PRIMER PARCIAL DE ÁLGEBRA Y GEOMETRÍA (28 - 09 - 2020)

APELLIDO Y NOMBRE:	Nota:
CARRERA:	Reg.N°:

- 1. Hallar todos los $z \in \mathbb{C}$ que verifiquen lo pedido en cada inciso:
 - a) $Im(i \cdot z) (Re(z))^2 = 0$ y $Im(\frac{2-3i}{2i}) + Im(z) = 2$.
 - b) $i^{42} \cdot z^3 + \left(\frac{\sqrt{2}}{2} + \frac{\sqrt{2}}{2}i\right)^{16} = i$.
- 2. Graficar en el Plano Complejo la región de todos los $z \in \mathbb{C}$ que verifican simultáneamente las siguientes condiciones:

$$\left\|z^{2}\right\| \leq 4$$
 ; $Im\left(i \cdot z\right) > \frac{1}{2}$ y $Arg\left(z\right) \leq \frac{\pi}{4}$

z = 1 + i pertenece a la región? Justificar analíticamente.

- 3. Hallar, en cada inciso, todas las raíces del polinomio P(X). Justificar cada respuesta.
 - a) $P(X) = X^4 + \frac{1}{2}X^3 + \frac{3}{2}X^2 + X 1$.
 - b) $P(X) = (X^3 + (-2 2i)X^2 + (1 + 4i)X 2i) \cdot (X + 2i)$, donde $P(X) \in \mathbb{R}[X]$.
- 4. Hallar, en caso de existir, $a \in \mathbb{R}$ sabiendo que $P(X) = a \cdot X^4 2X + 2$ y $Q(X) = 3X^3 2$ tienen el mismo resto al dividir por X + 2.

Todas las respuestas deben estar justificadas. Indicar número de hojas entregadas sin contar el enunciado.