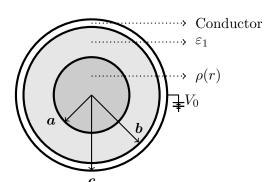
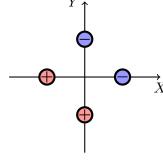

1er Parcial


Problema 1. Se tiene una arandela de radio interior a y radio exterior b, cargada con dos densidades superficiales diferentes $\sigma_0 = \sigma_A cos \phi$ para la región y > 0 y $\sigma_1 = constante$ para y < 0, siendo $\sigma_1 > 0$. Calcule:

- (a) La carga total de la arandela.
- (b) El vector campo eléctrico en el punto central de la arandela (P).

Problema 2. Una esfera de radio a con una densidad de carga dada por $\rho(r) = \frac{Q}{2\pi a r^2}$ está en el centro de un cascarón metálico esférico de radio interno b y radio externo c. Entre la esfera y el cascarón metálico hay un dieléctrico cuya permitividad es ε_1 , y el cascarón se encuentra a un potencial $V_0 > 0$.

- $(a)\,$ Calcule y grafique la intensidad del campo eléctrico para todo valor de r.
- (b) Calcule y grafique la variación del potencial eléctrico para todo valor de r, indicando claramente en el eje de las abscisas los valores del potencial en $r=a,b\ y\ c.$



- (c) Indique el valor de las densidades superficiales de carga del cascarón.
- (d) Calcule el valor de las densidades de carga de polarización en el material dieléctrico.
- (e) Indique que valor debería tomar el potencial V_0 para que el cascarón metálico tuviera una carga neta nula.

0 —

Problema 3. Se tienen cuatro cargas en los vértices de un cuadrado cuya diagonal mide 20 cm, según ilustra la figura. Los valores de todas las cargas son +10~nC o -10~nC.

- $\it (a)$ ¿Cuánto vale la fuerza sobre una carga de 20 $\it nC$ situada en el origen?
- (b) ¿Cuál es el trabajo que hay que realizar para llevar una carga de 20 nC desde el infinito hasta al origen de coordenadas? Interprete este resultado.

Nota: considere $k = 9.10^9 N/C^2 m^2$

_____ o ____

Problema 4. Sean dos esferas conductoras A y B de radios $R_A = 30 \ cm$ y $R_B = 20 \ cm$ respectivamente, que están suficientemente alejadas entre sí tal que no se afectan electrostáticamente. La esfera A está cargada tal que en su superficie el potencial es de $V_{iA} = 600 \ kV$ y la esfera B está a un potencial $V_{iA} = 0$. Si se las pone en contacto a través de un hilo conductor indique:

- (a) La carga inicial de cada esfera.
- (b) La carga final de cada esfera.
- (c) Suponiendo el medio que rodea las esferas es aire, £podría la esfera B retener la carga calculada en (b)? Justifique su respuesta. Nota: la ruptura dieléctrica del aire es $3 \times 10^6~V/m$
