassor an olject of any dof its derived classes.
Dynamic binding suppats the use of poymorphic functions; the identity of a
function applied to a polymorphic variable is resolved dyremically based on
the type of the object referred to by the variable.

The pure termindlogy d object-oriented languages refers to objects that are
instances of classes. An olject contains a number of instance variables and
supports a number of methods. A message is sent to an object to request the
invocation d one of its methods. For example, spush(5) isinterpreted as end-
ing the message push(5) to olject s. The message is arequest to sto invoke its
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method push with the parameter 5. The syntax of Smalltalk reflects this inter-
pretation drectly. In Smalltalk, the same statement would be written as: s push
5. In adynamicall y-typed language such as Smalltalk, the objed that receives
amessage first checks to see that it can perform the method requested. If nat,
it reports an error. Other languages, such as Eiffel and C++, allow poymor-
phism but restrict it to enable static type decking. Thus, such languages com-
bine paymorphism with strong typing.

Having previewed the mncepts of object-oriented programmingin general, in
Section 6.1.1through 6.1.4ve provide amore detail ed look at these aoncepts,
using C++ asthe example language. Following C++ termindogy, we wil | call
methods member functions and messages smply function calls. In Sedion
6.3,we will review more spedfic concepts of C++ aswell as other languages.

6.1.1Classes of objeds

The first requirement for object-oriented programmingisto be ale to define
abstract datatypes. We have dready seen that this can be dore using the class
construct. As an example, recdl the following definition d a stack classfrom
Section 53.3.2

class gadk{
public:
void push(int) { lementg[top++] =i;};
int pop() { return elements[--top];};
private:
int elements[100];
int top=0;

This classis a particular implementation d afixed-size stack abstradion. We
may use objects of this classin many dfferent applications. As observed in
Chapters 3 and 5,the dassconstruct enables us to encapsul ate the representa-
tion wsed for the data structure and export useful operationsto be used by cli-
ents.

A client may crede as many oljeds of the stack classas desired:

stadk si, s2;
sl.push(3);
sl.push(4);
s2.push(3);
it (sl.pop() == s2.pop) { ...} _ . .
Clients may create objects of this classjust as they may create variables of



321

language-defined types. In fact, classes are user-defined types. They share
most properties of language-defined types, including storage properties. For
example, the above fragment creates dacks s1 and s2 as automatic variables.
We may also create stadks in the free store:

stadk* sp = new stack;
To accessmember functions (e.g., pop) the following ndations denote equiva-
lent expressions:

(*sp)-pop();
and (more commonly used)

sp -> pop();
Whil e useful, the classfacility only addresses the question d how to encapsu-

late useful abstractions. What we have seen so far does not addressthe need
to create new abstradions based onexisting ores. Inheritance is the mecha-
nism used for this purpose.

6.1.2Inheritance

In the last section, we defined a stack class. Now suppcse that we are writing
an applicationin which we need a stack but we dso need to knov how many
elements have already been pushed onthe stadk. What shoud we do? Write a
new counting_stack class? Take the code of the &ove classand modify it? Use
the same stack and keep track of the number of push operations externally in
the dient? All of these solutions are deficient in a programming in the large
context. The first does not take advantage of work already dore. The second
creates two similar code modues that need to be maintained independently.
Therefore, if a defed is foundin the ade or an optimization to the wmde is
discovered, the changes must be gplied to bah copies of the code. The third
aternative improperly separates the concerns of the dient and the server and
complicates the dient code. The basic isale is that we dready have astack
abstraction and the new abstraction we want shoud be asimple extenson o
it.

Inheritanceisalingustic medchanism that allows usto dojust that by defining
anew classwhich “inherits’ the properties of a parent class We may then add
new properties to the dild classor redefine inherited properties. The termi-
nology in C++ isto derive a classfrom a base class In this case, we want to
derive a counting_stack from stack as shown below:
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class counting_stadk: public stad {
public:
int siz&(); //return number of elements on the stadk

This new class $mply inherits all the functions of the dass $ack®. All pubic
member functions of stad become puldic member functions of counting_stack
(that’ s what the public before stack specifies). We have a so specified that there
will be a new pulic function size() which is intended to return the number of
elements dored in the stack. The dass stack is cdl ed abase dassor the parent
class of counting_stack. The dass counting stack is said to be derived from its
base class. The terms subclass and superclass are also used to refer to derived
and bese classes respedively.

Even this smple example demonstrates that inheritanceis afundamental con-
cept for suppating programming in the large in that it enables us to develop
modues based on existing ores without any modifications to the existing
modues. This is the property that makes object-oriented programming an
attractive paradigm for software engineering.

6.1.3Polymor phism

The next fedure of object-oriented programming languages is the suppat of
polymorphism. All classes derived from the same base class may be viewed
informally as gecialized versions of that base class Object-oriented lan-
guages provide paymorphic variables that may refer to olgeds of different
classes. Object-oriented languages that adopt a strong type system limit the
polymorphism of such variables: usualy, a variable of classT is alowed to
refer to oljects of type T or any classes derived from T.

In the case of our example stack and counting_stac in the previous sction, this
means that a variable of type stadkk may also refer to an olged of type
counting_stack. In purely object-oriented languages such as Eiffel and Small-
talk, all ojeds are referred to through references and references may be
poymorphic. In C++, only panter, reference variables, and by reference
parameters may be poymorphic. That is, a stack painter may also pant to a
counting_stack object. Similarly, aformal by reference parameter expecting an
adua parameter of type stack can refer to an adual parameter of type
counting_stack. As an example, if we have two panter variables declared:

1. Actually, in C++ this cannot be done so simply. A way to implement Size () is to return the value of top,
but thisis hidden to the subclass Aswe will seein Section 6.3.1.4, this can be done, but classStadk needsto be
slightly changed. Other languages, like Eiffel, would require no change to be made in the parent class
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stadk* sp = new stack;
counting stadk* csp = new counting_stad;

sp = csp; /lokay

csp = gp; //staticdly not sure if okay--disall owed
The asggnment sp = csp; allows a pointer to a class to pant to an oljed of a

subclass That is, the type of the object that is currently panted at by sp can be
of any o its derived types such as counting_stack. The assignment csp = sp; isnot
allowed in C++ because C++ has a strong type system. If this assgnment
were dlowed, then alater call to csp->size) would be statically valid bu may
lead to aruntime error because the objed pointed at by sp may na suppat the
member functionsize). A language with aweak type system, such as Small -
talk, would alow such an assgnment and defer error chedking to runtime.
We will return to the typingissuesraised byinheritancein Sedion 6.2.

According to the ancepts developed in Chapter 3, a pointer to aclassstack is
a paymorphic variable which can also be adgned an olject of class
counting_stack. Assignments among oljects of such types may be thecked stat-
ically. The assgnment of a counting_stack object to a variable of type stack is
considered to be legal because acounting_stack olject fulfills all the require-
ments of a stack objed, whereas an assgnment in the other direction shoud
not be dlowed, because astack olject does nat have asize) comporent. In
C++, if we do nd use pointers, then the situationis different:

stack s,
counting_stad cs;

;= cs, //okay, objed is coerced to astadk (no more sizeoperation available)
cs=s, //not allowed because alater cs.sizg() would look syntadicaly okay but not work
at runtime

The assgnment s=cs; islegal andis an example of ad hac polymorphism. In
fact, what happensisthat the values dored in olject cs are copied into the cor-
respondng elements of s. Thiskind d coercion, d course, loses me of the
values dored in cs, just as coercion from float to int loses ome information.

6.1.4 Dynamic binding of callsto member functions

A derived classmay na only add to the functionality of its base dass it may
also add rew private data and redefine or override some of the operations
provided in the base class For example, in counting_stack we may decide to
provide anew implementation d the push function because we may want to
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keep track of the number of times push has been called. Now, if sp is arefer-
ence to a stack variable and csp is a reference to a counting_stadk variable, we
expect that csp->push() will call the push of a cournting_stack object but what
about sp->push()? Since sp is a polymorphic variable, it may be pointing at a
counting_stack olject or astack object. Thisraises anissue of proper binding of
operations. Consider the following example:

stadk* sp = new stack;
counting_stadk* csp = new counting_stac;

éb.push(); Il stadk::push
csp.push(); // counting_stadk::push

sp =csp; /lassignment is okay

sp.push(); /Awhich push?

Which is the push operation invoked in the last statement, stack:push or
courting_stack::push? Because the assgnment sp = csp is allowed, at run-time sp
may be pointingto astack olged or to acounting_stack object. Shoud the choice
of which routine to call be made statically, in which case stac::push() will be
cdled, a dynamically, in which case counting_stadk::push() will be clled. So-
cdled puely object-oriented languages, such as Smalltalk and Eiffel, bind the
choice dynamically based onthe type of the object. Infact, as sated, dyramic
binding (often called dynamic dispatching in oljed-oriented termindogy) is
one of the tenets for objed-oriented programming languages. C++, however,
not being a purely oljed-oriented language, provides features for both static
and dyramic binding. Section 6.3.1 pesents the C++-speafic features.

Dynamic binding combined with inheritance is a powerful nation. For exam-
ple, we may define a ¢ass polygon and cerive various gecialized versions of
polygons sIch as square and redangle. Suppase that polygon defines a function
perimeter t0 compute the perimeter of a general paygon. Some of the derived
classes may define their own specia perimeter functions because they are pre-
sumably more dficient. We may maintain alist of various types of palygons.
Every time we select an element p from the list, the use of dynamic binding
ensures that a @l p.perimeter for a variable p of type polygon will cdl the
“right” perimeter function based onthe type of the object currently assgned to
p. Clearly, dynamic binding is more flexible than static binding. In languages
that do nd suppat dynamic binding, we may have to use case statements (as
in Pascd) or use function panters (as in C) to achieve the same result but
with code that is more verbose and herder to maintain. For example, in Pascal
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we might implement polygon as a variant record and explicitly call the right
perimeter function besed onthe tag o the variant record. In C, each dbject
could contain a painter to its perimeter function and the cdl would have to be
made indirectly through this pointer. Both of these solutions are not only
more verbose but aso less ®aure and maintainable than the solution wsing
inheritance and dyramic binding.

Aswe have seen in Chapter 3, dyramic binding d the function call may cre-
ate posshilities of type violations. Indeed, in dyramically typed languages
such as Smalltalk, this type of error may easily occur. A call to member func-
tionf of an olject v may fail at runtime because the objed boundto v belongs
to a class that does nat provide function f, or if it does, because the types of
the actual parameters (or the result type) are incompatible with those of the
formal parameters. Several languages, such as Eiffel and C++, aswe shall see
later, combine polymorphism and dyramic binding with static type cheding.

6.2 Inheritance and the type system

In the previous dion, we have described the basic comporents of object-
oriented programming languages. The interaction ketween inheritance and
type mnsistency rules of the language raises anumber of interestingisaues. In
this sction, we consider some of these isues.

6.2.1Subclasses ver sus subtypes

In Chapter 3, we saw the concept of subtype with which we defined a new
type as a subrange of an existing type. For example, we defined wee_day as a
subrange of day. Subtyping introduces a relationship among oljeds of the
subtype and objeds of the the parent type such that objeds of a subtype may
also be viewed as objects of the parent type. For example, aweek_day isalso a
day. This relationship is referred to as the is-a relationship: week_day is-a day.
The subtype relationship is generalizable to user-defind types such as those
defined by classes. For example, a courting_stac is-a stack but not vice versa.

But nat all subclasses create subtypes. If a derived classonly adds member
variables and functions or redefines existing functions in a compatible way,
then the derived class defines a subtype. If it hides some of the parent’s mem-
ber variables and functions or modifies them in an incompatible way, then it
does nat creae a subtype. Therefore, whether a derived classdefines a sub-
type depends on the definition d the derived classand is nat guaranteed by



326 Objea-oriented languages Chap.6

the language.

What does it mean for afunction f in aderived classto override afunctionf in
a base classin a compatible way? Informally, it means that an occurrence of
base::f(x) may be replaced by derived::f(x) withou risking any type arors. For
example, if the signature of the function derived::f is identical to the signature
of base::f, notype erors will be introduced as aresult of the replacement. We
will examine thisissue more deeply in the next subsedion.

6.2.2Strong typing and polymor phism

In Chapter 2 we defined a strong type system as one which guarantees type
safety. Strong type systems have the advantage of enabling type errors to be
caught at compile-time. Statically typed languages provide astrongtype sys-
tem. In this sction we discuss how objed oriented languages can rely on
dynamic dispatch as a fundamental principle and yet adopt a strongtype sys-
tem.

Let us assime that we have abase dass base and a derived class derived and
two oljects derived from them:

classbase{..};
class derived: public base{..};

base* b;

derived* d;
We have seen that we may assignd to b but not b to d. The question is under
what circumstances can we guarantee that an assignment

b=d;

will nat lead to atype violation at runtime? We may ask this questionin terms
of substitutability: can an olject of type derived be substituted for an olject of
classbase in every context? Or in general, can an olject of a derived type be
substituted for an olject of its parent type in every context, andis such akind
of paymorphism compatible with strong typing? If substitutability is
ensured, the derived type can be viewed as a subtype of the parent type. To
answer this question we need to examine the contexts under which oljects are
used. By impasing some restrictions on the use of inheritance, the language
can ensure substitutabili ty. Below we examine severa sufficient (but not nec-
essrily necessary) restrictions.
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6.2.2.1 Type extension

If the derived classis only allowed to extend the type of the parent class then
substitutability is guaranteed. That is, if derived does nat modify any member
functions of base and daes nat hide any o them, then it is guaranteed that any
cdl b.f(...) will bevalid whether b is hading a base object or a derived doject.
The cmpiler may do type-checking d any uses of base variables solely
based onthe knowledge that they are of type base. Therefore static type dheck-
ing can guarantee the ladk of runtime violations. Type extensionis one of the
mechanisms adopted in Ada 95.

6.2.2.2 Overriding of member functions

Restricting derived classes to orly extend the parent type is a severe limita-
tion onan olject-oriented language. In fact, it rules out dynamic dispatch
completely. Many languages alow a derived classto redefine an inherited
member function. For example, asin ou previous example, we may derive a
square class from a poygon class The square class may redefine the generd
perimeter function from the base dassby a more dficient version d a perime-
ter function. In C++, the base class must spedfy the function perimeter as avir-
tual function, gving derived classes the oppatunity to owverride its definition.
That is,

class polygon {
public:
polygon (...)) {..} //constructor
virtual float perimeter () {...};

|3
class guare: public polygon {
public:

fibat perimeter() {...}; /foverridesthe definition d perimeter in polygon

Thze typing glestionis: under what condtions can we guarantee that a use of a
square olject may substitute the use of apoygon olgect in all contexts? That is,
under what conditions can we guaranteethat a cdl p->perimeter() will always
be valid whether *p is apaygon or asquare object? C++ requires that the signa-
ture of the overriding function must be exactly the same & the signature of
the overridden function. This rule ensures that the compiler can dothe type
checking based orly on the static type of p and the signature of the function
polygon::permiter. If at runtime p happens to hdd a square olgect or any ather
derived type object, a function aher than polygon::perimeter will be cdled bu
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that function will have exactly the same parameter requirements and norunt-
ime type violations will occur.

Can we relax the C++ requirement and still ensure type safety? Again, we can
analyze the semantic requirements of the relationship between an overridden
function and the function it overrides in terms of substitutability. In general,
we must be able to dothe type checking based onthe parent class knowing
that a derived member function may be substituted for the overridden func-
tion. Clearly, we must require exactly the same number of parameters in the
overriding function and the overridden function. The question is how shoud
the signatures of the two functions be related?

Consider thefoll owing program fragment (we will use the syntax of C++ but
we will take some liberty with its ssmantics):

/Inot C++
class base {
public:
void virtual fnc (s1) (...) //sl isthe type of formal parameter

class derived: public base {
public:

void fnc (s2) (...) //C++requiresthat sl isidenticd to s2
B

base* b;
derived* d;
slvl;
s2v2;

if (.)b=d:

b->fnc(v1); // okay if b is base but what if it is derived?

To ensure substitutability, the cdl b->fnc(vl) must work at runtime whether b
holds abase object or aderived olject. That is, the parameter vi must be accept-
able to bah base:fnc() and to derived::fnc(). This, in turn, means that derived::fnc()
must be able to aacept v, which is of type si. In ather words, type s1 must be
a derived type that can be substituted for type s2. That is, either classsl sm-
ply extends classs2 (Section 6.2.2.}, or classsi redefines member functions
of s2, but redefinitions satisfy the mnstraints we ae discussngin this edion.
Informally, this rule means that the overriding function must not impose aay
more requirements onthe inpu parameters than the overridden function daes.
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Now let us consider a member function with aresult parameter.

/Inot C++
class base {
public:
t1 virtual fnc (sl) (...); //slisthetype of formal paramter;
I t1 isthe type of result parameter

}
class derived: public base {
public:

t2 fnc (s2) (...); //C++ requiresthat sl isidenticd to s2 and t1 isidenticd to t2

1

base* b;
derived* d;
sl vl

2 V2,
t0 vO;

if (.)b=d:

v0 = b->fnc(v1); // okay if bisbase but what if it is derived?

Again, substitutabili ty meansthat if b holds a derived oljed, the cdl fnc() will
work at runtime and a proper result will be returned to be assgned to vo with-
out any type violations. That means that the result type of the overriding func-
tion (t2) must be substitutabl e to the result type of the overridden function (t1),
which must be substitutable to the type of vO, if the last assgnement of the
fragment is considered to be legal by the compiler. In ather words, t2 must be
a subtype of t1 which must be asubtype of t0. Combining the rules on input
parameters and result parameter together, we @an dtate intuitively that an
overriding function must be ale to accept the parameters of the overridden
function and return at least what the overridden function returns: it may
aacept lessbut it may return more.

Stated more precisely:

» Theinput parameters of the overriding function must be supertypes of the corresponding
parameters of the overridden function;

» The result parameters of the overriding function must be subtypes of, the result
parameters of the overridden function.

These two type checking rules are known respectively as the contravariance
rule on input parameters and the covariance rule on result parameters. We
have stated them here as g/ntactic rules that ensure type safety. However, the
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contravariance rule oninpu arguments seems rather courter-intuitive. It says
that even thoughwe may define amore specialized function in a derived
class the inpu parameters of the specialized function may nat impose any
more specific requirements.

Few programming languages enforce these rules completely. Emerald is one
language that does. C++, Java, Object Pascal, and Modua-3 follow neither:
they requires the exad identity of the two functions. Eiffel and Ada require
covariance of both result and input arguments. The assertions of Eiffel, as
seen in Chapter 3, may be used to check the wntravariance requirements at
runtime.

class point{
public:
x: float;
y: float;
bool equal (point p) //booal is defined as a boolean type
{return (x ==p.Xx && y ==p.y);}

class colorPoint: public point{
public:
color: float;
bool equal (colorPaint p) //bool is defined as a boolean type
{return (x ==p.Xx && y ==p.y && color == p.colorPoint);}
b

FIGURE 78.Classes point and colorPoint

The examplein Figure 78 shows the courterintuitive nature of the contravari-
ance requirement on inpu parameters and the basic difficulty of equating
subtyping as an abstract concept and inheritance as a language construct that
implements it. We have defined a dasspoint characterized by x andy coordi-
nates and a member function equal that can compare itself for equality with
another paint. We then derive acolorPoint which inherits x and y from class
point, adds anather instance variable color, and redefines the equal member
function. The member function must be redefined because the colorPoint
equality test must compare two colorPoints. For this reason, the inpu parame-
ter to colorPoint::equal must be of type colorPoint. But if we dlow such a redefi-
nition, colorPoint may nat be considered a subtype of paint. This redefinition,
although intuitively necessary, gaoes against our rule of contravariance of
inpu arguments which requires the parameter to colorPoint::equal() to be a
supertype of the input parameter of point::equal(). We @n see the problem by
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considering acal pl.equal(p2). This call worksif p1 and p2 are both points. But
the all will fail if we substitute a colorPoint for p1 because the eguality test will
attempt to accessthe norexistent color variable of p2.

In conclusion, if inheritance is constrained by requiring that either (a) the
derived class only provides extensions, or (b) redefinitions are also allowed,
but contravariance and covariance are required for inpu and ouput parame-
ters, respectively, then substitutability is ensured and derived classes can be
considered to define subtypes of their parent class The resulting type system
would be paymorphic (inclusion pdymorphism) and yet it would be strong.
The price to pay for this conceptual integrity of the language, however, isthat
the restrictions imposed oninheritance are severe, and even courterintuitive.

6.2.3Inheritance hierarchies

Hierarchical organization is an effective method d controlling complexity.
The inheritance relationship imposes a hierarchy and provides a mechanism
for the development of a hierarchically organized families of classes. In this
sedionwe discuss ®veral isalesraised byinheritance hierarchies.

6.2.3.1 Sngle and multiple inheritance

In Simula 67, Ada, and Smalltalk, a new class definition is restricted to have
only ore base dass. a dass has at most one parent class. These languages
have a single-inheritance model.

C++ and Eiffel have extended the nation d inheritance to alow achild to be
derived from more than ore base class This is called multiple inheritance.
For example, if we have a classdisplayable and a dasspolygon, we might inherit
from both to define a displayable redangle:

classredangle: public displayable, public polygon {

Thze introduction d multiple inheritance into alanguege raises sveral isaues.
For example, there may be name dashes between parents. For example, a dis-
playable class and a bank_acount class may bah provide a member function
draw() and inheriting from both to buld a displayable bank_acount may cause
problems. In this case, which draw() functionis exported by the derived class?
The derived class nealds a way to bah accessand to export the desired mem-
bers. Another isaue is what if several of the parents are themselves derived
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from the same base class The members of the parent will be repeated muilti-
ple times in the child class This may or may nat be desirable. Some lan-
guages provide features to resolve such name aniflicts. For example, Eiffel
has a mnstruct to undefine an inherited feature; it also has a mnstruct to
rename an inherited fedure.

The succesgul use of multiple inheritance requires not only well-designed
inheritance hierarchies but aso orthogorally designed classes that may be
combined withou clashing. In practice, the use of multiple inheritance
requires much care. Whether its benefits outweigh its complexity is an open
guestion. Java, which adopts many features of C++, uses only single inherit-
ance but introduce separate interfaces and suppats the idea of inheriting from
multi ple interfaces.

6.2.3.2 Implementation and interface inheritance

One of the promises of object-oriented programming is that new software
comporents may be constructed from existing software components. This
would be asignificant contribution to programming in the large isaues. To
what extent does inheritance suppat a methoddogy for such incremental
building d comporents?

In the last chapter, we discussed the importance of encapsulationin achieving
independent modues whose internals may be modified withou affeding
their interfaces and thus their clients, who use the resources specified in the
interface. Inheritance complicates the isue of encapsulation because the
derived classes of aclassare adifferent type of client for the class Onthe one
hand, they may want to extend the facilities of a parent class and may be &le
to doso solely by using the pulic interfaces of the parent class on the other
hand, the facilities they provide to their clients may often be implemented
more dficiently if they aacess the internal representations of their parent
classes. C++ introduces protected members (see Sedion 6.3.1.4 and friend
classes exadly for these special clients of a base class Eiffel, onthe other
hand, all ows derived classes to accessall features defined in the parent class

There is atrade-off. If the derived classuses the internal detail s of the parent
class—it inherits the implementation d the parent—it will be dfected any
time the implementation d the parent classis modified. This means that, at
the very least, it will haveto be recompiled bu most likely it will aso haveto
be modified, leading to familiar maintenance problems. This is not a major
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problem if the base dass and the derived class are part of the same package
produced and maintained by the same organization. It is a serious problem,
however, if the base classis supgied by alibrary and a diff erent organizaion
creates the derived class.

From a software engineaing view, interface inheritanceis the right method
ology bu to rely only oninterface inheritance requires both a well-designed
base classand efficient language implementations. A well-designed inherit-
ance hierarchy is arequirement for the successul use of object-oriented pro-
grammingin any case. Any hierarchy implies that the nodes closer to the root
of the hierarchy aff ect alarger number of the leaf nodes of the hierarchy. If a
node doseto the roat needsto be modified, al of its children are dfected. As
a result, even thoughinheritance suppats the incremental creaion o soft-
ware comporents, it also creates atightly-dependent set of comporents. Mod-
ifications of base classes may have far reachingimpact.

6.3 Objed-oriented programming support in programming
languages

The way different languages suppat object-oriented programming is related
to the philosophy d the language and more specifically to the language’s
object and encapsulation models. In C++, the class construct defines a user-
defined type. Object-oriented feaures have been added to the language to
allow programmers who want to use object-oriented programming to do so.
In Eiffel, the classconstruct defines an abstract data type. The language has
been designed to suppat the object-oriented programming style exclusively.
In Ada 95, the package is smply an encapsulation medchanism for packaging
a set of related entities. It is neither neaessarily a type, nar an abstract data
type. It may be used to suppat those nations, howvever. Ada 95 has me
object-orientation features but the language remains a modue-oriented lan-
guage. In this sction, we examine these languages a little more dosely from
an olject-oriented view.

6.3.1C++

C++ suppats object-oriented programming by providing classes for abstract
data types, derived classes for inheritance, and virtual functions for dynamic
binding. This suppat is provided with static type cheding.

As we have seen, a C++ dassdefines a user-defined type. Indeed the pro-
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grammer can crede first-class types because the language dlows the defini-
tion d initialization, assgnment, and equality test for the type being defined.
Asaresult, ojeds of user-defined types may behave quite like objeds of lan-
guage-defined types: they may be aeated onthe stack or in free store, passed
as parameters, and returned by functions as results.

The language suppats both inheritance and multiple inheritance for defining
new classes.

6.3.1.1 Classes

We have already seen the use of C++ classs as a definition mechanism for
abstract data types. C++ provides the programmer with control over the ae-
ation, initialization, and cleanup d objects of such abstract data types. In par-
ticular, ore or more constructors may be defined for a class Such
constructors are invoked automatically to initiali ze objects of the class at cre-
ationtime. A constructor has the same name asthe dass. By analogyto acon
structor, adestructor isinvoked automaticdly when the object is destroyed—
either explicily througha cdl to delete or implicitly when the object goes out
of scope. The ability to control what happens when an oljed is destroyed is
criticd for complex data types that may have allocated substructures in the
hegp. For example, simply deleting a pointer to the head of alist may leave
the aentire list inaacessble in the freestore. A destructor gives the progammer
the possbility to clean upafter the objed properly based onthe requirements
of the object. The name of a destructor isthe same athe dass name preceded
by ~ (i.e. the complement of the constructor).

We have seen in Chapter 3 that garbage ollection is an important issue in
programming languages that suppat dynamic objed all ocation. Constructors
and destructors may be used by the programmer to design ohect-specific
storage alocation and garbage colledion pdicies. For example, the destruc-
tor included in a dassmight link the released olject in afreelist. The wn
structor included in the same dass would first try to extract an oljed from
the free list and, if the free list is empty, would alocate anew object from
scratch. This palicy would be smilar to a garbage ll ection service that col-
lects and recycles different kinds of garbage (paper, plastic, etc.) separately.

For aderived class, its constructor isinvoked after that of its base class This
order guarantees that the derived classconstructor may rely on the avail abil -
ity of itsinherited variables. The destruction d a derived classproceedsin the
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oppdaste direction: first the nstructor of the derived classis invoked fol-
lowed bythat of its parent.

Besides construction and destruction, grogrammer control is important over
two ather operations for user-defined types. assgnment and equality compar-
ison. These two operations are related semantically. In general, we exped that
after asggning an olject a to dbject b, the two oljects are equal. C++ by
default uses member-wise @py and member-wise comparison for assgnment
and comparison d classobjeds. This is often inadequate if the structure of
the object invalves heap-all ocated comporents. In these cases, the program-
mer may define dassspecific assignment and equality operations. There are
no special C++ features for this: as any ather operators, the programmer may
overload = and ==.

Most languages trea these operations in a special way. For examle, we have
seen that Ada lets the programmer designate a type as private to indicat that
the language-defined assignement and equality apply to the type; limited pri-
vate means that they do na.

6.3.1.2 Virtual functions and dynamic binding

By default, a function call is boundto a function definition staticdly. If the
programmer wants a function to be selected dyramically, the function must
be declared as virtual in the base dass and then redefined in any derived
classes. For example, suppce we define a class student that suppats osme
operations including a print() operation. We exped to derive different types of
students from this class, such as college student and graduate student. First we
define the student class and define a default print() function:

class gudent{
public:

virtual void print({..};
};

The virtual qualifier on print() says that classes derived from student may rede-
fine the function print(). If they do, then the appropriate print() function will be
seleded dyramically. For example:

class college_student: public student{
void print() {
... Il spedfic print for college_student
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}
|3
defines a derived class that inherits all it s operations from student but supgies
a new definition for print(). Now, the following code sequence shows the
effeda of dynamic binding:

student* s;
college_student* cs;

s->print(); //cdls gudent::print()
s=cs, // okay
s->print(); //cdls college_student::print()
Remember that in C++, the binding is normally static. The virtual function

and panters are used to effect dynamic binding.

To ensure the type safety of virtual functions, first the virtual function must
be defined the first time it is dedared, that is, in the base dass This means
that the function will be available in any derived classes even if the derived
classdoes nat define it. Second,any redefinition d avirtual function may nat
change the signature of the function. That means that no matter which func-
tion is invoked, it is guaranteed to have the same signature. We have dis-
cussd this secondrulein Section 6.2.2.2.

6.3.1.3 Use of virtual functions for specification

Virtua functions may be used to define abstract classes. For example, we
may specify that a shape must have three functions named draw, move, and
hide, without providing an implementation for these functions. A virtual func-
tionthat does not have an implementationis called apure virtual function. To
write apure virtual function, its bodyis written as = 0;. If one of the functions
of a dassare pure virtual, the dassis caled abstract. We may nat create
objects of an abstract class. In the example, oljects of type shape canna be
created because such a classdoes nat have an implementation. The pure vir-
tual designation for a function says that a derived classbased onshape must
define such functions concretely. Figure 79 shows the outline of the dass
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shape and a dassredangle derived fromit.

class ape{
public:
void draw() = 0; // this and the others are pure virtual function
void move() = 0;
void hide() = 0;
point center;

1

classredangle: public shape{
float length, width; //specific datafor redangle
public:
void draw() {...}; //implementation for the derived pure virtual function
void move() {...};
void hide() {...};

FIGURE 79.A C++ abstrad class using pure virtua functions

We may view abstract classes as a specification for a set of derived classes.
The astract class pecifies the interface and the derived classes must provide
the implementation.

6.3.1.4 Protected members

Let us go back to the example of cournting_stack in Section 6.1.2.We want
courting stack to provide an additional function called size(). How are we
going to implement size()? The simplest way to doit isto return the value of
top. That is, define size() as.

counting_stadk::size(){ return top;}; //not quite right!
But there is a problem here. The variable top was declared to be private in
sack. This means that it is only known within stak, and nd even within
classes derived from stack. We do nd want to make top puldic because that
would make it available to al clients aso. For this reason, C++ has a third
classof vishility for classentities: protected entities are visible within the
classand any derived subclasses. So, if we declare top to be a protected vari-
able of stac, rather than a private variable, then the above implementation o
size() will work properly. We show in Figure 80 the mde for both stadk and
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courting_stack.

class dadk{
public:
stadk(); {top=0;} //constructor
void push(int) { gtop++] =i;};
int pop() {return g--top];};
proteaed:
int §100];
int top;
b

class counting_stadk : public stadk {
public:
int size){returntop;}; //return number of elements on the stack

1

FIGURE 80.Example of classinheritance (derivation) in C++

Thusthe general form of a C++ classis shown here:

classC{
private:

Il accessible to members and friends only
proteded:

/I accessible to members and friends and

// to members and friends of derived classes only
public:

Il accessible to the general public
b

In summary, then, the C++ language provides three levels of protection. Enti-
tiesdefined in a class may be private (default case), in which case they are only
aacessble inside the class itself; they may be defined as proteded, in which
case they are accessble inside the classand inside any classes derived from
it; or they may be defined as public, in which case they are acessble gener-
aly. The pubic entities define the services provided by the classand consti-
tute its interface. The private entities deal with the internal detail s of the dass
such as the representation d data structures. The protected entities are not of
interest to users of the classbut they are of interest to any classes that are
derived from this class and reed to provide services based on the services
already provided bythis class

Using the terminodlogy d Section 6.23.2, we @n say that protected members
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support the use of implementation inheritance whereas puldic members sup-
port the use of interface inheritance.

6.3.1.5 Overloading, polymorphism, and genericity

In Chapter 3 we discussed several kinds of palymorphism. Now we have seen
that al theformsexist in C++. First, we have seen the use of ad-hoc polymor-
phism in the suppat of overloading of operators and functions, in which case
the binding d the operator or functionis dore at compil e-time based onthe
types of the arguments. If a derived classredefines a virtual function f of a
base dassb, the base dassdefines a paymorphic type and the function call
b.f() isa cdl to a paymorphic function resolved dyramicdly on the basis of
the type of the objed referred to by b. Since the object must belongto a sub-
classof the dassto which b is declared to pant, this is a case of inclusion
polymorphism. If the function is not declared to be virtual in the base dass
then the two functions in the base and derived classes are treaed as smply
overloading the same function name: the proper functionto call is ®lected at
compile-time. Finally, we have seen that C++ also suppats generic functions.
If afunctionf(ab) is generic, the types of aand b are used at compil e time to
instantiate a function that matches the types of the parameters a and b. There
isno dyramic dispatch in this case.

6.3.2Ada 95

The origina version d the Adalanguage, introduced in 1983, was an olject-
based language. The package construct may be used to create objeds that
encapsulate both data, passbly private, and related operations. This enabled
object-based programming. Sincethe introduction o Ada, however, the con
cepts of object-oriented programming have become better understood. As a
result, a number of fedures were alded to Ada 95 to suppat object-oriented
programming techniques. In particular, tagged types suppat derivation d a
new type from an existing type, and a technique cdled “classvide program-
ming” combined with tagged types suppats dynamic dispatch. Ancther fea-
ture of Ada 95isthe ability to define abstract types which in turn enable the
asociation d multi ple implementations with the same interface. Such flexi-
bility is usualy associated with olject-oriented programming. We discuss
these features below.

6.3.2.1 Tagged types
In Chapter 3, we have seen how new types may be derived based onexisting
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types. We have aso seen how subtypes of discrete types may be defined that
inherit the operations of the parent type but restrict the range of values of the
type. In Chapter 5, we have seen that we @an use apadkage to grouptogether
atype and its asociated operations, thus creaing a user-defined type. With
Ada 95, a type declaration may be designated as tagged, in which case it is
passible to derive new types from it by extending it. Thisfacility all ows usto
define ahierarchy of related types. For example, Figure 81 defines a tagged
type named Planar_Objed as having certain set of basic properties such as x
and Y coordinates of its center and three functions. one to compute its Distance
from the origin, another to Move it to a new position, and ancther to Draw it as
a predefined icon onthe screen. We might then derive other objeds sich as
points and circles which each extend the basic object in their own ways.
package Planar_Objedsis
type Planar_Objed istagged
record
X: Float :=0.0; --default initial value of the center’s x coordinate
Y: Float :=0.0; --default initial value of the center’sy coordinate

end record;

function Distance (O: Planar_Objea) return Float;

procedure Move (O: inout Planar_Objed; X1, X2: Float);

procedure Draw (O: Planar_Objeq);
end Planar_Objeds;

FIGURE 81.An Ada 95 package that defines a tagged type Planar_Objed

We will assume that the body (implementation) of the package Planar_Objeds
is given elsewhere. With this definition we may declare objects of type
Planar_Objea and apply Distance, Move and Draw operations to them. Next we
can define new types Point, Rectangle, and Circle that inherit the properties of
the type Planar_Objed. For a Point, the X and Yy coordinates are enough,thus the
datarepresentation d Planar_Objea does nat need to be extended. But for a Cir-
cle, we will add a Radius field and for a Redangle, we will add the sizes of the
two edges. Finadly, it is necessary to redefine praw for al of them. These
shapes are defined in the package in Figure 82.
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with Planar_Objeds; use Planar_Objeds;
package Spedal_Planar_Shapesis
type Point is new Planar_Objed with null record; --indicaes no additions
procedure Draw (P: Point);
type Circleisnew Planar_Objed with
record
Radius: float;
end record,;
procedure Draw (C: Circle);
type Redangle is new Planar_Object with
record
A, B: Float;
end record;
procedure Draw (T: Redangle);
end Spedal_Planar_Shapes;

FIGURE 82.Extending tagged typesin Ada 95

First, nate that we may only extend atype, na remove any properties. There-
fore, the new types are guaranteed to have all the fields of the parent type. As
aresult, the derived types can easily be coerced to the parent type by simply
ignaring the additional fields. Thus, the following statements are valid:

OLl: Planar_Objed; -- basic objed at origin
O2: Planar_Objed (1.0, 1.0); -- on the diagonal
C: Circle:=(3.0,4.5,6.7);

Ol := Planar_Objed(C); -- coercion by ignoring the third field of C
What if we want to dothe assignment in the oppasite diredion? As oppased
to C++, this can be dore but since the objed on the right hand side does not
have dl the necessary fields, they must be provided by the programmer
explicitly. For example:

C:=(02with 4.7);
In ou example, the three newly defined types inherit the operations Distance
and Move from Planar_Objects. When they need to redefine (that is, override) an
operation such as Draw, the rule onredefinitionis smilar to Eiffel, that is, the
parameters of the overriding operations must be subtypes of (more specific
than) the parameters of the overridden operations.

Thus, the tagged types of Ada 95 suppat the development of atree of types
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throughthe use of inheritance, overriding, and extension. Type coercion is
supported from a derived to any ancestor type. One of the mgjor goals of Ada
in adopting the type extension model of inheritance has been to ensure that
extension d atype does not force the recompilation d either the type being
extended, a the clients of that type.

6.3.2.2 Dynamic dispatch through classwide programming

The tagged types of Ada 95 are dso used to suppat dynamic binding d func-
tion cals. The tag is an implicit field of an oljed andis used at runtime to
identify the object’s type. For example, suppcse that we want to write a pro-
cedure Process Shapes that will process a collection d objects that may be
Points, Rectangles, Or Circles. We need to dedare this procedure as accepting a
polymorphic type that includes all these types. The 'Class attribute of Ada 95
constructs exadly such a dass That is, the expresson T'Class applied to a
tagged type T isthe union d the type T and al the types derived from T. It is
cdled aclass-wide type. In ou example, we can write our procedure as.

procedure Process_Shapes (O: Planar_Object'Class) is
Bégin

Draw (O) ...; --dispatch to appropriate Areaprocedure
end. .I.Droc ess_Shapes,

Since it is often useful to aacessobjects through minters, it isalso pcassbleto
dedare paymorphic pointers such as:

type Planar_Objed_Ptr isaccessall Planar_Objed'Class;

6.3.2.3 Abstract types and routines

As in C++ and Eiffel, Ada 95 suppats the nation o top-down design by
allowing tagged types and routines (called subprograms in Ada) to be
dedared abstradly as a specificaionto be implemented by cerived types. For
example, we might have declared our Planar_Objed type before @ an abstract
type asin Figure 83.
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package Planar_Objedsis
type Planar_Objed is abstract tagged null record;
function Distance (O: Planar_Objed'Class) return Float is abstract;
procedure Move (O: inout Planar_Objed'Class X, Y: Float) isabstract;
procedure Draw (O: Planar_Objed'Class) is abstract;

end Objeds;

FIGURE 83.An abstract type definition in Ada 95

This package will nat have abody.It isonly aspedfication. By applying der-
ivation to the type Planar_Objed, we @n buld more @ncrete types. As before,
we may derive atree of related types. Onceconcrete antiti es (records and sub-
programs) have been defined for al the dstract entities, we have defined
objects that may be instantiated.

6.3.3Eiffel

Eiffel was designed as a strondgy-typed olject-oriented programming lan-
guage. It provides classs for defining abstrad data types, inheritance and
dynamic binding. Classes may be generic based onatype parameter.

6.3.3.1 Classes and object creation

An Eiffel classis an abstract data type. As we have seen in Chapter 3, it pro-
vides a set of features. As oppacsed to C++, al Eiffel objects are accessed
throughareference They may na be dlocated onthe stack. Again in contrast
to C++, olject creationis an explicit, separate step from object dedaration. In
one statement, areferenceis declared and in afollowing statement, the object
iscreated. Asin:

b: BOOK; --dedaration of areferenceto BOOK objeds

Ilb; --alocaingandinitializingan objed that b pantsto
The language provides a predefined way of creding and initializing ohects,
based ontheir internally defined data structure. It is also pcssble to provide
user-defined “creator” routines for a dasswhich correspondto constructors
of C++.

6.3.3.2 Inheritance and redefinition

A new class may be defined by inheriting from ancther class. An inheriting
classmay redefine one or more inherited feaures. We saw that C++ requires
the redefined function to have exadly the same signature as the functionit is
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redefining. Eiffel has a different rule: the signature of the redefining feaure
must conform to the signature of the redefined feature. This means that for
redefined routines, the parameters of the redefining routine must be assgn-
ment compatible with the parameters of the redefined routine.

Consider the following Eiffel code sequence:

classA

feature
fnc (t1: T1): TOis
do

éﬁd --fnc
end --class A

classB
inherit
A redefinefnc
end
feature
fnc (sl: S1): Ois
do

éﬁd -- fnc
end --class B

;A;
b: B;

;:= b;

..afnc(x)...

The signeitare of fnc in B must conform to the signature of fnc of A. This
means that so and S1 must be assignment compatible with To and T1 respec-
tively. Referring to the discusson d Section 6.2.2.2the Eiffel rule follows
the covariance rule on bdh inpu and ouput arguments. The Eiffel require
and ensure clauses which are used to spedfy pre- and past-condtions for
routines and classes may be used as a design tod to impaose astronger disci-
pline on redefinitions. In particular, restating the rules of Sedion 6.2.2.2the
fnc of B must require no more than the fnc of A and must ensure at least as
much as the fnc of A.

Eiffel hasadifferent view of inheritance from what we have described in Sec-
tion 6.12. In particular, Eiffel views a subclass(derived classusing C++ ter-
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minology) as either extending its parent class or specializingit. For example,
asubclassmay undefine afeature of the parent class In such a ase, the dild
classmay nolonger be viewed as satisfying the is-a relationship with its par-
ent.

The deferred clause of Eiffel may be used as the virtual spedfier of C++ to
implement abstrad classes.

Eiffel suppats multiple inheritance To resolve the name conflicts that may
occur due to inheriting from more than ore base dass, the undefine construct
may be used to hide some features and rename may be used to rename others.

6.3.4Smalltalk

Smalltalk was the first purely oljed-oriented language, developed for a spe-
cia purpose machine, and devoted to the devopelopment of applicationsin a
highly interactive single-user personal workstation environment. Itisahighly
dynamic language, with each olject carrying itstype & runtime. The type of
of a variable is determined by the type of the objed it refers to at runtime.
Even the syntax of Smalltalk reflects its object orientation.

All objects are derived from the predefined class object. A subclassinherits
the instance variables and methods of its parent class(cdled its superclass
and may add instance varaiables and methods or redefine existing methods. A
cdl to an oject isbound dymamically by first seaching for the method in the
subclassfor the method. If not found,the search continues in the superclass
and so on up the dain urtil either the method is found o the superclass
object isreached and nomethod isfound.An error isreported in this case.

A classdefines both instance variables and methods, and class variables and
methods. There is a singe instance of the dassvariables and methods avail -
able to all objects of the class In contrast, a @wpy of eadh instance variable
and methodis created for each instance of an oljead of the class

6.4 Objed-oriented analysisand design

In this chapter we have described programming language support for object-
oriented programming. The object-oriented approach to software develop-
ment has grown to encompassnat just programming bu most other phases of
software development. Objed-oriented analysis tries to analyze the applica-
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tion domain in terms of objects, their asociated operations, and relationships
among ohjects. Object-oriented designtriesto designa system that consists of
objects. Such designs are implemented more eaily in olject-oriented lan-
guages. Indeed, the use of object-oriented languages is only effective if the
designis object-oriented. It is at the design stage that comporent objects and
their relationships are identified. Constructs such as abstract classes that we
have seen in Ada, Eiffel, and C++ may be used to dacument object-oriented
designs that can then be implemented in programming languages.

The substitutability and proper inheritance properties that we have discussed
for programming languages are treaed in terms of is-a relationship at the
analysisand design stages. In ou example, acounting_stack is-a stack and there-
fore may be substituted anywhere astad is nealed (for example passed to a
procedure that expects a stadk). But stack iS not a counting_stadk and therefore a
sack may na be substituted for a counting_stack. A good aksign rule is to use
inheritance to derive anew classwhen derived classis-a base class The C++
rule on assgnments among cerived and base dasses may aso be defined
using the is-a relationship. The assgnment a=b is alowed if bis-aa. While
this rule is intuitive and simple to state, it is not always easy to determine
whether two oljects are related with the is-a relation. For example, we have
seen that colorPoint is Not necessarily a point (Section 6.2.2.2. Usually, the
relationship that holdsis “is-a-kind-of.” It often takes great care to create is-a
relationships.

6.5 Summary

Objed-oriented programming is an effective style of programming for many
situations. In recent years, however, it has been advertised rather as a panacea
to all software development problems. It isimportant to realize that the design
of large software systemsis an inherently difficult activity. Programming lan-
guage features may help in implementing good dsigns but they do nad
remove the deficiencies of a bad design. More importantly, designs are not
neassarily bad o good.For example, consider developing tree abstradions
for use in a system. Suppce we need bah general trees and binary trees.
Shoud the two classes be related by an inheritance relationship? If so, which
one should be the base dass? Depending onhow the rest of the design fits
together, ore or the other classas a base classwould be the better choice.

In practice, the initial development of the design is not the major problem.
The designer is often able to buld an inheritance hierarchy that fits the prob-



347 Objea-oriented languages Chap.6

lem at hand. The problems occur later when the software is extended to meet
new requirements. The difficulties arise when new classes needed to be
defined introducing rew is-a relationships that are not compatible with previ-
ous auch relationships. If the inheritance tree needs to be modified signifi-
cantly, then the impad onthe rest of the software an be significant.

6.6 Bibliographic notes

Simula 67 was the first object-oriented language. It introduced the notions of
classand inheritance. All other object-oriented languages have their ancestry
in Simula 67 and later to Smalltalk. Smalltalk was the first popuar objed-ori-
ented language. It is a dynamically typed language and was initialy devel-
oped on special hardware but current implementations of the language are
avail able on many computersincluding personal computers. CLOS (Common
LISP Objed System) was an early attempt to introduce objects into an exist-
ing language. C++ added oljed-orientation suppat to an existing imperative
language (Stroustrup). The book by Stroustrup (Design and Evolution) gives
afascinating accourt of how C++ grew from C with classes to afull language
on its own. It aso explains the differences between an oljed-oriented lan-
guage and a language that suppats objed-oriented programming. Meyer isa
comprehensive treatment of object-oriented programming wing the Eiffel
language. The language itself is described fully in Meyer.

References to languages: Dylan, Beta, Self, Emerald, Oberon, Modua, Java.

Snyder (Encapsulation and inheritance) pointed ou the differences between
implementation and interface inheritance.

Wegner paper is the source for the dassification of languages into olject-
based and ohect-oriented.

Bruce ¢ al. isthe source of the examplein Section 6.2.2.2The type structure
of strondy typed olject oriented languages has garked a large anount of
type-theoretic research in recent yeas. A number of papers have been written
to clarify the rules of covariance and contravariance (Liskov, Castagna,
Bruce). Cardelli and Wegner was the first of these papers. Barnes 95 is the
source for our treament of Ada 95. Wirth (Wirth 93 descirbes the idea of
type extension.
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The use of SIMULA 67 s prefix mechanism (its inheritance) in top-down
designisillustrated by several examplesin (Birtwistleet al. 1979. A number
of approaches to object-oriented anaysis and design are described in
(Fowler).

6.7 EXERCISES

1. Implement a C++ class employeethat supports a virtual method print() which prints the
name and age of an employeeobjed. Next derive a ¢ass manager which suppliesits own
print() method which, in additi on to the enployeeinformation, prints the group number for
which the manager is responsible (this is an additional field of manager). Also derive
another classfrom employee céled part_time. The part_time dass also supplies its own
print() which prints how many haurs aweek the enployeeworks.

— Can you wsethe print of employeein manager?
— Explain how you would implement the same program in Pascd.

— Compare the objed-oriented and the procedual solution in terms of maintainability.
What changes are necessary in the two solutions if we need to add a new type of
employee?

— Inthe C++ solution, how would you implement a part_time_manager? Does your
solution allow you to implement this new class using multi ple inheritance?

2. Consider the following C++ program fragment:

class point {
public:
float x;
float y;
point ( float xval, float yval): x(xval), y(yva) {} ;
virtual int equal ( point& p)
{ cout << "cdling equal of point.\n";
return x==p.x && y ==p.y;
h
H

class colorPoint: public point{
public:
int color;
colorPoint (float xval, float yva, int cval): point(xval, yval), color(cval){} ;
int equal (colorPoint& cp)
{ cout << "cdling equal of colorPoint.\n";
return x ==cp.x && y ==cp.y /*&& color == cp.color*/;

H

int equal (point& cp)

{cout << "cdlingequal of colorPoint with point.\n";
return Xx==cp.X && y ==cp.y:};

1
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point p1 (2.0, 6.0);
colorPoint cpl (2.0, 6.0, 3);

pl =cpl;
— Whichfunctionwill be cdledwiththe cdlspl.equal (p1), pl.equal(cpl) andacwrding
to what rule (polymorphism or overloading)?

— If we aede apoint* pp and assigncplto it, which functions will be cdl ed with the
cdlspl.equa (pl), pl.equal(cpl) and acmrding to what rule (polymorphism or
overloading)?

— Explain the diff erences between the answers to the first and second question.

. In Sedion 6.1.4 we suggested that alanguage that does not support dynamic binding may
use cae statements or function pointers to achieve the same result. Explain how this can
be done and discuss the drawbadks of such solutions.

. In Exercise 2, what isthe type of p1 after the assignment p1 = cpl1? What is the type of pp
after the assgnment pp = cpl? Explain the diff erences between the objed held by pl and
the objed pointed to by pp. What about the computational model of the C++ makes this
difference necessary? Propose a tange to the language that would remove this
difference What is the st of your proposal?

. Let us define arelation s<.t to mean that sis a subtype of t. We want to define asubtype
relation for function signatures. First we represent a signature & t1 -> t2 indicaing a
function that takes an argument of type t1 and produces a result of type t2. How would
you state the @variance and contravariant requirements using the subtype relation. That
is, completethe equivalencerelation below: s1->s2 <. t1->t2iff s1 ?t1 && s2 ?t2. How
would you describe the Eiffel rule?

. In C++, it isposshblefor aderived classto hide the public members of its base dass from
its clients. Give ax argument to show that this is not a good design pradice (hint:
substitutabilit y)

7. (Multimethods) Asaume the foll owing class definitions:

class shape{
public:
virtual void move();

b
class circle: public shape{
public
move () {..}

1
class gyuare: public shape{
public
move () {..}

h
The dynamic binding associated with virtual functions makesit possible to call
s.move()
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for ashape s, which may be a ércle or asquare & runtime, and the appropriate move
function will be cdl ed depending on the runtime type of s. Aswe have seen, thisisone
of the essential feauresof objed-oriented programminglanguages. Now, supposethat we
also want to define asort of conversion functionthat will reshape one shapesinto ancther,
for example asguareinto a drcleor a drcleinto asguare. In particular, we want to define
avirtual function in shape:

virtual shape reshape(shape&);
And in square we want to define:

redangle shape reshape(circle&);
And in circle we want to define:

circle reshape(redangle&);
What is the difference between reshape and move?Can a cdl s.reshape(s) be staticdly
chedked for consistency? Can the identity of the function that needs to be cdled be
determined at compil e-time?If not, what is necessary to be leto cdl the right function
at runtime?Does the usual virtual function table mechanism be used?

Sometimesinheritanceis used improperly. For example, consider defining an automobile
class. We have an existing classwindow. Since aitomobhil es have windows, we have two
options: we can derive auttomobil e from window, assuring that the aitomobile will have
awindow or we can definethe dassautomobil e and use window asamember of the dass.
Why is the second solution better? Explain the proper use of inheritance in terms of the
is-arelation.

.When a dass b is derived from a dass a, classb may add new properties, or it may

redefine properties defined in a. How do addition of properties affed the subtyping
relation between parent and child? How do redefiniti ons aff ea the relationship?

In Chapter 3, we defined two classes POINT and NON_AXIAL _POINT. Is
NON_AXIAL_POINT asubtype of POINT?

Some languages support the mncept of multiple inheritance, that is a new classmay be
derived based on more than ore parent classes. For example, we may define dass
displayable redangle inheriting from both polygon and dsplayable dasses. Thiscan be
donein C++:

class displayable redangle: public polygon, public displayable{..}

Multipleinheritanceis supported in both C++ and Eiffel. It is conceptually appeding but
it does exacebate the maintenance problems associated with tightly-related inheritance

hierarchies.

From an implementation point of view, multiple inheritanceintroduces two issues:

If an operation is defined in more than one of the base dasses, which one isinherited by
the derived class?

What does an objed of aderived classlook to an operation of the base dass. For example,
adisplayable redangle passed to a polygon operation should appea as a polygon ojjed
and passed to an operation of displayable should look like adisplayable objed.

Find out and explain how C++ and Eiffel handlethefirst isaue. Devise animplementation
to solve the second issue.

Section 6.3.2.2 introduced the dass-wide types of Ada 95. Consider the following code:

Poly: Objed’ Class;
Mona: Circle;
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Poly := Mono;
Mono := Poly;

Which of the two assignment statements are staticdly type-safe? Which one may raise a
runtime exception? Based on what you know from this chapter, isAda eleto deted such
an exception?

Assume the dasses point and colorPoint of Sedion 6.2.2.2. Given the procedure below:

void problem(point p)

_ colorPoint n = new colorPoint(...);
|}f p.equal(n) { ...}

can we cdl the procedure with a clorPoint parameter? with a point parameter? Will the
class definitions passtype dedkingin Eiffel? Will they passtype deding in C++?Will
acall to procedure problem cause aruntime aror in C++? Will in cause aruntime eror
in Eiffel? Can we modify the dass definitionsto avoid a runtime aror?
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Functional programming
languages

C HAPTER 7

So far in this book we have been concerned primarily with languages which
may be described as datement-oriented or imperative. These languages are
affeded strongly by the architecture of conventional computers. Functional
programming langueges take as their basis not the underlying computing
engine, bu rather the theory of mathematicd functions. Rather than efficient
execution, these languages are motivated by the questions: what is the proper
unit of program decompasition and hav can alanguage best suppat program
compasition from independent comporents.

We have seen that procedural languages use procedures as the unit of pro-
gram decompasition. Procedures generally use side effeds on dobal data
structures to communicate with ather procedures. Abstract data types attempt
to moduarize aprogram by packaging data structures and operations together
in order to limit the scope of side-effeds. Functional programs reduce the
impact of side-effects further, or even eliminate them entirely, by relying on
mathematica functions, which operate on values and poduce values and
have no side-effeds.

We start in the next section by describing the main elements of imperative
programming. These elements help illustrate the main dfferences with func-
tional programming. To contrast these differences further, we will then com-
pare mathematicd functions with programming langauge functions. In
Section 7.3.2we present Lambda calculus as a model for function definition,
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evauation and composition. We then look at ML and LISP as examples of
functional programming languages. Early functional languages, starting from
LISP, were dynamically typed and scoped. Scheme is a dialed of |LISP that
introduces static scoping into the language. Later functional languages, such
as ML, na only include static scoping bu also static typing. Many functional
languages, include both Scheme and ML, have dso added a modue construct
to addressprogramming in the large.

7.1 Characteristics of imperative languages

Imperative languages are characterized by three @ncepts: variables, assgn
ment, and sequencing. The state of an imperative program is maintained in
program variables. These variables are associated with memory locations and
hold values and have aldresses. We may accessthe value of avariable ather
throughits name (directly) or throughits address (indirectly). The value of a
variable is modified using an assignment statement. The assgnment state-
ment introduces an order-dependency into the program: the value of a vari-
able is different before and after an assgnment statement. Therefore, the
meaning (effect) of a program depends on the order in which the statements
are written and executed. Whil e thisis natural if we think of a program being
executed by a computer with a program counter, it is quite unretural if we
think of mathematicad functions. In mathematics, variables are boundto val-
ues and orce bound,they do nd change value. Therefore, the value of afunc-
tion dces nat depend onthe order of exeaution. Indeed, a mathematical
function defines a mapping from a value domain to a value range. It can be
viewed as a set of ordered pairs which relate each element in the domain
uniquely with a correspondng element in the range. Imperative programming
language functions, on the other hand, are described as algorithms which
spedfy how to compute the range value from a domain value with a pre-
scribed series of steps.

One fina characteristic of imperative languages is that repetition— oops—
are used extensively to compute desired values. Loops are used to scan
througha sequence of memory locations such as arrays, or to accumulate a
value in a given variable. In contrast, in mathematical functions, values are
computed using function application. Recursion is used in place of iteration.
Function compasitionis used to buld more powerful functions.

Because of their charaderistics, imperative languages have been gven labels
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such as gate-based and assgnment-oriented. In contrast, functional languages
have been called value-based and applicative.

7.2 Mathematical and programming functions

A functionis arule for mapping (or associating) members of one set (the do-
main set) to those of another (the range set). For example, the function
“sguare” might map elements of the set of integer numbers to the set of inte-
ger numbers. A function definition specifies the domain, the range, and the
mapping rule for the function. For example, the function definition

square(X) = X*X, X is an integer number
defines the function named “square” as the mapping from integer numbers to
integer numbers. We use the symba “=" for “is equivalent to.” In this defini-
tion, x isaparameter. It stands for any member of the domain set.

Once afunction has been defined, it can be applied to a particular element of
the domain set: the goplication yields (or resultsin, a returns) the assciated
element in the range set. At application time, a particular element of the
domain set is gecified. This element, cdled the argument, replaces the
parameter in the definition. The replacement is purely textual. If the defini-
tion contains any applications, they are applied in the same way urtil we are
left with an expresson that can be evaluated to yield the result of the original
applicaion. The application

square (2)
resultsin the value 4 according to the definition d the function square.

The parameter x is a mathematicd variable, which is not the same & a pro-
gramming variable. In the function definition, x stands for any member of the
domain set. In the gplication, it is given a spedfic value—one value. Its
value never changes theredter. Thisisin contrast to a programming variable
which takes on dfferent values during the course of program execution.

New functions may be aeated by combining aher functions. The most com-
mon form of combining functions in mathematics is function compasition. If
afunction F is defined as the compasition d two functions G and H, written
as

F=GoH,
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applying F is defined to be equivalent to applying H and then applying G to
the result.

In conventional programming langueges, a function is defined proceduraly:
the rule for mapping a vaue of the domain set to the range set is gated in
terms of a number of steps that need to be “exeauted” in certain order speci-
fied by the control structure. Mathematical functions, on the other hand, are
defined applicatively—the mapping rule is defined in terms of combinations
or appli cations of other functions.

Many mathematical functions are defined recursively, that is, the definition d
the function contains an application d the function itself. For example, the
standard mathematical definition of factorial is:

n! =if n=0then 1 elsen * (n- 1)!
As another example, we may formulate a (recursive) functionto determine if
anumber isaprime:

prime (n) =if n=2then trueelse p (n, ndiv 2)
where function pis defined as:

p(n,i) = if (nmod i) = 0then false
eseif i =2then true
dsep(n,i-1)
Notice how the recursive cdl to p(n, i-1) takes the place of the next iteration d
aloop in an imperative program. Recursion is a powerful problem-solving

technique. It isaused heavily when programming with functions.

7.3 Principles of functional programming

A functional programming language has three primary comporents:

1. A set of data objeds. Traditionally, functional programming languages have provided a

single highlevel data structuring mechanisms such asalist or an array.

2. A set of built-infunctions. Typicdly, there ae anumber of functionsfor manipulating the
basic data obj ects. For example, LISP and ML provide anumber of functionsfor building
and accessing lists.

3. A set of functional forms (also cdl ed high-order functions) for buil ding new functions. A
common example is function composition. Another common example is function
reduction. Reduce applies abinary function aaoss successive dements of asequence For
example, reducing+ over an array yieldsthe sum of the dements of the aray andreducing
* over the dements of an array yields the product of the dements of the aray. In APL, /
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is the reduction functional form (caled operator in APL) and it takes one operation as
argument. The plus reductioncan be acomplished hy /+ and the multi pli cation reduction
by /*. The use of functional formsiswhat distinguishes afunctional program. Functional
forms support the cmbination of functions without the use of control structures such
asssiteration conditional statements.

The exeaution d functional programs is based on two fundamental mecha-
nisms. binding and application. Binding is used to asociate values with
names. Both data and functions may be used as values. Function applicaion
is used to compute new values.

In this section we will first review these basic dements of functional pro-
grams using the syntax of ML. We will then introduce Lambda @lculus, a
simple alculus that can be used to model the behavior of functions by defin-
ing the semantics of binding and applicaion precisely.

7.3.1Values, bindings, and functions

As we said, functional programs deal primarily with values, rather than vari-
ables. Indeed, variables dencote values. For example 3, and “a” are two con-
stant values. A and B are two variables that may be bound to some values. In
ML we may bind values to variables using the binding operator =. For exam-

ple

val A=3;

val B="a",
The ML system maintains an environment that contains all the bindings that
the program creates. A new binding for a variable may hide a previous bind-
ing bu does nat replace it. Function calls aso create new bindings because
the value of the actual parameter is boundto the name of the formal parame-
ter.

Values need na be just simple data values as in traditional languages. We
may aso define values that are functions and knd such valuesto names:

val sq = fn(x:int) => x*x;

sq 3
will first bind the variable sg to a function value and then apply it to 3 and
print 9. We may define functions also in the more traditional way:

fun square (n:int) =n * n;
We may also keg afunction anonymous and just apply it without binding it
to aname:
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(fn(x:int) = x*x) 2;
We may of course use functions in expressions:

2% s (A) |
will print the value of the expresson 2A2,

The role of iteration in imperative languages is played by recursion in func-

int fad(int n) funfaa(n) =
{ inti=1; ifn=0thenl
assert (n>0); else n*fad(n-1);
{for (int j=n; j>1; ++j)
i=i*n;
return i;

}

FIGURE 84.Definition of factorial in C++ and ML

tional languages. For example, Figure 84 shows the function fadorial written
in C++ usingiteration and ML using reaursion.

We saw in Chapter 4 that functionsin ML may also be written using petterns
and case analysis. The factorial program in the figure may be written as com-
posed o two cases, when the agument is 0 and when it is nat:

fun faa(n) =
fad(0) = 1
| n*fad(n-1);
In addition to function definition, functional languages provide functiona
forms to buld new functions from existing functions. We have arealy men-
tioned mathematical function compaosition operator o as sich a higher order
function. It allows us to compose two functions F and G and produce anew
function FoG. Functional programming languages provide both bult-in higher
order functions and allow the programmer to define new ones. Most lan-
guages provide function composition and reduction as built-in functional
forms.

7.3.2Lambda calculus: a model of computation by functions

In the previous sction, we have seen the essential elements of programming
with functions. binding, function definition, and function application. As
oppcsed to an imperative language in which the semantics of a program may
be understood by foll owing the sequence of steps specified by the program,
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the semantics of a functional program may be understood in terms of the
computation implied by function applications. Lambda alculus is a surpris-
ingly simple calculus that models the computational aspects of functions.
Studyinglambda cl culus helps us understand the elements of functional pro-
gramming and the underlying semantics of functional programming lan-
guages independently of the syntactic details of a particular programming

language.

Lambda expressions represent values in the lambda alculus. There ae only
threekinds of expressons:

1. An expressionmay be asingle identifier such as x.

2. Anexpressionmay be afunction definition. Such and expression hastheform A x.ewhich
stands for the expression e with x designated as a bound variable. The expression e
represents the body of the function and x the paramter. The expression e may contain any
of the threeforms of lambda expressons. Our famili ar square function may be written as
A XX*X.

3. An expresson may be afunction application. A function application has the form el e2
which standsfor expression el applied to expression €2. For example, our square function
may be gplied to the value 2 in this way: (A x.x*x) 2. Informally, the result of an
applicaion can be derived by repladng the parameter and evaluating the resulting
expresson.

(A X.X*X) 2=

2*2=

4
In a function definition, the parameters foll owing the "2 " and before the "."
are alled bound variables. When the lambda expressonis applied, the occur-
rences of these variables in the expresson following the “.” are replaced by
the arguments. Variables in the definition that are not boundare called free
variables. Bound \ariables are like local variables, and free variables are like

nonlocal variables that will be boundat an outer level.

Lambda caculus cgpture the behavior of functions with a set of rules for
rewriting lambda expressions. The rewriting d an expresson modelsastepin
the computation d afunction. To apply afunctionto an argument, we rewrite
the function definition, replacing accurrences of the bound \ariable by the
argument to which the functionis being appli ed.

Thus, to define the semantics of function application, we first define the con-
cept of substitution. Substitutionis used to replace dl occurrences of an iden-
tifier with an expresson. Thisis useful to bind parameters to arguments and
to avoid name nflictsthat arise if the same name gpearsin both the expres-
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sion keing applied and the argument expression to which it is being applied.
We will use the notation [e/x]y to stand for “substitute e for x in y.” We will
refer to variables as xi. Two variables xi and ¥ are the same if i=j. They are
not the same if i=/=j]. We can define substitution precisely with the foll owing
threerules, based onthe form of the expressony:

1. If the expressonisasingle variable:
[e/xi]xj= g, if i =]
=xj, if i=/=]

2. If the expression is afunction application, we first do the substitution both in the function
definition and in the agument, and then we gply the resulting function to the resulting
argument expression:

[el/x](e2 e3)= ([el/x]e2)([el/x]e3)
In doing the substitutions before the function application, we have to be caeful not to
creae any bindings that did na exist before or invalidate aty previous bindings. This

means that we may not rename avariable and make it bound if it were free before or
make it freeif it were bound before. The next rule takes care of these situations.

3. If the expresson is afunction definition, we must do the substitution carefull y:
[eUxi](A xj.€2)= A xj.€2, if i5]
= A xj.[el/xi]e2, if i=/=j and ¥ isnot freein el (otherwise, it would beame
newly bound)
= A xk.JeUxi]([xk/xj]€2), otherwise, where k=/=i, k=/=j, and XK is not free
in either el or e2
The last rule serves to rename dl occurrences of a variable by ancther name
to avoid name dashes.

Using the substitution rules above, we @n define the semantics of functional
computations in terms of rewrite rules. That is, we define the result of afunc-
tion application in terms of rewriting the definition d the function, replacing
the bound \ariables of the function with correspondng arguments. The fol-
lowing three rewrite rules define the concept of function evaluation:

1. Renaming: A Xi.e <=> x Xj.[xj/xi]e, where X is nat free in e. The renaming
rules says that we @n replace al occurrences of a bound \ariable with
ancther name withou affecting the meaning d the expression. In aher
words, afunctionis abstracted over the bound \ariables.

2. Application: (A x.el)e2 <=> [e2/x]el. This rule says function application
means replacing the bound \ariable with the argument of the application.
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3.ax.(ex) <=>¢ if xisnotfreeine.

The last rule says that freevariables are the only way for an environment to
change the dfect of afunction. That is, a function is a self-contained entity
with the parameters being its only interface.

These rules may be used in the forward diredion to “reduce” a lambda
expression. In fad, any lambda expresson may be reduced using these three
rules urtil no further reductionis passhle. An expresson that may nolonger
be reduced is said to bein normal form.

For example, the foll owing shows the goplication d the three rulesto reach a
normal form for the original expression.

(Ax.(Ay.xty) 2) (Ay.y*y) =

(Axx+2)) (\y.y*y) =

(Ay.y*y)+z
The simple semantics that we have described here capture the semantics of
binding, function dfinition and function application, which are the primitive
elements of functional programming languages. The dear semantics of func-
tional languagesis dueto the fact that the semantics of function definitionand
applicaion can be defined with these three smple rules.

One of the interesting aspects of lambda calculus is that we @an define the
semantics of functions using orly one-argument functions. To deal with func-
tions of more than ore argument, alist of argumentsis pasd to the function
f which applies to the first argument and produces as result a function that is
then applied to the second argument, and so on.This technique is called cur-
rying and afunction that works thisway is called a curried function.

For example, consider afunction to sum its two arguments. We could write it
as aAx,y.x+y. Thisisafunction that requires two arguments. But we could also
write it as A x.ay.x+y. This new function is written as the composition d two
functions, each requiring ore parameter. Let us apply it to arguments 2 3.

(AXAYyX+y)23=
(AXAyXx+y) 2) 3=
(Ay.2+y)3=

2+3=

5
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This is a common technique in functional programming to deal with a vari-
able number of arguments. Eadh argument is handed in sequence through
one function appli cation. Each function appli cation replaces one of the bound
variables, resulting in a “partially evaluated” function that may be gplied
again to the next argument. Symbadlically, (f x y z) is considered to be (((f(x)) y)
7). Indeed, in ML, the function application f(x,y,z) may also be written in the
curried formf xy z.

7.4 Representative functional languages

In this sction, we examine pure LISP, APL, and ML. LISP was the first
functional programming language. The LISPfamily of languegesislarge and
popuar. LISP is a highly dynamic language, adopting dyramic scoping and
dynamic typing, and promoting the use of dynamic data structures. Indeed
garbage olledion was invented to deal with LISP's heary demands on
dynamic memory allocation. One of the most popuar descendants of LISP is
Scheme, which adopts datic scope rules.

APL in an expresson-oriented language. Because of the value-orientation o
expressions, it has many functional feaures. As oppased to LISP' s lists, the
APL data structuring mechanism is the multidimensional array.

ML is one of the recent members of the family of functional programming
languages that attempt to introduce astrong type system into functional pro-
gramming. We will examine ML in more detail because of itsinteresting type
structure. In the next section, we look at C++ to see how the fadlities of a
conventional programming language may be used to implement functional
programming techniques.

Most functional programming languages are interactive: they are suppated
by an interadive programming system. The system suppats the immediate
execution d user commands. This is in line with the value-orientation o
these languages. That is, the user types in acommand and the system immedi-
ately responds with the resulting value of the command.

7.4.1ML

ML starts with a functional programming foundation bu adds a number of
features foundto be useful in the more conventional languages. In particular,
it adopts poymorphism to suppat the writing d generic comporents; it
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adopts drongtyping to promote more reliable programs; it uses type infer-
ence to freethe programmer from having to make type declarations; it adds a
modue facility to suppat programmingin the large. The most notable contri-
bution d ML has been in the area of type systems. The combination d paly-
morphism and strong typing is achieved by a “type inference” mechanism
used bythe ML interpreter to infer the static type of each value from its con-
text.

7.4.1.1 Bindings, values, and types

We have seen that establishing a binding ketween a name and a value is an
esential concept in functional programming. We have seen examples of how
ML establishes bindings in Section 7.3.1.Every value in ML has an associ-
ated type. For example, the value 3 hastypeint and the value fn(x:int) =>x*x has
type int->int which is the signature of the functional value being defined.

We may also establish new scoping levels and establish locd bindings within
these scoping levels. These bindings are established using let expressons:

letx=5

in 2*x*x;
evauates to 50.The name x is bound oty in the expressonin the let expres-
sion. There is ancther similar construct for defining kindings local to a series
of other declarations:

locd

Xx=5
in

val sg = x*X

val cube = X*x*X
end;

Such constructs may be nested, allowing rested scoping levels. ML is stati-
cdly scoped. Therefore, each occurrence of a name may be boundstaticdly
to its declaration.

7.4.1.2 Functionsin ML

In ML, we can define afunction withou giving it a name just as a lambda
expression. For example, as we have seen:

fn(x, y):int => x*y
isavaluethat isafunction that multi plies its two arguments. It is the same &
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the lambda expression i x,y.x*y. We may passthis value to anather function
as argument, or assgnit to aname:

val intmultiply = fn(x, y):int => x*y;
Thetype of thisfunctionis fn:int*int->int.

We have seen that functions are often defined by considering the cases of the
input arguments. For example, we can find the length of alist by considering
the case when thelist is empty and when it is not:

fun length(nil) =0
| length([_::X]) = 1+length(x);
The two cases are separated by a vertical bar. In the second case, the under-
score indicates that we do nd care dou the value of the head of the list. The

only important thing is that there exists a head, whaose value we will discard.

We may also use functions as values of arguments. For example, we may
define a higher-order function compose for function compaosition:

fun compose (f, g)(x) = f(g(x));
The type of compose is (a>'b * 'c->'a)->(¢c->'a). ML provides ©ome built-in
functional forms as well. The clasgc one is map which takes two arguments,
a function and a list. It applies the function to each element of the list and
forms the results of the applications into alist. For example, the result of:

va x= map (length,[[], [1,2,3].[3]);
iIS[0,3,1].

For example, the reduce function takes a function F of two arguments and a
norempty list [a1,a2,...an] as arguments and produces as result the value F(at,
F(...F(an-1,F(an))). The basis case F(x) applied to asingleton list is defined to be
the singleton element. So, the result of

val x =reduce(+, [1,2,3,4]);
IS 10. Some systems provide the function reduce & a built-in function. If it is
naot avail able, we can easily defineit for norempty lists:

fun reduce(F, [X]) = x

| reduce(F,[x::xg]) = F(x,reduce(F,xs));
Ancther class of such high ader functions is filters that apply a predicate
function to elements of a list and return only those dements that satisfy the
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predicate. We can easily write such functionsin ML.

A useful functional programming techniqueisto partially evaluate afunction
by binding some of its arguments. The result is dill a function that may be
applied to the remaining arguments. A function some of whose aguments
have been boundis called aclosure. As an example, consider afunction Trans-
lateWord that takes two arguments. a dictionary to use for tranglation and the
word to translate. The functionlooks up theword in the dictionary and returns
the trandation foundin the dictionary. We might define dosures of this func-
tion by bnding the dictionary argument to dfferent language dictionaries and
producing special trandlator functions guch as ItalianEnglish, ItalianGerman, and
EnglishGerman. These new functions are single-argument functions because the
dictionary argument has already been bound.

Curried functions may also be used in ML. For example, we @an define the
function to multi ply two integersin curried form:

fun times (x:int) (y:int) = x*y;
The signature of thisfunctionisfn: int-> (int->int). We @n buld anew function,
say multby5, by binding ore of the arguments of times:

fun multby5(x) = times(5)(x);

7.4.1.3 List structure and operations

Thelist is the mgjor data structuring mechanism of ML; it is used to buld a
finite sequence of values of the same type. Square brackets are used to buld
lists: [2, 3, 4], ["a", "b", "c"], [true, false]. The empty list is shown as|] or nil. A list
has a recursive structure: it is either nil or it consists of an element followed
by anather list. The first element of a nonempty list is known as its head and
the rest isknown asitstail.

There ae many bult-in list operators. The two operators hd and tl return the
head and tail of alist, respedively. So: hd([1,2,3]) is 1 and t1([1,2,3]) iS[2,3]. Of
course, hd and tl are polymorphic. The @nstruction ogerator :: takes a value
and a list of the same type of values and returns a new list: 1::[2,3] returns
[1,2,3]. We can combine two lists by concaenation: [1,21@[3] iS[1,2,3].

Let uslook at some functions that work with lists. First, recall from Chapter 4
the functionto reverse alist:
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fun reverse(L) =reverse([]) =]
| reverse(x::xs) = reverse(xs) @ [X]
Let uswrite afunctionto sort alist of integers using insertion sort:

fun sort(L) = sort([]) =]
| sort(x::xs) = insert (X,xs)
funinsert(x, L) = insert (x,[]) =[X]
| insert (x:int, y:ys) =
if x<ythenx:y:ys
elsey::insert(x,ys);
The recursive structure of lists makes them suitable for manipulation by
recursive functions. For this reason, functional languages usually use lists or

other recursive structures as a basic data structuring mechanism in the lan-
guage.

7.4.1.4 Type system

Unlike LISP and APL, ML adops a strong type system. Indeed, it has an
innowetive and interesting type system. It starts with a conventional set of
built-in primitive types: bod, int, real, and string. Strings are finite sequences
of characters. There is a spedal type cdled unit which has a single value
denoted as (). It can be used to indicate the type of a function that takes no
arguments.

There ae severd built-in type cnstructors: lists, records, tuples, and func-
tions. A list is used to buld afinite sequence of values of a single type. The
type of alist of T valuesiswritten as T list. For example, [1,2,3] iSan int list and
["a',"b","cdef"] IS astring list. An empty list iswritten asnil or []. The type of an
empty list is’t list. 't is a type variable which stands for any type. The empty
list isapaymorphic object becauseit is not spedfically an empty int list or an
empty bool list. The expresson 't list is an example of a paymorphic type
expression (call ed polytype in ML).

Tuples are used to buld Cartesian products of values of different types. For
example, (5, 6) isof typeint*int and (true, "fad", 67) is of type bool*string*int. We
can o course use lists as elements of tuples: (true, []) is Of type bool* (t' list).

Records are similar to Pascal records:. they are constructed from named fields.
For example, {name="Darius', id=56789} is of type {name: string, id: int}. Tuples
are specia cases of records in which fields are labeled by integers darting
with 1.The equality operationis defined for records based oncomparing cor-
respondngfields, that is, the fields with the same names.
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Aswe have seen before, a function has a—possbly pdymorphic—signature,
which is the type of the function. For example, the built-in predicate null
which determines whether its argument isthe eampty list is of typetlist -> boal.
Null isa paymorphic function.

In addition to the built-in type constructors, the programmer may define new
type aonstructors, that is, define new types. There ae three ways to dothis:
type abbreviation, detatype definition, and abstract data type definition. The
simplest way to define anew typeisto hind atype nameto atype expresson.
Thisissmply an abbreviation mechanism to be &leto use aname rather than
the type expresson. Some examples are:

typeintpair = int * int;
type'apar="a*'a
type boolpair = bodl pair;

In the secondline, we have defined a new polymorphic type cdled pair which
isbased onatype’a. Thetype pair forms a Cartesian product of two values of
type'a. We have used this type in the third line to define a new monamorphic

type.

The second way to define anew typeisto specify how to construct values of
the new type. For example, similar to Pascal enumeration types, we can
define the new type color as:

datatype lor =red | white | blue;
This definition defines a new type color and three value constructors for it.

These value constructors are simple because they do nd take any parameters.
In general, we may have more wmplex value constructors. In any case, the
name color has now been defined as a new type. We may use the new con
structorsto buld new values. For example, [red, blug] IS of type color list.

Value constructors may take parameters. We might define a new type money
as.

datatype money = nomoney | coin of int | note of int;
based onthreevalue constructors: nomoney, coin, and note. The first constructor

takes no arguments while the latter two are monadic constructors. Some val-
ues of type money are: nomoney, coin(s), note(7).
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We @n aso define recursive type constructors. For example, we might define
abinary tree as.

datatype 't Btree=null | Node of 't * 't Btree* 't Btree
We have defined aBtreeof a particular type 't asbeing either null or consisting

of anode which has three comporents. One comporent is sSmply a value of
type 't. The other two comporents are each a’t Btreethemsel ves.

To show the power of value constructors in defining rew types, next we
define astac in terms of the operation push that can be used to construct it.

datatype’'a stack = empty | push of "t * 't stadk;
This definition says that the following are example values of a stack data

type:

empty

push(2, empty)

push(2,(push(3,push(4,empty)))) _
Notice how we have used push as a nstructor rather than an operation
defined on stadks. Given this definition d 't stack, we can define functions
such as pop, and top onthe new data type stac. For example, we might define

pop and top as shown here:

fun pop (empty) = raise aror

| pop(push(x,xs)) = X;

fun top (empty) = raise aror

| top (push(x, xs)) = X;
This stadk does not hide its representation from its clients. If we want to do
that, we must use data astraction, which isthe third way to define anew type

in ML An abstype defines a new type and hidesits concrete representation. For
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example, Figure 85 shows a stack abstract data type. This type defines the

abstype’'astadk = stack of "alist
with val creae=[];
fun push(x, stadk xs) = stadk (x::xs);
fun pop (stadk nil) = raise poperror
| pop (stadk [€]) =[]
| pop (stack [x::xg]) = stack [x9];
fun top(stadk nil) = raise toperror
| top(stack [x::xg]) =X;
fun lenght(stadk []) =0
| length (stadk [x::xg]) = length (stadk [xg]) + 1;
end;

FIGURE 85. An abstrad datatype stack in ML

operations creae, push, pop, top, and length for the dstract type stack. From the
outside, the representation d stack, which isalist, is not accessble. The stack
is only accesgble throughits exported operations, which are the functions
spedfied after the with expresson.

We can now use the operations of this type. For example push(7, creae) will
produce an int stack and push("how",(push (“now", creae)) Will produce astring stack
of two elements.

We @n see that ML has arich and consistent type system. Every value has a
singletype but the type may be palymorphic (caled polytypein ML). The use
of type variables suppatsthe aedion d polymorphic types. These types may
then be used to write paymorphic functions.

7.4.1.5 Type inference

Earlier functional languages used dyramic typing. As we saw in Chapter 3,
this means that variables are nat required to be dedared: a variable simply
takes on the type of the value that is assgned to it. Both LISP and APL are
based onsuch dyramic type systems. ML tries to achieve the alvantages of a
strongy-typed language withou burdening the user with the requirement for
type declarations. A name always has to be declared before it is used bu its
type is not required in the declaration. The ML system (compiler or inter-
preter) infers the types of variables based ontheir use. Because the languege
is grongly-typed, each value produced by the program has to be assgned a
particular type. If the system canna infer the proper type for avalue, an error
message is produced at compile-time. The programmer must speafy the type
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in such situations. For example, an expresson x>y does not contain enough
information to infer whether x any areintegers or reals. If afunction d x and
y contains such an expression and no dher indication d the types of x andy,
then the program must declare the type of either x or y. Only one type declara-
tionis necessary becuse the other one is constrained to have the same type.
This was the reason that in the definition d the function square in Sedion
7.3.1,we had to dedare the type of the argument as beingint, while in the def-
inition d the faaoria function we did na have to declare the type of the agu-
ment. The ML system uses the expresson“if x =0" in the definition o fadorial
to infer the type of x to beint.

ML combines type inference with extensive suppat for paymorphism. Con-
sider asimple paymorphic identity function which returnsits argument asits
result. Thisfunction daes not care what the type of itsargument is. If we were
to write such afunctionin C or Pascal, we would have to write afunction for
eah type that we exped to use. In ML, we only need ore function:

funid(x) =x;
We coul(d)write asimilar functionin C++ using templates, where the type of
the parameter is a template parameter (Exercise 10). This function may be
applied to avalue of any type and it will return the same value. Of course, we
may apply id to afunction also, for example to itself: id (id) returnsid.

The signature of this function isid: 'a->'a, that is, it maps from a domain of
some type to arange of the same type. From its sgnature, we can see clearly
that the function is polymorphic. Such a function can be type-checked stati-
cdly even thoughwe do nd know what type will be passd at the time the
function is applied. Each applicaion d afunction uses the type of the argu-
ment to produce avalue of the gpropriate type & result. For example id(3)
returns an integer andid(id) returns avalue of type’a>'a.

Some built-in functions such asli st handling functions are naturally pdymor-
phic. For example, hd has signature hd: t'list->'t. Rather than requiring the pro-
grammer to declare the types of variables, the ML system uses such
informationto doits gatic type checking.

Aswe have seen, some operators used in function definitions limit the ability
of the system to dotype inferencing. For example, the function max defined
as.
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fun max (x:int,y) =if x>y thenx elsey;
requires the declaration d the x because the system canna tell whether, for
example, the signature of max shoud be (int*int)->bool Or (red*red)->bool. The
signature ('t*'t)->bool IS not correct either because not any type is acceptable.
Only types that suppat the > operator are acceptable. We @n use the signa-
ture facility of ML to specify such type requirements andif we do so, the sys-
tem can make use of them.

One particularly important classof types is the equality type, denoted by "a.
These ae types that suppat the equality and inequality operators = and <>. If
we define afunction eg:

fun eq(x, y) = x=y;
the type of the functionis: eq: "a*"a-> bool. That is, eqisapoymorphic function

that requires two equality types and returns a bodean. Of course, a type
expressionincluding atype variable "t has gricter requirements than ore hav-
ing orly 't variables.

7.4.1.6 Modules

We have dready seen an example of an ML modue in Chapter 5. ML mod-
ules are separately compil able units. There are threemgjor building docks:

1. A structure is the encapsulation urit. A structure mntains a wlledion d definitions of
types, datatypes, functions, and exceptions.

2. A signatureisatypefor astructure. A signatureis a mlledion of type information about
some of the dements of astructure: those we wish to export. We may associate more than
one signature with a structure.

3. A functor is an operation that combines one or more structures to form a new structure.
Asan example of amodue, Figure 86 shows the stack definition d Figure 85
encapsulated in a structure. The figure defines a paymorphic stack imple-
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mented as alist.

structure Stadk = struct
exception Empty;

val crege={];

fun push(x, stac xs) = stadk (x::xs);

fun pop (stadk nil) = raise Empty;

| pop (stadk [e]) =]

| pop (stadk [x::xs]) = stadk [x];

fun top(stadk nil) = raise Empty;

| top(stadk [x::xg]) = X;

fun lenght(stack []) =0

| length (stadk [x::xg]) = length (stadk [xg]) + 1;
end;

FIGURE 86. A stadk modulein ML

We can use signatures to specialize astructure. For example, we can make a
stack of strings out of the stack of Figure 86. Not only that, we can aso
restrict the operations that are exported using the signature mechanism. Fig-
ure 87 is a signature for Figure 86 which spedfies a stack of strings which
supports creae, push, pop, top but not length. A signature may be viewed as a
spedfication for amodue. Severa specifications may be asciated with the

same modue and the same signature may be used with dff erent modules. We
signature stringStack = sig
exception Empty;
val crege=string li&t;
val push: string* stringlist -> stringlist;
val pop: srting list -> sring list;
val top: stringlist -> string;
end;

FIGURE 87. A signature for string stack module that hides length

can use the signature we have just defined to create a new structure:

structure SS:stringStadk = Stadk;
The new structure ssis built from Stadk and hes the signature stringStack. Struc-
ture dements are accessd ether using dd notation (e.g. SS.push("now",SS.cre-
ate)) or by "opening' the structure and gaining accessto al the dements:

open SS
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push("now", creae);

7.4.2LISP

The original LISP introduced by John McCarthy in 1960, known as pure
LISP, is acompletely functional language. It introduced many new program-
ming language concepts, including the uniform treatment of programs as
data, condtiona expressons, garbage colledion, and interactive program
execution. LISP used bah dyramic typing and dyramic scoping. Later ver-
sions of LISP, including Scheme, have dedded in favor of static scoping.
Common Lisp is an attempt to merge the many different dialects of LISP into
asinge language. In this edion, we take abrief look at the LISPfamily of

languages.

7.4.2.1 Data objects

LISP was invented for artificial intelligence applications. It isreferred to asa
language for symbalic processing. It deds with symbds. Values are repre-
sented by symbadlic expressons (called S-expressions). An expression is
either an atom or alist. An atom isa string d charaders (letters, digits, and
others). The following are atoms:

A
AUSTRIA
68000

A list is a sequence of atoms or lists, separated by space and kradketed by
parentheses. The following arelists:

(FOOD VEGETABLES DRINKS)
((MEAT CHICKEN) (BROCCOL| POTATOES TOMATOES) WATER)
(UNC TRW SYNAPSE RIDGE HP TUV)
The empty list “()”, also called NIL. The truth value false is represented as ()

and true & T. The list is the only mechanism for structuring and encoding
information in pue LISP. Other diaects have introduced most standard data
structuring mechanisms gich as arrays and records.

A symbd (as atom) is either a number or a name. A number represents a
value directly. A name represents a value boundto the name.

There are diff erent ways to bind avalue to aname: SET bindsavalue globally
and LET bindsit locdly. (SET X (A B C)) binds A to thelist value (A B C).
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SET shows an example of a function application. A function application is
written as a list: the first element of the list is the function rame and the rest
of the elements are parameters to the function. Thus, functions and data have
the same representation. Representing the function application in this way
implies the use of prefix naation, as oppcsed to infix of other languages:
LISP uses (PLUSA B) instead of A+B.

7.4.2.2 Functions

There are very few primitive functions provided in pue LISP. Existing LISP
systems provide many functions in libraries. It is not unusua Such libraries
may contain as many as 1000 functions.

QUOTE is the identity function. It returns its (single) argument as its value.
This function is needed because aname represents a value stored in a loca-
tion. To refer to the value, we use the name itself; to refer to the name, we use
the identity function. Many versions of LISP use ‘A instead of the verbose
QUOTE A. We will follow this scheme.

The QUOTE function all ows its argument to be treated as a constant. Thus, 'A
in LISPisanalogowsto "A" in conventional languages.

Examples

(QUOTEA)="'A=A

(QUOTE(ABC))='(ABC)=(ABC)
There ae several useful functions for list manipulations. CAR and CDR are
seledion operations, and CONS isastructuring operation. CAR returnsthe first
element of alist (likehdin ML); CDR returns alist containing all elements of
alist except thefirst (liketl in ML); CONS adds an element asthe first element
of alist (like:: in ML). For example

(CAR'(ABC)=A
The agument needs to be “quated,” because the rule in LISP is that a func-
tionis applied to the value of its arguments. In ou case the evaluation d the
argument yields the list (A B C), which is operated on by CAR. If QUOTE were
missng, an attempt would be made to evaluate (A B C), which would result in
using A as afunction ogerating onargumentsB and C. If A isnaot apreviously
defined function, thiswould result in an error.
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Other examples:

(CDR'(ABC))=(BC)

(CDR'(A)) = () =NIL

(CONS'A'(B C)) =(ABC)

(CONS'(ABC)'(ABC)=(ABC)ABC)
A few predicates are aso available. A true value is denated bythe atom T and
afalsevalue by NIL.

ATOM testsits argument to seeif it isan atom. NULL, asin ML, returnstrue if
itsargument is NIL. EQ compares its two arguments, which must be atoms, for

equality.
Examples:

(ATOM (A) =T

(ATOM ('(A))) = NIL

(EQ(A)(A) =T

(EQ(‘A) ('B)) = NIL _ _
The function COND serves the purpose of if-then-else expressons. It takes as
arguments a number of (predicate, expresson) pairs. The expresson in the

first pair (in left to right order) whaose predicate is true is the value of COND.
Example:

(COND ((ATOM '(A))) 'B) (T'A) = A
Thefirst condtionisfalse because (A) isnot an atom. The secondcondtionis

identically true. The conD function, knawvn as the McCarthy condtional, is
the major building dock for user-defined functions.

Function definitionis based onlambda expresgons. The function

A XY X+Y
iswrittenin LISP as

(LAMBDA (X Y) (PLUSX Y))
Function appli cation also follows lambda expressons.

((LAMBDA (X Y) (PLUSX Y)) 2 3)
binds X and Y to 2 and 3, respedively, and applies PLUS yielding 5.

The binding d a name to a function is dore by the function DEFINE, which
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makes the function rame known gobally. Ancther function, LABEL, isused if
we want to define the functionto be known orly locally.

(DEFINE (ADD (LAMBDA (X Y) (PLUS X Y))))
Now, the @om ADD can be used in place of the function abowe, that is, the

atom ADD has avauethat isafunction.

The aility to name afunctionis especialy useful in defining recursive func-
tions. For example, we @an define afunction REVERSE to reverse the elements
of alist:

(DEFINE (REVERSE (LAMBDA (L)
(REV NIL L))))
(DEFINE (REV (LAMBDA (OUT IN)
(COND ((NULL IN) OUT)
(T (REV (CONS (CAR IN) OUT) (CDR IN))))))

The REVERSE function calls a subsidiary function REV that works by picking
the first element of alist and calling REV onthe rest of thelist.

The use of DEFINE is one of two waysin pue LISP that an atom can be bound
to avalue. The other isthroughfunction application, at which time the param-
eters are boundto the arguments. The conventional assgnment is not present.

The variables in pue LISP are more like the variables in mathematics than
those in ather languages. In particular, variables may na be modified: they
can be boundto a value and they retain that value throughou a given scope
(i.e., function applicdion); and at any moment, there is only at most one
aacesspath to each variable.

7.4.2.3 Functional forms

Function compasition was the only technique for combining functions pro-
vided by aigina LISP. For example, the “to_the fourth” function d Sedion
7.2can be defined in LISPas

(LAMBDA(X) (SQUARE (SQUARE X)))
(We asume SQUARE has been defined.) All current LISP systems, however,

offer a functional form, called MAPCAR, which suppats the application d a
functionto every element of alist. For example

(MAPCAR TOTHEFOURTH L)
raises every element of thelist L to the fourth power.
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Rather than provide many functional forms, the dhoice in LISP has been to
supply alarge number of primitive functionsin the library.

7.4.2.4 LISP semantics

One of the most remarkable points abou LISP is the simplicity and elegance
of its smantics. In less than ore page, McCarthy was able to describe the
entire semantics of LISP by gving an interpreter for LISP written in LISP
itself. Theinterpreter iscalled eval.

7.4.3APL

APL was designed by Kenneth Iverson at Harvard University during the late
195G and early 196G. Even thoughAPL relies heavily on the assgnment
operation, its expressions are highly applicative. We will only look at these
features here to see the use of functional features in a statement-oriented lan-

guage.

7.4.3.1 Objects

The objects suppated by APL are scalars, which can be numeric or charader,
and arrays of any dmension. An array is written as sequence of space-sepa-
rated elements of the array. Numeric 0 and 1 may be interpreted as bodean
values. APL provides arich set of functions and a few higher-order functions
for defining new functions.

The asgnment operation () isused to bind valuesto variables. On assgn-
ment, the variable takes on the type of the value being assgned to it. For
example, in the following, the variable X takes on an integer, a character, and
an array, in successve statements:

X < 123;
X b,
X « 56789;
The assgnment is an operation that produces a value. Therefore, asin C, it

may be used in expresgons.

X (Y «56789)%x(Z~99765);
WeY-2Z;
will set thevalueof Y t056789,2t0997 65, andw to -4-302 4.
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7.4.3.2 Functions

In contrast to pure LISP, APL provides alarge number of primitive functions
(called operationsin APL termindogy). An operationis either monadic (tak-
ing ore parameter) or dyadic (taking two parameters).

All operations that are gplicable to scalars also dstribute over arrays. Thus,
A x B resultsin multiplying A andB. If A andB are both scalars, then the result
isascdar. If they are bath arrays and d the same size, it is element-by-ele-
ment multiplication. If oneis a scaar and the other an array, the result is the
multiplication d every element of the aray by the scalar. Anything else is
undefined.

The usua arithmetic operations, +, -, X, +, | (residue), and the usual bodean
and relational operation, [, O, ~, <, <, =, >, 2, #, are provided. APL uses a
number of arithmetic symbals and requires a specia keyboard.

There are anumber of useful operations for manipulating arrays. The opera-
tion “1” is a“generator” (or constructor, using ML terminology) and can be
used to produce a vector of integers. For example, 15 produces

12345
The operation”;” concatenates two arrays. So i4; i5 resultsin

123412345

The operation “p” uses its left operands as dimensions to form an array from
the data given asits right operands. For example:

22p12345{12}
34

and

The compress operation “/” takes two arguments of the same dimensions and
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23 pl23456= 123
456

seleds elements of its right-hand argument, depending onwhether the corre-
sponding left-hand argument is a (bodean) 1 o 0. For example

1001/14=14
The left argument may consist of bodean expressons. For example

A<B B<C C<D/ X
will pick certain values from X, depending onthe comparisons on the left. X
must be a three-element vector in this case.

There are many ather primitive operations in APL. They can be regarded as
mathematicd functions because they operate on operands and produce val-
ues. User-defined functions are simil ar to the primitive functions in that they
also are either monadic or dyadic (niladic functions correspondto subrou
tines). They are used in infix natation and thus can be used in expressons, in
the same way as built-in functions can.

7.4.3.3 Functional Forms

As we have seen, functional forms give the programmer the ability to con-
struct new functions. APL provides three functional forms (operator in the
APL termindogy) that may be used uniformly to combine the many bult-in
functions of APL. The functional forms are particularly useful for mathemati-
cd manipulations. They functional forms are:

a. The reduction operator “/” (same symbol as compress). For example, the sum of the
elements of the vedor A isgiven by +/A. Contrasting this with adding the dements of
avedor in an imperative language shows that the iteration and step-by-step computa-
tion are handled by the functional form. If the right operand of “/” is a matrix, the re-
duction operation applies to successive rows, that is, if A isthe matrix

12

34

then +/A is

3

7
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which is represented as 3 7. In general, a reduction applied to an n-dimensional array
resultsin an (n -1) dimensional array.
b. The inner product operator “.” takes two primitive binary operations as arguments
and produces abinary operation as result. The operands of the resulting operation must
be araysthat “conform” in size. For example, if they are matrices, the number of rows
of the left operand must be the same & the number of columns of the right operand; the
result will be amatrix with as many rows as the left operand and as many columns as
the right operand. If f and g are two primitive binary functions, the dfed of A f.gB is
to apply g, element by element, to the corresponding rows of A and columns of B (i.e.,
first row of A with first column of B, and so on). Thisisfollowed by an f reduction (/f)
onthe resulting vedor.
As an example of the power of inner product in building gperations, matrix multi plica:
tion can be acomplished by: +.x. This time, the functional form acemplishes the
equivalent of two nested loops necessary in a procedural way to do the same job.
¢. The third functional form of APL isthe outer product “°”, which takes one primitive
operation as operand and resultsin a binary. The operation o.f applied to arrays A and
B (i.e., A °.f B) has the dfed of applying f between eat element of A and every ele-
ment of B. For example, if A has the value (1 2 3) and B has the value (5 6 7 8), the
result of A °.x B isthe matrix

5 6 78

10 12 14 16

1518 2124

The dfed can be seen asforming amatrix with the rowslabeled with elements of A and

columns labeled with elements of B. The entries of the matrix are the result of applying

the operation to the row and column labels. So the &ove matrix was derived from

5 6 7 8

5 6 7 8

10 12 14 16

15 1821 24

The outer product finds many applicationsin data processing when producing tables of

interest rates, taxes, and so on. It has other uses as well. As an example, to find which

elements of A occur in B, A°.= B provides a map of boolean values, with a1 in the po-

sition where an element of A equals an element of B.

The many operations of APL and its functional forms suppat an expresson-

oriented style of programming that reduces the reliance of loops and compu-
tation d intermediate values. Instead of loops, the functional forms are used
to buld powerful operations that hide the internal details of the functions,
which may in fact be accomplished usingloops.

WN P~ X

7.4.3.4 An APL Program

As an example of the power of functional programming, in this sction we
will look at how we may derive an APL program to compute prime numbers
in the range 1 to N. Despite the limited expaosure to APL provided in this sc-
tion, we have seen enoughto construct the desired program.

The style of programming emphasizes exploiting arrays and expressons
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rather than scalars, assgnments, and iteration. Because of the aray orienta-
tion d APL, we plan to produce avector of prime numbers. We an start with
avector of numbersin the range 1 to N and compressit, using the compress
operator, to remove the nonprimes. In ather words, our task isto find the vec-
tor of bodean expressonsin the following APL program:

vedor of boolean expressions/ IN
We @n start with the definition of a prime number: a number that isdivisible

only by 1 and itself. So, for each number in the range of interest, 1to N, we
can (a) divideit by al the numbersin therange and (b) seled thase which are
divisible only by two numbers.

Step (a) can be dore with the residue operation and an outer product:

(IN)°.|(1N)
The result of this operation will be avector of remainders. We ae interested

in whether the remainder isequal to O

0=(N)°.|(IN)
Now we have a bodean two-dimensional matrix indicating whether the num-
berswere divisible (1) or nat (0).

In step (b), we want to see how many times the number was divisible, that is,
the number of 1'sin each row:

+/[2] 0= (IN) °.| (IN)
But we are only interested in thase rows that have exactly two 15.

2=(+[2] 0= (IN) °.| (IN))
The result is a bodean vector indicaing whether the index is a prime (1) or
nat (0). Thisis the desired vedor of bodean expressons. To get the actual
prime numbers, we apply compresson:

(2= (+/[2] 0= (IN) °.| (IN))) / IN
The esence of this solution is that it builds siccessvely more complex
expressions from simpler ones. We may compose parts easily because the
parts do nd interfere with ore ancther. Ladk of interference is due to the lack
of side-effectsin the expressions that we have built Thisisindeed the promise
of functional programming: functions are gpropriate buil ding docks for pro-
gram compasition.
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7.5 Functional programmingin C++

In this chapter, we have studied the style of functional programming as sup-
ported by languages designed to suppat this gyle of programming. It isinter-
esting to ask to what degree traditional programming languages can suppat
functional programming techniques. It turns out that the combination o
classes, operator overloading, and templates in C++ provides a surprisingly
powerful and flexible suppat for programming with functions. In this sc-
tion, we explore these issues.

7.5.1Functions as objects

A C++ dass encapsulates an object with a set of operations. We may even
overload existing operators to support the newly defined oljed. One of the
operator we can owerload is the application operator, i.e. parentheses. This
can bedore by afunction definition d the form: operator()(parameters..){..}. We
can use this facility to define an olject that may be applied, that is, an dbject
that behaveslike afunction. The dass Translate whase outlineis shown in Fig-
ure 88 is such an dbject. We call such oljeds function a functional object.

They are defined as objects but they behave & functions.
...definitions of types word and dictionary
class Trandate {
private: ...,
public:
word operator()(dictionary& dict, word w)

/I look upword w in dictionary dict
/I and return result

}
}

FIGURE 88.0utline of afunctionobjed in C++

We may declare and wse the object Trangdate in this way:

Translate Trandlator(); //construct a Translate objed
cout << Translate(EnglishGermanDict, “university”);
which would presumably print “universitaet”, if the dictionary is correct.

The aility to define such objects means that we have aready achieved the
major element of functional programming: we @n construct values of type
function in such a way that we can assgn them to variables, passthem as
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arguments, and return them as resullt.

7.5.2Functional forms

Another mgjor element of functional programming is the aility to define
functions by compaosing aher functions. The use of such high-order functions
is sverdly limited in conventional languages and they are indeed ore of the
distingushing characteristics of functional languages.

It turns out, however, that with the use of templates in C++, we can simulate
high-order functions to a high degree. First, we can use function objects as
closures and kind some of their parameters. For example, we can modify the
classdefinition o Figure 88 to add a wnstructor that accepts the dictionary to
be used in lookup.By constructing a trandator object this way, we bind the
dictionary and produce afunction olject that works only with that dictionary.
The new classdefinition and its use are shown in Figure 89. A closure is a
function with some of its free variables bound.In this example, the function
applicaion operator () uses d as a bound \ariable. We use a constructor to
bind this free variable. We can hind it to dfferent valuesin dfferent instanti-
ations of the object. The diff erence between partial instantiationin thisway in
C++ and the general use of closures in functional languages is that here we
can orly bind a particular set of variables that are the parameters in the con-
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structor of the object.

...definitions of types word and dictionary
class Trandate {
private:

dictionary D; //locd dictionary
public:

Translate(dictionary& d)

{D=d}
word operator()(word w)

/I 1ook upword w in dictionary D
/I and return result

}
}

/[construct a German to English transl ator

Translate GermanToEngli sh (GermanEnglishDictionary);
/[construct a German to English trandlator

Translate EnglishToltalian (EnglishlitalianDictionary);

Ec.)ut << EnglishToltalian (GermanToEngli sh(“ universitad”));

FIGURE 89.0utline of a partialy instantiated function object in C++

The 1995ANSI propacsal for the C++ standard library contains a number of
function oljects and associated templates to suppat afunctional style of pro-
gramming. For example, it includes a predicate function ohect greaer which
takes two arguments and returns a boolean value indicating whether the first
argument is greater than the seaond. We can use such function oljects, for
example, as a parameter to a sort routine to control the sorting order. We won-
struct the function oljed in thisway: greater<int>() or less<int>().

The library aso includes a higher-order function find_if, which seaches a
sequence for the first element that satisfies a given predicate. This find _if
takes three aguments, the first two indicate the beginning and end d the
sequence and the third is the predicae to be used. Find_if uses the iterators
that we discussed in Chapter 5. Therefore, it is generic and can search arrays,
lists, and any ather linear sequencethat provides a pointer-li ke iterator object.
Here, we will use arays for smplicity. To seach the first 10 elements of
array afor an element that is greaer than 0, we may use something like the
foll owing statement:
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int* p=find_if (a, at+10, "...positive..." ); //not right******

What function can we use to chedk for positiveness? We need to check that
something is greater than 0. Given template function oljeds such as greaer,
we @n buld new functions by binding some of their parameters. The library
provides binder templates for this purpose. There is a binder for binding the
first argument of a template function ojed and a binder for binding the sec-
ond argument. For example, we might build a predicate function paitive
from the function olject greater by binding its scond argument to 0 in the
following way:

bind2nd<int>(greaer<int>, 0)
Thelibrary aso provides the usual high-order functions such as reduce, accu-
mulate, and so on for sequences. The combination d the high level of
genericity for sequences and the template function ohects to a great degree
enable the adoption of afunctional style of programmingin C++.

7.5.3Typeinference

The template facility of C++ provides a surprising amount of type inference.
For example, consider the paymorphic max function gven in Figure 90.

First, the type of the arguments is Smply stated to be of some class T. The
template <class T>
Tmax (Tx, Ty)
{if (x>y) return x;
elsereturn y;,
}

FIGURE 90.A C++ generic max function

C++ compil er accepts such adefinition as a paymorphic function parameter-
ized by type T. We have seen that the ML type inferencing scheme rejects
such a function because it canna infer the type of the operator > used in the
function definition. It forces the programmer to state whether T isint or float.
C++, onthe other hand, patpones the type inferencing to template instantia-
tion time. Only when max is applied, for example in an expression ...max(a, b),
does C++ do the required type cheding. This s£heme all ows C++ to accept
such highly generic functions and still do static type chedking. At function
definition time, C++ notes the fad that the function is parametric based on
type T which requires an operation > and assgnment (to be able to be passed
and returned as arguments). At instantiation time, it checks that the actual
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parameters stisfy the type requirements.

We have dready contrasted the C++ polymorphic functions with thase of ML
in terms of type inference. It isalso instructive to compare them with those of
Ada. Inthe definition d apolymorphic function based onatype parameter T,
neither C++, na ML require the programmer to state the requirements on
type T explicitly: they infer them from the text of the function definition. For
example, bah dscover that type must suppat the > operation. ML rejectsthe
function definition kecause of this requirement and C++ acceptsit. In Ada, in
contrast, the specification d the function must state explicitly that they type T
must suppat the operation>. Thisisintended to all ow the function specifica-
tion to be compiled withou the body d the function. Both ML and Ada
accord special treatment to the essgnment and equality operators. Adarefers
to types that suppat these two operations as private and ML infers a type
that uses the equality operator as not just any type but an equality type. Each
language tries with its decisions to balance the inter-related requirements of
strong typing, ability to describe highly generic functions, writability and
readabil ity.

7.6 Summary

In this chapter, we have examined the concepts and style of functional pro-
gramming and some of the programming languages that suppat them. The
key ideain functional programmingisto treat functions as values. Functional
programming has some of the degance and aher advantages of mathematical
functions and therefore, it is easier to prove properties about functional pro-
grams than abou iterative programs. On the other hand, kecause of its reli-
ance on mathematics rather than computer architecture as a basis, it is more
difficult to achieve efficient executionin functional programs.

Modern functional languages have adoped a number of fedures such as
strongtyping and moduarity that have been found weful in conventional lan-
guages. In turn, conventional languages such as C++ and Ada have aloped
some functional programming ideas that make it easier to treat functions as
objects.

7.7 Bibliographic notes

Even thoughwork onfunctional programming dates back to the 193Gs, inter-
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est in functional programming was farked by the Turing award lecture of
John Backug[Badkus 76]. In this paper, the inventor of FORTRAN argued
that imperative programming smply could na suppat programming large
systems and the mathematicadly-based functional programming hed a much
better chance. He introduced a family of functional programming languages
cdled FP as a andidate language. References to Miranda, Hope, Scheme,
...Haskell is an attempt to standardize the functional programming syntax.
The paper by Hudack is an excellent tredise on functional programming lan-
guages. The document by Bob Harper, available on the net, is an excellent
introductionto ML andisthe source of several examplesin this chapter.

7.8 Exercises

1. Reduce the lambda expression [y/x]((A y.X)(A X.X)X).

2. Reduce the lambda expresson (A Xx.(X X))(Ax.(x X)). What is peauliar about this
expresson?

3. What is the type of this ML function:
funf(x, y) =if hd(x) = hd(y)

then f(tl(x), tI(y))
elsefalse;

4, Write an ML function to merge two lists.

5. Write an ML function to doa sortmergeonalist.

6. Explain why the ML function bigger gives atype eror:
funbigger(x, y) =if x>y thenx elsey;

7. Write afunctionin ML to compute the distance between two points, represented by (X, y)
coordinates. Next, based on this function, define anew function to compute the distance
of its sngle agument from the origin.

8. Define the two functions of Exercise 7 in C++.

9. In C++, we can use afunction template to write afunction bigger similar to the one in
Exercise 6. Why does this program not cause atype eror at compil e-time?
template<classN>
int bigger(N x, Ny)

{if (x>y) return x; returny;}
Use Exercises 6 and 7to compare the type inference support in C++ and ML in terms of
flexibility, generality, and power.
10. Write the identify function of Sedion 7.4.1.5 in C++ (using templates).

11. Define asignature for the Stadk of Figure 86 which exports only creae and push. Is it
useful to have asignature that does not export crege?

12. In this chapter, we have seen the use of partially instantiated functions in both C++ and
functional programming languages. In Chapter 4, we saw the use of default values for
function parameters. |n what senseisthe use of such default values smil ar to constructing
a dosure and in what waysisit different?
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L ogic and rule-based
languages

C HAPTER 8

This chapter presents a nonconventional classof langueges. logic and rule-
based languages. Such languages are different from procedural and functional
languages nat only in their conceptua founditions, bu also in the program-
ming style (or paradigm) they suppat. Programmers are more involved in
describing the problem in a declarative fashion, then in defining cetails of
algorithms to provide asolution. Thus, programs are more similar to specifi-
caions than to implementations in any conventional programming language.
It is not surprising, as a ansequence, that such languages are more demand-
ing d computational resources than conventional languages.

8.1 The"what" versus" how" dilemma: specification versus
implementation

A software development processcan be viewed abstractly as a sequence of
phases through which system descriptions progressvely become more and
more detailed. Starting from a software requirements edfication, which
emphasizes what the the system is suppcsed to do,the descriptionis progres-
sively refined into a procedural and executable description, which describes
how the problem acually is solved medianicdly. Intermediate steps are often
standardized within software development organizations, and suitable nota-
tions are used to describe their outcomes (software artifacts). Typicaly, a
design pheseis gecified to accur after requirements gedfication and kefore
implementation, and suitable software design ndations are provided to dacu-
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ment the resulting software achitecture. Thus the "what" stated in the
requirements is transformed into the "how" stated in the design dacument,
i.e., the design specification can be viewed as an abstract implementation o
the requirements specification. In turn, this can be viewed as the specification
for the subsequent implementation step, which takes the design specification
andturnsit into arunnng program.

In their evolution, programming languages have become increasingly higher
level. For example, alanguage like Ada, Eiffel, and C++ can be used in the
design stage as a design specification language to describe the moduar struc-
ture of the software and modueinterfacesin aprecise and urambiguouws way,
even thoughthe internals of the modue (i.e., private data structures and algo-
rithms) are yet to be defined. Such languages, in fact, all ow the modu e spec-
ification (its interface) to be given and even compiled separately from the
modu e implementation. The specificaion describes "what" the modue does
by describing the resources that it makes visible externally to ather modues,
the implementation describes "how" the internaly declared data strucures and
algorithms accompli sh the spedfied tasks.

All of the stated steps of the process that lead from the initial requirements
spedfication dovn to an implementation can be guided by suitable systematic
methods. They canna be dore aitomaticdly, howvever: they require engi-
neaing skills and creativity by the programmer, whose resporsibility is to
map-translate—requirements into executable (usually, procedural) descrip-
tions. This mapping process is time-consuming, expensive, and error-prone
adivities.

An obwvous attempt to solve the above problem is to investigate the passhbil -
ity of making specifications directly executable, thus avoiding the translation
step from the specification into the implementation. Logic programming tries
to doexactly that. Inits simplest (andideal) terms, we can describe logic pro-
gramming in the following way: A programmer ssimply declares the proper-
ties that describe the problem to be solved. The problem descriptionis used
by the system to solve the problem (infer a solution). To dencte its distinctive
cgpabilities, the run-time machine that can execute alogic language is often
cdled an inference engine.

In logic programming, problem descriptions are given in alogica formalism,
based on first-order predicate calculus. The theories that can be used to
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describe and analyze logic languages formally are thus naturally rooted into
mathematicd logic. Our presentation, havever, will avoid delving into deep
mathematicd concepts, and will mostly remain at the same level in which
more cnventional languages were studied.

The aowe informa introduction and motivations point out why logic pro-
gramming is often said to suppat a declarative programming paradigm. As
we will show, however, existing logic languages, such as PROLOG, match
this description orly partially. To make the dficiency of the program execu-
tion acceptable, a number of compromises are made which dilute the purity of
the declarative approad. Efficiency iswues aff ect the way programs are writ-
ten; that is, the programmer is concerned with more than just the specification
of what the program is suppased to do.In addition, nondclarative language
features are dso provided, which may be viewed as directions provided by
the programmer to the inference engine. These features in general reduce the
clarity of program descriptions.

8.1.1A first example

In order to distingush between specification and implementation, and to
introduce logic programming, let us gedfy the effect of searching for an ele-
ment x inalist L of elements. We introduce apredicateis in (x, L) which istrue
whenever x isinthelist L. The predicate is described using a self-explaining
hypahetical logic language, where operator "+" denotes the mncatenation o
two lists and operator [ ] transforms an element into a list containing it and
"iff"* isthe conventional abbreviationfor "if and ony if.".

for all elementsx and listsL: is in(x, L) iff
L =1[x]
or
L=L1leL2and
(isin(x,L1) oris_in(x, L2)
The @owe specification describes a binary search in a declarative fashion.
The dementisinthelist if thelist consists exactly of that element. Otherwise,
we can consider the list as decompaosed into a left sublist and a right sublist,
whose oncatenation yieldsthe original list. The dementisinthelis, if itis
in either sublist.

Let us now proceed to an implementation d the above specification. Besides
other details, an implementation d the above spedfication must decide
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» how to split alist into aright and a left sublist. An obvious choiceisto split it into two
sublists of either the same length, or such that they differ by at most one;

 how to store the dementsin the list. An obvious choiceis to keep the list sorted, so that
one can dedde whether to search the left or the right sublist and avoid seaching both;

* how to speed up the search. Instead of waiting until asingleton list isobtained viarepeaed
splitting, the dgorithm can ched the dement that separates the two sublists. If the
separator equalsthe desired element, the search can stop. Otherwise, it proceals to chedk
either in the right or in the left sublist generated by the splitting, depending on the value
of the separator.

A paosshble C++ implementation d the spedficationis siown in Figure 91 By
looking carefully at both the logic specification and the C++ implementation,
one @an appreciate the differences between the two in terms of ease of writ-
ing, unckrstandability, and self-confidence in the correctness of the descrip-
tion with respect to the initial problem.

Instead of transforming the specification into an implementation, ore might
wonder whether the specification can be directly executed, o used as a start-
ing pant for astraightforward derivation process yielding an implementation.
To doso, we @n read the above declarative specification proceduraly asfol-
lows:

Given an element x and alist L, in order to provethat x isin L, proceed as follows
(1) provethat L is[X];
(2) otherwise split L into L1 « L2 and prove one of the foll owing:
(2.1) xisinL1, or
(2.2) xisinL2
A blind mechanical executor which foll ows the procedure can be quite ineffi-
cient, especialy if compared to the C++ program. This is not surprising.
Direct exeautionis lessefficient than execution d an implementationin atra-
ditional procedural language, bu thisis the obvious price we pay for the sav-

ingsin programming eff ort.
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int binary_search (const int val, size, const int array[ ]) {
I/ return the index of the desired value va, if it is there
I/ otherwise return -1
if szed 0{
return (-1);

int high = size // the portion of array to seachis
int low =0; I/ low. .high-1

for (53){
int mid = (high + low) / 2;
if (mid =low) {

/I seachisfinished
return (test '= array [low]) ?-1: mid;

}
if (test < array [mid]) {
high = mid;

}

elseif (test > array [mid]) {
low = mid;

ese{
return mid;

}
}
}

FIGURE 91. A C++ implementation o binary search

8.1.2Another example

Suppcse we wish to provide alogical spedfication d sorting alist of integers
in ascending ader. Our goal isthusto describe apredicae sort (X, Y) whichis
true if the norempty list v is the sorted image of list X. The description o
such a predicate can be provided top-down by introducing two lower-level
predicates permutation (X, Y), which is true if list Y is a permutation o list X,
andis sorted (Y), which istrueif list Y is sorted. We can in fact write

for al integer lists X, Y: sort (X, Y) iff
permutation (X, Y) and sorted (Y)
In order to describe predicae sorted, let us assume that our logic notation pro-
videsthe nation d an indexable sequence of integers (we use subscriptsin the

range 1. length (X) for this purpose):

sorted (Y) iff forall j suchthat 1 8j <length (Y), Y; 8 Y41
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In order to describe predicate permutation (X, Y), we asume that the foll owing
built-in predicates are avail able for lists (of integers):

* is_ empty (X), whichistrueif list X is empty;
» has heal (X, Y),whichistrueif theinteger Y isthefirst element in the (nonempty) list X;
* has tail (X, Y), whichistrueif Y isthelist obtained by deleting the first element of the
(nonempty) list X;
« delete(X, Y, 2), whichistrueif list Z is the result of deleting an occurrence of
element X from list Y
Predicate permutation (X, Y) can thus be specified as foll ows:

permutation (X, Y) iff
is_ empty (X) and is_empty (Y)
or else
has heal (Y, Y1) and has tail (Y, Y2) and delete (Y1, X, X2) and permutation (X2,
Y2)
(Thelogical conrective or else has the following intuitive meaning: A or else B

means A or ((not A) and B).)

The declarative specificaion can be read procedurally as foll ows, assuming
that two lists X and Y are given:

Giventwointeger lists X and Y, in arder to prove that the sort operation applied to X yields
Y, provethat Y isapermutation d X and provethat Y is sorted.

In order to prove that Y isapermutation of X, proceel as follows
(1) provethat both are empty;
(2) otherwise, eliminate the first element of Y from both X and Y, thus
producing X2 and Y 2, and prove that Y 2 is a permutation of X2.

In order to provethat Y is rted, prove that each element isless than the one
that followsiit.
The declarative specification can also be read as ad constructive recursive

procedure. Assume that X isagiven list and its rted image Y is to be pro-
vided as aresult:

Given an integer list X, construct its permutations and prove that one such permutation Y
existsthat is orted.

In order to construct Y, apermutation of X, proced as follows
(1) Y isthe empty list if X isan empty list;
(2) otherwise, Y is constructed as alist whose heal is an element X1
of X and whosetail Y2 is constructed as foll ows.
(2.1) delete X1 from X, thus obtaining the list X2;
(2.2) Y2 isconstructed as a permutation of X2
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This example cnfirms that a direct implementation d the specificdion,
accordingto its procedural interpretation, can be quite inefficient. In fact, one
might need to generate dl permutations of a given list, before generating the
one which is srted. All different permutations can be generated because in
step (2) abowve there ae many ways of deleting an element X1 from X. Any
such way provides a different permutation, and all such dfferent permuta-
tions must be generated, urtil asorted oreisfinally found.

8.2 Principles of logic programming

To understand exadly how logic programs can be formulated and how they
can be executed, we need to define apossble reference syntax, and then base
onit a precise specification d semantics. This would allow some of the con-
cepts we used informally in Section 8.1(such as "procedural interpretation”)
to be stated rigorously. Thisis the intended pupaose of this sction. Specifi-
cdly, Section 8.2.1 povides the necessay backgrounddefinitions and proper-
tiesthat are needed to uncerstand hawv an interpreter of logic programs works.
The interpreter provides a rigorous definition the program’'s "procedural
interpretation”. Thisis analogows to SIMPLESEM for imperative programs.

8.2.1Preliminaries: facts, rules, queries, and deductions

Althoughthere are many syntactic ways of using logic for problem descrip-
tions, the field of logic programming hes converged on PROLOG, which is
based ona simple subset of the language of first-order logic. Hereafter we
will gradually introduce the natation used by PROLOG.

The basic syntactic constituent of a PROLOG program isaterm. A termisa
constant, a variable, or a compoundterm. A compoundterm is written as a
functor symbol followed by ore or more arguments, which are themselves
terms. A ground termis aterm that does not contain variables. Constants are
written as lower-case letter strings, representing atomic objects, or strings of
digits (representing numbers). Variables are written as drings starting with an
upper-case letter. Functor symbals are written as lower-case letter strings.

alpha --thisis a @mnstant
125 --thisisa constant
X --thisisavariable
abs (-10, 10 --thisis a ground compound term; abs is a functor

abs (suc (X), 5) --thisis a (nonground) compound term
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The constant [ ] stands for the empty list. Functor "." constructs alist out of an
element and a list; the element becomes the head of the constructed list. For
example, .(alpha, [ ]) is a list containing orly one @omic object, apha. An
equivaent syntadic variation, [apha, [ 1], iS aso provided. Ancther example
would be

.(15, .( toat, .(duck, donald)))
which can aso be represented as

[15, [toot, [duck, donald]]]
The natationis further smplified, byallowing the abowve list to be written as

[15, toot, duck, donald]
and also as

[15 | [toat, duck, donald]]
In general, the notation

[X]Y]
stands for the li st whose head element is X and whosetail listisy.

A predicate is represented by a compoundterm. For example

less _than (5, 99)
states the "lessthan” relationship between oljects 5 and 99.

PROLOG programs are written as a sequence of clauses. A clause is
expressed as ether a single predicate, called fact, or as a rule (called Horn
clause) of the form

conclusion :- condition

where :- stands for "if", conclusion is a single predicate, and condition is a @n-
junction d predicates, that is, a sequence of predicaes sparated bya comma,
which stands for the logica and. Facts can be viewed as rules withou a cond-
tion part (i.e., the condtionis aways true). Thus the term "rul€" will be used
to indicate both facts and rules, unessadistinction will be explicitly made. A
rule’s conclusionis also called the rule’'s head. Clauses are implicitly quanti-
fied universally. A PROLOG rule

conclusion :- condition
containing variable X1, X2, . . .,Xn would be represented in the standard nda-
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tion d mathematical logic as

0X1, X2, ..., Xn (condition O conclusion)
where [ isthe logical implication gperator. In aprocedural program, it would
be represented as

if condition then conclusion;
For example, the following program

length([],0). --thisisafact
length ([X | Y], N) :- length (Y, M), N=M + 1. --thisisarule
says that

« thelength of the null string is zero,

» foral X,Y,N,M,if M isthelength of listY andNisM + 1, then the length of anonnull
string with head X and tail Y is one more than the length of Y.

As ancther example, the sort problem of Section 8.1.2can be represented in
PROLOG asfollows:

sort (X, Y) :- permutation (X, Y), sorted (Y).

sorted ([ ]). --the empty list is sorted

sorted [X |[]].- - thesigleton listis sorted

sorted ([X |[Y | Z]]) :- X 8 Y and sorted (2).

permutation ([ 1, 1)-

permutation (X, [Y1]|Y2]) :- delete (Y1, X, X2), permutation (X2, Y2).

delete (A, [A | B], B).

delete (A, [B | C], [B |D]) :- A ! B, delete (A, C, D).
The examples we gave so far show implicitly that PROLOG is an urtyped
language. No type declarations are provided for variables. The value that is
dynamicdly boundto a variable determines the nature of the objed, and thus
the legality of the operations applied to it. For example, in the case of sort,
operators "l essthan™ and"nat equa” must be gplicableto the dements of the

list. For example, it might be alist of numbers, or alist of charaders.

Facts and rules are used to expressthe avail able knowledge on a particular
domain: they provide adeclarative specificaion. They are used to solve prob-
lems, specified as queries. A query can also be viewed as agoal that must be
proved.

From a logical viewpaint, the answer to a query is YES if the query can be
derived by applying deductions from the set of facts and rules. For example:
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2sort ([3,2, 7, 1], [1, 2, 3, 7]).
isaquery, to which the answer would be YES.

In order to uncerstand hav deductions are made from a logic program, we
need to provide some mathematical preliminaries. A substitution is a func-
tion, cefined as a (possbly empty) finite set of pairs of the form <xi, ti>,
where Xi isavariable andti isaterm, Xi ! Xj for all i, j with i !j and Xi does not
occur intj for al i, j. A substitution up may be extended to apply to terms; i.e.,
it isapplied to any of the variables appearingin aterm. The result of applying
a substitution p to term t1, p (t1), yields a term t2, which is sid to be an
instance of t1. A substitution may also be applied to arule; i.e., it isapplied to
all its comporent termsto produce an instance rule.

For example, the substitution

{<A, 3>, <B, beta (X, xyz>}
applied to term

func (A, B, C)
yields

func (3, beta (X, xyz), C)
The fundamental rule used in logic to make deductions is call ed modus pon-
ens. Such rule can be stated as follows, using the syntax of logic program-
ming:

from therule R:
P:-0Q1,Q2,...,0n

and the fads
F1,F2,...,Fn

we can deduce D asalogicd consequence

if D:-F1,F2,... Fnisaninstanceof R
If we submit a ground qury to a logic program, the answer to the query is
YES if the repeaed application d modus porens proves that the query is a
logical consequence of the program. Otherwise, if such deduction canna be
generated, the answer isfalse. For example, the answer to the query sorted ([1,
5, 33)) IS YES because the following deduction steps can be performed using
modus porens.

i1. sorted ([33] [ )
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i2. from the previous step, our knowledge that 5 6 3B, and from the rule sorted ([X | [Y |
Z]]) :- X0 Y and sorted (Z) we can deducesorted ([5 | [33 | [ ]I

i3. from the previous step, our knowledge that 1 & 5 and from sorted ([X | [Y | Z]]) :- X
0 Y and sorted (Z) we can deducesorted ([1 | [5 ] [33 | [1D, i.e, sorted ([1, 5, 33]).
PROLOG all ows existential queriesto be submitted. An existential queryisa

guery which contains a variable. For example,

?-sort ([5, 1, 33], X)
means "is there an X such that the sort of [5, 1, 33] gives X"? To accommodate
existential queries in the deduction process another rule, called existentiail
rule, is provided. The rule states that an existential query Q is a wnsequence
of an instance of it, u (Q), for any p. In the dove example, the answer would
be YES since

j1. sorted ([1, 5, 3]) can be proved by repeaed appli cation of modus ponens, as shown
above

j2. permutation ([5, 1, 33], [1, 5, 33]) can be proved in asimilar way

j3. fromjl andj2 we can deduce sort ([5, 1, 33], [1, 5, 33])

j4. from the existential rule, we can conclude that the answer to the query is YES.
Modus porens and the existential rule ae the mnceptual tod s inherited from

mathematicd logic that can be used to suppat deductive reasoning. But in
order to make logic specifications executable, we need to devise a practical
approach that is amenable to mechanicd exeaution: we need to interpret logic
programs procedurally.

Intuitively, the procedural interpretation of alogic program consists of view-
ing a query as a procedure all. A set of clauses for the same predicate, in
turn, can be viewed as a procedure definition, where each clause represents a
branch of a cae seledion. The basic computational step in logic program-
ming consists of selecting a @, identifying a procedure crrespondngto the
cdl, selecting the cae that matches the all, and generating rew queries, if
the matched caseisarule. Thisisin accordanceto the cmncepts of case anal-
ysisand pettern matching that were introduced in Chapter 4. For example, the
abowve query ?-sort ([5, 1, 33], X), which is matched by the sort rule, generates
the foll owing queries:

?-permutation ([3, 2, 7, 1], [1, 2, 3, 7]).
and

?-sorted ([1, 2, 3, 7]).
The procedure correspondng to the all described by the first of the above
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two queries has two cases:

permutation ([ 1, [ ).

permutation (X, [Y1]|YZ2]) :- delete (Y1, X, X2), permutation (X2, Y2).
To select the gppropriate Gase, aspecial kind d pattern matchingis performed
between the query and the head of the rule describing each case. Intuitively,
in ou example, the query does not match the first case, which is the rule for
empty lists. The match against the other rule’'shead bindsx to[3,2,7, 1], Y1to
1, Y2t0[2, 3, 7], and generates two further queries

delete (1, [3, 2, 7, 1], X2)
and

permutation (X2, [2, 3, 7])
Interpretation proceeds in much the same manner for each generated query,
until all queries are processed by the interpreter. The intuitive, yet informal,
treatment of the interpretation procedure described so far will be formally
described in the next sedion.

8.2.2An abstract interpretation algorithm

In this section we discussin detail how logic programs can be procedurally
interpreted by an abstrad processor. As we mentioned earlier, the abstract
processor must be able to take aquery as a goal to be proven, and match it
against facts and rule heads. The matching process which generalizes the
concept of procedure cdl, is a rather elaborate operation, caled unification,
which combines pattern matching and binding d variables.

Unification appliesto apair of termst1 (representing the goal to prove) and t2
(representing the fact or rule’ s head with which amatch istried). To defineit,
we need a few other background dfinitions. Term t1 is said to be more gen-
eral than t2if thereisasubstitution p such that t2 = u (t1), bu there is no substi-
tution v, such that t1 = v (t2). Otherwise, they are said to be variants, i.e., they
are equal upto arenaming d variables.

Two terms are said to unfy if a substitution can be foundthat makes the two
terms equal. Such a substitution is cdled a unifier. For example, the substitu-
tion

sl={<X,a, <Y, b> <Z, b>}
isaunifier for thetermsf (X, Y) andf (a ). A most general unifier isaunifier
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u such that u (t1) = u (t2) isthe most general instance of bath t1 andt2. It is easy
to prove that all most genera unifiers are variants. We will therefore speak of
"the" most general unifier (MGU), assuming that it is unique upto arenaming
of itsvariables. In the previous example, s1 isnot the MGU. In fad the substi-
tution

2 ={<X, &, <Y, W>, <Z, W>}
is more general than s1, and it is easy to redize that no unfier can be found
that is more general than s2.

MGUSs are computed by the unification algorithm shown in Figure 92. The
algorithm keepsthe set of pairs of termsto unfy in aworking set which isini-
tialized to contain the pair <t1, t2>.The dgorithm is written in a self-explain-
ing ndation. If the two terms given to the algorithm do nd unify, the
exception unificaion_fail israised.

The algorithm operates on two terms t1 and t2 and returns their MGU.
It raises an exception if the unification fails.
MGU ={};--MGU isthe empty set
WG ={<tl, t2>}; --working set initi ali zed
repeda
extrad apair <x1, x2> from WG;
case
» x1 and x2 are two identicd constants or variables:
do nothing
» xlisavariable that does not occur in x2:
substitute x2 for x1 in any pair of WG and in MGU,;
* X2 isavariable that does not occur in x1:
substitute x1 for x2 in any pair of WG and in MGU,;
ex1isf(yl,y2, ...yn),x2isf(z1, 22, ..., zn), andf isafunctor and nS1:
insert <yl, z1>, <y2, 72>, .. .,<yn, zn> into WG;
otherwise
raise unification_fail;
end cese;
until WG ={} --working set is empty

FIGURE 92.Unification algorithm

To ensure termination the unification algorithm does not attempt to unfy
such pairsas<f (.. X...), X>, in arder to enforcetermination. Thisis achieved
by the so-call ed occur check (seethe secondand third case in the repeat loop
of the dgorithm in Figure 92).
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We ae finally in a position to provide a precise meaning for "procedural
interpretation” by showing howv logic programs can be interpreted (Figure
93). The dgorithm assumes that whenever a unification is applied to a goal
and arule' s head all variables appeaing in the rule' s head are automaticdly
renamed with brand rew variable names. Remember that variables with the
same name gpearing in dfferent clauses of the logic language ae diff erent;
thisis obvious snce dauses areimplicitly universally quantified. The renam-
ing ensures that such variables are indeed treaed as different.

The dgorithm shown in Figure 93 is nondeterministic, i.e., it describes sv-
eral possble mmputationsfor agiven inpu goal. The goal is lved success
fully if there is a computation that stops with the answer YES. In such a case,
if the goal contains variables, when the interpreter stops, all variables are
boundto a groundterm. A computation may raise the exception fail, if the
attempt to solve agoal fails during the process It isaso passible that a com-
putation dces not terminate, i.e., the set of goals to be proven never becomes
empty.

In order to illustrate how the nondeterministic interpretation algorithms oper-
ates, consider the following example of a logic program, which describes a
binary relation (rel) and its closure (clos):

(1)  rel(ab).

(2)  rel(a0).

(3) re (b, f).

4 re (9.

(5) cos(X,Y):-rel (X,Y).

(6) cos(X,Y):-re (X, 2),clos(Z,Y).
Predicatere listsal object pairsthat constitute the relation. Pairs belongng to
the closure are specified by the reaursive predicate clos.
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Given a goal G submitted as a query to a logic program P, the algorithm answers
YES, and provides bindings for the variables appearing in G, or it answers NO
SG = {G}; --initidizethe set of goasto solve to G, the submitted query
reped
begin
extrad an element E from SG
andseled a (renamed) clause X :- X1, X2, ..., Xnfrom P (n = 0 for afaq)
such that <E, X> unifies with MGU ;
insert X1, X2, .. ., Xninto SG;
apply u to all elements of SG andto G;
exception
when wnificaion fail => exit;
end;
until SG = empty;
if SG = empty then
the answer is YES and G describes a solution
else
raise fail

FIGURE 93.A nondeterministic interpretation algorithm

Suppcse that the query

?-clos (a, f

is submit(ted) to the nonceterministic interpreter of Figure 93. Some of the
many passible different computation peths for the query are shown in Figure
94. Computation paths are described by showing hav goals are successvely
matched against facts or rule heads, and rew subgaals are generated after the
match. The goal chosen at each step for the match is shown in baold in the
computation path. Since dauses are numbered in the logic program, clause
numbers are shown in the omputation pathsto indicae the dause selected by
the unificaion agorithm.

By examining Figure 94, it is easy to uncerstand that in case (b) the computa-
tion solves the goal; cases (a) and (c) describe computations that fail because
of the wrong choices made to solve nondeterminism; case (d) describes a
norterminating computation where clause 6 is chaosen repeatedly in the unifi-
cdion procedure.

Let us try to understand the effect of the different choices that can be made
during the execution d the interpretation algorithm because of noncdetermin-
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ism. First, when agoal isbeing solved, it may be necessary to choose one out
of several clauses to attempt unificaion. It may happen that the choice we
make eventually results in a failure, while ancther choice would have led to
success. For example, in the case of computation (@) the choice of clause 5
instead of 6 for the first match leads to a failure. Second, when severa goals
can be selected from SG, there is a dhoice of which isto be solved first. For
example, when the goalsto be solved arerel(a, Z1), clos (21, f), computations (c)
and (d) make their selectionin adifferent order. In general, when we have to
choaose which o two gaals G1 and G2 is to be solved first, it can be shown
that if there is a succesful computation choasing G1 first, there is also a suc-
cesdul computation choasing G2 first. The choice can orly affed the effi-
ciency of seaching asolution. From now on,we will assume that whenever a
goal unifieswith arule’s hea, the (sub)goals corresponding to the righthand
side of the rule will be solved according to adeterministic palicy, from left to
right.
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clos(a f) clos (a, f) clos (a, f)
5 6 6
rel (a, f) rel (a, Z1), clos (Z1, f) rel (a, Z1), clos (Z1, f)
fail rel (a, b), clos (b, f) rel (a, ¢), clos(c, f)
S 6
@
rel (b, f) rel (c, Z2), clos (22, f)
5
YES rel (¢, Z2), rel (22, f)
(b) g
clos(a, ) fail ©

6

rel (a Z1), clos (21, f)
6

rel (a Z1), rel (Z1, Z2), clos (22, f)
6

rel (a Z1), rel (Z1, Z22),
rel (22, Z23), clos(Z3,f)

A
6* (d)

FIGURE 94.Different computations of the nondeterministic interpreter

Another way of viewing the behaviors of the nondeterministic interpreter of
Figure 94 is to view them as a tree of computations (call ed the search tree).
The acs exiting a node represent al possble clauses with which unfication
is performed. Figure 95 shows the search tree for the query clos (af).
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clos(a, f)
5 | 6
rel (a,f) rel (g Z1), clos (21, f)
an 1 2
rel (a b), clos (b, f) rel (a, c), clos (c, f)
S | | 6 clos(c, f)
rel (b, f) rel (b, Z1), clos (Z1, f)
3] 3 | 5 | | 6
YES clos (f, f) rel (c, f) rel (c, Z1), clos(Z1, f)
5 | 6 fail fail
rel (f, f) rel (f, Z1), clos (21, f)
4
fail clos(g, )
|
5 | | 6
r(TI (g, 1) rel (g, Z1), clos (21, f)
fail fail

FIGURE 95.Search treefor the query clos (a, f)

To implement the nondeterministic interpreter on a conventional processor, it
is necessary to define atraversal of the search tree according to some padlicy.
One posshility is to search all branches in paralel (breadth-first pdicy).
Another possbility is depth-first search, for example dways choasing the
first clause in the list for unification. In such a case, when the computation
fails aong one path, it is necessary to backtrack to a previously unexplored
choice, to find an alternative path. A breadth-first searching algorithm is said
to provide a complete proof procedure for logic programs: it guarantees that
if there is afinite proof of the goal, it will be found.In addition, the breadth-
first algorithm is said to provide asound proof procedure, since any answer
derived by the interpreter is a crrect answer to the query (i.e., it isalogical
consequencethat can be derived from the program via modus porens and the
existential rule). Completeness and soundress are indeed the most desired
properties of a proof procedure. Depth-first search is a sound pocedure; it is
nat complete, however, since the searching engine might enter a norterminat-
ing computation, which would prevent backtracking to attempt ancther path
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which might lead to the solution.

Conventional logic programming languages, such as PROLOG, follow a
depth-first search pdicy, as we will see in the next section. Severa experi-
mental languages have tried to improve the search method, by suppating
breadth-first seach via parallel execution d the different branches of the
seach tree.

Asafinal paint, let us discuss when the answer to aquery submitted to alogic
program can be NO. This can only occur if al computationsfor that query ter-
minate with a failure; i.e., the search tree is finite, and noleaf of the treeis
labelled YES. Similarly, a goal submitted as a query 2-not Q yields YES if Q
canna be proven from the given facts and rules. This happens if the search
tree is finite, and all computations correspondng to the different branches
fail. In ather terms, logic programs are based onthe mncept of negation as
failure. A commonway to describe negation byfailureisto say that logic lan-
guage interpreters work under the "closed world assumption”. That is, al the
knowledge possessed by the interpreter is explicitly listed in terms of facts
and rules of the program. For example, the answer to the query

?-rel (g, h)
would be NO, which means that "according to the aurrent knowledge
expressed bythe program it canna be proved that rel (g, h) hads".

8.3 PROLOG

PROLOG isthe most popuar example of alogic language. Its basic syntactic
features were introduced informally in Section 82. As we anticipated, PRO-
LOG solves problems by performing a depth-first traversal of the search tree.
Whenever agoal isto be solved, the list of clauses that constitutes a program
is searched from the top to the bottom. If unification succeeds, the subgas
correspondng to the terms in the righthand side of the selected rule (if any)
are solved next, in a predined left-to-right order. This particular way of oper-
ating makes the behavior of the interpreter quite sensitive to the way pro-
grams are written. In particular, the ordering of clauses and subgaals can
influence the way the interpreter works, although from a conceptual view-
point clauses are conrected bythe logical operator "or" and subgals are on-
neded by "and'. These conrectives do nd exhibit the expected
commutativity property.
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As an example, Figure 96 shows all possble permutations of terms for the
closure relation that was discussed in Section 82.2. It is easy to verify that
any query invalving predicae clos would generate anorterminating computa-
tionin case (4). Smilarly, aquery such as ?-clos (g, ¢) causes a norterminating
interpretation processin cases (2) and (4), whereas in (1) and (3) the inter-
preter would produce NO.

clos (X, Y) :-rel (X, Y). los (X, Y) :-rel (X, ).
(1) clos %x, Y; - rel %x, Z)), clos (Z, ). (2) &82 gx, Yg - E:(Iaoé (Z, %(), rel (X, 2).

los (X, Y) :-rel (X, Z), clos (Z, Y). | - cl I )
3) g|8§ EX, Yg - ﬁgl EX, Y)). clos ( ) (4) %ﬁi ?)(( \\((; - (r:e?s()gZ,Y\)(.), rel (%, 2)

FIGURE 96.Variations of a PROLOG program

PROLOG provides svera extra-logicd features, which cause its departure
from a pure logical language. The first fundamental departure is represented
by the cut primitive, written as 1", which can appear as a predicate in the con-
dition part of rules. The effect of the ait isto prune the search space by for-
bidding certain backtracking actions from occurring. Its motivation, d
course, isto improve efficiency of the search by reducing the search space. It
is the programmer’s resporsibility to ensure that such a reduction daes not
affed the result of the seach. The cut can be viewed asa gaal that never fails
and canna be resatisfied. That is, if during backtracking ore tries to resatisfy
it, the goal that was unified with the lefthand side of the rule fails.

In order to illustrate how the cut works, consider the foll owing rule:

A:-B,C! D,E
Suppcee that, after amatch between the rule’ shead andagoal A', subgasB,
C, and D (with suitably applied substitutions) have been solved successully.
If subgoal E fail s, the PROLOG interpreter backtracks and tries to solve D by
matching it to the next available rule’s head, if any, foundin scanning the
program clauses from the top down. If no successul match can be found,the
PROLOG interpreter would namally backtrack further, trying to find a new
solutionfor c, andthen B. Eventualy, if all thesefail, the match of A' with the
rule would fail and ancther rule or fact would be tried. The presence of the
cut, however, forbids the backtracking procedure from retrying c, then B, and
then a further aternative for the match with A': the aurrent goal A' would fall
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right away. In ather terms, the ait, viewed as a predicate, always succeeds,
and commits the PROLOG interpreter to all the dhoices made since the goal
A" was unified with the head of the rule in which the cut occurs.

Let us consider as examples the simple programs shown in Figure 97 (). The
program contains the relational predicate 8. Relational predicates (i.e., <, 8, =,
I, >, S) are such that when a goal, like A 8 B, isto be solved, bah operands A
and B must be boundto arithmetic expressons that can be evaluated (i.e., if
they contain variables, they must be boundto a value). The goal A 8 B suc-
ceedsif the result of evaluating A islessthan ar equal to the result of evaluat-
ingB. If nat, or if A and B canna be evaluated as arithmetic expressons, the
goal fails. The presence of the aut impliesthat if the first alternative is chosen
(i.e., X 8Y), the backtracking that may occur due to the failure in the proof of
some later goal will nat try to find another solution for max, because there is
no passibility for the secondalternative to be chasen.

Relational predicates represent another departure of PROLOG from logical
purity. In fact, for example, the evaluation d the following ga

?-0<X
which isread as

isthere apositive value for X?
does nat succeed by kinding X to an integer value greater than zero, as the
logica reading d the clause might suggest. It simply fails, since X in the
query is unbound,and the arithmetic expresson canna be evaluated. To
guard against such a situation, the programmer must ensure that variables are
boundif they are expected to participate in expresson evaluations.

max (X, Y, Y):-XaY,!. if then else(A,B,C):-A,!, B.
max (X, Y, X):-X>Y,! if_then else(A,B,C):-C.
@) (b)
FIGURE 97. Sample PROLOG fragments using cut

The fragment of Figure 97 (b) defines an if_then_else predicate. If clause A
describes a goal whaose proof succeeds, then gaal B isto be proved. If the exe-
cution fails to prove that A hdds, then C is to be proved. A possble use is
shown bythe following qery, where rel and clos have been introduced in Sec-
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tion 8.1.2and assuming that some dause exists in the program for goal g:

?-if_then _else(rel (a, X), retrad (rel (a, X)), g (X)).
The example shows ancther extralogical feature of PROLOG: retraa. Thisfea-
ture removes from the program the first clause that unifies with its argument.
Thus the effect of the query is to remove from the relation rel a pair whose
first element is a, if there is one. If the choice of executing retrad is made, it
canna be undore through tadktracking. Instead, if a pair whose first element
isadoes not exist, goal g issolved.

Theredproca effect of retraa is provided bythe extra-logical primitives assert
and asserta, which allow their argument to be added as a dause & the end o
the program or at the beginning, respectively. Thus retraad and assert allow
logic programs to be modified as the program is executed. They can be used,
for example, to add rew groundfacts to the program, to represent new knowl-
edge that is acquired as the program is running.

Ancther departure from logic is represented by the assgnment operator is,
illustrated by the PROLOG program of Figure 98, which defines the factorial
of anatural number. When the operator is encourtered duing the evaluation,
it must be possble to evaluate the expresson onits lefthand side (i.e., if the
expression contains variables, they must be boundto a value); otherwise the
evauationfails. If therighthandside variable isaso boundto avalue, then the
goal succeeds if the variable' s value is equal to the value of the expresson.
Otherwise, the evaluation succeeds and the lefthand side variable is boundto
the value of the expression. In the example, when the subgoal

FisN* F1
is encourtered in the evaluation, N and F1 must be boundto a value. For
example, suppase that N and F1 are boundto 4 and 6, respectively. If Fisaso
bound, the value boundto it must be equal to the value evaluated by the
expression (24, in the example). If F is not bound,it becomes boundto the
value of the expresson. You shoud examine the behavior of the PROLOG
interpreter for the following query:

?-fad (3, 6).
In the evaluation process bah previous cases arise.

As the &owe discusson ill ustrates, PROLOG variables behave differently
from variables of a mnventional procedural programming language. As in



411

functional languages, logic language variables can be boundto values, bu
oncethe binding is established, it canna be danged.

fad (0, 2).
fac(N, F) :- N >0, N1isN - 1, fact ( N1, F1), FisN * F1.

FIGURE 98 Fadorial in PROLOG

8.4 Functional programming versuslogic programming

The most striking dfference between functional and logic programming is
that programs in a pure functional programming language define functions,
whereas in pue logic programming they define relations. In a sense, logic
programming generalizes the goproach taken byrelational databases and their
langueges, like SQL. For example, consider the simple PROLOG program
shown in Figure 99, consisting d a sequence of facts. Indeed, a program of
this kind can be viewed as defining arelational table; in the example, a mini-
database of classca music compasers, which lists the composer’ s name, year
of birth, and year of death. (See the sidebar on relational database languages
andtheir relationto logic languages.)

In a function there is a dear distinction between the domain and the range.
Exeauting a program consists of providing a value in the domain, whose @r-
respondng value in the range is then evaluated. In arelation, thereisno pe-
defined ndaion of which is the inpu domain. In fact, al of these possble
queries can be submitted for the program of Figure 99:

?- composer (mozart, 1756, 2001).

?- composer (mozart, X, Y).

?- composer X, Y, 1901).

?- composer (X, Y, Z).
In the first case, a complete tuple is provided, and a check is performed that
the tuple exists in the database. In the second case, the name of the composer
is provided as the input information, and the birth and death years are evalu-
ated by the program. In the second case, we only provide the year of death,
and ask the program to evaluate the name and year of birth of a compaoser
whose year of deah isgiven asinpu vaue. In the fourth case, we &k the sys-
tem to provide the name, year of birth, and year of deah of a compaser listed
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in the database.

composer (monteverdi, 1567, 1643).
composer (badh, 1685, 1750).
composer (vivaldi, 1678, 1741).
composer (mozart, 1756, 1791).
composer (haydn, 1732, 1809).
composer (beethoven, 1770, 1827).
composer (schubert, 1797, 1828).
composer (schumann, 1810, 1856).
composer (brahms, 1833, 1897).
composer (verdi, 1813, 1901).
composer (debussy, 1862, 1918).

FIGURE 99.A PROLOG database

As most functional languages are nat purely functional, PROLOG is nat a
pure logic language. Consequently, it is not fully relational in the above
sense. In particular, the choice of the inpu domains of a query is not always
free. This may happen if the program contains relational predicates, assgn
ment predicates, or other extralogical features. For example the fadoria pro-
gram of Figure 98 canna be invoked as follows

?-fad (X, 6).
to find the integer whaose factorial is 6. The query would in fact fail, because
the extralogical predicateis fails. Similarly, the foll owing qery

?2- max (X,99, 99).
for the program fragment of Figure 97 dees not yield a vaue lessthan o
equal to 99, as the logical reading might suggest. It fails, since one of the
arguments in theinvocaion d & isnot boundto a value.

sidebar on Relational database languages

A relational database can be viewed as a table of records call ed tuples. This
form is quite similar to a logic program written as a sequence of ground
terms. For example, the logic program of Figure 99 can be represented in a
relational database @& a table (relation) COMPOSER with fields NAME,
BIRTH_YEAR, and DEATH_YEAR. The best known language for relational
databases is SQL. In SQL, retrieval of data from the relational database is
aacomplished bythe SELECT statement. Here ae two sample SQL queries:
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SELECT BIRTH_YEAR
FROM COMPOSER
WHERE NAME = "BEETHOVEN"
This query selects the field BIRTH_YEAR from a tuple in the relation com-

POSER such that the value of field NAME is BEETHOVEN.

The following query selects all tuples representing composers who were born
in the 19th century:

SELECT *
FROM COMPOSER .
WHERE BIRTH_YEAR S 1800 and BIRTH_YEAR ¢ 1899

It is easy to seethat the query language seleds information stored in the data-
base by specifying the logical (relational) properties that charaderize such
information. Nothing is said about how to access the information through
suitable scanning d the database. It is interesting to nde that earlier genera-
tions of database systems were imperative, requiring the user to state how to
find the desired tuples through penters and aher such mechanisms. The cur-
rent declarative approach is more oriented to the end-user who is not neces-
sarily acomputer programmer.

Logic and relational databases fit together quite nicely. In fad, extensions
have been proposed to relational databases that add PROLOG-like rules to
relational tables.

sidebar end***

8.5 Rule-based languages

Rule-based languages are common tods for developing expert systems. Intu-
itively, an expert system is a program that behaves like an expert in some
restricted application damain. Such a program is usually structured as a
knowledge base (KB), which comprises the knowledge that is specific to the
application damain, and an inference engine. Given the description d the
current situation (CS), often called the database, expressed as a set of facts,
the inference engine tries to match CS against the knowledge base to find the
rules that can be fired to derive new information to be stored in the database,
or to perform some adion.

An important classof expert system languages (call ed rule-based languages,
or production systems) uses the so-cdled production rules. Production rules
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are syntacticdly similar to PROLOG rules. Typica forms are:

if conditi on then adion
For example, the MY CIN system for medical consultation all ows rules of this
kindto be written:

if
description of symptom 1, and
description of symptom 2, and

décri ption of symptom n
then
thereis auggestive evidence (0.7) that the identity of the baderiumis. ..

The example shows that one can state the "degreeof certainty” of the conclu-
sion d arule. In genera, the adion part of a production rule can expressany
adion that can be described in the language, such as updating CS or sending
messages.

Suppaing that knowledge is represented using production rules, it is neces-
sary to provide areasoning procedure (inference engine) that can draw con-
clusions from the knowledge base and from a set of fads that represent the
current situation. For production rules there ae two basic ways of reasoning:

— forward chaining, and
— backward chaining.
Different rule-based languages provide either one of these methods or bath.

In order to uncerstand forward and beckward chaining, let usintroduce asim-
ple example described via production rules. The knowledge base provides a
model of asupervisory system that can bein two dfferent danger states, char-
aderized by levels 0 and 1, indicated by the state of severa switches and
lights:

if switch_1 onandswitch_2 on
then naify danger_level 0.
if switch_1 onandswitch_3 on
then assert problem_1.
if light_red or dlarm_on
then assert problem_2.
if problem_1 and problem_2
then naify danger_level 1.
An equivalent representation for the set of production rules is described by
the and-or tree representation of Figure 100,which uses the conventionintro-
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duced in Sedion 5.6.

or
danger level 1 ~
Pl 0
problem 2 problem 1 danger_level 0

S

light_red adarm_on switch 3 on switch 1 on switch_2 on

FIGURE 100.An and-or tree representation of production rules

Consider the following initial CS: the darm is on and switches 1 and 3are
on. The inference engine shoud help the supervisory system determine the
danger level. Forward chaining matches CS against KB, starting from |eaf
nodes of the and-or tree, and daws conclusions. New facts that are asserted
by the rules are alded to CS asthe rules are fired. In ou case, bah problems
1 and 2 are asserted, and danger_level_1 is subsequently natified, since both
problems 1 and 2 rave been discovered.

Suppase now that the purpose of the reasoning procedure was to uncerstand if
we are in level 1 of danger. Forward chaining worked fine in the example,
since the deduction succeeded. But in general, for alarge KB, the same facts
might be used to make lots of deductionsthat have nathingto dowith the goal
we wish to ched. Thus, if we aeinterested in a specific possble conclusion,
forward chaining can waste processing time. In such a case, backward chain-
ing can be more mnvenient. Badkward chaining consists of starting from the
hypahesized conclusion we would like to prove (i.e., aroot noce of the and-
or tree and ony exeauting the rules that are relevant to establishingit. In the
example, the inference engine would try to identify if problems 1 and 2are
true, since these would cause danger_level_1. On the other hand, there is no
neal to ched if danger_level 0 istrue, since it does not aff ect danger_level_1.TO
signal problem 1, switches 1 and 3must be on. To signal problem 2, either the
alarmisonor thelight isred. Sincethese ae ensured bythe factsin CS, we
can infer both problems 1 and 2,and therefore the truth of danger_level_1.

Different expert system languages based on poduction rules are commer-
cially available, such as OPS5 and KEE. It isalso passible to implement pro-
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duction rules and dfferent ressoning methods in ather languages, e.g., in a
procedural language like C++ or in a functional language like LISP. An
implementation in PROLOG can be rather straightforward.

The main dff erence between logic and rule-based languages is that logic lan-
guages are firmly based on the formal founditions of mathematical logic,
while rule-based languages are naot. Althoughthey have asimilar externa
appearance, being based onrules of the form "if condition then action”, in
most cases rule-based languages allow any kind d state-changing actions to
be specified to occur in the action part.

8.6 Bibliographic notes

The reader interested in the theory of logic, uponwhich logic programmingis
founded, can refer to (Mendelson 1964). (Manna and Waldinger 1985
present logics as a foundation for computer science. (Kowalski 1979 pio-
neeed the use of logic in computer programming. (Lloyd 1984 provides the
founcttionsfor logic programming languages. PROLOG and the art and style
of writing logic programs are discussed at length by (Sterling and Shapiro
1986.

(Bratko 1990 discusses the use of PROLOG in artificial intelligence gplica
tions. For example, it shows how PROLOG can be used to write a rule-based
expert system alongwith dfferent seaching schemes (forward and backward
chaining). Commercially avail able rule-based systemsinclude KEE (*** ) and
OPS5 (*** )

Relational databses and the SQL query language are presented in most text-
books on databases, such as (Ullman ***). (Ceri et a. **) is an example of
extension to relational databses to incorporate features from logic program-
ming.

8.7 Exercises

1. Comment the foll owing statement: "In logic programming, a program used to generate a
result can be used to chedk that an input value is indeed a result." Discusshow existing
programming languages approximate this general statement.

2. Find the most general unifier for
f(X,g(a Z,W),ah(X,b, W)

and
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f(h(a 2),9(ah(Z b) X),Z h(db, a)
3. Given the PROL OG sort program of Sedion 81.2, show the seach treefor the query
?-sort ([3, 5, 1], [1, 3, 5)).
4. Show the diff erent computations of the PROLOG interpreter for the fragments of Figure
9.6, given the folowing fads:
rel (a, b).
rel (g, c).
rel (b, f).
rel (f, g).
5. Predicate even (n) istruefor al even numbers. Write aPROL OG program implementing
predicate even.

6. Write aPROLOG program which chedks if a list contains another as a sublist. The

program returns Y ES for queries of the following kind:

?-sublist ([1, 5, 2, 7, 3, 101, [5, 2, 7]).
What is the intended meaning of the following queries?

?-sublist ([1, 5, 2, 7, 3, 10], X).

?-sublist (X, [5, 2, 7]).

?-sublist (X, Y).

Doesthe behavior of the PROLOG nterpreter correspondto the expeded meaning if these

queries are submitted for evaluation?

7. Consider the program of Figure 98. Discuss what happens if the following query is

submitted:
fad (-5, X)

« If the program does not behave @& expeded, provide anew version that eliminates the
problem.

8. Consider the following PROLOG program.

belongs to (A, [A | B]) :- I
belongs to (A, [C | B]) :- belongs _to (A, B).

» what does this program do?

» can the ait be eliminated from the first clause without affeding the set of solutions
computed by the program?

9. Consider the fragment of the previous exercise. Suppose you eliminate the ait from the
first clause and, in addition, youinterchange the two clauses. Describe the behavior of the
PROLOG interpreter when the foll owing goal is submitted:

?-belongs to (a, [a b, ])

10. The spedal goa fail is yet another extralogicd feaure provided by PROLOG. Study it
and discussits use.

11. It has been argued that the ait can be viewed as the logicd counterpart of the goto
statement of imperative programming languages. Provide aconcise agument to support
the statement.

12. Write aPROLOG program which defines the predicate fib (1, X), where | is a positive
integer and X is the I-th Fibonacd number. Remember that the first two Fibonacd
numbers are 0 and 1, and any other Fibonacd number is the sum of the two Fibonacd
numbers that precede it.

13. Take the list of courses offered by the Computer Science Department and the
recommended prerequisites. Write aPROLOG applicaion that can answer questions on



418

the curricula; in particular, it should able to check whether a cetain course sequence
conforms to the recommendations.

14. Write a PROLOG program which recognizes whether an input string is a rred
expresion with resped to the EBNF grammar il lustrated in Chapter 2. Y ou may assume,
for simplicity, that expressons only contain identifiers (i.e., numbers cannot appea), and
identifiers can only be single-letter names.

15. Suppose you are given adescription of amap in terms of the relation from_to. from _to (a,
b) meansthat one can dredly reach pant b from point a. Assume that from any point X
one @annot return to the same point by applying the dosure of relation from_to (i.e., the
map contains no cycles). A spedal point, called exit, represents the it from the map.
Write aPROLOG program to ched if, given a starting point, one can read exit.

16. Referring to the previous exercise, write aPROLOG predicae to ched if the assumption
that the map contains no cycleshald; i.e., from any point X one canat return to the same
point by applying the dosure of relation from_to.

17. Consider the fragment of Figure 97. Suppose that the second rule is changed in the
following way:

max (X, Y, Y).

* |Is the new fragment equivalent to the previous? Consider, in particular, the cae of the
following qeries:

?-max (2, 5, A).
?- max (5, 2, B).
?-max (2, 5, 3).
?-max (2,5, 5).
?-max (2,5, 2).

18. Consider the PROLOG sort program discussed in Sedion 81.2. Discussif (and haw) the
goal spedfied bythe following query can be solved:

sort (X, [1, 3,5, 99)]).

19. Consider a problem of the kind shown in Figure 100. Write aPROL OG implementation

that does both forward and badkward chaining, asill ustrated in Sedion 8.5.



