RECUPERATORIO SEGUNDO PARCIAL DE ÁLGEBRA Y GEOMETRÍA

APELLIDO Y NOMBRE:	Nota:
CARRERA:	Reg.N°:

Dado el siguiente sistema de ecuaciones lineales:

$$\left\{ \begin{array}{l} x+y+z=\lambda\\ 2x+3z=2\lambda+1\\ x+3y+(\lambda-2)\,z=\lambda-1 \end{array} \right.$$

- a) Utilizando el Método de eliminación de Gauss determinar los valores de $\lambda \in \mathbb{R}$ para los cuales el sistema es Compatible Determinado, Compatible Indeterminado o Incompatible.
- b) En caso de existir un valor de $\lambda \in \mathbb{R}$ para el cual el sistema es Compatible Indeterminado, hallar la solución general del sistema y una solución particular del mismo.

2. a) Sea
$$A = \begin{pmatrix} -1 & 2 & 0 & 0 \\ -1 & 0 & 1 & 1 \\ 1 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$
. Hallar la matriz $B = \left(\det\left(2\cdot A^{-1}\right)\right)\cdot A^{T}$.

b) Sea $C = \begin{pmatrix} 1 & -1 \\ a & 0 \end{pmatrix}$. Calcular los valores de a para los cuales $\left(C^{2}\right)^{T}$ es una matriz inversible.

- 3. a) Sea $\vec{u} = (2, -1, 1)$.
 - i) Hallar un vector \vec{v} paralelo a \vec{u} tal que $\langle \vec{v} + 2\vec{u}, \vec{u} \rangle = 20$.
 - ii) Calcular $proy_{\vec{u}}\vec{w}$, sabiendo que el ángulo comprendido entre \vec{u} y \vec{w} es $\frac{\pi}{3}$ y $\|\vec{w}\| = \sqrt{6}$.
 - b) Dados los vectores \vec{u} y \vec{v} tales que $||\vec{u}|| = 2$, $||\vec{v}|| = 4$ y $||\vec{u} + \vec{v}||^2 = 28$, hallar $\langle \vec{u}, \vec{v} \rangle$.
- Sean A(-2,4) y B(1,1) dos vértices de un triángulo rectángulo en B. Hallar el vértice restante sabiendo que el área del triángulo es 15.

Indicar el número de hojas

Firmar la última hoja.